Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Siggins MK, Thwaites RS, Openshaw PJM, 2021,

    Durability of immunity to SARS-CoV-2 and other respiratory viruses: (Trends in microbiology, 29, 648-662, 2021).

    , Trends in Microbiology, ISSN: 0966-842X
  • Journal article
    Bloom CI, Drake TM, Docherty AB, Lipworth BJ, Johnston SL, Nguyen-Van-Tam JS, Carson G, Dunning J, Harrison EM, Baillie JK, Semple MG, Cullinan P, Openshaw PJM, Alex B, Bach B, Barclay WS, Bogaert D, Chand M, Cooke GS, Filipe AD, Fletcher T, Green CA, Harrison EM, Hiscox JA, Ho AY, Horby PW, Ijaz S, Khoo S, Klenerman P, Law A, Lim WS, Mentzer AJ, Merson L, Meynert AM, Noursadeghi M, Moore SC, Palmarini M, Paxton WA, Pollakis G, Price N, Rambaut A, Robertson DL, Russell CD, Sancho-Shimizu V, Scott JT, Silva TD, Sigfrid L, Solomon T, Sriskandan S, Stuart D, Summers C, Tedder RS, Thomson EC, Thompson AAR, Thwaites RS, Turtle LCW, Zambon M, Hardwick H, Donohue C, Lyons R, Griffiths F, Oosthuyzen W, Norman L, Pius R, Fairfield CJ, Knight SR, Mclean KA, Murphy D, Shaw CA, Dalton J, Girvan M, Saviciute E, Roberts S, Harrison J, Marsh L, Connor M, Halpin S, Jackson C, Gamble C, Leeming G, Law A, Wham M, Clohisey S, Hendry R, Scott-Brown J, Greenhalf W, Shaw V, McDonald S, Keating S, Ahmed KA, Armstrong JA, Ashworth M, Asiimwe IG, Bakshi S, Barlow SL, Booth L, Brennan B, Bullock K, Catterall BWA, Clark JJ, Clarke EA, Cole S, Cooper L, Cox H, Davis C, Dincarslan O, Dunn C, Dyer P, Elliott A, Evans A, Finch L, Fisher LWS, Foster T, Garcia-Dorival I, Greenhalf W, Gunning P, Hartley C, Jensen RL, Jones CB, Jones TR, Khandaker S, King K, Kiy RT, Koukorava C, Lake A, Lant S, Latawiec D, Lavelle-Langham L, Lefteri D, Lett L, Livoti LA, Mancini M, McDonald S, McEvoy L, McLauchlan J, Metelmann S, Miah NS, Middleton J, Mitchell J, Moore SC, Murphy EG, Penrice-Randal R, Pilgrim J, Prince T, Reynolds W, Ridley PM, Sales D, Shaw VE, Shears RK, Small B, Subramaniam KS, Szemiel A, Taggart A, Tanianis-Hughes J, Thomas J, Trochu E, Tonder LV, Wilcock E, Zhang JE, Flaherty L, Maziere N, Cass E, Carracedo AD, Carlucci N, Holmes A, Massey H, Adeniji K, Agranoff D, Agwuh K, Ail D, Alegria A, Angus B, Ashish A, Atkinson D, Bari S, Barlow G, Barnass S, Barrett N, Bassford C, Baxter D, Beadsworth Met al., 2021,

    Risk of adverse outcomes in patients with underlying respiratory conditions admitted to hospital with COVID-19: a national, multicentre prospective cohort study using the ISARIC WHO Clinical Characterisation Protocol UK

    , The Lancet Respiratory Medicine, Vol: 9, Pages: 699-711, ISSN: 2213-2600

    BackgroundStudies of patients admitted to hospital with COVID-19 have found varying mortality outcomes associated with underlying respiratory conditions and inhaled corticosteroid use. Using data from a national, multicentre, prospective cohort, we aimed to characterise people with COVID-19 admitted to hospital with underlying respiratory disease, assess the level of care received, measure in-hospital mortality, and examine the effect of inhaled corticosteroid use.MethodsWe analysed data from the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) WHO Clinical Characterisation Protocol UK (CCP-UK) study. All patients admitted to hospital with COVID-19 across England, Scotland, and Wales between Jan 17 and Aug 3, 2020, were eligible for inclusion in this analysis. Patients with asthma, chronic pulmonary disease, or both, were identified and stratified by age (<16 years, 16–49 years, and ≥50 years). In-hospital mortality was measured by use of multilevel Cox proportional hazards, adjusting for demographics, comorbidities, and medications (inhaled corticosteroids, short-acting β-agonists [SABAs], and long-acting β-agonists [LABAs]). Patients with asthma who were taking an inhaled corticosteroid plus LABA plus another maintenance asthma medication were considered to have severe asthma.Findings75 463 patients from 258 participating health-care facilities were included in this analysis: 860 patients younger than 16 years (74 [8·6%] with asthma), 8950 patients aged 16–49 years (1867 [20·9%] with asthma), and 65 653 patients aged 50 years and older (5918 [9·0%] with asthma, 10 266 [15·6%] with chronic pulmonary disease, and 2071 [3·2%] with both asthma and chronic pulmonary disease). Patients with asthma were significantly more likely than those without asthma to receive critical care (patients aged 16–49 years: adjusted odds ratio [OR] 1·20 [95% CI

  • Journal article
    Siggins MK, Thwaites RS, Openshaw PJM, 2021,

    Durability of immunity to SARS-CoV-2 and other respiratory viruses

    , Trends in Microbiology, Vol: 29, Pages: 648-662, ISSN: 0966-842X

    Even in nonpandemic times, respiratory viruses account for a vast global burden of disease. They remain a major cause of illness and death and they pose a perpetual threat of breaking out into epidemics and pandemics. Many of these respiratory viruses infect repeatedly and appear to induce only narrow transient immunity, but the situation varies from one virus to another. In the absence of effective specific treatments, understanding the role of immunity in protection, disease, and resolution is of paramount importance. These problems have been brought into sharp focus by the coronavirus disease 2019 (COVID-19) pandemic. Here, we summarise what is now known about adaptive immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and draw comparisons with immunity to other respiratory viruses, focusing on the longevity of protective responses.

  • Journal article
    ISARIC Clinical Characterisation Group, 2021,

    COVID-19 symptoms at hospital admission vary with age and sex: results from the ISARIC prospective multinational observational study

    , Infection: journal of infectious disease, Vol: 49, Pages: 899-905, ISSN: 0300-8126

    BACKGROUND: The ISARIC prospective multinational observational study is the largest cohort of hospitalized patients with COVID-19. We present relationships of age, sex, and nationality to presenting symptoms. METHODS: International, prospective observational study of 60 109 hospitalized symptomatic patients with laboratory-confirmed COVID-19 recruited from 43 countries between 30 January and 3 August 2020. Logistic regression was performed to evaluate relationships of age and sex to published COVID-19 case definitions and the most commonly reported symptoms. RESULTS: 'Typical' symptoms of fever (69%), cough (68%) and shortness of breath (66%) were the most commonly reported. 92% of patients experienced at least one of these. Prevalence of typical symptoms was greatest in 30- to 60-year-olds (respectively 80, 79, 69%; at least one 95%). They were reported less frequently in children (≤ 18 years: 69, 48, 23; 85%), older adults (≥ 70 years: 61, 62, 65; 90%), and women (66, 66, 64; 90%; vs. men 71, 70, 67; 93%, each P < 0.001). The most common atypical presentations under 60 years of age were nausea and vomiting and abdominal pain, and over 60 years was confusion. Regression models showed significant differences in symptoms with sex, age and country. INTERPRETATION: This international collaboration has allowed us to report reliable symptom data from the largest cohort of patients admitted to hospital with COVID-19. Adults over 60 and children admitted to hospital with COVID-19 are less likely to present with typical symptoms. Nausea and vomiting are common atypical presentations under 30 years. Confusion is a frequent atypical presentation of COVID-19 in adults over 60 years. Women are less likely to experience typical symptoms than men.

  • Journal article
    Leclerc QJ, Fuller NM, Keogh RH, Diaz-Ordaz K, Sekula R, Semple MG, ISARIC4C Investigators, CMMID COVID-19 Working Group, Atkins KE, Procter SR, Knight GMet al., 2021,

    Importance of patient bed pathways and length of stay differences in predicting COVID-19 hospital bed occupancy in England.

    , BMC Health Services Research, Vol: 21, Pages: 1-15, ISSN: 1472-6963

    BACKGROUND: Predicting bed occupancy for hospitalised patients with COVID-19 requires understanding of length of stay (LoS) in particular bed types. LoS can vary depending on the patient's "bed pathway" - the sequence of transfers of individual patients between bed types during a hospital stay. In this study, we characterise these pathways, and their impact on predicted hospital bed occupancy. METHODS: We obtained data from University College Hospital (UCH) and the ISARIC4C COVID-19 Clinical Information Network (CO-CIN) on hospitalised patients with COVID-19 who required care in general ward or critical care (CC) beds to determine possible bed pathways and LoS. We developed a discrete-time model to examine the implications of using either bed pathways or only average LoS by bed type to forecast bed occupancy. We compared model-predicted bed occupancy to publicly available bed occupancy data on COVID-19 in England between March and August 2020. RESULTS: In both the UCH and CO-CIN datasets, 82% of hospitalised patients with COVID-19 only received care in general ward beds. We identified four other bed pathways, present in both datasets: "Ward, CC, Ward", "Ward, CC", "CC" and "CC, Ward". Mean LoS varied by bed type, pathway, and dataset, between 1.78 and 13.53 days. For UCH, we found that using bed pathways improved the accuracy of bed occupancy predictions, while only using an average LoS for each bed type underestimated true bed occupancy. However, using the CO-CIN LoS dataset we were not able to replicate past data on bed occupancy in England, suggesting regional LoS heterogeneities. CONCLUSIONS: We identified five bed pathways, with substantial variation in LoS by bed type, pathway, and geography. This might be caused by local differences in patient characteristics, clinical care strategies, or resource availability, and suggests that national LoS averages may not be appropriate for local forecasts of bed occ

  • Journal article
    Lalvani A, Fenn J, Pillay TD, 2021,

    Probing the in-vivo reservoir of latent tuberculosis infection

    , LANCET MICROBE, Vol: 2, Pages: E226-E227
  • Journal article
    Kondratiuk AL, Pillay TD, Kon OM, Lalvani Aet al., 2021,

    A conceptual framework to accelerate the clinical impact of evolving research into long COVID

    , LANCET INFECTIOUS DISEASES, Vol: 21, Pages: 756-757, ISSN: 1473-3099
  • Journal article
    Riley S, Ainslie KEC, Eales O, Walters CE, Wang H, Atchison C, Fronterre C, Diggle PJ, Ashby D, Donnelly CA, Cooke G, Barclay W, Ward H, Darzi A, Elliott Pet al., 2021,

    Resurgence of SARS-CoV-2: detection by community viral surveillance

    , Science, Vol: 372, Pages: 990-995, ISSN: 0036-8075

    Surveillance of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has mainly relied on case reporting, which is biased by health service performance, test availability, and test-seeking behaviors. We report a community-wide national representative surveillance program in England based on self-administered swab results from ~594,000 individuals tested for SARS-CoV-2, regardless of symptoms, between May and the beginning of September 2020. The epidemic declined between May and July 2020 but then increased gradually from mid-August, accelerating into early September 2020 at the start of the second wave. When compared with cases detected through routine surveillance, we report here a longer period of decline and a younger age distribution. Representative community sampling for SARS-CoV-2 can substantially improve situational awareness and feed into the public health response even at low prevalence.

  • Journal article
    Peacock TP, Goldhill DH, Zhou J, Baillon L, Frise R, Swann OC, Kugathasan R, Penn R, Brown JC, Sanchez-David RY, Braga L, Williamson MK, Hassard JA, Staller E, Hanley B, Osborn M, Giacca M, Davidson AD, Matthews DA, Barclay WSet al., 2021,

    The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets

    , Nature Microbiology, Vol: 6, Pages: 899-+, ISSN: 2058-5276

    SARS-CoV-2 entry requires sequential cleavage of the spike glycoprotein at the S1/S2 and the S2ʹ cleavage sites to mediate membrane fusion. SARS-CoV-2 has a polybasic insertion (PRRAR) at the S1/S2 cleavage site that can be cleaved by furin. Using lentiviral pseudotypes and a cell-culture-adapted SARS-CoV-2 virus with an S1/S2 deletion, we show that the polybasic insertion endows SARS-CoV-2 with a selective advantage in lung cells and primary human airway epithelial cells, but impairs replication in Vero E6, a cell line used for passaging SARS-CoV-2. Using engineered spike variants and live virus competition assays and by measuring growth kinetics, we find that the selective advantage in lung and primary human airway epithelial cells depends on the expression of the cell surface protease TMPRSS2, which enables endosome-independent virus entry by a route that avoids antiviral IFITM proteins. SARS-CoV-2 virus lacking the S1/S2 furin cleavage site was shed to lower titres from infected ferrets and was not transmitted to cohoused sentinel animals, unlike wild-type virus. Analysis of 100,000 SARS-CoV-2 sequences derived from patients and 24 human postmortem tissues showed low frequencies of naturally occurring mutants that harbour deletions at the polybasic site. Taken together, our findings reveal that the furin cleavage site is an important determinant of SARS-CoV-2 transmission.

  • Journal article
    Gupta RK, Harrison EM, Ho A, Docherty AB, Knight SR, van Smeden M, Abubakar I, Lipman M, Quartagno M, Pius R, Buchan I, Carson G, Drake TM, Dunning J, Fairfield CJ, Gamble C, Green CA, Halpin S, Hardwick HE, Holden KA, Horby PW, Jackson C, Mclean KA, Merson L, Nguyen-Van-Tam JS, Norman L, Olliaro PL, Pritchard MG, Russell CD, Scott-Brown J, Shaw CA, Sheikh A, Solomon T, Sudlow C, Swann OV, Turtle L, Openshaw PJM, Baillie JK, Semple MG, Noursadeghi M, Baillie JK, Semple MG, Openshaw PJM, Carson G, Alex B, Bach B, Barclay WS, Bogaert D, Chand M, Cooke GS, Docherty AB, Dunning J, Filipe ADS, Fletcher T, Green CA, Harrison EM, Hiscox JA, Ho AYW, Horby PW, Ijaz S, Khoo S, Klenerman P, Law A, Lim WS, Mentzer AJ, Merson L, Meynert AM, Noursadeghi M, Moore SC, Palmarini M, Paxton WA, Pollakis G, Price N, Rambaut A, Robertson DL, Russell CD, Sancho-Shimizu V, Scott JT, de Silva T, Sigfrid L, Solomon T, Sriskandan S, Stuart D, Summers C, Tedder RS, Thomson EC, Thompson AAR, Thwaites RS, Turtle LCW, Zambon M, Hardwick H, Donohue C, Lyons R, Griffiths F, Oosthuyzen W, Norman L, Pius R, Drake TM, Fairfield CJ, Knight S, Mclean KA, Murphy D, Shaw CA, Dalton J, Lee J, Plotkin D, Girvan M, Mullaney S, Petersen C, Saviciute E, Roberts S, Harrison J, Marsh L, Connor M, Halpin S, Jackson C, Gamble C, Leeming G, Law A, Wham M, Clohisey S, Hendry R, Scott-Brown J, Greenhalf W, Shaw V, McDonald S, Keating S, Ahmed KA, Armstrong JA, Ashworth M, Asiimwe IG, Bakshi S, Barlow SL, Booth L, Brennan B, Bullock K, Catterall BWA, Clark JJ, Clarke EA, Cole S, Cooper L, Cox H, Davis C, Dincarslan O, Dunn C, Dyer P, Elliott A, Evans A, Finch L, Fisher LWS, Foster T, Garcia-Dorival I, Greenhalf W, Gunning P, Hartley C, Ho A, Jensen RL, Jones CB, Jones TR, Khandaker S, King K, Kiy RT, Koukorava C, Lake A, Lant S, Latawiec D, Lavelle-Langham L, Lefteri D, Lett L, Livoti LA, Mancini M, McDonald S, McEvoy L, McLauchlan J, Metelmann S, Miah NS, Middleton J, Mitchell J, Moore SC, Murphy EG, Penrice-Randalet al., 2021,

    Development and validation of the ISARIC 4C Deterioration model for adults hospitalised with COVID-19: a prospective cohort study

    , The Lancet Respiratory Medicine, Vol: 9, Pages: 349-359, ISSN: 2213-2600

    BackgroundPrognostic models to predict the risk of clinical deterioration in acute COVID-19 cases are urgently required to inform clinical management decisions.MethodsWe developed and validated a multivariable logistic regression model for in-hospital clinical deterioration (defined as any requirement of ventilatory support or critical care, or death) among consecutively hospitalised adults with highly suspected or confirmed COVID-19 who were prospectively recruited to the International Severe Acute Respiratory and Emerging Infections Consortium Coronavirus Clinical Characterisation Consortium (ISARIC4C) study across 260 hospitals in England, Scotland, and Wales. Candidate predictors that were specified a priori were considered for inclusion in the model on the basis of previous prognostic scores and emerging literature describing routinely measured biomarkers associated with COVID-19 prognosis. We used internal–external cross-validation to evaluate discrimination, calibration, and clinical utility across eight National Health Service (NHS) regions in the development cohort. We further validated the final model in held-out data from an additional NHS region (London).Findings74 944 participants (recruited between Feb 6 and Aug 26, 2020) were included, of whom 31 924 (43·2%) of 73 948 with available outcomes met the composite clinical deterioration outcome. In internal–external cross-validation in the development cohort of 66 705 participants, the selected model (comprising 11 predictors routinely measured at the point of hospital admission) showed consistent discrimination, calibration, and clinical utility across all eight NHS regions. In held-out data from London (n=8239), the model showed a similarly consistent performance (C-statistic 0·77 [95% CI 0·76 to 0·78]; calibration-in-the-large 0·00 [–0·05 to 0·05]); calibration slope 0·96 [0·91 to 1·01]), and greater net benefit than

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://www.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=780&limit=10&page=5&respub-action=search.html Current Millis: 1732253166373 Current Time: Fri Nov 22 05:26:06 GMT 2024
Faculty of MedicineNational Heart and Lung Institute

General enquiries


NIHR HPRU in Respiratory Infections
Room 251/252
Medical School Building
Imperial College London
St Mary’s Campus
Norfolk Place
London, W2 1PG

s.evetts@imperial.ac.uk