Results
- Showing results for:
- Reset all filters
Search results
-
Journal articlePirillo C, Birch F, Tissot FS, et al., 2022,
Metalloproteinase inhibition reduces AML growth, prevents stem cell loss, and improves chemotherapy effectiveness
, BLOOD ADVANCES, Vol: 6, Pages: 3126-3141, ISSN: 2473-9529 -
Journal articleCavanagh H, Kempe D, Mazalo JK, et al., 2022,
T cell morphodynamics reveal periodic shape oscillations in three-dimensional migration
, JOURNAL OF THE ROYAL SOCIETY INTERFACE, Vol: 19, ISSN: 1742-5689- Author Web Link
- Cite
- Citations: 1
-
Journal articleSalvalaio M, Oliver N, Tiknaz D, et al., 2022,
Root electrotropism in Arabidopsis does not depend on auxin distribution but requires cytokinin biosynthesis
, Plant Physiology, Vol: 188, Pages: 1604-1616, ISSN: 0032-0889Efficient foraging by plant roots relies on the ability to sense multiple physical and chemical cues in soil and to reorient growth accordingly (tropism). Root tropisms range from sensing gravity (gravitropism), light (phototropism), water (hydrotropism), touch (thigmotropism), and more. Electrotropism, also known as galvanotropism, is the phenomenon of aligning growth with external electric fields and currents. Although root electrotropism has been observed in a few species since the end of the 19th century, its molecular and physical mechanisms remain elusive, limiting its comparison with the more well-defined sensing pathways in plants. Here we provide a quantitative and molecular characterization of root electrotropism in the model system Arabidopsis (Arabidopsis thaliana), showing that it does not depend on an asymmetric distribution of the plant hormone auxin, but instead requires the biosynthesis of a second hormone, cytokinin. We also show that the dose-response kinetics of the early steps of root electrotropism follows a power law analogous to the one observed in some physiological reactions in animals. Future studies involving more extensive molecular and quantitative characterization of root electrotropism would represent a step towards a better understanding of signal integration in plants and would also serve as an independent outgroup for comparative analysis of electroreception in animals and fungi.
-
Journal articleKilleen A, Bertrand T, Lee CF, 2022,
Polar fluctuations lead to extensile nematic behavior in confluent tissues
, Physical Review Letters, Vol: 128, Pages: 1-6, ISSN: 0031-9007How can a collection of motile cells, each generating contractile nematic stresses in isolation, become an extensile nematic at the tissue-level? Understanding this seemingly contradictory experimental observation, which occurs irrespective of whether the tissue is in the liquid or solid states, is not only crucial to our understanding of diverse biological processes, but is also of fundamental interest to soft matter and many-body physics. Here, we resolve this cellular to tissue level disconnect in the small fluctuation regime by using analytical theories based on hydrodynamic descriptions of confluent tissues, in both liquid and solid states. Specifically, we show that a collection of microscopic constituents with no inherently nematic extensile forces can exhibit active extensile nematic behavior when subject to polar fluctuating forces. We further support our findings byperforming cell level simulations of minimal models of confluent tissues.
-
Journal articleJuritz J, Poulton JM, Ouldridge TE, 2022,
Minimal mechanism for cyclic templating of length-controlled copolymers under isothermal conditions
, Journal of Chemical Physics, Vol: 156, ISSN: 0021-9606The production of sequence-specific copolymers using copolymer templates is fundamental to the synthesis of complex biological molecules and is a promising framework for the synthesis of synthetic chemical complexes. Unlike the superficially similar process of self-assembly, however, the development of synthetic systems that implement templated copying of copolymers under constant environmental conditions has been challenging. The main difficulty has been overcoming product inhibition or the tendency of products to adhere strongly to their templates—an effect that gets exponentially stronger with the template length. We develop coarse-grained models of copolymerization on a finite-length template and analyze them through stochastic simulation. We use these models first to demonstrate that product inhibition prevents reliable template copying and then ask how this problem can be overcome to achieve cyclic production of polymer copies of the right length and sequence in an autonomous and chemically driven context. We find that a simple addition to the model is sufficient to generate far longer polymer products that initially form on, and then separate from, the template. In this approach, some of the free energy of polymerization is diverted into disrupting copy–template bonds behind the leading edge of the growing copy copolymer. By additionally weakening the final copy–template bond at the end of the template, the model predicts that reliable copying with a high yield of full-length, sequence-matched products is possible over large ranges of parameter space, opening the way to the engineering of synthetic copying systems that operate autonomously.
-
Journal articleCook J, Pawar S, Endres R, 2021,
Thermodynamic constraints on the assembly and diversity of microbial ecosystems are different near to and far from equilibrium
, PLOS COMPUTATIONAL BIOLOGY, Vol: 17, ISSN: 1553-734X- Author Web Link
- Cite
- Citations: 3
-
Journal articleKalossaka LM, Mohammed AA, Sena G, et al., 2021,
3D printing nanocomposite hydrogels with lattice vascular networks using stereolithography
, JOURNAL OF MATERIALS RESEARCH, Vol: 36, Pages: 4249-4261, ISSN: 0884-2914- Author Web Link
- Cite
- Citations: 10
-
Journal articleEndres R, Cavanagh H, Mosbach A, et al., 2021,
Physics-informed deep learning characterizes morphodynamics of Asian soybean rust disease
, Nature Communications, Vol: 12, Pages: 1-8, ISSN: 2041-1723Medicines and agricultural biocides are often discovered using large phenotypic screens across hundreds of compounds, where visible effects of whole organisms are compared to gauge efficacy and possible modes of action. However, such analysis is often limited to human-defined and static features. Here, we introduce a novel framework that can characterize shape changes (morphodynamics) for cell-drug interactions directly from images, and use it to interpret perturbed development of Phakopsora pachyrhizi, the Asian soybean rust crop pathogen. We describe population development over a 2D space of shapes (morphospace) using two models with condition-dependent parameters: a top-down Fokker-Planck model of diffusive development over Waddington-type landscapes, and a bottom-up model of tip growth. We discover a variety of landscapes, describing phenotype transitions during growth, and identify possible perturbations in the tip growth machinery that cause this variation. This demonstrates a widely-applicable integration of unsupervised learning and biophysical modeling.
-
Journal articleLee CF, 2021,
Scaling law and universal drop size distribution of coarsening in conversion-limited phase separation
, Physical Review Research, Vol: 3, Pages: 1-6, ISSN: 2643-1564Phase separation is not only ubiquitous in diverse physical systems, but also plays an important organizational role inside biological cells. However, experimental studies of intracellular condensates (drops with condensed concentrations of specific collections of proteins and nucleic acids) have challenged the standard coarsening theories of phase separation. Specifically, the coarsening rates observed are unexpectedly slow for many intracellular condensates. Recently, Folkmann et al. [Science 373, 1218 (2021)] argued that the slow coarsening rate can be caused by the slow conversion of a condensate constituent between the state in the dilute phase and the condensate state. One implication of this conversion-limited picture is that standard theories of coarsening in phase separation (Lifshitz-Slyozov-Wagner theory of Ostwald ripening and drop coalescence schemes) no longer apply. Surprisingly, I show here that the model equations of conversion-limited phase separation can instead be mapped onto a grain growth model in a single-phase material in three dimensions. I further elucidate the universal coarsening behavior in the late stage using analytical and numerical methods.
-
Journal articleKalossaka LM, Sena G, Barter LMC, et al., 2021,
Review: 3D printing hydrogels for the fabrication of soilless cultivation substrates
, Applied Materials Today, Vol: 24, Pages: 1-16, ISSN: 2352-9407The use of hydrogels in academic research is fast evolving, and becoming more relevant to real life applications across varying fields. Additive Manufacturing (AM) has paved the way towards manufacturing hydrogel substrates with tailored properties which allow for new functionalities and applications. In this review, we introduce the idea of fabricating hydrogels as bioreceptive structures to be used as soilless cultivation substrates. AM is suggested as the fabrication process to achieve structures with features similar to soil. To evaluate this, we first review hydrogel fabrication processes, highlighting their key differences in terms of resolution, printing speed and build volume. Thus, we illustrate the examples from the literature where hydrogels were 3D printed with microorganisms such as algae. Finally, the challenges and future perspectives of printing soilless cultivation substrates are explored.
-
Journal articlePoulton JM, Ouldridge TE, 2021,
Edge-effects dominate copying thermodynamics for finite-length molecular oligomers
, New Journal of Physics, Vol: 23, Pages: 1-14, ISSN: 1367-2630A signature feature of living systems is their ability to produce copies ofinformation-carrying molecular templates such as DNA. These copies are madeby assembling a set of monomer molecules into a linear macromolecule with a sequence determined by the template. The copies produced have a finite length –they are often “oligomers”, or short polymers – and must eventually detach fromtheir template. We explore the role of the resultant initiation and termination ofthe copy process in the thermodynamics of copying. By splitting the free-energychange of copy formation into informational and chemical terms, we show that,surprisingly, copy accuracy plays no direct role in the overall thermodynamics. Instead, finite-length templates function as highly-selective engines that interconvertchemical and information-based free energy stored in the environment; it is thermodynamically costly to produce outputs that are more similar to the oligomersin the environment than sequences obtained by randomly sampling monomers. Incontrast to previous work that neglects separation, any excess free energy stored incorrelations between copy and template sequences is lost when the copy fully detaches and mixes with the environment; these correlations therefore do not featurein the overall thermodynamics. Previously-derived constraints on copy accuracytherefore only manifest as kinetic barriers experienced while the copy is templateattached; these barriers are easily surmounted by shorter oligomers.
-
Journal articleSengar A, Ouldridge TE, Henrich O, et al., 2021,
A primer on the oxDNA model of DNA: When to use it, how to simulate it and how to interpret the results
, Frontiers in Molecular Biosciences, Vol: 8, Pages: 1-22, ISSN: 2296-889XThe oxDNA model of DNA has been applied widely to systems in biology,biophysics and nanotechnology. It is currently available via two independentopen source packages. Here we present a set of clearly-documented exemplarsimulations that simultaneously provide both an introduction to simulating themodel, and a review of the model's fundamental properties. We outline howsimulation results can be interpreted in terms of -- and feed into ourunderstanding of -- less detailed models that operate at larger length scales,and provide guidance on whether simulating a system with oxDNA is worthwhile.
-
Journal articleAmarteifio S, Fallesen T, Pruessner G, et al., 2021,
A random-sampling approach to track cell divisions in time-lapse fluorescence microscopy
, Plant Methods, Vol: 17, ISSN: 1746-4811BackgroundParticle-tracking in 3D is an indispensable computational tool to extract critical information on dynamical processes from raw time-lapse imaging. This is particularly true with in vivo time-lapse fluorescence imaging in cell and developmental biology, where complex dynamics are observed at high temporal resolution. Common tracking algorithms used with time-lapse data in fluorescence microscopy typically assume a continuous signal where background, recognisable keypoints and independently moving objects of interest are permanently visible. Under these conditions, simple registration and identity management algorithms can track the objects of interest over time. In contrast, here we consider the case of transient signals and objects whose movements are constrained within a tissue, where standard algorithms fail to provide robust tracking.ResultsTo optimize 3D tracking in these conditions, we propose the merging of registration and tracking tasks into a registration algorithm that uses random sampling to solve the identity management problem. We describe the design and application of such an algorithm, illustrated in the domain of plant biology, and make it available as an open-source software implementation. The algorithm is tested on mitotic events in 4D data-sets obtained with light-sheet fluorescence microscopy on growing Arabidopsis thaliana roots expressing CYCB::GFP. We validate the method by comparing the algorithm performance against both surrogate data and manual tracking.ConclusionThis method fills a gap in existing tracking techniques, following mitotic events in challenging data-sets using transient fluorescent markers in unregistered images.
-
Journal articleCabello-Garcia J, Bae W, Stan G-BV, et al., 2021,
Handhold-mediated strand displacement: a nucleic acid based mechanism for generating far-from-equilibrium assemblies through templated reactions.
, ACS Nano, Vol: 15, Pages: 3272-3283, ISSN: 1936-0851The use of templates is a well-established method for the production of sequence-controlled assemblies, particularly long polymers. Templating is canonically envisioned as akin to a self-assembly process, wherein sequence-specific recognition interactions between a template and a pool of monomers favor the assembly of a particular polymer sequence at equilibrium. However, during the biogenesis of sequence-controlled polymers, template recognition interactions are transient; RNA and proteins detach spontaneously from their templates to perform their biological functions and allow template reuse. Breaking template recognition interactions puts the product sequence distribution far from equilibrium, since specific product formation can no longer rely on an equilibrium dominated by selective copy-template bonds. The rewards of engineering artificial polymer systems capable of spontaneously exhibiting nonequilibrium templating are large, but fields like DNA nanotechnology lack the requisite tools; the specificity and drive of conventional DNA reactions rely on product stability at equilibrium, sequestering any recognition interaction in products. The proposed alternative is handhold-mediated strand displacement (HMSD), a DNA-based reaction mechanism suited to producing out-of-equilibrium products. HMSD decouples the drive and specificity of the reaction by introducing a transient recognition interaction, the handhold. We measure the kinetics of 98 different HMSD systems to prove that handholds can accelerate displacement by 4 orders of magnitude without being sequestered in the final product. We then use HMSD to template the selective assembly of any one product DNA duplex from an ensemble of equally stable alternatives, generating a far-from-equilibrium output. HMSD thus brings DNA nanotechnology closer to the complexity of out-of-equilibrium biological systems.
-
Journal articleBerengut J, Kui Wong C, Berengut J, et al., 2020,
Self-limiting polymerization of DNA origami subunits with strain accumulation
, ACS Nano, Vol: 14, Pages: 17428-17441, ISSN: 1936-0851Biology demonstrates how a near infinite array of complex systems and structures at many scales can originate from the self-assembly of component parts on the nanoscale. But to fully exploit the benefits of self-assembly for nanotechnology, a crucial challenge remains: How do we rationally encode well-defined global architectures in subunits that are much smaller than their assemblies? Strain accumulation via geometric frustration is one mechanism that has been used to explain the self-assembly of global architectures in diverse and complex systems a posteriori. Here we take the next step and use strain accumulation as a rational design principle to control the length distributions of self-assembling polymers. We use the DNA origami method to design and synthesize a molecular subunit known as the PolyBrick, which perturbs its shape in response to local interactions via flexible allosteric blocking domains. These perturbations accumulate at the ends of polymers during growth, until the deformation becomes incompatible with further extension. We demonstrate that the key thermodynamic factors for controlling length distributions are the intersubunit binding free energy and the fundamental strain free energy, both which can be rationally encoded in a PolyBrick subunit. While passive polymerization yields geometrical distributions, which have the highest statistical length uncertainty for a given mean, the PolyBrick yields polymers that approach Gaussian length distributions whose variance is entirely determined by the strain free energy. We also show how strain accumulation can in principle yield length distributions that become tighter with increasing subunit affinity and approach distributions with uniform polymer lengths. Finally, coarse-grained molecular dynamics and Monte Carlo simulations delineate and quantify the dominant forces influencing strain accumulation in a molecular system. This study constitutes a fundamental investigation of the use of strain accumula
-
Journal articleDeshpande A, Ouldridge T, 2020,
Optimizing enzymatic catalysts for rapid turnover of substrates with low enzyme sequestration
, Biological Cybernetics: communication and control in organisms and automata, Vol: 114, Pages: 653-668, ISSN: 0340-1200Enzymes are central to both metabolism and information processing in cells. In both cases, an enzyme’s ability to accelerate a reaction without being consumed in the reaction is crucial. Nevertheless, enzymes are transiently sequestered when they bind to their substrates; this sequestration limits activity and potentially compromises information processing and signal transduction. In this article, we analyse the mechanism of enzyme–substrate catalysis from the perspective of minimizing the load on the enzymes through sequestration, while maintaining at least a minimum reaction flux. In particular, we ask: which binding free energies of the enzyme–substrate and enzyme–product reaction intermediates minimize the fraction of enzymes sequestered in complexes, while sustaining a certain minimal flux? Under reasonable biophysical assumptions, we find that the optimal design will saturate the bound on the minimal flux and reflects a basic trade-off in catalytic operation. If both binding free energies are too high, there is low sequestration, but the effective progress of the reaction is hampered. If both binding free energies are too low, there is high sequestration, and the reaction flux may also be suppressed in extreme cases. The optimal binding free energies are therefore neither too high nor too low, but in fact moderate. Moreover, the optimal difference in substrate and product binding free energies, which contributes to the thermodynamic driving force of the reaction, is in general strongly constrained by the intrinsic free-energy difference between products and reactants. Both the strategies of using a negative binding free-energy difference to drive the catalyst-bound reaction forward and of using a positive binding free-energy difference to enhance detachment of the product are limited in their efficacy.
-
Journal articleIrmisch P, Ouldridge TE, Seidel R, 2020,
Modelling DNA-strand displacement reactions in the presence of base-pair mismatches
, Journal of the American Chemical Society, Vol: 142, Pages: 11451-11463, ISSN: 0002-7863Toehold-mediated strand displacement is the most abundantly used method to achieve dynamic switching in DNA-based nanotechnology. An ‘invader’ strand binds to the ‘toehold’ overhang of a target strand and replaces a target-bound ’incumbent’ strand. Hereby, complementarity of the invader to the single-stranded toehold provides the energetic bias of the reaction. Despite the widespread use of strand displacement reactions for realizing dynamic DNA nanostructures, variants on the basic motif have not been completely characterized. Here we introduce a simple thermodynamic model, which is capable of quantitatively describing the kinetics of strand displacement reactions in the presence of mismatches, using a minimal set of parameters. Furthermore, our model highlights that base pair fraying and internal loop formation are important mechanisms when involving mismatches in the displacement process. Our model should provide a helpful tool for the rational design of strand-displacement reaction networks.
-
Journal articleOuldridge T, Turberfield A, Mullor Ruiz I, et al., 2020,
Design of hidden thermodynamic driving for non-equilibrium systems via mismatch elimination during DNA strand displacement
, Nature Communications, Vol: 11, ISSN: 2041-1723Recent years have seen great advances in the development of synthetic self-assembling molecular systems. Designing out-of-equilibrium architectures, however, requires a more subtle control over the thermodynamics and kinetics of reactions. We propose a mechanism for enhancing the thermodynamic drive of DNA strand-displacement reactions whilst barely perturbing forward reaction rates: the introduction of mismatches within the initial duplex. Through a combination of experiment and simulation, we demonstrate that displacement rates are strongly sensitive to mismatch location and can be tuned by rational design. By placing mismatches away from duplex ends, the thermodynamic drive for a strand-displacement reaction can be varied without significantly affecting the forward reaction rate. This hidden thermodynamic driving motif is ideal for the engineering of non-equilibrium systems that rely on catalytic control and must be robust to leak reactions.
-
Journal articleBrittain R, Jones N, Ouldridge T, 2019,
Biochemical Szilard engines for memory-limited inference
, New Journal of Physics, Vol: 21, ISSN: 1367-2630By designing and leveraging an explicit molecular realisation of a measurement-and-feedback-powered Szilard engine, we investigate the extraction of work from complex environments by minimal machines with finite capacity for memory and decision-making. Living systems perform inference to exploit complex structure, or correlations, in their environment, but the physical limits and underlying cost/benefit trade-offs involved in doing so remain unclear. To probe these questions, we consider a minimal model for a structured environment—a correlated sequence of molecules—and explore mechanisms based on extended Szilard engines for extracting the work stored in these non-equilibrium correlations. We consider systems limited to a single bit of memory making binary 'choices' at each step. We demonstrate that increasingly complex environments allow increasingly sophisticated inference strategies to extract more free energy than simpler alternatives, and argue that optimal design of such machines should also consider the free energy reserves required to ensure robustness against fluctuations due to mistakes.
-
Journal articleWeber C, Zwicker D, Juelicher F, et al., 2019,
Physics of active emulsions
, Reports on Progress in Physics, Vol: 82, Pages: 1-40, ISSN: 0034-4885Phase separating systems that are maintained away from thermodynamic equilibrium via molecular processes represent a class of active systems, which we call \textit{ active emulsions}. These systems are driven by external energy input for example provided by an external fuel reservoir. The external energy input gives rise to novel phenomena that are not present in passive systems. For instance, concentration gradients can spatially organise emulsions and cause novel droplet size distributions. Another example are active droplets that are subject to chemical reactions such that their nucleation and size can be controlled and they can spontaneously divide. In this review we discuss the physics of phase separation and emulsions and show how the concepts that governs such phenomena can be extended to capture the physics of active emulsions. This physics is relevant to the spatial organisation of the biochemistry in living cells, for the development novel applications in chemical engineering and models for the origin of life.
-
Journal articleReijne A-M, Bordeu I, Pruessner G, et al., 2018,
Linear stability analysis of morphodynamics during tissue regeneration in plants
, Journal of Physics D: Applied Physics, Vol: 52, Pages: 1-9, ISSN: 0022-3727One of the key characteristics of multicellular organisms is the ability to establish and maintain shapes, or morphologies, under a variety of physical and chemical perturbations. A quantitative description of the underlying morphological dynamics is a critical step to fully understand the self-organising properties of multicellular systems. Although many powerful mathematical tools have been developed to analyse stochastic dynamics, rarely these are applied to experimental developmental biology.Here, we take root tip regeneration in the plant model system Arabidopsis thaliana as an example of robust morphogenesis in living tissue, and present a novel approach to quantify and model the relaxation of the system to its unperturbed morphology. By generating and analysing time-lapse series of regenerating root tips captured with confocal microscopy, we are able to extract and model the dynamics of key morphological traits at cellular resolution. We present a linear stability analysis of its Markovian dynamics, with the stationary state representing the intact root in the space of morphological traits. This analysis suggests the intriguing co-existence of two distinct temporal scales during the process of root regeneration in Arabidopsis.We discuss the possible biological implications of our specific results, and suggest future experiments to further probe the self-organising properties of living tissue.
-
Journal articleLee C, Wurtz JD, 2018,
Novel physics arising from phase transitions in biology
, Journal of Physics D: Applied Physics, Vol: 52, ISSN: 0022-3727Phase transitions, such as the freezing of water and the magnetisation of a ferromagnet upon lowering the ambient temperature, are familiar physical phenomena. Interestingly, such a collective change of behaviour at a phase transition is also of importance to living systems. From cytoplasmic organisation inside a cell to the collective migration of cell tissue during organismal development and wound healing, phase transitions have emerged as key mechanisms underlying many crucial biological processes. However, a living system is fundamentally different from a thermal system, with driven chemical reactions (e.g. metabolism) and motility being two hallmarks of its non-equilibrium nature. In this review, we will discuss how driven chemical reactions can arrest universal coarsening kinetics expected from thermal phase separation, and how motility leads to the emergence of a novel universality class when the rotational symmetry is spontaneously broken in an incompressible fluid.
-
Journal articleLee C, 2018,
Equilibrium kinetics of self-assembling, semi-flexible polymers
, Journal of Physics: Condensed Matter, Vol: 30, ISSN: 0953-8984Self-assembling, semi-flexible polymers are ubiquitous in biology and technology. However, conflicting accounts of the equilibrium kinetics remain for such an important system. Here, by focusing on a dynamical description of a minimal model in an overdamped environment, I identify the correct kinetic scheme that describes the system at equilibrium in the limits of high bonding energy and dilute concentration.
-
Journal articleLee C, Leanne M, Liu L-N, et al., 2018,
Insights into the origin of distinct medin fibril morphologies induced by incubation conditions and seeding.
, International Journal of Molecular Sciences, Vol: 19, ISSN: 1661-6596Incubation conditions are an important factor to consider when studying protein aggregation in vitro. Here, we employed biophysical methods and atomic force microscopy to show that agitation dramatically alters the morphology of medin, an amyloid protein deposited in the aorta. Agitation reduces the lag time for fibrillation by ~18-fold, suggesting that the rate of fibril formation plays a key role in directing the protein packing arrangement within fibrils. Utilising preformed sonicated fibrils as seeds, we probed the role of seeding on medin fibrillation and revealed three distinct fibril morphologies, with biophysical modelling explaining the salient features of experimental observations. We showed that nucleation pathways to distinct fibril morphologies may be switched on and off depending on the properties of the seeding fibrils and growth conditions. These findings may impact on the development of amyloid-based biomaterials and enhance understanding of seeding as a pathological mechanism.
-
Journal articleWurtz J, Lee C, 2018,
Stress granule formation via ATP depletion-triggered phase separation
, New Journal of Physics, Vol: 20, Pages: 1-20, ISSN: 1367-2630Stress granules (SG) are droplets of proteins and RNA that formin the cell cytoplasm during stress conditions. We consider minimal models ofstress granule formation based on the mechanism of phase separation regulatedby ATP-driven chemical reactions. Motivated by experimental observations, weidentify a minimal model of SG formation triggered by ATP depletion. Ouranalysis indicates that ATP is continuously hydrolysed to deter SG formationunder normal conditions, and we provide specific predictions that can be testedexperimentally.
-
Journal articleWurtz JD, Lee C, 2018,
Chemical reaction-controlled phase separated drops: Formation, size selection, and coarsening
, Physical Review Letters, Vol: 120, Pages: 1-5, ISSN: 0031-9007Phase separation under nonequilibrium conditions is exploited by biological cells to organize their cytoplasm but remains poorly understood as a physical phenomenon. Here, we study a ternary fluid model in which phase-separating molecules can be converted into soluble molecules, and vice versa, via chemical reactions. We elucidate using analytical and simulation methods how drop size, formation, and coarsening can be controlled by the chemical reaction rates, and categorize the qualitative behavior of the system into distinct regimes. Ostwald ripening arrest occurs above critical reaction rates, demonstrating that this transition belongs entirely to the nonequilibrium regime. Our model is a minimal representation of the cell cytoplasm.
-
Journal articleLopez-Garrido J, Ojkic N, Khanna K, et al., 2018,
Chromosome translocation inflates bacillus forespores and impacts cellular morphology
, Cell, Vol: 172, Pages: 758-770.e14, ISSN: 0092-8674The means by which the physicochemical properties of different cellular components together determine bacterial cell shape remain poorly understood. Here, we investigate a programmed cell-shape change during Bacillus subtilis sporulation, when a rod-shaped vegetative cell is transformed to an ovoid spore. Asymmetric cell division generates a bigger mother cell and a smaller, hemispherical forespore. The septum traps the forespore chromosome, which is translocated to the forespore by SpoIIIE. Simultaneously, forespore size increases as it is reshaped into an ovoid. Using genetics, timelapse microscopy, cryo-electron tomography, and mathematical modeling, we demonstrate that forespore growth relies on membrane synthesis and SpoIIIE-mediated chromosome translocation, but not on peptidoglycan or protein synthesis. Our data suggest that the hydrated nucleoid swells and inflates the forespore, displacing ribosomes to the cell periphery, stretching septal peptidoglycan, and reshaping the forespore. Our results illustrate how simple biophysical interactions between core cellular components contribute to cellular morphology.
-
Book chapterBaesso P, Randall RS, Sena G, 2018,
Light Sheet Fluorescence Microscopy Optimized for Long-Term Imaging of Arabidopsis Root Development.
, Pages: 145-163Light sheet fluorescence microscopy (LSFM) allows sustained and repeated optical sectioning of living specimens at high spatial and temporal resolution, with minimal photodamage. Here, we describe in detail both the hardware and the software elements of a live imaging method based on LSFM and optimized for tracking and 3D scanning of Arabidopsis root tips grown vertically in physiological conditions. The system is relatively inexpensive and with minimal footprint; hence it is well suited for laboratories of any size.
- Abstract
- Open Access Link
- Cite
- Citations: 7
-
Journal articleEndres RG, 2017,
Entropy production selects nonequilibrium states in multistable systems
, Scientific Reports, Vol: 7, ISSN: 2045-2322Far-from-equilibrium thermodynamics underpins the emergence of life, but how has been a long-outstanding puzzle. Best candidate theories based on the maximum entropy production principle could not be unequivocally proven, in part due to complicated physics, unintuitive stochastic thermodynamics, and the existence of alternative theories such as the minimum entropy production principle. Here, we use a simple, analytically solvable, one-dimensional bistable chemical system to demonstrate the validity of the maximum entropy production principle. To generalize to multistable stochastic system, we use the stochastic least-action principle to derive the entropy production and its role in the stability of nonequilibrium steady states. This shows that in a multistable system, all else being equal, the steady state with the highest entropy production is favored, with a number of implications for the evolution of biological, physical, and geological systems.
-
Journal articleMicali G, Colin R, Sourjik V, et al., 2017,
Drift and behavior of E. coli cells
, Biophysical Journal, Vol: 113, Pages: 2321-2325, ISSN: 0006-3495Chemotaxis of the bacterium Escherichia coli is well understood in shallow chemical gradients, but its swimming behavior remains difficult to interpret in steep gradients. By focusing on single-cell trajectories from simulations, we investigated the dependence of the chemotactic drift velocity on attractant concentration in an exponential gradient. Whereas maxima of the average drift velocity can be interpreted within analytical linear-response theory of chemotaxis in shallow gradients, limits in drift due to steep gradients and finite number of receptor-methylation sites for adaptation go beyond perturbation theory. For instance, we found a surprising pinning of the cells to the concentration in the gradient at which cells run out of methylation sites. To validate the positions of maximal drift, we recorded single-cell trajectories in carefully designed chemical gradients using microfluidics.
This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.
Join the network
Join our mailing list for regular updates, news, events and opportunities