Citation

BibTex format

@article{Bennett:2015:10.1016/j.hedp.2015.02.001,
author = {Bennett, MJ and Lebedev, SV and Hall, GN and Suttle, L and Burdiak, G and Suzuki-Vidal, F and Hare, J and Swadling, G and Patankar, S and Bocchi, M and Chittenden, JP and Smith, R and Frank, A and Blackman, E and Drake, RP and Ciardi, A},
doi = {10.1016/j.hedp.2015.02.001},
journal = {High Energy Density Physics},
pages = {63--67},
title = {Formation of radiatively cooled, supersonically rotating, plasma flows in Z-pinch experiments: Towards the development of an experimental platform to study accretion disk physics in the laboratory},
url = {http://dx.doi.org/10.1016/j.hedp.2015.02.001},
volume = {17},
year = {2015}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - We present data from the first Z-pinch experiments aiming to simulate aspects of accretion disk physics in the laboratory. Using off axis ablation flows from a wire array z-pinch we demonstrate the formation of a supersonically (M ∼ 2) rotating hollow plasma cylinder of height ∼4 mm and radius 2 mm. Using a combination of diagnostics we measure the rotation speed (∼60 kms−1), electron density (1019 cm−3), ion temperature (Ti ∼ 60 eV) and the product of electron temperature and average ionisation (ZTe ∼ 150 to 200 eV). Using these parameters we calculate the Reynolds number for the plasma on the order 105 and magnetic Reynolds number as 10 – 100. The plasma flow is maintained for 150 ns, corresponding to one rotation period, which should allow for studying fast instabilities which develop on this time-scale.
AU - Bennett,MJ
AU - Lebedev,SV
AU - Hall,GN
AU - Suttle,L
AU - Burdiak,G
AU - Suzuki-Vidal,F
AU - Hare,J
AU - Swadling,G
AU - Patankar,S
AU - Bocchi,M
AU - Chittenden,JP
AU - Smith,R
AU - Frank,A
AU - Blackman,E
AU - Drake,RP
AU - Ciardi,A
DO - 10.1016/j.hedp.2015.02.001
EP - 67
PY - 2015///
SN - 1878-0563
SP - 63
TI - Formation of radiatively cooled, supersonically rotating, plasma flows in Z-pinch experiments: Towards the development of an experimental platform to study accretion disk physics in the laboratory
T2 - High Energy Density Physics
UR - http://dx.doi.org/10.1016/j.hedp.2015.02.001
UR - http://hdl.handle.net/10044/1/29221
VL - 17
ER -