Collage of published research papers

Citation

BibTex format

@article{Enshaeifar:2019:10.1371/journal.pone.0209909,
author = {Enshaeifar, S and Zoha, A and Skillman, S and Markides, A and Acton, ST and Elsaleh, T and Kenny, M and Rostill, H and Nilforooshan, R and Barnaghi, P},
doi = {10.1371/journal.pone.0209909},
journal = {PLoS One},
title = {Machine learning methods for detecting urinary tract infection and analysing daily living activities in people with dementia},
url = {http://dx.doi.org/10.1371/journal.pone.0209909},
volume = {14},
year = {2019}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - Dementia is a neurological and cognitive condition that affects millions of people around the world. At any given time in the United Kingdom, 1 in 4 hospital beds are occupied by a person with dementia, while about 22% of these hospital admissions are due to preventable causes. In this paper we discuss using Internet of Things (IoT) technologies and in-home sensory devices in combination with machine learning techniques to monitor health and well-being of people with dementia. This will allow us to provide more effective and preventative care and reduce preventable hospital admissions. One of the unique aspects of this work is combining environmental data with physiological data collected via low cost in-home sensory devices to extract actionable information regarding the health and well-being of people with dementia in their own home environment. We have worked with clinicians to design our machine learning algorithms where we focused on developing solutions for real-world settings. In our solutions, we avoid generating too many alerts/alarms to prevent increasing the monitoring and support workload. We have designed an algorithm to detect Urinary Tract Infections (UTI) which is one of the top five reasons of hospital admissions for people with dementia (around 9% of hospital admissions for people with dementia in the UK). To develop the UTI detection algorithm, we have used a Non-negative Matrix Factorisation (NMF) technique to extract latent factors from raw observation and use them for clustering and identifying the possible UTI cases. In addition, we have designed an algorithm for detecting changes in activity patterns to identify early symptoms of cognitive decline or health decline in order to provide personalised and preventative care services. For this purpose, we have used an Isolation Forest (iForest) technique to create a holistic view of the daily activity patterns. This paper describes the algorithms and discusses the evaluation of the work using a lar
AU - Enshaeifar,S
AU - Zoha,A
AU - Skillman,S
AU - Markides,A
AU - Acton,ST
AU - Elsaleh,T
AU - Kenny,M
AU - Rostill,H
AU - Nilforooshan,R
AU - Barnaghi,P
DO - 10.1371/journal.pone.0209909
PY - 2019///
SN - 1932-6203
TI - Machine learning methods for detecting urinary tract infection and analysing daily living activities in people with dementia
T2 - PLoS One
UR - http://dx.doi.org/10.1371/journal.pone.0209909
UR - http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000455810200015&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=1ba7043ffcc86c417c072aa74d649202
UR - https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0209909
UR - http://hdl.handle.net/10044/1/83133
VL - 14
ER -

Awards

  • Finalist: Best Paper - IEEE Transactions on Mechatronics (awarded June 2021)

  • Finalist: IEEE Transactions on Mechatronics; 1 of 5 finalists for Best Paper in Journal

  • Winner: UK Institute of Mechanical Engineers (IMECHE) Healthcare Technologies Early Career Award (awarded June 2021): Awarded to Maria Lima (UKDRI CR&T PhD candidate)

  • Winner: Sony Start-up Acceleration Program (awarded May 2021): Spinout company Serg Tech awarded (1 of 4 companies in all of Europe) a place in Sony corporation start-up boot camp

  • “An Extended Complementary Filter for Full-Body MARG Orientation Estimation” (CR&T authors: S Wilson, R Vaidyanathan)

UK DRI


Established in 2017 by its principal funder the Medical Research Council, in partnership with Alzheimer's Society and Alzheimer’s Research UK, The UK Dementia Research Institute (UK DRI) is the UK’s leading biomedical research institute dedicated to neurodegenerative diseases.