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-Some problems to fix

v'Poisson solver: quasi-singular modes

v'Boundary conditions for pressure (with or without

IBM)

v'"Mass conservation at marginal resolution with IBM
-Further challenges

v'Hybrid approach for exascale supercomputers

v'Free surface

v'"Multiblock domain

v'Stretching in 2 directions

v'2D version of Incompact3d

v’Quasicompact3d and Compact3d

v'How to deal with users + their developments



Collocated or staggered mesh

0 I Y A W
+— ¥ Collocated mesh for convective and
evo T IT T diffusive terms
op F—— 4 @ @ L
— v Staggered mesh for the pressure
YT Y IY I treatment
—@ & L L &
TTT I T T 1T

First derivative on a collocated mesh
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First derivative on a staggered mesh

f-zl—l-l - fz 1 f‘i—l-Z - fz'.—l

@’f;—l/B + f-f,'+1/2 + C“f£+3/2 — TN 3AL

Mid-point interpolation
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Poisson solving stage

Using a generic 3D FFT for the pressure
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the solving of the P0|sson equation consists in
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If F,..,=0, no problem (can be ignored while v.u**! =0)
If F,.,,=0, potential problem (cannot be ignored)

— problem with “quasi-singular” modes



Where are quasi-singular modes?
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— gquasi-checkerboard mode




Practical consequences of
quasi-singular modes

e For well resolved DNS, no problem
(no oscillation to amplify)

e For marginally resolved DNS, aliasing errors are
amplified by quasi-singular modes and Incompact3d
behaves less favourably than a conventional second
order code

— high-order numerical dissipation can control
aliasing errors while restoring the superiority of
Incompact3d

e For marginally resolved LES, numerical dissipation is
not enough

—> unconventional interpolator clearly improves
turbulent statistics but a residual zigzag pattern can
be identified



Example of DNS at marginal resolution
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Symbols: 128x129x128 Fourier’-Chebyshev KMM (1987)
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...but the use of sixth-order numerical
dissipation is mandatory!
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Example of LES at marginal resolution
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Conventional T(k) € Sharp T(k)
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Sharp T(k) successful, but...
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...with the presence of very small amplitude oscillations on
<v’'v’>that can be detected on the viscous diffusion term
d?<v’'v’>/dy? in its budget.

These oscillations are present even in DNS, and in a very
attenuated form with conventional T(k).



Interpretation

Quasi-singular modes, associated with the use of a staggered
mesh only for the pressure, are the Achilles' heel of
Incompact3d.

They play against the robustness of the code when the spatial
resolution is marginal.

High-order numerical dissipation can restore stability and
accuracy at marginal resolution but only for DNS.

Sharp interpolation (highly sensitive at small scale) allows robust
LES but with the presence spurious oscillations in the near-wall
region.

The sensitivity of results with respect to interpolation confirms
that the pressure treatment is the key point.

Two features of the pressure treatment can be suspected to
explain the present difficulties:

— the mesh organization (only partially staggered)

— the boundary condition on pressure (homogenous Neumann type)




Move to fully staggered mesh

e Advantages o

— No quasi-singular modes
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— Same compact schemes j
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e Drawbacks
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— Less simple and original

— Development of boundary conditions for
staggered FD schemes (only ncl=1 is available)

— No clear statement about numerical stability
— Could increase a bit the computational cost



Pressure boundary condition

e The spectral Poisson solver requires to assume
an homogeneous Neumann condition
— ghost boundary condition used to ensure the

equivalence between FD in physical and spectral
spaces.

— classical assumption in the context of the
projection method (incompressibility condition).

— second-order accurate in space.

— the homogeneous Neumann condition is included
in the (staggered) first derivative compact FD
scheme.

— the divergence operator is defined consistently
through a compatible ghost boundary condition.




Ghost boundary conditions (symmetry)
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Time advancement

Explicit time integration (AB,RK) and fractional step method
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Pressure boundary condition

e The incompressibility condition

Vucl =0
leads to the Poisson equation
. v.u*
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where the pressure is assumed to check homogeneous
boundary conditions.

e Forinstance, if a no-slip boundary condition is imposed at
y=iLy/2, we assume
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approx. pressure BC consistent pressure BC



Pressure boundary condition

Instantaneous profiles in a turbulent channel
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Pressure boundary condition

Instantaneous profiles in a turbulent channe
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Pressure boundary condition

Instantaneous profiles in a turbulent channel
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Improvement of the pressure BC

e Adapt the “incremental pressure-correction scheme”
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to an explicit or semi-explicit time advancement.

e Find a time advancement based on two (or more)
prediction steps and one final projection (in
progress).



Mass conservation IBM
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Mass conservation IBM

Conventional time advancement
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Only a problem at marginal resolution!
(see Lamballais, JFM, 2014 for channel with IBM)



Further challenges (1/3)

e 2D version of Incompact3d: either with MPI or
with OpenMP (Porto Alegre, Brazil)

e Stretching in 2 directions: No direct Poisson
solver but iterative method in spectral space
(Buenos Aires, Argentina)

e Free surface (Porto Alegre, Brazil)



Further challenges (2/3)

e Quasicompact3d and Compact3d: dCSE
project with NAG for implementation of 2D
decomp & FFT in Compact3d (NAG and
Poitiers)

e Multiblock domain strategy (within UKTC,
Charles Moulinec, Daresbury)

e Hybrid approach: best strategy to be discuss
depending on hardware



Further challenges (3/3)

e How to deal with user requests? (10 to 15
emails every month)

e How to validate and integrate new
developments in main version of the code?
(benchmarks procedure)

e How to keep the website up to date? (1 or 2
releases every year)

e Any questions?



