Citation

BibTex format

@article{Nielsen:2016:10.1021/acs.nanolett.5b04931,
author = {Nielsen, MP and Lafone, L and Rakovich, A and Sidiropoulos, TP and Rahmani, M and Maier, SA and Oulton, RF},
doi = {10.1021/acs.nanolett.5b04931},
journal = {Nano Letters},
pages = {1410--1414},
title = {Adiabatic nanofocusing in hybrid gap plasmon waveguides on the silicon-on-insulator platform},
url = {http://dx.doi.org/10.1021/acs.nanolett.5b04931},
volume = {16},
year = {2016}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - We present an experimental demonstration of a new class of hybrid gap plasmon waveguides on the silicon-on-insulator (SOI) platform. Created by the hybridization of the plasmonic mode of a gap in a thin metal sheet and the transverse-electric (TE) photonic mode of an SOI slab, this waveguide is designed for efficient adiabatic nanofocusing simply by varying the gap width. For gap widths greater than 100 nm, the mode is primarily photonic in character and propagation lengths can be many tens of micrometers. For gap widths below 100 nm, the mode becomes plasmonic in character with field confinement predominantly within the gap region and with propagation lengths of a few microns. We estimate the electric field intensity enhancement in hybrid gap plasmon waveguide tapers at 1550 nm by three-photon absorption of selectively deposited CdSe/ZnS quantum dots within the gap. Here, we show electric field intensity enhancements of up to 167 ± 26 for a 24 nm gap, proving the viability of low loss adiabatic nanofocusing on a commercially relevant photonics platform.
AU - Nielsen,MP
AU - Lafone,L
AU - Rakovich,A
AU - Sidiropoulos,TP
AU - Rahmani,M
AU - Maier,SA
AU - Oulton,RF
DO - 10.1021/acs.nanolett.5b04931
EP - 1414
PY - 2016///
SN - 1530-6992
SP - 1410
TI - Adiabatic nanofocusing in hybrid gap plasmon waveguides on the silicon-on-insulator platform
T2 - Nano Letters
UR - http://dx.doi.org/10.1021/acs.nanolett.5b04931
UR - http://hdl.handle.net/10044/1/30045
VL - 16
ER -