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Red isosurfaces: tubular object;  White isosurfaces: planar object

Temporal development of coherent structures in isotropic turbulence box

• Existence of organized vortical structures, termed ribbons, blobs, and worms 
has been known (e.g., Jimenez & Wray 1998). 

• The primary elements of vortical structures are the tube-like object and the 
sheet (or layer)-like object. These objects are not separable since local 
dissipation is particularly strong, not within vortex tubes, but rather in their 
neighbourhood (e.g. Kerr 1985). 

• A model of generalized Burgers vortices for the small-scale structure of 
turbulence was introduced in Lundgren (1982). In this model (LSV), vortex 
sheets are stretched in the spiral to continually tighten, and this mechanism 
causes an energy cascade. The LSV model gives the k−5/3 energy spectrum.  

• Extract LSVs and analyse their complete creation process in homogeneous 
isotropic turbulence.

• Explore the roles of the LSVs on generation of turbulence energy cascade 
and dissipation. 

• Explore a possibility of achieving turbulence control through the 
suppression of formation of LSV (in polymer-diluted flow).

Objective

Motivation

• Extract LSVs and analyse their complete creation process in homogeneous 
isotropic turbulence. 
• Explore the roles of the LSVs on generation of turbulence energy cascade 
and dissipation.
• Explore a possibility of achieving turbulence control through the suppression 
of formation of LSV (in polymer-diluted flow). 

Objective

Motivation

• Existence of organized vortical structures, termed ribbons, blobs, and  
worms has been known (e.g., Jimenez & Wray 1998). 
• The primary elements of vortical structures are the tube-like object and 
the sheet (or layer)-like object. Local dissipation is particularly strong,
not within vortex tubes, but rather in their neighbourhood (e.g. Kerr 1985). 
• A model of generalized Burgers vortices for the small-scale structure of 
turbulence was introduced in Lundgren (1982). In this model (LSV), vortex 
sheets are stretched in the spiral to continually tighten, and this 
mechanism causes an energy cascade. The LSV model gives the 
Kolmogorov k−5/3 energy spectrum

Tubular structure in biaxial elongational flow

Identification method for turbulent structures (1)

Sheet structure in planar elongational flow

(Kida & Yanase)

Vortex tube: ΩikΩik>> SikSki
・Pressure, p. 
・2nd-order invariant of the velocity gradient tensor, Q

Vortex sheet: ΩikΩik~ SikSki
Eigenvalue of  the 2nd-order tensor of the velocity gradient tensor,

[Aij]+ , [Aij] ≡ SikΩkj+SjkΩki (Horiuti & Takagi 2005, 
PoF)



Performance of identification method
Comparison with other fourth order velocity gradient invarients

Burgers’ vortex tubeBurgers’ vortex layer

Identification method for turbulent structures (3)
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Reordering of eigenvalues
Based on degree of alignment of their eigenvectors with vorticity vector ω
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• Vector, Vortex stretching term

ωz = ω･ez，ω+ = ω･e+，ω- = ω･e-

• Tensors: ex) Pressure Hessian term

Alternatively, eigenvalues and eigenvectors of [Aij] are used: 

[Aij]z, [Aij]+, [Aj]- , az，a+，a-
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Vectors and tensors on the basis of strain rate eigenvectors

(Andreotti 1993)

Identification method for turbulent structures (2)
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Burgers’ vortex tube

Conventional ordering of eigenvalues: σ1 > σ2 > σ3

Burgers’ vortex layer

Crossover of strain-rate tensor eigenvalues

Alignment of the eigenvector for the second largest 
eigenvalue with the vorticity vector (Kerr et al. 1985).



Profiles of homogeneous-isotropic DNS data

Grid-
point #

Rλ kmaxη <K> <ε> L λ η
x 10-3

2563 Decay 77.2 1.02 0.90 0.65 0.47 0.14 8.00

5123 Decay
(Low Re)

76.9 2.05 0.90 0.65 0.47 0.14 8.00

10243 Decay
(Low Re)

77.4 4.09 0.90 0.65 0.47 0.14 8.00

10243 Decay
(High Re)

122.5 1.35 0.96 0.30 0.47 0.09 2.63

5123 Forced
(1.0<k<2.5)

158.1 2.27 1.41 0.40 1.26 0.22 8.91

10243 Forced
(1.0<k<2.5)

243.3 2.49 1.43 0.39 1.14 0.15 4.89

Assessment using the DNS data

• Homogeneous isotropic turbulence (decaying)

• Homogeneous shear turbulence

Initial energy spectrum:

2, 2-exp )(
28

1- =
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

= ⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ k

k
k

k
kkCkE p

pp
p

Advantage of use of eigenvalue, [Aij]+ 

• Vortex sheet is approximately spanned by the eigenvectors 
for [Aij]z and [Aij]-, noting that grad([Aij]+) is nearly 
perpendicular to the surface of the sheet.

Formation of vortex tube via conventional rolling-up 
of a (single) vortex sheet

The vortex tube is formed through focusing of vorticity along a single vortex sheet 
(Neu 1984, Kerr & Dold 1994).



White isosurface:
vortex sheet

Red isosurface:
vortex tube

Red vectors: 
vorticity vector

Formation of vortex tube via conventional rolling-up 





Vorticity vectors are always aligned with the longitudinal direction of the tube. 

Origin of the tube in the development of the rolled-up vortex sheet

Initial conditionRolled-up sheet

Traced back to the concentration of vorticity along the sheet 
in the initial velocity field.
The vortex tube is formed through focusing process (Neu 1984).

Mode 1 
(Lundgren 1982)

Mode 2

Multi-mode stretched spiral vortex

3-dimensional rendering

Topological classification with 
regards to vorticity alignment along 
the two sheets and the tube

Mode 3 
(Pullin & Lundgren 2003)

Mode 2
Through 

interaction of 
several sheets

Mode 1
By Kelvin-
Helmholz
instaility



A process of formation of stretched spiral vortex

Configuration in early stage • Consists of a lot of stagnation 
flows caused by vortex sheets. 

(Davila and Vassilicos 2003)
• Straining and stretching of the 

vortex blob along the sheets. 
(Gilbert 1993)

• Mostly in Mode 3, converted 
into Mode 1 or Mode 2 with 
lapse of time.

A process of formation of stretched spiral vortex

Initial configuration

• Appearance of the stagnation 
flow.

• Generation of recirculating flow. 
• Straining and stretching of the 

sheets by the recirculating flow.
• Reorientation the vorticity

directions along the stretched 
sheets due to the action of the 
pressure Hessian term. 

• Creation of the vortex tube by 
concentration of the 
recirculating flow. 

Summary of the process

Mostly in Mode 3

A process of formation of stretched spiral vortex

Initial configuration

• Appearance of the stagnation 
flow along the vortex sheets.

• Generation of recirculating flow 
through interaction with another 
sheet. 

• Straining and stretching of the 
sheets by the recirculating flow.

• Reorientation the vorticity
directions along the stretched 
sheets due to the action of the 
pressure Hessian term. 

• Creation of the vortex tube by 
axial straining and 
concentration of the low 
pressure region in the 
recirculating flow. 

Summary of the process

Mostly in Mode 3

A process of formation of stretched spiral vortex

Summary of the process

Different from rolling up of the 
layer due to Kelvin-Helmholz
instability.

Created through the interaction 
of several sheets.

Convergence of recirculating
flow and concentration of its 
low-pressure region. 

: swirling flow,          : stagnation flow

Distribution of sheets at an early stage

(Waleffe 2003)

Index number



A process of formation of stretched spiral vortex

Different from rolling up of the 
layer due to Kelvin-Helmholz
instability.
Created through the interaction 
of several sheets.
Similar to the process 
considered for wall turbulence 
by Waleffe (2003).

Contours of vortex sheets and pressure

t = 1.05

A process of formation of stretched spiral vortex

• Initial configuration consists of 
by a stagnation flows caused 
by vortex sheets.(Davila and 
Vassilicos 2003)

• The following process is 
composed of by the three 
phases.

1. Genesis phase
2. Growth phase
3. Annihilation phase

Gray scale : vortex sheet, Vectors: velocity

Genesis phase of LSV
Generation of recirculating flow by convergence of  the stagnation flow.

Interaction with the vortex 
on the third sheets.

In Mode 3

Straining and stretching of vortex sheets by recirculating flow 
and the swirling flow caused by the vortex along S3.

Formation of 
lower (L) 
and upper 
(U) sheets



Creation of the vortex tube in the core region of LSV

Absorption of the low pressure region in the recirculating flow into the lower sheet L.
Stretching due to axially straining fields induced by the vortices in near neighbors.
Concentration of the vorticity in the low pressure region.

Creation of vortex tube by axial straining and concentration of low pressure region.

• Entrainment of vortex sheets by the tube, 
causing  the sheets to form a spiral.
• Lowering of pressure and intensification 
of swirling motion.
• This spiral tightens and form spiral turns.

Fractal properties of spiral
(Vassilicos & Brasseur 1996)

Growth phase of LSV

Generation of intense dissipation along the spiral arms

Decrease of the area of the cross section of 
the tube

Concentration of the vorticity

Further stretching of lower and upper sheets

Entrainment of vortex sheets by the tube, 
causing  the sheets to form a spiral

This spiral tightens and form spiral turns

Low-speed streak

High-speed streak

Vortex sheetRecirculating flow

Schematic sketch of streamwise vortex 
formation process in sheared turbulence

(Waleffe 2003)



Inter-mode transition in stretched spiral vortex

Initial configuration: Mode 3
⇒ Occurrence of reorientation of vorticity

vector

Vortex stretching term: σz ωz
2 
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Converted to Mode 2

Mechanism for occurrence of reorientation of vorticity direction
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Governing equation for σz
on the ez， e+，e- basis

Horiuti & Fujisawa (2008)

Inter-mode transition of stretched spiral vortex

Formation of recirculating flow 
by an interaction of three sheets

Example of Mode 3 – Mode 1 transition

Occurrence of reorientation
on both sheets

Π~ zz

Π~ ss > 0 on both sheets

Distribution of sheets and velocity

Appearance for Mode 3-2 and 3-1 transitions

Pressure distribution is convex near 
the branching point (B) of pressure.

Mode 3 – 1 transition

Occurrence of reorientation
on both sheets

Π~ zz > 0 on both sheets

Mode 3 – 2 transition

B

Pressure distribution is concave on 
both sheets.

Π~ zz < 0 on upper sheet
> 0 on lower sheetΠ~ zz

Occurrence of reorientation
only on lower sheet



Inter-mode transition in stretched spiral vortex
Initial configuration: Mode 3
⇒ Occurrence of reorientation of vorticity

vector direction
Velocity direction on S3

The same as those on S1 and S2: 
Mode 3 ⇒ Mode 1

Opposite to those on S1 and S2: 
No reorientation takes place

Due to the action of         term.

Vortex stretching term: σz ωz
2 
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Occurrence of reorientation of vorticity vector direction

Velocity direction on S3

The same as those on S1 and S2: 

Opposite to those on S1 and S2: 

Governing equation for σz
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Mechanism for stretching of the vortex sheet 
and formation of spiral turns

Distribution of the D term

A measure for the strength of the 
differential rotation

Differential rotation induced by the tube 
and that self-induced by the sheet
⇒ stretching, thinning and spiralling of

vortex sheets to extreme length. 

（Lundgren 1982) Intense azimuthal velocity is 
induced by the vortex sheet

on  the lower sheet  L.

Persistence of three modes

Differential rotation induced on the 
two sheets:
Lower sheet  >> Upper sheet 

Persistence of Mode 1 configuration 

Schematic of configuration 
on lower and upper sheets 

in Mode 2



Decrement δ(t) obtained by fitting the energy spectra with the 
functional form as    E(k, t) = c(t) kn(t) e-2δ(t)k

Estimate of average thickness of the vortex sheet, δ

No apparent tendency for convergence of the average thickness observed. 

(Passot et al. 1995)

Asymptotic values

Run 1 (kmax      =4.0):  2.05 
Run 2 (kmax      =2.0):  2.34 
Run 3 (kmax      =1.0):  3.21 

η
η

η

η
η
η

Run 1

Run 2

Run 3

Appearance of spiral turns Dissipation rate, 

Process of formation of stretched spiral vortex (3)

Generation of intense dissipation along the stretched spiral sheets

εε /

Cascade term (-SikSkjSji+ΩikΩkjSji) Dissipation rate, 

Process of formation of stretched spiral vortex (3)

Generation of intense cascade and dissipation along the stretched spiral sheets

εε /

Annihilation  of 
LSV (Nickels IMS6)

(Ishihara IMS6)

Interaction of strain and vorticity
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Strain production term > Vortex-stretching term

Enhancement of vorticity implies reduction of strain (Tsinober et al.(1997))

Existence of a region with large (concentrated) vorticity:
indispensable for transformation of flat sheet region into vorticity-dominant region



Annihilation  of LSV

Dissipation and vortex-stretching terms

Dissipation rate εε /

Annihilation phase

Vortex-stretching term

The term representing the energy cascade 
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• Strain production term +  enstrophy production term

-SikSkjSji+ΩikΩkjSji

Cf. Estimate obtained using the nonlinear SGS model in LES

Estimate of the magnitude of energy cascade into small scale

Governing equations of the strain rate and enstrophy

PIV measurements
O. R. H. Buxton & B. Ganapathisubramani (2010) JFM 

Intense vortex-stretching along the vortex sheets

Superposition of Ωik Ωkj Sji term and vortex sheets

Ωik Ωkj Sji term

PIV measurements
O. R. H. Buxton & 
B. Ganapathisubramani (2010) JFM 

Correlation between vortex sheet and vortex-stretching term

SSSS jikjikjikjik ΩΩ+− term on the vortex sheet

term S jikjik ΩΩ



Production term for strain and vorticity:

Distributions for indicator for the (small scale) turbulence generation.

SSSS jikjikjikjik ΩΩ+−

Energy cascade in multi-mode stretched spiral vortex 
Kiyosi Horiuti (Tokyo Institute of Technology, Japan)

Y. Takagi, T. Fujisawa, K. Saitou, K. Kawamura, K. Matsumoto

PDF of dissipation rate from three Runs.

Objective

• Identify the vortical structure 
responsible for causing turbulent 
energy dissipation.

• Reveal the formation process for
the identified structure.

• Examine the grid resolution 
requirement for the structures.

Dissipation field in decaying 
homogeneous isotropic turbulence

Reλ ~ 87.0
Grid resolution: 

Run 1    kmax       =4.0 (10243)
Run 2    kmax       =2.0  ( 5123)

 Run 3    kmax        =1.0  ( 2563)
: Averaged Kolmogorov scale
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Mechanism for stretching of the vortex sheet 
and formation of spiral turns

Distribution of the D term

A measure for the strength of the 
differential rotation

Differential rotation induced by the tube 
and that self-induced by the sheet
⇒ stretching and spiralling of vortex sheets 

Stretching and thinning of the spiral 
sheet to extreme length.
⇒ intense turbulent energy cascade 
and dissipation 

Note: Differential rotation induced on 
the sheets in Mode 2:
Lower sheet  >> Upper sheet 

Persistence of Mode 1 configuration 

（Lundgren 1982)

Model for turbulence energy cascade

1st generation:  LSV with intense vorticity 
Confinement of large circulation in the recirculating flow into small cross section

2nd generation:  LSV carrying smaller vorticity
Stretching of the spiral arms by 1st generation LSV Instability of the spiral sheets

3rd generation:  
Straining and stretching of the vorticity blobs Tertiary instability Rolling up of sheets

………
Formation of hierarchical cluster of self-similar LSV networks
Intermittent cascade of energy to small scales

Instability cascade along spiral sheetsConventional scenario for cascade

Frish et al. (1978)

High Re -5/3



Scenario for turbulence energy cascade

• Formation of hierarchical cluster of 
self-similar LSV networks

• Cascade of energy to small scales

Instability cascade along spiral sheets

Frish et al. (1978)

Richardson’s scenario for cascade

At higher Reynolds number

LSV formation at a higher Reynolds number
Occurrence of instability cascade

Energy spectrum

Higher Reynolds numbers:

Rolling up of the stretched sheets

Region Strain production 
term fraction

Vortex stretching 
term fraction

Curved
sheet

0.32 0.07 0.39 0.09

Flat
sheet

0.41 0.28 0.42 0.36

Tube-
core 0.27 0.99 0.18 0.55
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Decomposition of the strain production and vortex-stretching terms
in the three regions (t =2.75)

Region Grid point 
fraction

Energy
fraction

Dissipation
fraction

Energy
individual

Dissipation
individual

Taylor micro 
scale Re

Curved 0.26 0.27 0.33 1.04 0.80 80.5

Flat 0.39 0.38 0.39 1.00 0.65 85.8

Core 0.35 0.34 0.28 0.97 0.50 95.1

Decomposition of turbulence statistics in three regions



Isosurfaces of dissipation Isosurfaces of vortex sheet

Correlation between the vortex sheet  and dissipation rate Resolution of spiral turns

Run 2 (kmax =2.0)η Run 1 (kmax =4.0)η

Requirement for the grid point numbers: Rλ
2 is more feasible than Rλ

3/2.
(Sreenivasan 2004)

Formation process of LSV in homogeneous isotropic turbulence

Transformed 
into Mode 1 
or Mode 2.

Creation of 
small scale 
Mode 1 or 
Mode 2 LSV.

Horiuti & Fujisawa (2007)

Mode 3

Mode 1 or 2Large scale  
circulation
(lateral 
extent: 
comparable 
to L). 
Initial 
configuration 
is in Mode 3

Large scale  
circulation
(lateral 
extent: 
comparable 
to L). 
Initial 
configuration 
is in Mode 3

Formation process of spiral vortices in homogeneous isotropic turbulence

Transformed 
into Mode 1 
or Mode 2.

Creation of 
small scale 
Mode 1 or 
Mode 2 LSV.

Horiuti & Fujisawa (2007)

Mode 3

Mode 1 or 2



Beltrami decomposition of velocity fields

Enstrophy (positive helicity) Enstrophy (negative helicity)

u = u+ + u-

LSV formation at higher Reynolds  number
Run 4: Initial velocity field from Run 1 at t=1.75, ν=0.00138 0.00024

At high Re, the stretched sheets are thinner, and spiral has more turns.

Instability of sheets Creation of extra LSVs along the stretched sheets. 

Run 4 (Reλ ~ 122.5)Run 1 (Reλ ~ 77.2)Vortex-stretching term

Annihilation  of LSV

kmax =1.0η

Appearance of spiral turns

Formation process different from that due to Kelvin-Helmholz instability

Generation of intense dissipation along the stretched spiral sheets

Inter-mode transition of stretched spiral vortex

Vortex stretching term: σz ωz
2 Initial configuration: Mode 3

Occurrence of reorientation of 
vorticity direction along lower sheet

Mode 3 – Mode 2 transition
ωz = ω･ez，ω+ = ω･e+，ω- = ω･e-



A process for formation of vortex tube along flat sheet

Occurrence of compression in the stretching(z-) direction along the flat sheet. 

Strain-rate eigenvalue σz (negative)

Distributions of decomposed vortex-stretching terms

Stretching (z) direction (negative) Azimuthal (+) direction (positive)

σz ωz
2 (-7500) σ+ ω+

2  (12000)

Roles of the pressure for the sheet-tube transformation process

Generation of local minimum pressure ⇒ Formation of the core region of tube 
⇒ Generation of vortex tube with transverse vorticity.

Pressure Hessian  Π++ Cross-section of pressure and flat sheet

Relaxation of occurrence of compression through the pressure Hessian terms.
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Pressure Hessian term reacts to relax an occurrence of compression in z-dir. 
by converting the ωz vorticity into the transverse component, ω+.

Role of the pressure Hessian term for vorticity generation

Governing equations for vorticities, ωz, , ω+ , ω-
ωzω+Πz+ (negative)



Statistical measure for frequency of occurrence of mode transitions

p.d.f. of  σzωz
2

Appearance of a markedly large proportion of 
negative σzωz

2

Occurrence of reorientation of vorticity direction

Π~ zz

(Conditionally sampled
in the sheet region)

At an earlv stage: skewed to positive values
Occurrence of reorientation of vorticity direction

At a later time: skewed to negative values
The vorticity in the converted direction grows.
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Inter-component energy exchange in Mode 2
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Energy transfer from the z-component, uz
2, to the transverse component, u+

2 .

Mode 1 LSV is more persistent than Mode 2 LSV. 

Governing equations for energy: uz
2, u+
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on upper sheet

Isosurfaces of dissipation Isosurfaces of vortex sheet

Correlation between the vortex sheet  and dissipation rate Resolution of spiral turns

Run 2 (kmax =2.0)η Run 1 (kmax =4.0)η

Requirement for the grid point numbers: Rλ
2 is more feasible than Rλ

3/2.
(Sreenivasan 2004)



LSV formation at higher Reynolds number
Run 4: Initial velocity field from Run 1 at t=1.75, ν=0.00138 0.00024

At high Re, the stretched sheets are thinner, and spiral has more turns.

Instability of sheets Creation of extra LSVs along the stretched sheets. 

Run 4 (Reλ ~ 122.5)Run 1 (Reλ ~ 77.2)Vortex-stretching term

Annihilation  of LSV

kmax =1.0η

LSV formation at higher Reynolds  number

Run 1 (Reλ ~ 77.2) Run 4 (Reλ ~ 122.5)

Run 4: Initial velocity field from Run 1 at t=1.75, ν=0.00138 → 0.00024

At high Re, the stretched sheets are thinner, and spiral has more turns.
⇒ Instability of sheets ⇒ Creation of extra LSVs along the stretched sheets. 

Mode 3

Mode 1

Inter-mode transition of stretched spiral vortex in forced turbulence

Mode 3

Mode 1

Topological transformation: helicity ω⋅= uh

Yellow: h>0
Blue   :  h<0
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Topological transformation: helicity production term Ph

Yellow: h>0
Blue   :  h<0

(Holm & Kerr 2002)
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Hierarchical spectrum and multi-mode spiral vortex

Spiral vortex in Mode 1 Mode 3
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Mode 2: intermediate between -5/3 and -7/3

E (k) ~ ε1/3 S k -7/3

Pullin and Lundgren (2001): 
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Removal of divergence by using a large scale shear rate, S.
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(Ishihara et al. 2002)

Derivation of -7/3 energy spectrum (1)

Diverge as ν           0 unless ε             0.
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Define the stretching parameter a using the Kolmogorov scaling: 

Cascade picture for the evolution of the vorticity blob (Gilbert 1993) 

• Stretching of axial vorticity ωz

• Stretching of azimuthal vorticity ωθ

• Stretching of azimuthal vorticity ωr
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Enstrophy spectrum: 

Derivation of -7/3 energy spectrum (2)

K :  turbulent energy

: Time derivative  of 　ε& 　ε

39−∝ k

(Ohkitani 2004)



Phase 1 Phase 2

• Mode 3 (or 2) tends to be converted to Mode 1 (Horiuti et al. 2008)
• Rolling-up of the stretched sheet ⇒ Creation of Mode 1 spiral vortices

⇒ Mode 1 spiral vortex predominates in Phase 2.

Mode 3 Mode 1

Time variations of energy and dissipation rate

Period of oscillation ~ Eddy turnover time due to forcing:T

Time lag ~ Cascade time scale
~ Eddy turnover time 
according to integral scale L

(Wan, Xiao, Meneveau et al. 2010)

Forced isotropic turbulence

τ∼ 1.2

Mode 3

Conditional sampling of energy spectrum

Extracted spectra

-5/3

-7/3

Forced isotropic turbulence

CK ~ 1.61
C1 ~ CK
Heisenburg: C1~ 3/7CK

Energy flux and transfer function: Average in Phases 1 and 2

+

-

0>ε& 0<ε&

Phase 1 Phase 2

Forward 

0>ε& 0<ε&

Phase 1 Phase 2

Backward

)(kΠflux Energy 
)( kT

Theory

Transfer function



Flux and transfer function: Average in Phase T
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large  :0>ε&&

Phase 1Phase 2

Phase T

Forward 

Phase T2-1

Phase 1 Phase 2

Phase T

large  :0<ε&&

Backward

Phase T1-2

)( kΠ
)( kT

Conditional sampling of energy spectrum

Extracted spectra

-5/3

-7/3

Forced isotropic turbulence

CK ~ 1.61
C1 ~ CK
Heisenburg: C1~ 3/7CK

Extraction of the non-equilibrium spectrum

-5/3

-7/3

-9/3

1. Random forcing 

CK ~ 1.61
C7/3 ~ 
2CK

2/3=1.73

Objective

• Extract the k -7/3 and k -9/3 spectrum using conditional sampling of the 
spectrum in quasi-steady turbulence DNS data.

• Discuss on the effect of non-locality in the transfer function.

• Elucidate the roles of the k -7/3 and k -9/3 spectrum in generation of energy 
transfer and examine the non-equilibrium/unsteady effect.

Non-equilibrium energy spectrum (Kovasnay model)
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Long-time average of the spectrum:



Multi-mode stretched spiral vortex

3-dimensional rendering

Topological classification with 
regards to vorticity alignment along 
the two sheets and the tube

Mode 2

Mode 1

35−k spectrum

Mode 1 
Lundgren 
spiral 
vortex

Mode 3

37−k spectrum

Mode 2

IntermediateHoriuti & Fujisawa (2008)

Mode 1 
(Lundgren 1982)

Mode 2

Multi-mode stretched spiral vortex

3-dimensional rendering

Topological classification with 
regards to vorticity alignment along 
the two sheets and the tube

Mode 3 
(Pullin & Lundgren 2003)

Intense dissipation 
events due to interaction 
of tubular structures is 
equally important (Kerr, 
Goto, IMS6) 

Tom’s effect : Drag reduction in the polymer-diluted flows

Possibility in reduction of turbulence generation
by means of termination of the occurrence of LSV formation

Investigation of the effect of viscoelasticity on the formation process

Characteristic features of the viscoelastic fluids

1. Inhibition of the vortex generation.
2. Normal stress difference (appearance of 

elongational viscosity).
3. Shear-rate dependent viscosity (shear thinning).

Weissenburg effect (Rod clibming)

a dilute solutionof polystyrene polymer is 
dissolved in newtonian solvent (Piccolastic).
( HP: Prof. McKinley, MIT)

How these viscoelastic features affect 
the LSV formation process.

Characteristic features of the viscoelastic fluids

1. Inhibition of the vortex generation.
2. Normal stress difference (appearance of 

elongation rate and viscosity).
3. Shear-rate dependent viscosity (shear thinning).

How these viscoelastic features affect on the occurrence of 
sheet-tube transformation process.

Weissenburg effect
(Rod clibming)

a dilute solutionof polystyrene polymer is 
dissolved in newtonian solvent (Piccolastic).

In this video clip a dilute (0.025 wt%) solution of a high molecular 
weight (2ﾗ106 g/mol) polystyrene polymer (Polysciences Inc) is 
dissolved in a low molecular weight (~100 g/mol) newtonian viscous 
(~30 Pa.s) solvent (Piccolastic, Hercules Inc). 
In the experiment a rod is rotated with its end immersed in the fluid 
outlined above. In the Newtonian case inertia would dominate and the 
fluid would move to the edges of the container, away from the 
rod. Here however the elastic forces generated by the rotation of the 
rod (and the consequent stretching of the polymer chains in solution) 
result in a positive normal force - the fluid rises up the rod. The 
bulbous shape remaining at the end of the video is the onset of 
instability as the mass that has been forced up the rod a) relaxes and 
b) overcomes the force pushing from below.
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Upper-convective Oldroyd-B constitutive equation

Johnson-Segalman constitutive equation

< Elastic dumbbell >
Q : connector vector

( )10 parameter, slip : ≤≤ αα

Incorporation of non-affine effect into the constitutive equation

Assumption of complete affinity

Introduction of non-affinity
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Johnson-Segalman constitutive equation (JS model)

Constitutive equation for the polymer stress tensor τij

α=0: reduced to Oldroyd-B eq. (Review in Procaccia & Sreenivasan 2008)
α=1: reduced to Oldroyd-A eq.

uQQ ∇⋅=& [ ]SuQQ α2−∇⋅=& Q

Q : connector vectorIntroduction of non-affinity

Cf. Vaithianathan et al. (2006)
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Governing equation for motion of viscoelastic fluid

α : slip parameter

• Grid point numbers: 1283

• Molecular discosity : ν =0.004
• Polymer relaxation time : λ =0.45  (Taylor: 0.66, Kolmogorov: 0.098)
• Non-affine slip parameter: α=0.0, 0.5, 1.0
• Solvent viscosity contribution: β=0.8
• Artificial viscosity: κ = 0.05
• External forcing: Random phase with an energy spectrum

• Initial condition: Newtonian  steady turbulence (R λ~ 90.0)
• No damping function for the polymer stress is employed
• Work provided by the forcing to sustain the steady state

Parameters of the viscoelastic homogeneous-isotropic DNS data
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5.20.1,
,

W

Newtonian α=0.0 α=1.0

0.470 0.468 0.457

ii fu

Temporal development of vortex sheets and tubes
(Newtonian)



Temporal development of vortex sheets and tubes
(viscoelastic)

α=0.0 α=1.0

Temporal development of vortex sheets and tubes
(viscoelastic)

α=0.0 α=1.0

Characteristic features of the viscoelastic fluids

Governing equation for radial momentum

R. Bird et al. “Dynamics of Polymeric Liquids” vol.1 (1987)

( ) ( ) ( ) ⋅⋅⋅+−+−=−    θθτττττ rrzzrrzz dr
drp

dr
dr

Polymer stress on the basis of [Aij] eigenvectors along the tube 

a+: in the radial direction   a-: in the azimuthal direction as: in the longitudinal direction 

Determination of normal stress difference is required.

Weissenburg effect

( ) ( )−−++ −≈− ττττ θθ  rr

( ) ( ) ( ) ⋅⋅⋅+−+−=−    θθτττττ rrzzrrzz dr
drp

dr
dr

Roles of normal stress difference on the vortex tube generation

Pressure gradient in the radial direction

: predominantly negative

Distribution of                     on the tube

( ) ( )−−++ −≈− ττττ θθ  rr

0<∴
dr
dp

Pressure bulges out in tube core region 
⇒ Reduction of lowering of pressure 

in the tube core.
⇒ Reduction of growth of the tube.

Inhibition of the vortex generation

( )−−++ −ττ

( )−−++ −ττ α=0.0



Effect of viscoelasticity on the pressure force
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Anti parallel

Parallel

PDF of  angle between ∇ps and ∇ pτ

Decomposition of the pressure into those due to solvent ps and polymer pτ

∇ pτ tends to oppose to ∇ ps ⇒ Reduction of stretching  of tube and sheet

ps

pτ

ps

pτ

Joint pdf of source terms Q and T

Sheet

Tube
α=1.0

Alignment of [Aij]+
eigenvectors with vortex sheet

as

a+

a-

a+ eigenvector is mostly perpendicular to 
the vortex sheet.

Vortex sheet is approximately spanned by 
the as and a- eigenvectors.

Determination of normal stress difference along the sheet

a+
a-

e-

e+

45°

Vortex 
sheet

Elsinga (IMS6)

First and second normal stress differences along the vortex sheet

First normal stress difference

( ) ( )++−≈− ττττ ss 2211
Direction of  fluid 
velocity: s

Direction of velocity 
variation: +

Second normal stress difference

( ) ( )−−++ −≈− ττττ  3322

Note: When the vorticity of sheet is large
⇒ First normal stress difference

⇒ Second normal stress difference
( ) ( )++−− −≈− ττττ  2211

( ) ( )ssττττ −≈− ++ 3322



First and second normal stress differences along the vortex sheet

First: ( ) ( )++−≈− ττττ ss 2211 Second: ( ) ( )−−++ −≈− ττττ  3322

Predominantly positive Predominantly negative

Stretching and alignment of the polymer molecules along the streamlines ⇒

⇒ Extra tension exerted along the sheet ⇒ Snap back of the sheet to the original form

α =1.0

Elongational (or extensional) viscosity

Elongation viscosity obtained via first normal stress difference

The most likely reason for drag reduction: 
Enhanced extensional viscosity leads to increased resistance to 
extensional motions of the turbulent flow (Lumley 1969) 

Toonder et al. (1995)  Strain parameter to identify occurrence of elongation 
Sureshkumar et al. (1997) the maximum polymer extension L in FENE-P model

α =0.0 α =1.0

( ) sss σττη ++−=1

Effect of viscoelasticity on the occurrence 
of a role reversal between the eigenvalues

The rate of rotation in the plane defined
by e+ and ez （Nomura & Post 1998)
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The occurrence of a role reversal is 
inhibited by the polymer stress 

IV-th  quadrant

II-nd  quadrant

Off-diagonal component of 
pressure Hessian

Newtonian Johnson-Segalman model

α － 0.0, 0.1, 0.5, 0.9, 1.0

Reτ0 180 180

Weτ0 － 25

Domain 10R×R×2πR 20R×R×2πR

Lz
+ 1,800 3,600

Grid 128×64×64 256×64×64
β 1.0 0.9

∆tuτ /R 2.0×10-4 2.0×10-5
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Computed cases in pipe flow DNS

Peterlin damping function (FENE-P)
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：dumbbellの無限伸長を抑制するために
導入したdumping項（Peterlin function）

→ Oldroyd-Bモデル（α=0）

→ FENE-Pモデル（α=0）
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支配方程式
Governing Equations

運動方程式

連続の式

構成方程式
Johnson-
Segalmanモデル
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Run α %DR

V-1 0.0 22
V-2 0.1 3
V-3 0.5 0
V-4 0.9 7
V-6 1.0 86

Non-affinity        Drag reduction
α

Drag reduction rate based on the 
flow : %DR

非アファイン性強度 α

Dependence of drag reduction rate on slip parameter

Non monotonous

Larger drag reduction:
Shifted upward

60≥+y

α = 0.5: close to Newtonian

α=1.0: close to laminar

Mean velocity profiles in pipe flow
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Budget of the shear stress

Reynolds Viscous Polymer stress

Newtonian α=0.0 α=1.0

Mean shear stress profiles in pipe flow

Relaminarization



非アファイン粘弾性流体における渦構造
Vortical Structures

ニュートン性流体 α=0.0

α=0.5 α=1.0（過渡期）

（赤：渦管，白：渦層）

>多数の細かい渦構造

>ニュートン性流体の渦構造と類似

>細かい縦渦構造の減少

>細かい縦渦構造の減少
>渦層が支配的

Flow

過渡後期 >渦構造の消失
>層流化

抵抗削減機構 (α=0.0): Bulge out effect
Drag Reduction Mechanism at α=0.0: Bulge out effect

圧力に対する高分子寄与

pτ：高分子圧力
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i xxx
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∂
′∂ τβ

τ

τ
2

0
2

2

Re
1

Flow

(等値面)
白：渦管
青：高分子圧力

(等高線)
黒：渦管
青→赤：高分子圧力

高分子圧力が
渦管中央部で極大

圧力低下を抑制するbulge out効果

渦管の伸長が抑制

( ) ( ) ( ) ⋅⋅⋅+−+−=−    θθτττττ rrzzrrzz dr
drp

dr
dr

Roles of normal stress difference on the vortex tube generation in pipe

Pressure gradient in the radial direction

: predominantly negative

( ) ( )−−++ −≈− ττττ θθ  rr

0<∴
dr
dp

Pressure bulges out in tube core region 
⇒ Reduction of lowering of pressure 

in the tube core.
⇒ Reduction of growth of the tube.

Inhibition of the vortex generation

( )−−++ −ττ
Distribution of                     on the tube( )−−++ −ττ

α=0.0

Weissenburg effect ニュートン性流体

α=0.0

Flow

ニュートン性流体

α=0.0Streaky structure in pipe flow

Direction of  

fluid velocity: -

Direction of 
velocity 
variation: +

⇒ First normal stress difference

⇒ Second normal stress difference

( ) ( )++−− −≈− ττττ  2211

( ) ( )ssττττ −≈− ++ 3322

Isosurfaces of u-<u>



First and second normal stress differences along the vortex sheet

First: ( ) ( )++−− −≈− ττττ  2211 Second: ( ) ( )ssττττ −≈− ++ 3322

Predominantly positive Predominantly negative

Stretching and alignment of the polymer molecules along the streamlines ⇒

⇒ Extra tension exerted along the sheet ⇒ Snap back of the sheet to the original form

α =1.0

Similar to homogeneous isotropic turbulence 

Approximate solution of the JS model

Approximate solution with  τij= 0 at t =0 (Bird et al. 1987)

Assume the steady state (the solution up to 3rd-order)

Analogous to the nonlinear model for the Reynolds stress tensor
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Approximate solution of the JS model

Approximate solution with  τij= 0 at t =0 (Bird et al. 1987)

Assume the steady state (the solution up to 2nd-order)

Analogous to the nonlinear model for the Reynolds stress tensor
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Approximate solution of the JS model (up to 3rd-order)

Production term of the solvent kinetic energy

( )
( ) ( ){ }
( ) ( )[ ]
( ) jiij

jiljklik

jikjik

jiijijijk

AA

SSSS

SSS
SSSP

βνλ

αβνλ

αβλν

βντ

−

−−−+

−−−+

−−≈=

12-

8211

4211

12

2

22

Non-monotonical dependence on α

< 0Derivative flatness

Large in sheet region

( )( ) ⎟
⎠

⎞
⎜
⎝

⎛ ±=
⎩
⎨
⎧

>−
≤+

−−±= iipke kPP τ
α
α

α
2
1

5.0:
5.0:

21

< 0

Derivative skewess

Production term of the elastic energy



Approximate solution of the JS model (up to 2nd-order)

Production term of the solvent kinetic energy

Shear thinning

( ) ( )( ) ijkjikijijij SSSSS αβλνβντ 211421 −−−−−≈

Effective shear viscosity 

α =0.0

α =1.0

( ) ( ) ijkjikijijijij SSSSSS βλνβντ −−−−≈ 1421
< 0

( ) ( ) ijkjikijijijij SSSSSS βλνβντ −+−−≈ 1421
< 0Effective shear viscosity 

Comparison of energy production terms (Full JS model)

α=0 (Oldroyd-B) α=0.5 α=1 (Oldroyd-A)

Solvent kinetic 

energy
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Ps=τijSji < 0 Ps=τijSji

small

Ps= τijSji < 0

Elastic energy
Pe=-τijSji > 0 Pe= -(1-2α) τikSik

= 0
Pe= -τijSji < 0

uiui/2

Close to Newtonian:
Solid-body rotation 
with no stretching
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Reduction of kinetic
Energy and conversion to 
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Limitations of 2nd-order approximate JS model

2nd-order steady solution of the JS model

( ) ( ) ( ){ }kijkkjikkjikij SSSS ΩΩ22112 ++−−−≈ αβλντ

3rd-order steady solution (Bird et al. 1987)
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3次定常近似解によるエネルギー変換の見積もり

Energy Exchange (3rd-order Steady Solution)

> 第3項
：derivative skewness
と比較して大きな正値

> αに対する非単調依存，DNSと整合

渦層:

> 第4項

> 渦層上で の負値の増加，DNSと整合

（Horiuti et al., 2005）

弾性エネルギー生成項

上符号：α < 0.5
下符号：α > 0.5 ：渦層上での生成

jiljklik SSSS [ ] 2jiijij AAA ≈
+

( )τ
kP

( ) ( ) ( )( )τα k
t

e PP −−±= 21



Comparison of energy production terms (2nd-order model)

α=0 (Oldroyd-B) α=0.5 α=1 (Oldroyd-A)

Solvent 

kinetic energy

uiui/2

Ps= τikSik > 0 Ps= τikSik= 0 Ps= τikSik < 0

Elastic energy

-τii/2
Pe= -τikSik < 0

Pe=-(1-2α) τikSik

= 0

Pe= τikSik < 0

uiui/2

-τii/2

Enhancement of turbulence    Close to Newtonian     Reduction of turbulence

Summary

• A stretched spiral vortex is identification using DNS data for 
homogeneous isotropic turbulence. Its genesis, growth and 
annihilation are elucidated .

• Existence of two symmetric modes and a third asymmetric of 
configurations is extracted. They are achieved through the 
interaction of several sheets. 

• Mechanism of mode transition and persistence of each mode is 
shown.  

• By tightening of the spiral turns, spiral sheets are stretched to 
extreme lengths. Intense energy cascade and dissipation occurs 
along the spiral sheets. 

• Effect of viscoelasticity on the formation of spiral vortex is studied 
using the constitutive equation for the polymer stress. It is shown 
that viscoelastisity works to resist extensional motions of the 
turbulent flow. 

t=0

135

Reconnection of two orthogonally offset cylindrical vortices 

Interaction of multiple tubular vortical structures 

(Transverse: Holm & Kerr 2002; Anti parallel: Goto 2008)

Initial condition: Boratav ，Pelz and Zabusky(1991)
ReΓ = Γ/ν =1392.0, Equal circulation. t=0.5
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t=3.0
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t=5.0
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t=7.0
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t=0 t=1.5 t=2.5 t=3.5

Time evolution of helicity density and Ph
s term

黄色：正値 青色：負値

Helicity density

Ph
s

150

Transition of topology during the reconnection process

t=4.5

Green isosurface： dissipation rate > 0.5

Intense dissipation event via an interaction and 
reconnection of the two vortices 

Intense dissipation is generated 
along the stretched sheets in the 
vicinity of the reconnection point. D
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λ-DNA

PEO

1. DNA: exhibits marked drag reduction

Candidate for non-affine polymers 

2. Surfactant (with high concentration)



Conclusion

• A stretched spiral vortex is identification using DNS data for 
homogeneous isotropic turbulence. Its genesis, growth and 
annihilation are elucidated .

• Aside from the two symmetric modes of configurations studied in 
previous works, a third asymmetric mode is extracted, which is 
achieved through the interaction of several sheets. 

• By tightening of the spiral turns, spiral sheets are stretched to 
extreme lengths. Intense dissipation occurs along the spiral sheets. 
The local dissipation rate exhibits a strong intermittency. 

• At a higher Reynolds number, the hierarchical cluster of spiral 
vortices is formed due to the instability cascade induced by the
stretching of vortex sheets. 

• Similarity in the fractal properties of the vortex sheet region and the 
dissipative region is shown. 
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Difference in the sign of the -(SikΩkj +SjkΩki) term (Horiuti 2003)

Nonlinear model (Newtonian case)

Analogy with turbulence models (LES/RANS)

2nd-order steady solution of the JS model (Viscoelastic case)

Assessment of 2nd-order model in homogeneous isotropic turbulence 
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2563 grid points, β= 0.8, λ= 0.36, We= 7.8, Reλ=80

Tube-like structure similar to 
Burgers’ vortex tube

Classification of structures in turbulent flows
Sheet-like structure similar to 
Burgers’ vortex layer

(Kida & Yanase)
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Comparison of energy production terms (2nd-order model)

α=0 (Oldroyd-B) α=0.5 α=1 (Oldroyd-A)

Solvent 

kinetic energy

uiui/2

Ps= τikSik
-4(1-β)νλSikSkjSji > 0

Ps= τikSik= 0 Ps= τikSik
=4(1-β)νλSikSkjSji < 0

Elastic energy

-τii/2

Pe= -τikSik
4(1-β)νλSikSkjSji < 0

Pe=-(1-2α) τikSik

= 0

Pe= τikSik
=4(1-β)νλSikSkjSji < 0

uiui/2

-τii/2

Enhancement of turbulence Reduction of turbulenceClose to Newtonian



Eigenvaluevalues for Aij

• Characteristic equation

where

• DNS data shows that AijAji≫AijAjkAki, thus
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Invariants of fourth-order moments of 
velocity gradients

• I1 = (SikSki)(SjlSlj)
I2 = -2SikSkiΩjlΩlj 

I3 = 4SikΩkjΩjlSli-2SikSkiΩjlΩlj

I4 = 8ΩikΩklΩljΩji                           (Siggia, 1981)

All fourth-order moments are linear combination of Ii
(i=1,2,3,4).

•
32 2

3 IIAA jiij −=

Fractal properties of the vortex sheet 
and dissipation region (1)

Box counting for individual 
dissipative structures

d: Fractal dimensionNε (L) ~ L-d

Nε :  Number of boxes containing 
some point of large dissipative 
structures

Fitting in the range, 6     <L< Lmax

Moisy and Jimenez (2004)

A set of adjucent points 
satisfying the thresholding 
criterion

η

Fractal properties of the vortex sheet 
and dissipation region (2)

Correlation between the vortex 
sheet  and dissipation rate

Mean value of dε averaged over 
structures as a function of threshold 

and fractal dimension for [Aij]+

C.C~ 0.83



Statistical property of the educed region: Fractality

5123 Forced case
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(Moisy and Jimenez 2004)
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Statistical property of the educed region: Fractality of [Aij]+
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Fractal dimension of [Aij]+ ~ 1.7, close to that of strain rate.

[Aij]+ educes the region in which intense dissipation takes place.
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SWSW

SWSW(5123,τ=2.0_2nd,D=1.92) SWSW(5123,τ=10.0_2nd,D=1.68)

マルチフラクタル解析

• Subbox average

• 一般化次元
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散逸率，[Aij]+，ΩikΩikのスケーリング
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慣性小領域を越えてスケーリングが成り立つ．

Forcing, N = 5123, Reλ ~ 244.5

マルチフラクタル特性

• q-Dq曲線

– 散逸構造と渦層構造は相似な分布

• 等α集合のフラクタル次元 f (α(q))
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ひずみ速度と渦度のジョイント・マルチフラク
タル

• 結合一般化次元 D(q, p)

• 等α，β集合のフラクタル次元 f (α, β)

0,
),()1)(1()()()(

→⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ ∑

−−−+

i

pqDpqp

L

i
r

q

L

i
r

pqd

L
r

L
r

w
w

s
s

L
r

Subbox 内の平均ひずみ速度，平均渦度 : sr
(i)，wr

(i)

ひずみ速度，渦度の全空間平均 : sL，wL

.)1()1(),(),(

,1),(),(

,1),(),(

),()1)(1(),(

pdqdpqf

dpq
p

pq

dpq
q

pq

pqDpqpq

+−++−+−=

−+
∂
∂

=

−+
∂
∂

=

−−−=

βατβα

τβ

τα

τ

ひずみ速度と渦度の結合フラクタル次元

DNSの結果 Menevau et al.(1990)の
境界層実験の結果


