guy poncing

Synthetic Biology underpins advances in the bioeconomy

Biological systems - including the simplest cells - exhibit a broad range of functions to thrive in their environment. Research in the Imperial College Centre for Synthetic Biology is focused on the possibility of engineering the underlying biochemical processes to solve many of the challenges facing society, from healthcare to sustainable energy. In particular, we model, analyse, design and build biological and biochemical systems in living cells and/or in cell extracts, both exploring and enhancing the engineering potential of biology. 

As part of our research we develop novel methods to accelerate the celebrated Design-Build-Test-Learn synthetic biology cycle. As such research in the Centre for Synthetic Biology highly multi- and interdisciplinary covering computational modelling and machine learning approaches; automated platform development and genetic circuit engineering ; multi-cellular and multi-organismal interactions, including gene drive and genome engineering; metabolic engineering; in vitro/cell-free synthetic biology; engineered phages and directed evolution; and biomimetics, biomaterials and biological engineering.

Publications

Citation

BibTex format

@article{Prabhu:2020:10.1186/s13068-020-01747-3,
author = {Prabhu, AA and Ledesma-Amaro, R and Lin, CSK and Coulon, F and Thakur, VK and Kumar, V},
doi = {10.1186/s13068-020-01747-3},
journal = {Biotechnology for Biofuels},
title = {Bioproduction of succinic acid from xylose by engineered Yarrowia lipolytica without pH control},
url = {http://dx.doi.org/10.1186/s13068-020-01747-3},
volume = {13},
year = {2020}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - BackgroundXylose is the most prevalent sugar available in hemicellulose fraction of lignocellulosic biomass (LCB) and of great interest for the green economy. Unfortunately, most of the cell factories cannot inherently metabolize xylose as sole carbon source. Yarrowia lipolytica is a non-conventional yeast that produces industrially important metabolites. The yeast is able to metabolize a large variety of substrates including both hydrophilic and hydrophobic carbon sources. However, Y. lipolytica lacks effective metabolic pathway for xylose uptake and only scarce information is available on utilization of xylose. For the economica feasibility of LCB-based biorefineries, effective utilization of both pentose and hexose sugars is obligatory.ResultsIn the present study, succinic acid (SA) production from xylose by Y. lipolytica was examined. To this end, Y. lipolytica PSA02004 strain was engineered by overexpressing pentose pathway cassette comprising xylose reductase (XR), xylitol dehydrogenase (XDH) and xylulose kinase (XK) gene. The recombinant strain exhibited a robust growth on xylose as sole carbon source and produced substantial amount of SA. The inhibition of cell growth and SA formation was observed above 60 g/L xylose concentration. The batch cultivation of the recombinant strain in a bioreactor resulted in a maximum biomass concentration of 7.3 g/L and SA titer of 11.2 g/L with the yield of 0.19 g/g. Similar results in terms of cell growth and SA production were obtained with xylose-rich hydrolysate derived from sugarcane bagasse. The fed-batch fermentation yielded biomass concentration of 11.8 g/L (OD600: 56.1) and SA titer of 22.3 g/L with a gradual decrease in pH below 4.0. Acetic acid was obtained as a main by-product in all the fermentations.ConclusionThe recombinant strain displayed potential for bioconversion of xylose to SA. Further, this study provided a new insight on conversion of lignocellulosic biomass into value-added products. To the best of o
AU - Prabhu,AA
AU - Ledesma-Amaro,R
AU - Lin,CSK
AU - Coulon,F
AU - Thakur,VK
AU - Kumar,V
DO - 10.1186/s13068-020-01747-3
PY - 2020///
SN - 1754-6834
TI - Bioproduction of succinic acid from xylose by engineered Yarrowia lipolytica without pH control
T2 - Biotechnology for Biofuels
UR - http://dx.doi.org/10.1186/s13068-020-01747-3
UR - http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000545643200001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=1ba7043ffcc86c417c072aa74d649202
UR - http://hdl.handle.net/10044/1/80883
VL - 13
ER -

logo

What's going on? Take a look at our events

Funders

Work in the IC-CSynB is supported by a wide range of Research Councils, Learned Societies, Charities and more.