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‘ Outline I

e Define, discuss ‘stratified turbulence’

— potentially relevant to strongly stable regions of atmosphere, oceans

e Some numerical simulations of ‘stratified turbulence’

— direct numerical simulations — some evolving flows

— large eddy simulations — forced flows

e Scaling arguments

— possible ‘stratified turbulence’ inertial range

e Field data

— mainly ocean results
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‘ Stratified Turbulence (Lilly, 1983) |

e Controlling parameters

— Reynolds number: Ry = u'ly /v
* u’ — characteristic rms velocity

x £ — horizontal scale of energy-containing motions

— Froude number: Fy =u'/Nly ~Tg/Trym

2

e Typically, for strongly stable atmospheric boundary layers,
for the atmosphere near and above the tropopause,
for much of the ocean, etc.

— for £z ~200m, Fy < O(1), Ry > 1 (e.g., 10°® or more)
— Ro=u'/Q2%g > 1, no effect of rotation
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‘ Stratified Turbulence (cont’d) |

e Definition of Stratified Turbulence

— atmospheric/oceanic motions such that

Fr<O(), Ri~0O(1), R/>1
— contains both internal gravity waves and quasi-horizontal motions
x potential vorticity is of importance

— scaling arguments suggest that ‘classical’ turbulence will exist when

Ry ~ F?R; ~ ¢/uN? > O(10)

x Ry is called the ‘activity parameter’, ‘buoyancy Reynolds number’
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Stratified Turbulence (cont’d)
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‘ Laboratory Results — Stratified Turbulence |

Laboratory experiments, e.g., wake of sphere, wake of grid, jets
(Flow Research, USC, ASU, Toulouse, Grenoble, Eindhoven, ...)
— usually when turbulence is generated, Fy, > 1

x but flow decays, Fy and R, both decay
— when F;, < O(1),

x development of quasi-horizontal vortices

x simultaneous with propagating internal waves

— but generally Ry is low; Ry is low; Ri > O(1)
— smaller-scale turbulence usually does not develop

— scaling of full dynamics to geophysical turbulence unclear
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‘ Laboratory Results (cont’d) |

Lin & Pao, 1979
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‘ Field Results |

e Field experiments

— usually an internal wave component
— often meandering motions are observed
— ‘classical’ turbulence is very intermittent, sporadic

— effects of stratification ‘strong’ for £ > {5 ~ 1 m (ocean)

* where fp = (e/N3)1/2, the Ozmidov scale
— for the strongly stable atmosphere, € ~ 51074 m?/s3, fp ~ 3m

— component velocities highly non-isotropic
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‘ Theoretical Arguments — Stratified Turbulence |

e Lilly (1983) used scaling arguments to suggest, for Fy < O(1):

— flows in ‘adjacent’ horizontal layers are somewhat decoupled
— leads to increasing vertical shearing of horizontal flow

— and to decreasing Richardson numbers

e Billant and Chomaz (1999)

— induced velocities lead to strong vertical inhomogeneities and layering

e Even though strong, stable stratification,
at high Reynolds numbers, both mechanisms lead to

— smaller vertical scales continually developing

— local instabilities and turbulence intermittently occurring
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‘ Questions — Stratified Turbulence I

e What are the dynamics of turbulent motions when F;, < O(1),
especially with Ry > 1, FZRy, > O(1)?

— upscale or downscale transfer of energy?

e What are the effects of strong, stable stratification on:

— turbulence structure, decay rates, dispersion, mixing rates, etc.,

— turbulence modeling issues?

e Do the results from laboratory and numerical experiments scale up to
high Reynolds numbers characteristic of the atmosphere and oceans?
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‘ Research Approach — Stratified Turbulence |

e Numerical simulation

— solve the 3-D, time-dependent Navier-Stokes equations
subject to the Boussinesq approximation

— uniform stratification, no ambient shear
— consider flows with F;, < O(1)

I. initial value problems; time evolving flows
- initiate ‘late-stage’ turbulence for a range of Ry, F}

enables higher Reynolds number simulations
- direct numerical simulation; no subgrid modeling

il. forced turbulence; statistically stationary flow
- large eddy simulation; subgrid model

e Accompanying scaling analysis
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‘ Initial Value Problems |

e Two specific flows considered

— defined by initial conditions (initial value problems; not forced)
x Taylor-Green flow + low-level, broad-banded noise, and
x quasi-horizontal array of ‘Karman’-street vortices

— for all cases p = 0 initially

— for each case, exact same initial conditions, except for F, and R,
- Fy=4 (W/Nly ~0.6), 200< R, <9600

e Both flows have some properties of the late-time vortices observed in
the laboratory studies

e Discuss mainly the Taylor-Green results today;
the ‘Karman’-street results are qualitatively consistent with these
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Re=3200
t=0

Three-dimensional contour plots of the stream function
for the case with Fy =4, Ry = 3200 at ¢t = 0 (left) and ¢ = 15 (right).
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Mean square vertical shearing of the horizontal velocity vs z.
Fy =4 and t = 20 for R, = 800, 1600, 3200, 6400.
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Mean Square Horizontal Velocity (u?); versus z
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Mean square velocity vs z at t = 30, Fy = 4, various Ry.
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‘ Volume-Averaged Gradient Richardson Number versus ¢ |
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Local Gradient Richardson Number
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‘ Horizontal Kinetic Energy Spectra |
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‘ Horizontal Kinetic Energy Spectra |
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Horizontal kinetic energy spectra at ¢ = 20 for four different R, cases.
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‘ Scaled Horizontal Energy Spectra |
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‘ Horizontal Kinetic Energy Spectra — Lindborg Scaling |
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‘ Implications |

e Potential for stratified turbulence ‘inertial cascade’ for large Ry
(Riley and de Bruyn Kops, 2003; Lindborg, 2005)

— if Fy < 1, with ¢; ~u'/N, then by /l; ~ by N/u' = 1/Fy,
so by > Y;
- ifF, <1, Rg>1, Ri ~ 1
x highly anisotropic ‘inertial’ subrange in the horizontal
- spectral dependence only on €, x and k&
x By(kg) =Cy 62/3/43;15/3

x Fo(kp) = nge_l/Sli;f/?)

x d5;(t) = Cqet> (patch size; possibly)

e Potential for Kolmogorov cascade

_if F£R§/4 > 1, then ¢; > n
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‘ Shear Spectra — Ocean (Klymak, 2005) |

a) Wertical spectra: GM81, Gargert ez al. 81
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‘ Temperature spectra — Ocean (Ewart, 1976) |

i 1 1 B | al L | [} | P | 1
. BOOM —)

10 - ==
3 1soom —= =
= =
:i =

2

10" 3 I00OM =
3 E
i TOWED SPECTRAF

1 SAN DIEGO i

1O = =

o ]

10 — I;_
1 -

10 —5 E

_2 ] B

10 =
3 . F
1 90% CONFIDENCE INTERVALS E
— \ - —

-3

07— . =

Sher A 3
: I S -
] ]: L\ -

\\ ; I—
ll'l(l'l'l'i' 3l L] l'llllll T T ll'l.!lll L l_"]'_n_{] Ll T I'IIIIT
o 6% 10" 10°

o (CPM)

Power spectra of temperature off the coast of San Diego (30°N, 124°W).
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‘ Displacement spectra — Ocean (Hollbrook & Fer, 2005 ) |
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‘ Summary of Field Results |

Field experiments

— 3-D turbulence is very intermittent, sporadic
— Often observe in the oceans at scales /o < £y < 100's m

x horizontal spectra in velocity, temperature consistent with ko

x vertical spectra more consistent with /43‘_/3

— not classical Kolmogorov-Oboukov-Corrsin spectra
x highly nonisotropic
x scales are much too large
x influence of stable density stratification

— consistent with numerical simulations, scaling arguments
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‘ Conclusions |

e (At least) two types of dynamics are present — with Ri initially large

— horizontal growth of larger-scale, quasi-horizontal motions

— continual decrease in vertical scales (as suggested by Lilly, 1983)

x there is strong tendency for vertical shearing of the
horizontal velocity to develop

x this leads to local instabilities, ‘classical’ turbulence and mixing

x this process occurring intermittently in space causes
a downscale transfer of energy

e Both upscale and downscale spectral transfer of energy in the horizontal

— spectral transfer is very nonistropic
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‘ Conclusions (cont’d) |

e Statistics of larger-scale motions relatively unaffected by changing Ry,
if Ry is large enough

— u/, €, x and £y become approximately independent of R,

x e~u? /My, x/e~0.43

ou\”
« A~ R,V? <(%) >NRe

— smaller-scale motions adjust to the larger-scale ones

— w’, p’ show more dependence on Ry

x their statistics depend more on smaller-scale motions
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‘ Conclusions (cont’d) |

e There are several important scales in this problem

— horizontal, energy-containing scales continue to grow ({p)

— instability scale (¢;) behaves as: ¢;/{g ~ (u'/Nlg) < 1
since Rt ~ 1

— Ozmidov scale /o behaves as: (o /l; ~ (u’/NEH)

x stratification effects ‘strong’ for £ > /o

1/2

— Taylor scale (\):
x decreases with time prior to appearance of ‘classical’ turbulence
+ behaves as: /g ~ (u/ly/v)~1/? after flow becomes turbulent

— Kolmogorov scale (1) behaves as: n/l5 ~ (u'ly/v)~3/4

— Expect: bg >0, >l >A>n
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‘ Conclusions (cont’d) |

e Results suggest that, if the flows do not laminarize,
they should approximately apply to geophysical flows

— in laboratory experiments, numerical simulations
+ this could be a problem in the F; < O(1) range

e Potential for stratified turbulence ‘inertial cascade’
(Lindborg; Riley and de Bruyn Kops)
—if Fy <1, thenly > V;
x highly nonisotropic ‘inertial’ subrange

x possible explanation for scaling range in field data
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‘ Temperature spectra — Ocean (Ewart, 1976) |
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Power spectra of temperature off the coast of Mexico (21°N, 110°W).
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Temperature spectra — Ocean (Ewart, 1976)
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Power spectra of temperature near Hawaii (20°N, 156°W).
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‘ Power Spectra — Atmosphere |
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Mean Square Patch Size — Ocean

Okubo, Deep-Sea Research, 1971
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Spectra of Available Potential Energy — Ocean
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Figure 4: Horizontal wave number spectra of available potential energy in the ocean,
collected from different observations. Reproduced from Dugan et al. (1986). We have

inserted a straight line representing a k, ~' "-curve.

Spectra of available potential energy in horizontal (Dugan et al., 1986)
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‘ Temperature Structure Function — Ocean I

Voorhis and Perkins, Deep-Sea Research, 1966
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Temperature Spectrum — Ocean

Lafond and Lafond, 1967, Marine Technical Society
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‘ Scaled Horizontal Kinetic Energy Spectra I
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‘ Wave /Vortex Kinetic Energy Decomposition |
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‘ Taylor-Green Flow |

e Initial velocity and density fields:

v(x,0)

p(x,0)

_|_

U cos(kz) [cos(m:) sin(ky), — sin(kx) cos(ky), 0

broad-banded, low-level noise

0

— In all cases, exact same initial conditions, except for Fy and Ry

— For N =0, flow develops into isotropic turbulence, with symmetries
(without noise, Brachet et al., 1983)
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‘ Taylor-Green Flow (cont’d) I

e Simulations discussed today: with ¢/ = 1/x

2mU
F=2""2_4 R, =800, 1600, 3200, 6400
N/
27 14
B N ; A 7

— similar results for Fy = 2
— have now computer the range 200 < R, < 9600

— spans the range from laminar to very active turbulence
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Mean Square Velocity (u?); versus z
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Fy =4 and R, = 6400 at t = 0, 10, 20, 30.
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‘ Horizontal Kinetic Energy versus Time |
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‘ Vertical Kinetic Energy versus Time |
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‘ Potential Energy versus Time |
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Kinetic Energy Dissipation Rate versus Time
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‘ Potential Energy Dissipation Rate versus Time |
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Mixing Efficiency (x)/(¢) versus Time
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