Citation

BibTex format

@article{Badia:2016:10.5194/gmd-2016-141,
author = {Badia, A and Jorba, O and Voulgarakis, A and Dabdub, D and Pérez, García-Pando C and Hilboll, A and Gonçalves, M and Janjic, Z},
doi = {10.5194/gmd-2016-141},
title = {Gas-phase chemistry in the online multiscale NMMB/BSC Chemical Transport Model: Description and evaluation at global scale},
url = {http://dx.doi.org/10.5194/gmd-2016-141},
year = {2016}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - <jats:p>Abstract. This paper presents a comprehensive description and benchmark evaluation of the tropospheric gas-phase chemistry component of the NMMB/BSC Chemical Transport Model (NMMB/BSC-CTM), an online chemical weather prediction system conceived for both the regional and the global scale. We provide an extensive evaluation of a global annual cycle simulation using a variety of background surface stations (EMEP, WDCGG and CASTNET), ozonesondes (WOUDC, CMD and SHADOZ), aircraft data (MOZAIC and several campaigns), and satellite observations (SCIAMACHY and MOPITT). We also include an extensive discussion of our results in comparison to other state-of-the-art models. The model shows a realistic oxidative capacity across the globe. The seasonal cycle for CO is fairly well represented at different locations (correlations around 0.3–0.7 in surface concentrations), although concentrations are underestimated in spring and winter in the Northern Hemisphere, and are overestimated throughout the year at 800 and 500 hPa in the Southern Hemisphere. Nitrogen species are well represented in almost all locations, particularly NO2 in Europe (RMSE below 9 μg m−3). The modeled vertical distribution of NOx and HNO3 are in excellent agreement with the observed values and the spatial and seasonal trends of tropospheric NO2 columns correspond well to observations from SCIAMACHY, capturing the highly polluted areas and the biomass burning cycle throughout the year. Over Asia, the model underestimates NOx from March to August probably due to an underestimation of NOx emissions in the region. Overall, the comparison of the modelled CO and NO2 with MOPITT and SCIAMACHY observations emphasizes the need for more accurate emission rates from anthropogenic and biomass burning sources (i.e., specification of temporal variability). The resulting ozone (O3) burden (348 Tg) lies within the range of other state-of-the-art global atmospheric chemistry models. The model genera
AU - Badia,A
AU - Jorba,O
AU - Voulgarakis,A
AU - Dabdub,D
AU - Pérez,García-Pando C
AU - Hilboll,A
AU - Gonçalves,M
AU - Janjic,Z
DO - 10.5194/gmd-2016-141
PY - 2016///
TI - Gas-phase chemistry in the online multiscale NMMB/BSC Chemical Transport Model: Description and evaluation at global scale
UR - http://dx.doi.org/10.5194/gmd-2016-141
ER -