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Cartesian grid: Pros and Cons

Pros

Easy to generate

Simplicity

Cost

Efficiency

Cons

Cost

Versatility

Solid body ?

Sylvain Laizet (ICL) Incompact3d Versatility 24 April 2014 3 / 35



Solutions for Cons: Incompact3d

High Performance Computing (by Ning Li)

Numerical Dissipation (by Eric Lamballais)

Customized Immersed Boundary Method

Applications

Turbulent jet impinging on a heated plate (by Thibault Dairay)

Fractal Generated Turbulence

Fluidic Control of turbulent jet

Gravity Currents
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Overview

1 Customized Immersed Boundary Method

2 Example 1: Jet control with microjets

3 Example 2: Fractal Generated Turbulence

4 Example 3: Gravity Currents
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Customized Immersed Boundary Method

Incompressible Navier-Stokes equations

∂u

∂t
= −∇p − 1

2
[∇(u⊗ u) + (u.∇)u] + ν∆u

∇u = 0

where u(x, t) is the velocity, p(x, t) the pressure and ν the kinematic
viscosity.

N(u) =
1

2
[∇.(u⊗ u) + (u.∇)u]

for the non-linear terms
L(u) = ν∆u

for the viscous terms

p̃k+1 =
1

∆t

∫ tk+1

tk
p dt

for the average pressure field
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Customized Immersed Boundary Method

Fractional Step Method

u∗ − uk

∆t
=

23

12

[
L(uk)−N(uk)

]
− 16

12

[
L(uk−1) −N(uk−1)

]
+

5

12

[
L(uk−2) −N(uk−2)

]
−∇p̃k

u∗ − u∗∗

∆t
= ∇p̃k

uk+1 − u∗∗

∆t
= −∇p̃k+1
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Customized Immersed Boundary Method

Imposition of boundary conditions on u∗

Impossible to impose on uk+1 because of incompressibility

Solution:

Example with a channel flow

u∗wall = 0

uk+1
wall = u∗wall −∇p̃k+1

uk+1
wall = −∇p̃k+1 6= 0

u∗wall = ∇p̃k

uk+1
wall = u∗wall −∇p̃k+1

uk+1
wall = ∇p̃k −∇p̃k+1 ≈ 0
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Customized Immersed Boundary Method

Three different strategies

u∗ = 0

Easy to implement

Discontinuities on
the velocity field

Boundaries of solid
regions are mesh
dependant

Mirror flow

Easy to implement
with basic
geometries
(although...)

Almost impossible
with complex
geometries

More accurate
boundaries for
solid regions

Not compatible
with 2D domain
decomposition

Alternating direction
forcing strategy

Based on
Lagrangian
Polynomial as an
extension of
solution in solid
regions

Easy to implement
with complex
geometries

Compatible with
2D domain
decomposition
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Customized Immersed Boundary Method

Direct forcing

Forcing on u∗

use of ε with:
ε = 1 in solid regions
ε = 0 in fluid regions

∇ ·∇p̃k+1 =
∇ · (1− ε)u∗

∆t
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Mirror Flow
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Mirror Flow

Reduction of oscillations
near the geometry

Improvement of the solution

Quantitative and qualitative
comparison with reference
solution now possible

Gautier, Biau, Lamballais,
2013, Computers & Fluids

“exact solution” obtained
with spectral code on
Cylindrical mesh with
accurate BC in far field

Spectral interpolations so
solution is known everywhere
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But...
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Alternating direction forcing strategy

Strategy based on a 1D reconstruction using Lagrangian polynomial

No forcing on velocity, but modification of differenciation operators

Pre-processing on a very fine mesh to find the geometries

Compatible with 2D domain decomposition
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Alternating direction forcing strategy
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But...

Solid and fluid regions cannot be too small

2nd order convergence for velocity (like everyone else!) BUT 6th order
schemes are still worth it

No control of pressure field ⇒ 1st order convergence only

Mass conservation problem at marginal resolution

Difference with u∗ = 0 forcing at high resolution are negligible
(Benchmark with NACA0012 2D simulations for lift and drag)
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Jet control with microjets
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Validation with experiments
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Comparison natural/forced cases
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Same Reynolds as experiments
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Why do we put the control device in the domain?
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Fractal Generated Turbulence

Numerical Wind Tunnel Facility

-Virtual probes ⇒ Collection data of in time
-Virtual cameras ⇒ visualizations/animations, collection of data in space
-Virtual microphones ⇒ Acoustic prediction using analogies
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Fractal Generated Turbulence
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Fractal Generated Turbulence
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Fractal Generated Turbulence
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Fractal Generated Turbulence
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Fractal Generated Turbulence
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Gravity Currents

Incompressible Navier-Stokes equations + Transport equation
∂u

∂t
+ u · ∇u =

2

Re
∇ · s−∇p + c eg ,

∇ · u = 0,

∂c

∂t
+ (u + us e

g ) · ∇c =
1

ScRe
∇2c ,
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Gravity Currents
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Gravity Currents
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Gravity Currents
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Gravity Currents
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Gravity Currents
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Gravity Currents
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The End
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