BibTex format
@article{Guild:2018:10.3233/SFC-180219,
author = {Guild, F and Kinloch, AJ and Masania, K and Sprenger, S and Taylor, A},
doi = {10.3233/SFC-180219},
journal = {Strength, Fracture and Complexity},
pages = {137--148},
title = {The fracture of thermosetting epoxy polymers containing silica nanoparticles},
url = {http://dx.doi.org/10.3233/SFC-180219},
volume = {11},
year = {2018}
}
RIS format (EndNote, RefMan)
TY - JOUR
AB - An epoxy resin, cured with an anhydride, has been modified by the addition of silica nanoparticles. The particles were introduced via a sol-gel technique which gave a very well dispersed phase of nanosilica particles, which were about 20 nm in diameter, in the thermosetting epoxy polymer matrix. The glass transition temperature of the epoxy polymer was unchanged by the addition of the anoparticles, but both the modulus and toughness were increased. The fracture energy increased from 77 J/m2 for the unmodified epoxy to 212 J/m2 for the epoxy polymer containing 20 wt.% of nanosilica. The fracture surfaces were inspected using scanning electron and atomic force microscopy, and these microscopy studies showed that the silica nanoparticles (a) initiated localised plastic shear-yield deformation bands in the epoxy polymer matrix and (b) debonded and allowed subsequent plastic void-growth of the epoxy polymer matrix. A theoretical model for these toughening micro mechanisms has been proposed to confirm that these micromechanisms were indeed responsible for the increased toughness that was observed due to the presence of the silica nanoparticles in the epoxy polymer.
AU - Guild,F
AU - Kinloch,AJ
AU - Masania,K
AU - Sprenger,S
AU - Taylor,A
DO - 10.3233/SFC-180219
EP - 148
PY - 2018///
SN - 1567-2069
SP - 137
TI - The fracture of thermosetting epoxy polymers containing silica nanoparticles
T2 - Strength, Fracture and Complexity
UR - http://dx.doi.org/10.3233/SFC-180219
UR - https://content.iospress.com/articles/strength-fracture-and-complexity/sfc180219
UR - http://hdl.handle.net/10044/1/60632
VL - 11
ER -