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Temporal development of coherent structures in isotropic turbulence box

Red isosurfaces: tubular object; White isosurfaces: planar object

Motivation

Existence of organized vortical structures, termed ribbons, blobs, and worms
has been known (e.g., Jimenez & Wray 1998).

The primary elements of vortical structures are the tube-like object and the
sheet (or layer)-like object. These objects are not separable since local
dissipation is particularly strong, not within vortex tubes, but rather in their
neighbourhood (e.g. Kerr 1985).

A model of generalized Burgers vortices for the small-scale structure of
turbulence was introduced in Lundgren (1982). In this model (LSV), vortex
sheets are stretched in the spiral to continually tighten, and this mechanism
causes an energy cascade. The LSV model gives the k=53 energy spectrum.

Objective
Extract LSVs and analyse their complete creation process in homogeneous
isotropic turbulence.
Explore the roles of the LSVs on generation of turbulence energy cascade
and dissipation.
Explore a possibility of achieving turbulence control through the
suppression of formation of LSV (in polymer-diluted flow).

Motivation

« Existence of organized vortical structures, termed ribbons, blobs, and
worms has been known (e.g., Jimenez & Wray 1998).

» The primary elements of vortical structures are the tube-like object and
the sheet (or layer)-like object. Local dissipation is particularly strong,

not within vortex tubes, but rather in their neighbourhood (e.g. Kerr 1985).
» A model of generalized Burgers vortices for the small-scale structure of
turbulence was introduced in Lundgren (1982). In this model (LSV), vortex
sheets are stretched in the spiral to continually tighten, and this
mechanism causes an energy cascade. The LSV model gives the
Kolmogorov k=57 energy spectrum

Objective

« Extract LSVs and analyse their complete creation process in homogeneous
isotropic turbulence.

« Explore the roles of the LSVs on generation of turbulence energy cascade
and dissipation.

* Explore a possibility of achieving turbulence control through the suppression
of formation of LSV (in polymer-diluted flow).

Identification method for turbulent structures (1)

Tubular structure in biaxial elongational flow Sheet structure in planar elongational flow

(Kida & Yanase)

Vortex tube: € ,>> S5, S,
Pressure, p.
-2nd-order invariant of the velocity gradient tensor, Q

Vortex sheet: €, Q;,~ S;, Sy

Eigenvalue of the 2nd-order tensor of the velocity gradient tensor,
Ails s Al = St S50 (Horiuti & Takagi 2005,
oF)
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Identification method for turbulent structures (3)

Performance of identification method
Comparison with other fourth order velocity gradient invarients

Burgers’ vortex layer Burgers’ vortex tube
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Identification method for turbulent structures (2)

Reordering of eigenvalues

Based on degree of alignment of their eigenvectors with vorticity vector @
Z or S Maximumly aligned with, @: G,, €, (Z or S)
Largest among remainder: G, €,

Smallest eigenvalue: G, €. (Andreotti 1993)

Vectors and tensors on the basis of strain rate eigenvectors

« Vector, Vortex stretching term
w,= €, 0,=mC, O.=n €.
¢ Tensors: ex) Pressure Hessian term

~ o? p

I, =ET(II)E, My=—1>,
OX;OX;

Alternatively, eigenvalues and eigenvectors of [A;] are used:

[Aij]z’ [Aij]+a [Aj]- 5 az' a+v a.

E=(e..e.e,)

Crossover of strain-rate tensor eigenvalues

Conventional ordering of eigenvalues: G, > G, > G;

Burgers’ vortex tube Burgers’ vortex layer
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Alignment of the eigenvector for the second largest
eigenvalue with the vorticity vector (Kerr et al. 1985).




Profiles of homogeneous-isotropic DNS data

Grid- Ry | Kpax | <K> | <e> | L A n
point # x 103
2563 Decay 77.2 | 1.02 | 0.90 [0.65]| 0.47 | 0.14 | 8.00
5123 Decay 76.9 | 2.05 | 0.90 [0.65| 0.47 | 0.14 | 8.00

(Low Re)
10243 Decay 77.4 | 4.09 | 0.90 [0.65]| 0.47 | 0.14 | 8.00
(Low Re)
10243 Decay 1225 1.35 [ 0.96 [0.30| 0.47 | 0.09 | 2.63
(High Re)
5128 Forced 158.1 | 2.27 | 1.41 {0.40| 1.26 | 0.22 | 8.91
(1.0<k<2.5)
10243 Forced 243.3| 249 | 143|039 1.14 | 0.15 | 4.89
(1.0<k<2.5)

Assessment using the DNS data

» Homogeneous isotropic turbulence (decaying)

Initial energy spectrum:

8 2
E(k)=Cky ik exps -2 ik , kp=2
kp kp

* Homogeneous shear turbulence
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Advantage of use of eigenvalue, [Aij]+

Vortex sheet is approximately spanned by the eigenvectors

for [A;], and [A;], noting that grad([A;],) is nearly
perpendicular to the surface of the sheet.
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Formation of vortex tube via conventional rolling-up

of a (single) vortex sheet

Vortex Sheet

\

\s.

Vortex Sheet

- Vortex Tube
Z

Vortex Tube

The vortex tube is formed through focusing of vorticity along a single vortex sheet

(Neu 1984, Kerr & Dold 1994).




Formation of vortex tube via conventional rolling-up

White isosurface:
vortex sheet

T 8 b.- Red isosurface:

o R R

vortex tube

Red vectors:
vorticity vector







Vorticity vectors are always aligned with the longitudinal direction of the tube.

Multi-mode stretched spiral vorteX  qoi0gical classification with

regards to vorticity alignment along
3-dimensional rendering the two sheets and the tube

Origin of the tube in the development of the rolled-up vortex sheet

Rolled-up sheet Initial condition

Mode 1 i \

By Kelvin- \ 1 \
Helmholz / R
instaility j

Mode 1 i
(Lundgren 1982) /

/

Mode 2
Through

Traced back to the concentration of vorticity along the sheet interaction of

in the initial velocity field. several sheets

The vortex tube is formed through focusing process (Neu 1984). ! Mode 3

(Pullin & Lundgren 2003)




A process of formation of stretched spiral vortex

Consists of a lot of stagnation

Configuration in early stage

(Davila and Vassilicos 2003)

e Straining and stretching of the
vortex blob along the sheets.
(Gilbert 1993)

Iy

¢ Mostly in Mode 3, converted
into Mode 1 or Mode 2 with
lapse of time.

flows caused by vortex sheets.

A process of formation of stretched spiral vortex

Initial configuration Summary of the process

» Appearance of the stagnation
flow.

» Generation of recirculating flow.

» Straining and stretching of the
sheets by the recirculating flow.

* Reorientation the vorticity
directions along the stretched
sheets due to the action of the
pressure Hessian term.

» Creation of the vortex tube by
concentration of the
recirculating flow.

Mostly in Mode 3

A process of formation of stretched spiral vortex

Initial configuration Summary of the process

« Appearance of the stagnation
flow along the vortex sheets.

¢ Generation of recirculating flow
through interaction with another
sheet.

e Straining and stretching of the
sheets by the recirculating flow.

* Reorientation the vorticity
directions along the stretched
sheets due to the action of the
pressure Hessian term.

¢ Creation of the vortex tube by
axial straining and
concentration of the low

) pressure region in the
Mostly in Mode 3 recirculating flow.

A process of formation of stretched spiral vortex

Distribution of sheets at an early stage Summary of the process

® Different from rolling up of the
layer due to Kelvin-Helmholz
instability.

® Created through the interaction
of several sheets.

® Convergence of recirculating
flow and concentration of its
low-pressure region.

(Waleffe 2003)
O : swirling flow, O : stagnation flow

Index number




A process of formation of stretched spiral vortex

Contours of vortex sheets and pressure

® Different from rolling up of the
layer due to Kelvin-Helmholz
instability.

® Created through the interaction
of several sheets.

® Similar to the process
considered for wall turbulence
by Waleffe (2003).

A process of formation of stretched spiral vortex

Gray scale : vortex sheet, Vectors: velocity

a5

Vassilicos 2003)

by
phases.

1. Genesis phase
2. Growth phase

* The following process is
composed of by the three

3. Annihilation phase

+ Initial configuration consists of
by a stagnation flows caused
by vortex sheets.(Davila and

Genesis phase of LSV

Generation of recirculating flow by convergence of the stagnation flow.

(a) : //f; s

2
Y
v

Interaction with the vortex
on the third sheets.

In Mode 3

Straining and stretching of vortex sheets by recirculating flow
and the swirling flow caused by the vortex along S3.

Formation of
lower (L)
and upper
(U) sheets




Creation of the vortex tube in the core region of LSV

® Absorption of the low pressure region in the recirculating flow into the lower sheet L.
® Stretching due to axially straining fields induced by the vortices in near neighbors.
® Concentration of the vorticity in the low pressure region.

Creation of vortex tube by axial straining and concentration of low pressure region.
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« Entrainment of vortex sheets by the tube,
causing the sheets to form a spiral.

« Lowering of pressure and intensification
of swirling motion.

« This spiral tightens and form spiral turns.

06 or § I.(I g IIJ ‘.I. 1 11
X

Fractal properties of spiral

(Vassilicos & Brasseur 1996)

Growth phase of LSV

® Decrease of the area of the cross section of
..... the tube

® Concentration of the vorticity

® Further stretching of lower and upper sheets
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: ! ® Entrainment of vortex sheets by the tube,
o causing the sheets to form a spiral

/ ® This spiral tightens and form spiral turns
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Generation of intense dissipation along the spiral arms

Schematic sketch of streamwise vortex
formation process in sheared turbulence

(Waleffe 2003)

High-speed streak

Recirculating flow  Vortex sheet

Low-speed streak




Inter-mode transition in stretched spiral vortex

Initial configuration: Mode 3
= Occurrence of reorientation of vorticity
vector

Vortex stretching term: 0, @, 2

D 2 2 2
aaz:-aﬁ[a)ﬁw,]/“-ﬂu
On upper sheet U :
I1,<0 :>O-z/:> o,>0

On lower sheet L :

sz>0 =0, \:> O-z<0

1 125 15 175

Convert“ed to Mode 2

Mechanism for occurrence of reorientation of vorticity direction

Governing equation for o,
onthee, e, e basis

D _ 2 1( 2 2) ~
EO'Z__O'Z"'ZC(L"'((L_HH
Do i)
00~ o S\ w. o ) T,

Horiuti & Fujisawa (2008)

On upper sheet U :

ﬁzz<0 = %O‘RO

On lower sheet L :

~

sz>0 = DEtO-Z<O

Inter-mode transition of stretched spiral vortex

Example of Mode 3 — Mode 1 transition

Distribution of sheets and velocity

ﬁss > 0 on both sheets

- Occurrence of reorientation
on both sheets

Formation of recirculating flow
by an interaction of three sheets

Appearance for Mode 3-2 and 3-1 transitions

Mode 3 — 2 transition

Mode 3 — 1 transition

Pressure distribution is convex near
the branching point (B) of pressure.

ﬁu < 0 on upper sheet
ﬁu > 0 on lower sheet

- Occurrence of reorientation
only on lower sheet

Pressure distribution is concave on
both sheets.

ﬁu > 0 on both sheets

= Occurrence of reorientation
on both sheets




Inter-mode transition in stretched spiral vortex Occurrence of reorientation of vorticity vector direction

Velocity direction on S3

Initial configuration: Mode 3
= Occurrence of reorientation of vorticity
vector direction

Velocity direction on S3

Governing equation for G,

%O'f—of%(a)ﬁaﬁ)—ﬂu

Vortex stretching term: 0, @, ?

%af—af%(a)ﬁa)f)—ﬂﬁ

The same as those on S1 and S2:

The same as those on S1 and S2: N D
Mode 3 = Mode 1 sz>0 = EtO'ﬁO — O'z\«:> o0,<0
Opposite to those on S1 and S2: )
No reorientation takes place ! Opposite to those on S1 and S2:
D 2 1 2 2 = D
EO'Z:‘O'#;@L*CO-)_HH sz<0 = EGZ>0 = O-Z/:> o,>0
Mechanism for stretching of the vortex sheet Serslsianee o dhEe faas

and formation of spiral turns
Distribution of the D term

[ > o T Schematic of configuration
I e on lower and upper sheets
in Mode 2

Differential rotation induced by the tube
and that self-induced by the sheet
= stretching, thinning and spiralling of
vortex sheets to extreme length.
(Lundgren 1982) Intense azimuthal velocity is
induced by the vortex sheet

on the lower sheet L.

A measure for the strength of the
differential rotation

D= rﬁ(ui]
or\r

Differential rotation induced on the
two sheets:
Lower sheet >> Upper sheet

Persistence of Mode 1 configuration




Estimate of average thickness of the vortex sheet, & Process of formation of stretched spiral vortex (3)

i Dissipation rate, £ /(&
Decrement &t) obtained by fitting the energy spectra with the Appearance of spiral turns P < >

. 98 F £ )
functional form as  E(k, t) = c(t) kn® g-25()k 25k 28F N/ %
(Passot et al. 1995) -
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No apparent tendency for convergence of the average thickness observed.
Generation of intense dissipation along the stretched spiral sheets

Process of formation of stretched spiral vortex (3)

Interaction of strain and vorticit

Cascade term (-5;S,S; €%, £35S) Dissipation rate, ‘9/<‘9> Yy

F ) F w 2
278;_ ' - 28; % R(lSijSjij:—SikSkjSji_a)ia)kSik_Sij azp +vS;j L]
27F 27k Dt\2 OXi OX j OXi OX«

r r A 0

- g g
26 26k 5

g g D(1 0 Qj

r C — =/ |= - " -2vQ);; -
25F 2sF Dt(2a)' a).j 2wiwk Si YO oo,

Annihilation of / NI
LSV (Nickels IMS6) 2aE

g g Enhancement of vorticity implies reduction of strain (Tsinober et al.(1997))
23F7 23 ? .

“ - Strain production term > Vortex-stretching term
22 = 2218
21 — 2.1 — lﬂ/} Existence of a region with large (concentrated) vorticity:

bl ] L L Pl indispensable for transformation of flat sheet region into vorticity-dominant region

0.6 07 08 09 1 11 06 07 0.8 049 1 11
X X

(Ishihara IMS6)
Generation of intense cascade and dissipation along the stretched spiral sheets




Dissipation and vortex-stretching terms

Dissipation rate & / <5 > Vortex-stretching term

%
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Annihilation of LSV §
vap
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Annihilation phase

The term representing the energy cascade

Governing equations of the strain rate and enstrophy

D (1 o*p oS

Dt(zsijsji):_sikskjsji —Qi4S ji = Sjj oxdx, +15j; o O
520

lD(la)iCOi = 2Qikaiji -2v U

2 Dt\2 anan

e Strain production term + enstrophy production term

-SikeSiiSjit 2 2gS;i

Cf. Estimate obtained using the nonlinear SGS model in LES

|:> Estimate of the magnitude of energy cascade into small scale

Intense vortex-stretching along the vortex sheets

Superposition of 2, €3 S;; term and vortex sheets

PIV measurements
O. R. H. Buxton & B. Ganapathisubramani (2010) JFM

O 3 S; term

Froume 10 (@) An individual example of a sheet of axSijey;. (&) The same sheet of enstrophy
production rate from (a) shown with isosarfaces of [Ag ]y =143w/g ).

Correlation between vortex sheet and vortex-stretching term

-SikSk S+t QiU Sji term on the vortex sheet

Qi S ji term

PIV measurements
O. R. H. Buxton &
B. Ganapathisubramani (2010) JFM

Figuke 100 (a) An individual example of a sheet of « ;. (b} The same sheet of enstrophy
production rate from (g) shown with isosurfaces of [4;]+ = 143v/y ).




Distributions for indicator for the (small scale) turbulence generation.

Production term for strain and vorticity: ~Sik Skj S ji + Qi Qi S ji

Energy cascade in multi-mode stretched spiral vortex
Kiyosi Horiuti (Tokyo Institute of Technology, Japan)

Y. Takagi, T. Fujisawa, K. Saitou, K. Kawamura, K. Matsumoto

PDF of dissipation rate from three Runs.

Dissipation field in decaying
homogeneous isotropic turbulence

Re,~ 87.0
Grid resolution:
Run 1l K, 7 =4.0 (10243)
Run2 K, 77 =2.0 (5123)
Run3 k., 77 =1.0 (2563)
1 : Averaged Kolmogorov scale

Objective

« Identify the vortical structure
responsible for causing turbulent
energy dissipation.

 Reveal the formation process for
the identified structure.

» Examine the grid resolution
requirement for the structures.

Mechanism for stretching of the vortex sheet
and formation of spiral turns

Differential rotation induced by the tube
and that self-induced by the sheet

= stretching and spiralling of vortex sheets
(Lundgren 1982)

A measure for the strength of the
differential rotation

o-r3 (%
or\ur

Stretching and thinning of the spiral
sheet to extreme length.

= intense turbulent energy cascade
and dissipation

Note: Differential rotation induced on
the sheets in Mode 2:

Lower sheet >> Upper sheet
Persistence of Mode 1 configuration

Distribution of the D term

Model for turbulence energy cascade

wE ~
10 N
F \
107 \
4 L=y
W0 e h,
[}
har? 1
ti 107" o \-
& H 3
10°F | (
feal }
Iy |
wk | b
10k - - Run 1 (1024%) r:i
F Runz2 ( 5127 i
Lol Run 3{ 256 I
: i
o p il il iiiial PR
104367 107 107 107 10°
g/<eg>
Energy spectrum
W
; _____ Run 1 (102483} \
Sk Run 2 (61273 \
________ Run 2 [266°2) "\
i Rund \
i o — — - Figted (Run 1} )
"l
a L L L !
110 0 0 07

e it 3 _-.}

1st generation: LSV with intense vorticity

Instability cascade along spiral sheets

Tertiary i.“s:nbwlit\rB
J@/a rimary instability
[Secondary instability Q/_

7

Confinement of large circulation in the recirculating flow into small cross section

2nd generation: LSV carrying smaller vorticity

Stretching of the spiral arms by 15t generation LSV -> Instability of the spiral sheets

3rd generation:

Straining and stretching of the vorticity blobs - Tertiary instability - Rolling up of sheets

Formation of hierarchical cluster of self-similar LSV networks
Intermittent cascade of energy to small scales




At higher Reynolds number

« Formation of hierarchical cluster of

self-similar LSV networks

» Cascade of energy to small scales

Scenario for turbulence energy cascade

Instability cascade along spiral sheets

N Jertiary instabil I“B

~
&
J@///-D rimary instability
Secondary instability Q/_-
/)

&

Richardson'’s scenario for cascade

[ OD/m I
QQ‘OQOOU"'"

[nlelejelemirialaa’aal

DOO000000ISOIIOTOCIOIOET

Dissipation

Frish et al. (1978)

LSV formation at a higher Reynolds number

Higher Reynolds numbers:

Rolling up of the stretched sheets

Occurrence of instability cascade

“ertiary ins:ab-lits‘s
-_/@//D rimary instabilityl
fSecondary instabllity

Energy spectrum

N g
]
=, | e Run 1 (1924°3) 5\
Sk Run2 ($12°9) \
- Run3 (28567)
- Run4 L)
— — - Fiwed (Run 1} \

Decomposition of the strain production and vortex-stretching terms
in the three regions (t =2.75)

Reqi <=S5SS>+<QQS>| <QQS>: | Strain production | Vortex stretching
€gion 1< 555>+<QQS> | <—SSS>r term fraction term fraction
Curved
0.32 0.07 0.39 0.09

sheet

Flat
—_— 0.41 0.28 0.42 0.36
sheet
Tube- 0.27 0.99 0.18 0.55
core

Decomposition of turbulence statistics in three regions

Region Gf:gjcggir?t Energy Dissip..ation . Er‘u-:trgy I?iss.ipation Tz)(’;lgl"enl;igro
fraction fraction individual | individual
Curved 0.26 0.27 0.33 1.04 0.80 80.5
Flat 0.39 0.38 0.39 1.00 0.65 85.8
Core 0.35 0.34 0.28 0.97 0.50 95.1




Correlation between the vortex sheet and dissipation rate

Isosurfaces of dissipation

Isosurfaces of vortex sheet

Resolution of spiral turns

Run 2 (K. 7] =2.0)

Run 1 (K] =4.0)

Requirement for the grid point numbers: R,? is more feasible than R,32.

(Sreenivasan 2004)

Formation process of LSV in homogeneous isotropic turbulence

Transformed
into Mode 1
or Mode 2.

Large scale
circulation
(lateral
extent:
comparable
to ).

Initial
configuration

is in Mode 3

Mode 1 or 2 Ii

Creation of
small scale
Mode 1 or
Mode 2 LSV.

Horiuti & Fujisawa (2007)

Formation process of spiral vortices in homogeneous isotropic turbulence

Transformed
into Mode 1
or Mode 2.

w28

Large scale
circulation
(lateral
extent:
comparable
to ).

Initial

configuration

is in Mode 3

Mode 1 or 2

Creation of
small scale
Mode 1 or
Mode 2 LSV.

Horiuti & Fujisawa (2007)




Beltrami decomposition of velocity fields

u=ur+u

Enstrophy (positive helicity) Enstrophy (negative helicity)

LSV formation at higher Reynolds number

Run 4: Initial velocity field from Run 1 at t=1.75, v=0.00138 - 0.00024
Vortex-stretching term Run 4 (Re, ~ 122.5)

F T ‘_ [ e . T
28 % 257 1 4 “’,‘-

25k
Annihilation of LSV
24F

06 07 08 08 1 K] T 07 08 09 k _:1_0
x x max 17

At high Re, the stretched sheets are thinner, and spiral has more turns.

- Instability of sheets - Creation of extra LSVs along the stretched sheets.

Formation process different from that due to Kelvin-Helmholz instability

Appearance of spiral turns

LI N B NS PN B P R

T NS N .

07 08 09 1 11
X

Generation of intense dissipation along the stretched spiral sheets

Inter-mode transition of stretched spiral vortex

Vortex stretching term: O, @, 2 Initial configuration: Mode 3
- Occurrence of reorientation of

vorticity direction along lower sheet

Mode 3 — Mode 2 transition




A process for formation of vortex tube along flat sheet

Strain-rate eigenvalue o, (negative)

Occurrence of compression in the stretching(z-) direction along the flat sheet.

Distributions of decomposed vortex-stretching terms

Stretching (z) direction (negative) Azimuthal (+) direction (positive)

G, ®,2 (-7500) G, ®, 2 (12000)

Roles of the pressure for the sheet-tube transformation process

Relaxation of occurrence of compression through the pressure Hessian terms.
Pressure Hessian IT,, Cross-section of pressure and flat sheet

27

Generation of local minimum pressure = Formation of the core region of tube
= Generation of vortex tube with transverse vorticity.

Role of the pressure Hessian term for vorticity generation

Governing equations for vorticities, w,, , o+, o

D(1 1 0,0, IT,, (negative)
i
z +
[I:))t(;wsza+a)f+‘1‘a)‘*'a)zﬁ+z >0
o,-0,
wza)+ﬁz+ <0 Dy, NH >0
o,—0

Pressure Hessian term reacts to relax an occurrence of compression in z-dir.
by converting the (, vorticity into the transverse component, ,.




Statistical measure for frequency of occurrence of mode transitions

~ (Conditionally sampled
I1. in the sheet region)

p.d.f. of o0,

Run1
Run2
Run3

p.d.f.

At an earlv stage: skewed to positive values
- Occurrence of reorientation of vorticity direction
At a later time: skewed to negative values negative qu)zz
-> The vorticity in the converted direction grows.

Appearance of a markedly large proportion of

- Occurrence of reorientation of vorticity direction

Inter-component energy exchange in Mode 2

1
—ZUZUJrQ)ZC()Jr

Governing equations for energy: uzz, u+2

D (1 uzjz_luzwh@ _fi,)

Dt(2 - 40,-0,
D(lufj:Jrl“zW(wZ@_ﬁH)

Dt\ 2 40,-0,
_io_ljz_u?ﬂ(a)za)+—ﬁz+)<0, (02—0'+<O)

@ on upper sheet
N

06 07 08 08 1 11
X

Energy transfer from the z-component, uzz, to the transverse component, u+2 .

Mode 1 LSV is more persistent than Mode 2 LSV.

Correlation between the vortex sheet and dissipation rate

Isosurfaces of dissipation Isosurfaces of vortex sheet

Resolution of spiral turns

Run 2 (K, 77 =2.0) Run 1 (k. 7] =4.0)

(T S TN S I

[] [ 08 1 1.1
X X

Requirement for the grid point numbers: R,? is more feasible than R,32.

(Sreenivasan 2004)

08 08 1 1.1 0




LSV formation at higher Reynolds number

Run 4: Initial velocity field from Run 1 at t=1.75, v=0.00138 - 0.00024
Vortex-stretching term Run 4 (Re, ~ 122.5)

25"

25k
Annihilation of LSV
24

26F

28
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e x max 17

At high Re, the stretched sheets are thinner, and spiral has more turns.

- Instability of sheets > Creation of extra LSVs along the stretched sheets.

LSV formation at higher Reynolds number

Run 4: Initial velocity field from Run 1 at t=1.75, v=0.00138 — 0.00024
Run 1 (Re, ~77.2) Run 4 (Re, ~ 122.5)

At high Re, the stretched sheets are thinner, and spiral has more turns.
= Instability of sheets = Creation of extra LSVs along the stretched sheets.

Inter-mode transition of stretched spiral vortex in forced turbulence

Topological transformation: helicity h=uU-®

Yellow: h>0
Blue : h<0




Topological transformation: helicity production term P,

295500step
Q=500
Heli+:E&
Heli-: 7K &

295500step
Q=500
H+HEf
H-: 7K

Yellow: h>0
P, Blue : h<0
(Holm & Kerr 2002)
296000step 296000step 296500step 296500step
Q=500 Q=500 Q=500 Q=500
Heli+:F& H+: 3 Heli+: & H+:&J
Heli-: 7K & H-: K& Heli-: 7k & H-:KE




296500step 296500step
Q=500 Q=500
Heli+:E& H+:E
Heli-: /K& H-: 7K

Hierarchical spectrum and multi-mode spiral vortex

E(k) = K,e”’k ™ +C,ée kP

Spiral vortex in Mode 1 Mode 3

Mode 2: intermediate between -5/3 and -7/3

Derivation of -7/3 energy spectrum (1)

Pullin and Lundgren (2001):

o ok g

1

) . . . &
Define the stretching parameter a using the Kolmogorov scaling: a = (15}
14

_1(20;2,21@)‘;145,1
E(k)—a%) A 83k3+ay—3) 3150y 2tk
Diverge asv — 0 unlessg¢ — 0.

Removal of divergence by using a large scale shear rate, S.

Bl sk (o-f)s)

v

E (k) ~&BSk8
(Ishihara et al. 2002)

Derivation of -7/3 energy spectrum (2)

Cascade picture for the evolution of the vorticity blob (Gilbert 1993)
*  Stretching of axial vorticity @, - E(K) o k=33
+ Stretching of azimuthal vorticity @, — oc k=73 (Ohkitani 2004)

® Stretching of azimuthal vorticity @, _ o« k=3
Enstrophy spectrum:
- 1110 TN\Y3 1, -3
Qk) ~ (1, @, /a") "k
. . &
K=-s = é¢x-"-
K
| Ny 10 1/3 2
0 ajo ~ 8—6‘_2/3 ~ 6:8—2/3 K turbulent energy
a K & Time derivative of &

E(k) c ég k77




Mode 3

—)

» Mode 3 (or 2) tends to be converted to Mode 1 (Horiuti et al. 2008)
« Rolling-up of the stretched sheet = Creation of Mode 1 spiral vortices

Mode 1

= Mode 1 spiral vortex predominates in Phase 2.

05

045

04

035

03

Time variations of energy and dissipation rate

Mode 3 1 isotropic turbulence

11

Cross time-correlation of K and =

~ 1.2

yreeT——T

<K'(t)e'(t+1) >

2

R -
170

P - P
180 180
f

Time lag ~ Cascade time scale

~ Eddy turnover time

according to integral scale L
(Wan, Xiao, Meneveau et al. 2010)

Period of oscillation ~ Eddy turnover time due to forcing: 7'

Conditional sampling of energy spectrum

Extracted spectra

Forced isotropic turbulence
10
_ PR
-
=
Lﬂ 2
— 0t
=
|5
10*
— Ek Cy~ 161
ok — | EW®-E W2 C, ~Cy
» o o Heisenburg: C,~ 3/7C,
10* 10" 1
m

'), TR

Energy flux and transfer function: Average in Phases 1 and 2

Phase 1

£>0 \ £<0

Phase 2

Phase 1

Phase 2

p AT

Theory
L 1
F— o ————— E_—
AN N
! | 1[:":_ |
= Backward
- L‘ -
Forward =13
=~ =~ -
e et 'k -
r Tt
= S I n-_ o
kn kn

Energy flux TI(k)
Transfer function T (k)




Flux and transfer function: Average in Phase T

Conditional sampling of energy spectrum

2C,213=1.73

Phase 2 == Phase 1 Phase T, Phase T Phase T, ,
Extracted spectra
—
Forced isotropic turbulence
—p
T T T ™1
Phase T Phase 1 =s=Phase 2 1k
T ap— Cy~ 161
L ’ R C,~C
+ F " = Heisenburg: C,~ 3/7C,
= +
2 10 *_‘1 3102 L
= b ~ = i
;. a ; P N SRR
= E = 0% - =
I:.m*‘- I:.|‘ — E (k) L_-‘ 0 \ “ -.\
e ’ 10° RACEAUNE o \\
iy 10 = L ”ral'*
3 L ] ¥IE )
APE e . 10 107 107 5 M
T Ty i m = ok lf
kn KR """-frJ',m' TR
Extraction of the non-equilibrium spectrum Non-equilibrium energy spectrum (Kovasnay model)
1. Random forcing D)
E()~C ek P +2C 2 ¢ ek +1C, U
pg’i';ifs 10243 100 10° 3 ( ) 3 ( )
2 d(loge 1 loge
2/31,-5/3 2 1/31,-7/3 -9 3
AL gl =Cu ek +2C =2 kT ol — /
' 10t 3 dt 3 dt
R_ .
A 243.3 é
+ maa 1 — . -
x> | 143 = 10 S =P Long-time average of the spectrum: <E(k)> =Ck82/3k ¥3
= S
10! ) _
(IS Objective
{:3« ol .\\‘l;\__ — | E (| 0% » Extract the k /3 and k 93 spectrum using conditional sampling of the
: L \Eﬂf)l spectrum in quasi-steady turbulence DNS data.
="F K78, ) T T 10 » Discuss on the effect of non-locality in the transfer function.
oo L] %
= ’ \ A . . .
R Fy il » Elucidate the roles of the k -7/ and k -9/3 spectrum in generation of energy
10 , . L C(~161 transfer and examine the non-equilibrium/unsteady effect.
107 "H] 107 Cys~




Multi-mode stretched spiral vortex Topological classification with
regards to vorticity alignment along

the two sheets and the tube

3-dimensional rendering
Mode 1 Mode 3
g Lundgren ~ =
\ spiral - 2
] vortex o/
Mod -
Yy y
\ 3 4
-5/3 -7/3

k /spectrum k™ spectrum

Mode 2

b Intermediate

Horiuti & Fujisawa (2008)

Multi-mode stretched spiral vorteX  qoi0gical classification with
regards to vorticity alignment along

3-dimensional rendering the two sheets and the tube

Mode 1 Ly o,
(Lundgren 1982) /

Intense dissipation

events due to interaction {
of tubular structures is 4
equally important (Kerr,

Goto, IMS6)

/ Mode 3
(Pullin & Lundgren 2003)

Possibility in reduction of turbulence generation
by means of termination of the occurrence of LSV formation

Tom'’s effect : Drag reduction in the polymer-diluted flows

Investigation of the effect of viscoelasticity on the formation process

Characteristic features of the viscoelastic fluids

1. Inhibition of the vortex generation. Weissenburg effect (Rod clibming)

2. Normal stress difference (appearance of
elongational viscosity).
3. Shear-rate dependent viscosity (shear thinning).

:

How these viscoelastic features affect
the LSV formation process.

a dilute solutionof polystyrene polymer is
dissolved in newtonian solvent (Piccolastic).
( HP: Prof. McKinley, MIT)

Characteristic features of the viscoelastic fluids

1. Inhibition of the vortex generation. .
. Weissenburg effect
2. Normal stress difference (appearance of -
. . . (Rod clibming)
elongation rate and viscosity).
3. Shear-rate dependent viscosity (shear thinning).

In this video clip a dilute (0.025 wt%) solution of a high
weight (27108 g/mol) polystyrene polymer (Polyscience
dissolved in a low molecular weight (~100 g/mol) newto
(~30 Pa.s) solvent (Piccolastic, Hercules Inc).

In the experiment a rod is rotated with its end immersed
outlined above. In the Newtonian case inertia would do!
fluid would move to the edges of the container, away fro
rod. Here however the elastic forces generated by the r
rod (and the consequent stretching of the polymer chains in so
result in a positive normal force - the fluid rises up the rod. The
bulbous shape remaining at the end of the video is theAgi&slonol pobvstyrene polymer s

) ™ iISsolved in hewtonian solvent (Piccolastic).
instability as the mass that has been forced up the rod a) relaxes an

b) overcomes the force pushing from below.

How these viscoelastic features affect on the occurrence of
sheet-tube transformation process.




Incorporation of non-affine effect into the constitutive equation

Assumption of complete affinity

Q=Q-Vu .VV\VCQ.

0 < Elastic dumbbell >

D :
a<Qin > = <QiQk > —L Q : connector vector

u
OX,

= ‘ Upper-convective Oldroyd-B constitutive equation ‘

Introduction of non-affinity

Q =Q -[Vu — 20(5] (a :slip parameter,0 < a < 1)

= ‘ Johnson-Segalman constitutive equation ‘

Governing equation for motion of viscoelastic fluid

ot OX; oX; OX;OX; _OX,

J ! ]
Constitutive equation for the polymer stress tensor T

Johnson-Segalman constitutive equation (JS model)

Dz ou; ou, ou, au,
—z(l—a Ty —+ Ty |—o| T —+—— Ty
Dt OX, OX, OX; 0OX

]

2
1 v(1-5) 25 +x 0z, Cf. Vaithianathan et al. (2006)

L) VT o, x,

Introduction of non-affinity Q : connector vector

Q=Q-Vu == Q=Q-[Vu-2aS] | e,i;0

o : slip parameter

o=0: reduced to Oldroyd-B eq. (Review in Procaccia & Sreenivasan 2008)
o=1: reduced to Oldroyd-A eg.

Parameters of the viscoelastic homogeneous-isotropic DNS data

* Grid point numbers: 1283

* Molecular discosity : v=0.004

* Polymer relaxation time : A =0.45 (Taylor: 0.66, Kolmogorov: 0.098)
* Non-affine slip parameter: 0=0.0, 0.5, 1.0

« Solvent viscosity contribution:  3=0.8

« Artificial viscosity: x=0.05

* External forcing: Random phase with an energy spectrum

C.(1l0<k<25

0, otherwise
* Initial condition: Newtonian steady turbulence (R ;,~ 90.0)
* No damping function for the polymer stress is employed
» Work provided by the forcing to sustain the steady state
(uf)

Newtonian | o=0.0 a=1.0

0470 > 0.468 > 0.457

Temporal development of vortex sheets and tubes
(Newtonian)




Temporal development of vortex sheets and tubes
(viscoelastic)

Temporal development of vortex sheets and tubes
(viscoelastic)

Characteristic features of the viscoelastic fluids Weissenburg effect
r

Governing equation for radial momentum

ri(p_rzz):ri

dr dr (Trr_z—zz)_l_(z—rr_rﬁe)_'_“'

R. Bird et al. “Dynamics of Polymeric Liquids” vol.1 (1987)

Determination of normal stress difference is required.

Polymer stress on the basis of [A;] eigenvectors along the tube

d: in the radial direction Q. in the azimuthal direction  Qlg: in the longitudinal direction

(Trr ~Too ) ~ (T++ T )

Roles of normal stress difference on the vortex tube generation

(Trr ~Too ) ~ (T++ T )

Pressure gradient in the radial direction

ri(p_z-zz):ri

dr dr (Trr_z-zz)+(rrr_z-00)+"'

Distribution of (T++ - z'”) on the tube
(r++ —r,,) : predominantly negative

.'.d—p<0
dr

Pressure bulges out in tube core region
= Reduction of lowering of pressure

in the tube core.
= Reduction of growth of the tube.

Inhibition of the vortex generation




Effect of viscoelasticity on the pressure force

Decomposition of the pressure into those due to solvent Pg and polymer P

Ap,=2Q, Ap,=——|—>|=-T

PDF of angle between Vp and V p,

T ' T LA
Cldroyd A
_\ Oldroyd B &
o
X
S
5
\-\\‘:”\\
- L -
\\\\«,\ﬁ
. i
arallel i R P
W*\m-.v:,\,rv“""v
Parallel
" . . |
-1 05 0 [ 1

cosBfgrad p, grad p )
V p, tends to oppose to V pg = Reduction of stretching of tube and sheet

Determination of normal stress difference along the sheet

Alignment of [A;],
eigenvectors with vortex sheet

a, eigenvector is mostly perpendicular to
the vortex sheet.

Vortex sheet is approximately spanned by
the @, and a_ eigenvectors.

Elsinga (IMS6)

Vortex —
sheet

First and second normal stress differences along the vortex sheet

First normal stress difference

velocity: S T11 —Tp ) ~ (Tss - T++)

- Second normal stress difference
\
Il Tzz _733)z(f++ _T——)
Direction of velocity
variation: +
Note: When the vorticity of sheet is large

= First normal stress difference
(711 - 2'22)z (T” - T++)

= Second normal stress difference
(‘[22 T3 ) ~ (T++ T )

X,
I Dlrectlon of fluid




First and second normal stress differences along the vortex sheet

First: (7, —75) = (75 - 7..) second: (r,, 753 )= (z.. —7_)

Elongational (or extensional) viscosity

The most likely reason for drag reduction:
Enhanced extensional viscosity leads to increased resistance to
extensional motions of the turbulent flow (Lumley 1969)

Toonder et al. (1995) Strain parameter to identify occurrence of elongation
Sureshkumar et al. (1997) the maximum polymer extension L in FENE-P model

Elongation viscosi pdf of first normal stress difference (7, -7,,) (z‘sS =T )/o'S
107
s %, = T l0=0.0)
] g Tor - Tle=1.0)
2 ( (
Predominantly positive Predominantly negative E H" | l‘
Stretching and alignment of the polymer molecules along the streamlines = e R T TR SR
= Extra tension exerted along the sheet = Snap back of the sheet to the original form 10 Tes ™ Ter
Effect of viscoelasticity on the occurrence o
of a role reversal between the eigenvalues Computed cases in pipe flow DNS .
DS, : ou; . '
— _ 1] ou oy + au Mj -1, —lTi- Newtonian Johnson-Segalman model
Dt 2\ ox; ox, O O%, o2
Joint pdf of 1Y) and T, _
AT - : a 0.0,0.1,0.5,0.9, 1.0
ij = B0~ ?_" |
OX;0%,  OX;0X, ; 4 Iv-th quadrant Re, 130 (Rebo ~ 5300) 180
p— T — /
T=E (Tij)E, E=(e,.c.e,) T"”.‘ We,, - 25 u,R
+z | Re , =—%
20 Domain 10RXR X 27R 20RXR X 27R A
Off-diagonal component of
pressure Hessian o L.* 1,800 3,600 Au>
) e Grid 128 X 64 X 64 256 X 64 X 64 We, , =—+
o 247 v Vv
A s et e SRR p 1o 09 °
Dt (0.-0,) 2 0 O O Atu, IR 2.0% 10+ 2.0%10°
The rate of rotation in the plane defined L "“i_[(SOlvem;” ll-nd_ quadrant
by e, and e, (Nomura & Post 1998) +2 Peterlin damping function (FENE-P) 2 We. 1
The occurrence of a role reversal is f(r)= + 0 —|(1-2a)r|

inhibited by the polymer stress

TL2-3 Re, L




XECHTER

Governing Equations
EHOt 5 0

uw) o, p u  (1-p)on
: R A RS Y o ERN T i o8 L BN T
EBMAERX 5 "o ox Re, ox0x  Rey 0%, T

i

%+u oy =(l-a) %+%T -alr, a&+aﬁr
BRAERX o o *ox,  ox 9 “ox; o 9

Johnson-
Segalman® 7 )L _Rey (), + Re,, [aui + 6ui]

0X; 67,

70 j

Fe) = Ve L o), |- dumbbelI OSBRSS & IS B F= i1

L'=3 Re, U E A L f=dumpingI& (Peterlin function)
— FENE-PETIL (a=0)
We - u?
f(r)=1 — Oldroyd-BE T L (a=0) A

Dependence of drag reduction rate on slip parameter

100

Drag reduction rate based on the w .
flow : %DR F ol I,.*
.
[ e e
Ru n a (y DR 0.0 I&‘J 1.0
0

Non-affinity Drag reduction
o

V-1 0.0 22

V-2 0.1 3
V305 0
V-4 0.9 7
V-6 1.0 86

Non monotonous

Mean velocity profiles in pipe flow

Mewtonian f J,’

[ —=— 00 Y

s ] 0.1 !
[ et .5

0 . : Larger drag reduction:
- —e— 10 g .- _g g :
B N Shifted upward

5 \

10 |- \
: a=0.5: close to Newtonian

5 -

0 &=L L

Shear stress.

Mean shear stress profiles in pipe flow

Budget of the shear stress

T _ g B %+—1_ﬂfzr

202 "' Re, or Re,

Reynolds Polymer stress

Newtonian a=0.0

Shear stress.
Shear stress.

Relaminarization
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Vortical Structures
—a— kTG

>HM L HtREED R

=05 a=1.0 (iBiEHA)

>Za— b ERAOREE &L BESE ~EE 0N
(F:BE 8. BE >EiRit

i EIF#E (0=0.0): Bulge out effect

Drag Reduction Mechanism at a=0.0: Bulge out effect
ERIIHT 27 FHE
o’p, _1-p8 9’7

L= CERFEAN
ox,  Re,, OX0X; Pre 87
(Z{Em)
B:EE
F B TFEN ENFIEAMN
(EBER) BEDRETHEAK
2. RE

o8k BoFEAN

EHET ZiHIT SHbulge outTh R

Roles of normal stress difference on the vortex tube generation in pipe
(T —7, ) ~ (T -7 ) Weissenburg effect
rr ++ —

Pressure gradient in the radial direction

ri(p_rzz):ri

dr dr (Trr_Tzz)+(Trr_T€9)+"'

(r++ —r,,) : predominantly negative

Distribution of (r++ -7 _) on the tube

.'.d—p<0
dr

Pressure bulges out in tube core region
= Reduction of lowering of pressure

in the tube core.
= Reduction of growth of the tube.

Inhibition of the vortex generation od T — - A

Streaky structure in pipe flow

Isosurfaces of u-<u>

Direction of
fluid velocity: =

Direction of
velocity
variation: +

= First normal stress difference
Tn =TT —T,,
= Second normal stress difference

(‘[22 — T3 ) ~ (T++ s )




First and second normal stress differences along the vortex sheet
Similar to homogeneous isotropic turbulence

Second: (722 T3 ) ~ (T++ T )

First: (7, =7, )= (z_-7.,)

Predominantly positive Predominantly negative

Stretching and alignment of the polymer molecules along the streamlines =

= Extra tension exerted along the sheet = Snap back of the sheet to the original form

Approximate solution of the JS model

Approximate solution with b= 0 att =0 (Bird et al. 1987)
Wi-p)p
7 (t)z—TJOe 25, (s s
VI=B) (o s e 7 U (), o
2= (l—a)jo rjo s e #2S,(s)—(r)+—=-(r)s(s)

X X

V(l a'[drjds e E 2[3 (s )auk (r)+aLk(r)Ski (S)]

ox | i
Assume the steady state (the solution up to 3rd-order)

7, ~=2v(1-B)S; + Av(1- B)-(1-2a 48, S,y +2(S,Qy + 5,2 )}

+ 2v(1= B)- (1= 20 88,8,y + (1~ 20 ){(S4 52y + 51,50 ) (2SS, + 2,542 )]

21— B8y + S )~ (S, + Q502 )

Analogous to the nonlinear model for the Reynolds stress tensor

Approximate solution of the JS model

Approximate solution with h= 0 att =0 (Bird et al. 1987)
v(l-p) ¢t -5
7, (t)z—(ﬂ)J'Oe 28, (s )ds
V=B o [as & 7o s, ()20 (r ) 20
2= (l—a)jo rL se *2S,(s)=—=(r)+ )5, (s)

29 X,

oX .

] I

-2 V(l/;ﬁ)a.[;dr IOHS 61;2(8 ik (S )2;:—k(l’ )+al17k(r )S K (S )j

Assume the steady state (the solution up to 2"d-order)

7, ~—v(1- B)2S,
+2Av(1- ,B){— (1-2a)25,S, +(Sika,- +3 3y )}

Analogous to the nonlinear model for the Reynolds stress tensor

Approximate solution of the JS model (up to 3d-order)

Production term of the solvent kinetic energy

P =1,S; ~ —2v(1— B)S;S;
+ ,11/ { 1— 2@)48|kSkJS } Derivative skewess
+ ﬁz )[ l 206 8SIkSk|S|JS ] Derivative flatness <0
22 ( ﬂ)AJ A; Large in sheet region <0

m=) Non-monotonical dependence on a

Production term of the elastic energy

P, =+(1-22)-R) {+:a£0.5 [kp :ilriij

—a>0.5 2




Approximate solution of the JS model (up to 2"-order)

Production term of the solvent kinetic energy

7;S; ~ —v(l- BR2S; —4Av(1- B)1-2a)S,S,S;

)

a=0.0

)
[92]
2

_V(l - ﬂ)zsij Sij - 4/1‘/(1 - IB)SikSkj Sij

<0
Effective shear viscosity \

Shear thinning
a=1.0
7,;S; ~ —v(1- B)2S;S; +4Av(1- B)S,S,S;

ij —_—
, o <0
Effective shear viscosity ,

Comparison of energy production terms (Full JS model)

a=0 (Oldroyd-B) 0=0.5 a=1 (Oldroyd-A)
Solvent kinetic
energy P=7;S;<0 P=TS; Ps=7;S;<0
uu/2 l uu/2 \ small uuf2 N\ l»
Elastic energy
K P.=- z‘ijsji >0 Pe=-(1-20) 7Sy Pe=-7;S;<0
=0
p
1 {+:a <05 -T;/2 / -T2 /
kp =t—1;,
2 " |—:a>05
Reduction of kinetic Close to Newtonian: Reduction of kinetic
Energy and conversion to  Solid-body rotation Energy and conversion to

elastic energy with no stretching elastic energy

Limitations of 2"d-order approximate JS model

2"d-order steady solution of the JS model
;= 2Av(1- B (1-2a)28, S +(S,Qy +S ;2 )}

3rd-order steady solution (Bird et al. 1987)
7, ~ 220 (1-20)25, S +(S1 2 + 5,24 )}
22 {88,5,S, + (51200 + 5 1 Q0 )~ (@452 + 2,820 )}
272 (20 = 1){(S, Sy + S 1 QuSu )+ 381 Sy +5 5 Su i )}

Elasticer{ergtofluciinaesys(3d-prder)
+(1-2a (1= B2 {45,5,5,S , + M B N2-odes, O S |
7, ~24{-(1-2a)28,5,5, }

ki~ ji

270,51 (940,049,900, 8,0, 50, 5,0.)

SREERLURBICESAIRILF—ZEBRORELY

Energy Exchange (3"-order Steady Solution)

Pk(r) :_ﬂ‘[-@)sn =—1_ﬂ Hs'jsij _%4(‘1—2(1)3“5 S

Re, " " Re, " ReZ, e
2 ( (1 )W 2
1— _
_%S(I_zaysiksklsusji _szﬁjp‘ji
Re’, Re’,
«
> 8418
Sik5k|s|jsji : derivative skewness AR [AUL = A Aii/2
B L TKELERE (Horiuti et al., 2005)

> a2 Y BIEEFKT, DNSEES  >BEBLTRY OAEOEM DNSEES

BT R )X —AERIE

%ﬁz;zig:i Pe(‘)=i(1—2a)(— P.f’)) BB TOER




Comparison of energy production terms (2"d-order model) Summary

» A stretched spiral vortex is identification using DNS data for
homogeneous isotropic turbulence. Its genesis, growth and
annihilation are elucidated .

» Existence of two symmetric modes and a third asymmetric of

Solvent configurations is extracted. They are achieved through the

P=17S,>0 P.=7,S,=0 P=7S,<0 interaction of several sheets.

| I
) » Mechanism of mode transition and persistence of each mode is

uu/2 I uu2 N\ shown.

=0 (Oldroyd-B) a=0.5 a=1 (Oldroyd-A)

kinetic energy

» By tightening of the spiral turns, spiral sheets are stretched to
extreme lengths. Intense energy cascade and dissipation occurs
P.=-(1-20) 5, S; | Pe= wSik <0 along the spiral sheets.
-T2 Pe= -5 Si <0 =0 . Eff_ect of viscoe_las_ticity on the formation of spiral vortex i_s studied
! -T2\ using the constitutive equation for the polymer stress. It is shown
! that viscoelastisity works to resist extensional motions of the
turbulent flow.

Elastic energy

Enhancement of turbulence Close to Newtonian  Reduction of turbulence

Interaction of multiple tubular vortical structures

(Transverse: Holm & Kerr 2002; Anti parallel: Goto 2008)

Reconnection of two orthogonally offset cylindrical vortices

Initial condition: Boratav , Pelz and Zabusky(1991)
Re = /v =1392.0, Equal circulation.













Transition of topology during the reconnection process

Time evolution of helicity density and P, term

Helicity density

Intense dissipation event via an interaction and Candidate for non-affine polymers
reconnection of the two vortices

1. DNA: exhibits marked drag reduction

257

20

% DMAZT0ppm 12
4 PEO2TOppm
[ o DMa13%pm

Intense dissipation is generated
along the stretched sheets in the
vicinity of the reconnection point.

Drag reduction [%]

2. Surfactant (with high concentration)

Green isosurface: dissipation rate > 0.5




Conclusion

A stretched spiral vortex is identification using DNS data for
homogeneous isotropic turbulence. Its genesis, growth and
annihilation are elucidated .

Aside from the two symmetric modes of configurations studied in
previous works, a third asymmetric mode is extracted, which is
achieved through the interaction of several sheets.

By tightening of the spiral turns, spiral sheets are stretched to
extreme lengths. Intense dissipation occurs along the spiral sheets.
The local dissipation rate exhibits a strong intermittency.

At a higher Reynolds number, the hierarchical cluster of spiral
vortices is formed due to the instability cascade induced by the
stretching of vortex sheets.

Similarity in the fractal properties of the vortex sheet region and the
dissipative region is shown.

Analogy with turbulence models (LES/RANS)

Difference in the sign of the -(S;Q; +S,) term (Horiuti 2003)

NonIinear_modeI (Newtonian case)
A (~— — — o
Tij zE{(Slk Skj _Qikaj)_(Sikaj +Sijki)}

2nd-order steady solution of the JS model (Viscoelastic case)

;2 2Av(1- B)-(1-2a)25 Sy (S Qy +5 4 Q)

Assessment of 2nd-order model in homogeneous isotropic turbulence

2568 grid points, p= 0.8, A= 0.36, We= 7.8, Re, =80

Classification of structures in turbulent flows

Tube-like structure similar to Sheet-like structure similar to
Burgers’ vortex tube Burgers’ vort;e:x layer

x?

X

(Kida & Yanase)

Comparison of energy production terms (2"-order model)

=0 (Oldroyd-B) 0=0.5 a=1 (Oldroyd-A)

Solvent
o P=1S, P=5S,=0 | P Ak
kinetic energy | -4(1-/) v'ftsikSkiji >0 ¢ =4(1-PvAS§;S;< 0

uu/2 I uu/2 \,

Elastic energy
Pe

= -7, S P.=-(1-20) 7, S | Pe= TiSik
£1-pvAS,Ss;<0] ° e

—0 =4(1-f)vAS,8,S; < 0
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Enhancement of turbulence Close to Newtonian Reduction of turbulence




Eigenvaluevalues for A;

» Characteristic equation

X _E(AijAji)x_g(AijAjkAki):O tr[Aj]1=0
where
AjAji =653 QS ji + Sik S Q2 i<y
2
S R S )

3
Aj A A :Z(UJr _O'—)(Gz _O-—)(O-z _O'+)wzw+w—~

* DNS data shows that AyA; > AyAA;, thus

(AL =+ [AA 2, [A], 20

Invariants of fourth-order moments of
velocity gradients

* 1= GiSa)S5iSy)
l, = 'zsikskinIQIj
;= 4SikaijISIi'2SikSkinIQIj

All fourth-order moments are linear combination of I;
(i=1,2,3,4).
. 3
AjAji =1 =215

Fractal properties of the vortex sheet
and dissipation region (1)

Box counting for individual
dissipative structures

Ne: Number of boxes containing
some point of large dissipative
structures

Ne(L) ~Ld  d: Fractal dimension
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100 RN
E N
A set of adjucent points i N
satisfying the thresholding wE N
criterion i N .

Moisy and Jimenez (2004) -
Fitting in the range, 6 77 <L< L.,

Fractal properties of the vortex sheet
and dissipation region (2)

Mean value of ds averaged over Correlation between the vortex
structures as a function of threshold sheet and dissipation rate

and fractal dimension for [A;],

AL<AL>

< T
== 15 N e
<
14
[ ————— - ¢ (kmm'q=1)
1af 0 s e (k,,n=2)
I ¢ (k,,N=4, Run 1)
12 mmm=- [A; 1, (K, N=4)

11 TR R | | I

5 ‘ ‘ 10 ‘ 15
e/<e>, [A ] /<[A;].>

20




Statistical property of the educed region: Fractality
Statistical property of the educed region: Fractality of [A;].,
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Strain rate S;; Vorticity € Strain rate S;;
Sheet-like objects Filamentary objects Fractal dimension of [A;j], ~ 1.7, close to that of strain rate.

5123 Forced case (Moisy and Jimenez 2004) ) [Aij]+ educes the region in which intense dissipation takes place.
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* Subbox average
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Forcing, N = 5123, Re, ~ 244.5
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2(0. )= ~(@-1D(p~1)D(a. p)
a(@.p) =2 2(q. p)+1-d,
o

PP =2r(,p)+1-0,
p
f(a,)=-1(q,p)+(a-1+d)g+(S-1+d)p.
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