Below is a list of all relevant publications authored by Robotics Forum members.

Citation

BibTex format

@inproceedings{Wang:2019:10.1109/IROS.2018.8594305,
author = {Wang, R and Amadori, P and Demiris, Y},
doi = {10.1109/IROS.2018.8594305},
publisher = {IEEE},
title = {Real-time workload classification during driving using hyperNetworks},
url = {http://dx.doi.org/10.1109/IROS.2018.8594305},
year = {2019}
}

RIS format (EndNote, RefMan)

TY  - CPAPER
AB - Classifying human cognitive states from behavioral and physiological signals is a challenging problem with important applications in robotics. The problem is challenging due to the data variability among individual users, and sensor artifacts. In this work, we propose an end-to-end framework for real-time cognitive workload classification with mixture Hyper Long Short Term Memory Networks (m-HyperLSTM), a novelvariant of HyperNetworks. Evaluating the proposed approach on an eye-gaze pattern dataset collected from simulated driving scenarios of different cognitive demands, we show that the proposed framework outperforms previous baseline methods and achieves 83.9% precision and 87.8% recall during test. We also demonstrate the merit of our proposed architecture by showing improved performance over other LSTM-basedmethods
AU - Wang,R
AU - Amadori,P
AU - Demiris,Y
DO - 10.1109/IROS.2018.8594305
PB - IEEE
PY - 2019///
SN - 2153-0866
TI - Real-time workload classification during driving using hyperNetworks
UR - http://dx.doi.org/10.1109/IROS.2018.8594305
UR - https://ieeexplore.ieee.org/document/8594305
UR - http://hdl.handle.net/10044/1/62675
ER -

Robotics Forum Annual Report

Join our mailing list - sharing robotics-related activities at Imperial. 

Contact Us

Robotics Forum

For all enquiries, please contact our Forum Manager,  Dr Ana Cruz Ruiz

robotics-manager@imperial.ac.uk