Citation

BibTex format

@article{Pusch:2015:10.1038/srep17451,
author = {Pusch, A and Oh, S and Wuestner, S and Roschuk, T and De, Luca A and Chen, Y and Boual, S and Ali, Z and Phillips, C and Hong, M and Maier, S and Udrea, F and Hopper, R and Hess, O},
doi = {10.1038/srep17451},
journal = {Scientific Reports},
title = {A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices},
url = {http://dx.doi.org/10.1038/srep17451},
volume = {5},
year = {2015}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - The application of plasmonics to thermal emitters is generally assisted by absorptive losses in the metal because Kirchhoff’s law prescribes that only good absorbers make good thermal emitters. Based on a designed plasmonic crystal and exploiting a slow-wave lattice resonance and spontaneous thermal plasmon emission, we engineer a tungsten-based thermal emitter, fabricated in an industrial CMOS process, and demonstrate its markedly improved practical use in a prototype non-dispersive infrared (NDIR) gas-sensing device. We show that the emission intensity of the thermal emitter at the CO2 absorption wavelength is enhanced almost 4-fold compared to a standard non-plasmonic emitter, which enables a proportionate increase in the signal-to-noise ratio of the CO2 gas sensor.
AU - Pusch,A
AU - Oh,S
AU - Wuestner,S
AU - Roschuk,T
AU - De,Luca A
AU - Chen,Y
AU - Boual,S
AU - Ali,Z
AU - Phillips,C
AU - Hong,M
AU - Maier,S
AU - Udrea,F
AU - Hopper,R
AU - Hess,O
DO - 10.1038/srep17451
PY - 2015///
SN - 2045-2322
TI - A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices
T2 - Scientific Reports
UR - http://dx.doi.org/10.1038/srep17451
UR - http://hdl.handle.net/10044/1/28325
VL - 5
ER -