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Abstract

This dissertation reviews the formulation of supergravity and supermembrane in eleven

dimensions and discusses the dimensional reduction to ten-dimensional superstring theory.

We start by giving the actions of eleven-dimensional supergravity and the ten-dimensional

type II supergravity. Following this, we describe the classical M2-brane solution to the

11d supergravity. The M2-brane action is introduced as the source term of the 11d super-

gravity. Additionally, we discuss the κ symmetry and demonstrate that the constraints

of preserving κ symmetry are equivalent to the equations of motion of 11d supergravity.

Finally, we present how the 10d type IIA superstring action can be obtained from the

M2-brane action through double-dimensional reduction.
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1 Introduction

M-theory remains a conjecture of a consistent interacting quantum theory in eleven dimensions

that gives rise to the five different types of superstring theories via various compactifications.

These five superstring theories are related via different dualities. The low-energy limits of

these superstring theories give rise to five kinds of supergravity theories. This M-theory is

postulated to be the ultraviolet (UV) completion of the eleven-dimensional supergravity, a

theory that contains the massless graviton, gravitino, and gauge fields, meanwhile preserving

supersymmetry. Despite the massless fields, one encounters extended, non-perturbative objects

known as "membranes" in M-theory. Notably, these encompass the M2-brane and the M5-

brane, coupling to the gauge field, either electrically or magnetically.

Supergravity is a locally supersymmetric theory that contains massless bosons and fermions

with spin less than or equals to two [1]. Supergravity in eleven dimensions is special because

there is only one possible consistent 11d supergravity theory [2]. Such uniqueness can be

attributed to the constraints that the space-time dimensions impose upon the maximum number

of supercharges allowed for a supergravity theory.

In ten dimensions, there are five types of supergravities that satisfied the constraints of

supersymmetry. Of these, the type II supergravities are the most interesting since they are the

maximally supersymmetric gravity theory in ten dimensions. The construction of a maximally

supersymmetric supergravity needs two Majorana-Weyl supercharges. The one that has oppo-

site chirality is categorised as type IIA supergravity, whilst its counterpart, having the same

chirality, is classified as type IIB supergravity [3]. The other three consistent supergravity

theories fall beyond the primary scope of this essay.

Due to the non-renormalisation theorem, a gravity theory in dimension greater or equal

to four is not UV-complete, meaning that such theory remains a low-energy effective theory

of some underlined UV complete theory at the quantum level. The full theory of superstring

consists not only of the massless modes presented in the low-energy effective theory but also of

higher dimensional extended objects, strings and branes, and the massive modes of extended

objects that decouple from the theory as we approach the low-energy limit. Since string theory

is believed to be UV finite, we consider superstrings as the UV completion of the ten-dimensional

supergravities.
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It was shown that type IIA supergravity can be obtained via dimensional reduction from

the 11d supergravity [4]. This relation between type IIA superstring theories and the ten-

dimensional supergravities has encouraged us to consider the eleven-dimensional M-theory as

the UV completion of the 11d supergravity. We postulated that M-theory plays a role as the

origin of all the superstring theories and make it a potential candidate for quantum gravity.

Analogous to the essential role that the one-dimensional string plays in superstring theories,

the two-dimensional extended object, the M2-brane, is considered to behave similarly within

M-theory [5, 6]. This proposition gained considerable support upon the discovery that the

M2-brane action, when wrapping on a circle, could indeed result in the superstring action [4].

It is now believed that 11d supergravity admits a consistent UV completion where the stable

M2-brane plays a critical role [7–9]. However, it is still unclear how the UV completion of the

eleven-dimensional supergravity is formulated.

This dissertation will review supergravities and the M2-brane. We will start in section 2 by

giving the action for supergravity theories in eleven and ten dimensions. The local supersym-

metric transformations and classical field equations will be presented. The supergravity theories

are then consistently truncated to the bosonic sector, which has a pure bosonic solution. The

Killing spinor equation should be satisfied for the solution to preserve the supersymmetry. In

section 3, we will solve for the classical solution to the equations of motion of eleven-dimensional

supergravity. Under the effect of the M2-brane source, the space-time will be deformed from

the flat space. We will present the general p-brane ansatz with worldvolume ISO(1, p) isometry

and isotropic transverse space. Then, we will solve specifically for the eleven-dimensional super-

gravity. The solution will be obtained by utilising the Killing spinor condition and substituting

the ansatz into the equations of motion.

Section 4 will demonstrate the M2-brane action as the source term of the eleven-dimensional

supergravity theory. We review the bosonic membrane action in flat space and its generalisation

in curved space. Then, the superspace formulation of the supermembrane will be introduced.

We will introduce the κ symmetry to preserve supersymmetry of the supermembrane action.

It plays a crucial role in relating supermemrbane and supergravity. For example, we will see

that the κ symmetry demands the M2-brane action to have an eleven-dimensional supergrav-

ity background. The origin of κ symmetry from the Green-Schwarz superstring will also be

discussed. Finally, we will give the M2-brane action in a flat space background and present

various classical solutions in different supergravity backgrounds.
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In the last section, we will review the Kazula-Klein dimensional reduction from eleven-

dimensional to ten-dimensional supergravity. Then, we will show how we obtain the superstring

action from the M2-brane action through double-dimensional reduction, where we simultane-

ously compact one dimension in the worldvolume and the target space. We will also introduce

how the Weyl invariance of string theory emerges from the three-dimensional diffeomorphism of

the M2-brane worldvolume. Finally, we briefly discuss the dilaton term in string sigma model,

which arise from the dimensional reduction of the metric.
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2 Supergravity

Supergravity theories contain supersymmetries and gravity but without particles with spin

higher than two. Hence, there are only limited types of supergravity in a given dimension.

In ten dimensions, there are five different types of supergravity theories. Each of them is the

low-energy effective theory of a ten-dimensional superstring theory. Those superstring theories

can transform into each other via duality. The supergravity theory in eleven dimensions is

more special since there is only one consistent supergravity theory, which is believed to be the

low-energy effective theory of the so-called M-theory [1].

We will focus on the eleven-dimensional supergravity and the ten-dimensional type II super-

gravities. In this section, we will roughly review the construction of supergravity theories. The

supersymmetric transformation and the equations of motion of supergravity theory in eleven

dimensions will be discussed. Then, we will introduce the type II supergravity in ten dimen-

sions as the low-energy effective theories of type II superstrings. We will also determine the

bosonic sector of the supergravity theories by consistent truncation and present their residual

global supersymmetry by introducing the Killing spinors.

2.1 Construction of Supergravity Theory

There are four ways to construct supergravity theories. The first one is the Noether method,

the most often-used method. It was first used in 1970s to construct the N=1 D=4 supergravity

in its on-shell [10, 11] and off-shell [12, 13] formulations. Later on, this method also played an

essential role in constructing D=11 supergravity [1].

The second method is constructing the supergravity theory via the superspace [14]. Su-

pergravity in the superspace description is similar to the usual general relativity. Using the

supervielbein and the spin connection, one can build a supergravity theory invariant under

super-transformations. As usual, one constructs the covariant derivatives and then defines

standard quantities of torsion and curvature. The key problem of supergravity’s superspace

formalism is finding which part of the torsion and curvature should be set to zero under the

constraint of the Lorentz tangent space group. This method was first carried out in 1970s on

N=1 D=4 supergravity [15,16].
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The third method of finding supergravity theories is by gauging certain space-time groups.

For example, by gauging the super Poincaré group, one can find the N=1 D=4 supergrav-

ity theory [17, 18]. However, theories that involve gravity are not necessarily gauge theories.

Therefore, it is necessary to introduce constraints to address this aspect. This method pro-

vides the first algebraic proof of the invariance of supergravity theories [17] and is also used in

constructing the conformal supergravity theory [19].

Finally, with a given higher-dimensional supergravity theory, one could obtain a lower-

dimensional supergravity theory through dimensional reduction. Dimensional reduction in-

volves compactifying some dimensions on circles and suppressing the dependence of fields on

those dimensions. Since supergravity theories in higher dimensions are generally simpler and

easier to study, we can construct low-dimensional supergravity theories from high-dimensional

ones, which can be easily constructed using the methods above.

2.2 D=11 Supergravity

The D=11 Supergravity was initially constructed by E. Cremmer, B. Julia and J. Scherk to

study the extended O(n), n = 1, . . . , 8 supergravity [1]. It gives the lower dimensional super-

gravity by dimensional reduction.

The eleven dimension is the highest dimension for the supergravity theory, which means

a theory with spin two or less [2]. This follows from the irreducible representations of super-

symmetry, and there is no consistent interaction for particles with spin higher than 2 in four

dimensions.

In a four-dimensional theory, one can construct superspace with N Majorana supercharges,

each having four real degrees of freedom, making it 4N supercharges. The anti-commutation

relations of these supercharges form a Clifford algebra with N pairs of operators that raise

and lower helicity by 1
2
. Conventionally, one chooses the raising operators to annihilate the

vacuum. Hence, starting with the vacuum of helicity two and acting with lowering operators

on it, one obtains the physical states with helicity ranging from 2 down to 2− (N − 2). With

the constraint that we cannot have particles with spin higher than 2, the maximum number

of supercharges allowed for a four-dimensional supergravity theory is 8, which corresponds to

4× 8 = 32 spinor degrees of freedom.
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When considering supergravity theory with D ≥ 4, one can examine the four-dimensional

theory obtained through dimensional reduction, which satisfies the constraint we just men-

tioned. Dimensional reduction involves compactifying the extra dimensions on a manifold and

decoupling the fields from those dimensions. The simplest approach is compactifying on a

torus, the most basic compact manifold. This process preserves supersymmetry, thereby keep-

ing the number of supercharges unchanged. Hence, for a given dimension to potentially admit

supergravity theory, that dimension must have a spin representation of dimension 32 or less.

The spinor representations for a given dimension include Dirac spinor, Weyl spinor, and Ma-

jorana spinor. In even dimensions D = 2k, each of these representations has the following real

degrees of freedom: 2k+1 for Dirac spinor, 2k for Weyl spinor, and 2k for Majorana spinor. For

odd dimensions D = 2k+1, one can incorporate the chirality matrix Γ∗ = (−i)k−1Γ0Γ1 . . .ΓD−1

into the set of gamma matrices of D = 2k to form the odd-dimensional Clifford algebra, thereby

maintaining the dimensions of the spinor representations. However, it is not possible to have

a Weyl spinor in odd dimensions. Therefore, the highest dimensional supergravity theory is in

D = 11 with one 32-component Majorana spinor, an D = 11, N = 1 supergravity.

The field content can be fixed via on-shell dimensional analysis. One could assume there

exists a massless spin-2 gravitational field which is the traceless symmetric tensor representation

of SO(11− 2), and one Majorana spinor gravitino. The degrees of freedom of graviton is thus

(11−2)× (11−1)−1 = 44. The dimension of Majorana gravitino is 1
2
(11−3)×25 = 27 = 128.

For a supersymmetric theory, the bosonic degrees of freedom must match the fermionic degrees

of freedom. A three-form gauge field is the right we need, as it has degrees of freedom of
1
3!
(11−2)× (11−3)× (11−4) = 84. Hence, the field content of D=11 supergravity comprises a

graviton gmn, a Majorana gravitino ψm, and a 3-form gauge field Am1m2m3 , with 44, 128 and 84

degrees of freedom respectively. The graviton (metric) is usually written in terms of vielbeins

e a
m as gmn = ηabe

a
m e b

n .

The Lagrangian of the D=11 dimensional supergravity is given by,

S11 =
1

2κ211

∫
d11x

(
eR(Ω(e, ψ))− e

48
Fm1···m4F

m1···m4 − e

2
ψ̄mΓ

mnpDn

(
1

2
(Ω + Ω̂)

)
ψp

− 1

384
e
(
ψ̄m1Γ

m1···m6ψm2 + 12ψ̄m3Γm4m5ψm6
) (
Fm3···m6 + F̂m3···m6

)
+

1

(12)4
ϵm1···m11Fm1···m4Fm5···m8Am9m10m11

) (2.1)

where F is the field strength of gauge field A,

Fm1...m4 = 4∂[m1Am2m3m4] (2.2)
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and F̂ is defined by,

F̂m1...m4 = Fm1...m4 + 3ψ̄[m1Γm2m3ψm4] (2.3)

The spin connections are given by,

Ωmab = Ω̂mab −
1

4
ψ̄nΓ

np
mab ψp (2.4)

Ω̂mab = Ω̂
(0)
mab(e) +

1

2
(ψ̄mΓbψa − ψ̄mΓaψb + ψ̄bΓmψa) (2.5)

where Ω̂
(0)
mab is the torsion-free spin connection expression in terms of the vielbein,

Ω̂
(0)
mab =

1

2
e n
a (∂mebn − ∂nebm)−

1

2
e n
b (∂mean − ∂neam)

− 1

2
e p
a e

q
b (∂peqc − ∂qepc) e

c
m

(2.6)

And the covariant derivative is defined by,

Dm(Ω)ψb = (∂m +
1

4
ΩmabΓ

ab)ψb (2.7)

and,

[Dm, Dn] = −1

4
R b

mna Γa
b (2.8)

The hatted objects are corrected with a higher order of κ11 so that their variations under

supersymmetry do not depend on the derivative of the supersymmetry parameter ∂Mϵ. This

property is referred to as being "super-covariant".

The action of 11D supergravity is invariant under the local supersymmetric transformation:

δe a
m =

1

2
ϵ̄Γaψm

δψm = D̂mϵ

δAm1m2m3 = −3

4
ϵ̄Γ[m1m2ψm3]

(2.9)

Here we defined the supercovariant derivative D̂m as,

D̂m = ∂m +
1

4
ΩmabΓ

ab +
1

288
(Γ n1...n4

m − 8δn1
m Γn2n3n4)F̂n1...n4 (2.10)

where Γa = Γme a
m is the gamma matrix in vielbein basis, and the gamma matrix with n

multiple indices represents n gamma matrices anti-symmetrised Γm1...mn = Γ[m1 . . .Γmn]. There

is also the usual local gauge symmetry for gauge field,

δAm1m2m3 = 3∂[m1Am2m3] (2.11)

where the gauge parameter Am2m3 is a 2-form.
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The last term in action, which is the pure gauge field coupling term, is the Chern-Simmons

term. The Chern-Simmons term is a topological term and contains many interesting properties

which have not been discussed here yet.

We also noticed only one coupling constant in the D=11 supergravity action, the gravita-

tional constant κ11, which has a dimension of mass−9/2. Thus we can define Planck’s mass mp

by κ11 = m
−9/2
p . One could scale the field with the coupling constant, which also scale the

action by the correspondent factor. With proper scaling, we can set the equation of motion at

classical level to be independent of κ11, meaning that gravitational constant κ11 has no classical

effect.

2.3 D=10 Supergravity

In this section, we discuss the supergravity theory in ten dimensions, where we have Majorana-

Weyl spinors, which possess only 16 degrees of freedom. As mentioned, a supergravity theory

can only be constructed based on a supersymmetry algebra with fewer than 32 supercharges.

Consequently, there are two types of supergravity theories: N = 2 and N = 1, corresponding

to two Majorana-Weyl spinors or one, respectively. The former is type II supergravity, which

has 32 supercharges, while the latter is type I supergravity, with 16 supercharges.

We are interested in the dimensional reduction of the eleven-dimensional supergravity the-

ory. All the supersymmetries are preserved when we perform the dimensional reduction on

the 11-dimensional supergravity theory by compactifying the eleventh dimension on a circle.

Hence, we result in a 10-dimensional supergravity with 32 supercharges, which should be a type

II supergravity. Hence, our main focus would be on the type II supergravity theories.

The type II supergravity theories are the low-energy effective theories of the type II su-

perstring theories. The spectrum of superstring theory includes an infinite number of massive

modes, which generally decouple from the theory in the low-energy limit. Consequently, as we

flow down the energy scale, only the massless modes of the string theory remain, giving rise to

the spectrum of the type II supergravity theory.

Before moving on to the effective theories of superstring theory, let us first review the

effective action of string theory. The σ-model for bosonic string moving in a background with

its massless modes that contains a general metric gmn, an anti-symmetric Bmn field, and a
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dilaton ϕ is given by,

I =
1

4πα′

∫
d2ξ

√
γ
[
γij∂ix

m∂jx
ngmn(x) + ϵij∂ix

m∂jx
nBmn(x) + α′R(γ)ϕ(x)

]
, (2.12)

where γij is the metric on the world sheet of string. The condition for this action to be quantum

Weyl anomaly free is that all beta functions vanish. Such condition happens to be the equations

of motion of the string effective action given by,

Ieff =

∫
dDx

√
Ge−2ϕ

[
(D − 26)− 3

2
α′
(
R− 1

12
HmnlH

mnl + 4∇2ϕ− 4 (∇ϕ)2
)
+O

(
α′2)]

(2.13)

where Hmmm = ∂mBnl + ∂nBlm + ∂lBmn. For flat space to solve this action, the constant term

D− 26 must vanish. This reflects that the critical dimension of the bosonic string is 26. In the

superstring theory, a similar NS-NS sector arises with the constant term replaced by D − 10,

Ieff =

∫
d10x

√
Ge−2ϕ

[
R− 1

12
HmnlH

mnl + 4∇mϕ∇mϕ

]
(2.14)

indicating that the critical dimension of superstring theory is ten.

From the chirality of the two Majorana-Weyl superalgebras, type II supergravity can be

classified into two theories: type IIA and type IIB. These theories possess opposite chirality and

the same chirality, respectively. Among them, the supercharges for type IIA supergravity can

be combined to form a Majorana spinor with 32 components. Therefore, one might naturally

assume that by dimensional reduction from 11-dimensional supergravity, type IIA supergravity

is obtained. In fact, this is how type IIA supergravity was initially discovered [20–22].

The field content of type IIA supergravity contains a graviton gmn written in vielbein e a
m ,

a dilaton ϕ, a 2-form NS-NS gauge field Bmn, a 1-form R-R gauge field Am, and a 3-form R-R

field Cmnp and fermionic fields gravitino ψα
m and dilatino λα. The index m here represents the

world index of the ten dimensions.

Starting from the 11-dimensional supergravity action, we can perform the dimensional re-

duction to obtain the action for type IIA supergravity. The detailed discussion of dimensional

reduction is given in Section 5. The resultant ten-dimensional action can be separated into

bosonic sector and fermionic sector,

SIIA = SB
IIA + SF

IIA (2.15)
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With proper field redefinition, the bosonic sector is given by,

SB
IIA =

1

2κ210

∫
d10x

{
e

(
R− 1

2
∂mϕ∂

mϕ− 1

12
eϕHm1m2m3H

m1m2m3

− 1

48
e−

ϕ
2 F̂m1m2m3m4F̂

m1m2m3m4 − 1

4
e−

3
2
ϕFm1m2F

m1m2

)
+

3

4× (12)3
ϵm1···m10Fm1m2m3m4Fm5m6m7m8Bm9m10

}
,

(2.16)

where
Fm1m2 = 2∂[m1Am2],

Hm1m2m3 = 3∂[m1Bm2m3],

Fm1m2m3m4 = 4∂[m1Cm2m3m4],

F̂m1m2m3m4 = Fm1m2m3m4 + 4A[m1Hm2m3m4].

(2.17)

Notice that the dilaton coupling is not uniform in this frame, called the Einstein frame. We

can rewrite the bosonic action via the Weyl-rescaling on the metric,

g(e)mn = e−
ϕ
2 g(s)mn (2.18)

to put it into the string frame where the dilaton coupling is uniformly e−2ϕ,

SB
IIA =

1

2κ210

∫
d10x

{
e

[
e−2ϕ

(
R(g(s))− 4∂mϕ∂

mϕ− 1

12
Hm1m2m3H

m1m2m3

)
+

(
− 1

48
F̂m1m2m3m4F̂

m1m2m3m4 − 1

4
Fm1m2F

m1m2

)]
+

3

4× (12)3
ϵm1···m10Fm1m2m3m4Fm5m6m7m8Bm9m10

}
,

(2.19)

We can see that the NS-NS sector, which is multiplied by the factor e−2ϕ, matches with the

effective action of string.

The fermionic part is given by,

SF
IIA =

1

κ210

∫
d10xe

{
−1

2
ψ̄m1Γ

m1m2m3Dm2ψm3 −
1

2
λ̄ΓmDmλ+

√
2

4
λ̄Γ11Γm1Γm2ψm1∂m2ϕ

+
1

96
e

ϕ
4

(
−ψ̄m1Γ

m1···m6ψm2 − 12ψ̄m3Γm4m5ψm6 +
1√
2
λ̄Γ11Γm1Γm3···m6ψm1

+
3

4
λ̄Γ11Γm3···m6λ

)
Fm3...m6 −

1

24
e−

ϕ
2

(
ψ̄m1Γ

11Γm1···m5ψm2 − 6ψ̄m3Γ11Γm4ψm5

−
√
2λ̄Γm1Γm3m4m5ψm1

)
Hm3m4m5 −

1

16
e

3ϕ
4

(
ψ̄m1Γ

11Γm1···m4ψm2 + 2ψ̄m3Γ11ψm4

+
3√
2
λ̄Γm1Γm3m4ψm1 −

5

4
λ̄Γ11Γm3m4λ

)
Fm3m4 + quartic terms in fermions

}
,

(2.20)

where the covariant derivative is defined with the usual spin connection. However, in the up-

coming section, we will focus on the bosonic part when solving the classical equation of motion.
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We achieve this by setting all fermions to zero and imposing the Killing spinor conditions.

Therefore, there is no need to be concerned about the fermionic sector.

Type IIB supergravity possesses two Majorana-Weyl spinors with the same chirality as the

superalgebra. This theory includes a 4-form R-R gauge field Cmmpq, which has a self-dual 5-form

field strength Fm1...m5 = ∗Fm1...m5 . However, such a field does not admit an action [23], thereby

preventing the construction of a supersymmetric action for IIB supergravity. In addition to

the 4-form gauge field, the bosonic fields of type IIB supergravity encompass a graviton gmn

expressed in terms of the vielbein e a
m , a dilaton ϕ, a 2-form NS-NS gauge field Hmn, a 2-form

R-R gauge field Cmn, and an 0-form R-R gauge field χ. Within the fermionic sector are two

left-handed Majorana-Weyl gravitinos ψm and two left-handed Majorana-Weyl dilatinos λ.

Thus, in the superstring theory, we encounter field strengths ranging from rank 1 to rank 5.

By utilising the ϵ symbol, we can determine the dual field strengths with ranks 6 to 9, taking

into account that the rank 5 field strength is self-dual.

2.4 Classical Equations of Supergravity

The classical solutions always have vanishing fermionic fields. Therefore, when discussing clas-

sical solutions, one may focus only on the bosonic part of the action by setting the gravitino

to zero. We will discuss how to obtain such a simpler action through consistent truncation in

later section.

Supergravity theories are, in general, graviton coupling to scalars and different ranks of

gauge fields with additional fermions. The bosonic part of a general supergravity action in

D-dimension is:

SDB
=

1

2κD2

∫
dDxe

(
R− 1

2
∂mϕ∂mϕ−

∑
i

1

2× ni!
eaiϕFm1...mni

Fm1...mni

)
, (2.21)

where Fm1...mni
= ni∂[m1Am2...mni ]

and e is the determinant of vielbein emM . The constant κD is

related to the gravitational constant GD via 2κ2D = 16πGD. The constant ai, which controls

the coupling of a scalar field with gauge fields, is negative by convention.

The equation of motion are obtained by varying with respect to gmn, the gauge fields A,
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and the scalar fields called dilaton ϕ,

Rmn =
1

2
∂mϕ∂nϕ+

∑
i

1

2 · ni!
eaiϕ ×

(
niF

m2···mni
m Fnm2···mni

− ni − 1

D − 2
gmnFm1···mni

Fm1···mni

)
,

(2.22)

∂m
(√

−geaiϕFmm2···mni

)
= 0, (2.23)

1√
−g

∂m
(√

−g∂mϕ
)
−
∑
i

ai
2 · ni!

eaiϕFm1m2···mni
Fm1m2···mni = 0. (2.24)

For the supergravity theory in eleven dimensions, the bosonic part of the action is the

graviton couple to a 3-form gauge field, with a Chern–Simmons term,

S11B =
1

2κ211

∫
d11xe

(
R− 1

48
Fm1···m4F

m1···m4

)
+

1

(12)4
ϵm1···m11Fm1···m4Fm5···m8Am9m10m11

(2.25)

or written concisely in,

S11B =
1

2κ211

∫
d11xe

(
R− 1

48
F 2

)
+

1

6
F ∧ F ∧ A (2.26)

Adding the Chern–Simmons term only modify the equation of motion of the gauge field by
3!
124
ϵm1···m11Fm1···m4Fm5···m8 . Then, the equation of motion of D=11 supergravity are,

Rmn =
1

12

(
F m2m3m4
m Fnm2m3m4 −

1

12
gmnFm1···m4F

m1···m4

)
, (2.27)

∂m (eFmm1m2m3) +
1

1152
ϵm1···m11Fm4···m7Fm8···m11 = 0 (2.28)

We also have the Bianchi identity for gauge field strength F ,

dF = 0 (2.29)

2.5 Residual Supersymmetry

Supergravity action is invariant under any supersymmetric transformation parameterised by

the spinor ϵ. The general form of the local supersymmetric transformation is given by,

δϵB ∼ ϵF,

δϵF ∼ ∂ϵ+Bϵ,
(2.30)

where B and F stands for the bosonic part and the fermionic part, separately [24]. We will

only interested in the pure bosonic solution in the later section when we solve for the classical

solution, since the only macroscopic fields we observed in nature are bosonic fields.

12



Killing spinors are related with special classical solution of the equation of motion of su-

pergravity. Specifically, there are only a subset of spinor ϵ that leave the solution unchanged

under the supersymmetric transformation. And these subset of spinors are known as Killing

spinors.

The Killing spinor is analogous to the Killing vector. Killing vectors are vectors that pa-

rameterise the diffeomorphisms that kept the metric unchanged. It describes the preserved

global symmetry of the solution. Similarly, Killing spinors are spinors that characterised the

preserved global supersymmetry of a solution.

In order for the action to respect the local supersymmetric transformation, all supersymmet-

ric variations should vanish after we substitute in the classical solution of equation of motion.

As we mentioned previously, the classical solution, also referred to as background, usually has

vanishing fermionic part. While the supersymmetric transformation of bosonic vectors is typi-

cally proportional to some fermionic fields that vanish in the classical solution, the requirement

for a Killing spinor is primarily related to the supersymmetric transformation of the spinor

fields that is independent of spinors in the theory.

In our case for D=11 supergravity, we take the bosonic solution of the field equations. The

supersymmetric variation of the gravitino does not vanish unless D̂mϵ = 0. Hence, setting the

fermionic parts to zero breaks the local supersymmetry of the solution. However, we can still

preserve the global supersymmetry by demanding the supersymmetric variation of the gravitino

to be vanished, which defines Killing spinors. Therefore, the Killing spinors in 11-dimensional

supergravity are given by:

D̂mϵ =

[
∂m +

1

4
ΩmabΓ

ab +
1

288
(Γ n1...n4

m − 8δn1
m Γn2n3n4)Fn1...n4

]
ϵ = 0 (2.31)

which ensures the vanishing of all supersymmetric variations. Given the Killing spinor, the rest

of the bosonic solution will be constrained and are parameterised by certainn constants.
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3 M2-Brane Solution of Supergravity

In this section, we solve the equations of motion of the supergravity theory. We start by making

the brane ansatz with a d-dimensional worldvolume and a spherical symmetric transverse space,

which captures the effect of a M2-brane on the supergravity space-time structure. Then, using

the Killing spinor condition and field equation of the gauge field, we can determine the metric

and the gauge field as the solution to the equations of motion of supergravity.

3.1 Brane Ansatz

To solve the field equations, we make an ansatz that preserves a certain amount of unbroken

supersymmetry. For simplicity, we demand that the ansatz admits ISO(1, p)× SO(D − p− 1)

symmetry, where we assume the isotropy of the (D−p−1) dimensions that are transverse to the

(p+1) dimensions [25]. This can be viewed as a (p+1)-dimensional hyperplane embedded in D-

dimensional space-time. Additionally, one can think of it as the worldvolume of a p-dimensional

extended object.

Therefore, we make an (p + 1) - (D − p − 1) split of the coordinate xm = (xi, ys), where

m = (0, 1, . . . , D− 1) indices split into two ranges: i = (0, . . . , p) representing the worldvolume

that admits ISO(1, p) isometries, and s = (p+1, . . . , D−1) representing the isotropic transverse

direction to the worldvolume. The ansatz of metric that respects the above symmetry is,

ds2 = e2A(r)dxidxjηij + e2B(r)dysdytδst (3.1)

where r =
√
ysys is the radial coordinate in the transverse space.

The ansatz for scalar dilaton ϕ is not used in the D = 11 supergravity solution, but we also

gives it here:

ϕ = ϕ(r). (3.2)

The ansatz for the gauge field is more complicated as we have to consider two different

cases related to each other by duality. The first case is the (n − 1)-form gauge field A. The

Maxwell one-form vector potential couples to the worldline of a charged particle, which is a

0-dimensional extended object. Analogous to that, the (n− 1)-form gauge field should couple

to a worldvolume of a (p = n−2)-dimensional extended charged object. The charge arises from
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the analogue of applying Gauss’ law to the field strength F of A. Furthermore, we can relate

the worldvolume dimension p+1 to the (n− 1)-form gauge field it couples to via p+1 = n− 1.

This ansatz is referred to as the "electric" ansatz for the gauge field:

Ai1...in−1 = ϵi1...in−1e
C(r), (3.3)

with all other components set to zero. The term "electric" refers to the analogy between this

ansatz and the electrical coupling of the Maxwell gauge field to a charged particle. Equivalently,

given this ansatz in terms of the field strength,

F el
si1...in−1

= nϵi1...in−1∂se
C(r) (3.4)

with all other components set to zero.

The other way of coupling the d-dimensional worldvolume to gauge field is by considering

the dual field strength ∗F . The Hodge dual of an n-form F is a (D − n)-form. By the same

analogy, the gauge field corresponding to this field strength ∗F will couple to the worldvolume

of a (p = D − n − 1)-dimensional extended charged object. In principle, one could invert ∗F

to obtain the gauge field, but it turns out the solution would be non-local. Hence, we express

this ansatz using the related n-form field strength F :

Fmag
s1...sn

= λϵs1...snt
yt

rn+1
, (3.5)

where the magnetic charge λ is an undetermined integration constant. This ansatz is referred

to as the "magnetic" ansatz in contrast to the previous "electric" ansatz. In eleven-dimensional

supergravity, this ansatz corresponds to the M5-brane, which is not our main focus here.

3.2 M2-Branes Solution

The general solution to the Mp-brane solution for D-dimensional general supergravity theory

is given by [26],

ds2 = H
−4d̃

(D−2)∆dxidxjηij +H
4d

(D−2)∆dysdytδst (3.6a)

eϕ = H
2a
ς∆ ς =

+1, electric

−1, magnetic
(3.6b)

H(y) = 1 +
k

rd̃
, (3.6c)
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where d = p+ 1 and d̃ = D − d− 2 with C(r) satisfied the relation given in (B.23),

eC =
2√
∆H

. (3.7)

The integration constant k is related to the magnetic charge λ via,

k =

√
∆

2d̃
λ. (3.8)

where this relation comes from the analysis of the magnetic brane. The detailed discussion of

general solution to supergravity is given in appendix B.

After considering the general case, we now focus on a specific solution involving a 3-

dimensional extended object corresponding to the 2-brane solution in D = 11 supergravity.

The eleven-dimensional supergravity theory is widely recognised as the low-energy effective

theory of the "M-theory," which gives rise to the concept of "M-branes." Hence, this particular

2-brane solution is commonly referred to as "M2-branes."

By employing the ansatz of ISO(1, d−1)×SO(D−d), specifically ISO(1, p)×SO(D−p−1),

we can substitute D = 11, d = 3, p = 2, and n = 4 into the ansatz for the gauge field and the

equations of motion. It is worthwhile to restate the ansatz for clarity:

ds2 = e2A(r)dxidxjηij + e2B(r)dysdytδst (3.9)

where i = (0, 1, 2), and M = (3, . . . , 10). Following from this ansatz, the 3-form gauge field,

which electrically couples to the M2-Brane worldvolume, is given by,

Ai1i2i3 = ϵi1i2i3e
C(r), (3.10)

and in terms of the field strength, it takes the form,

FMi1i2i3 = 4ϵi1i2i3∂Me
C(r). (3.11)

Using the equations of motion obtained earlier, we can derive the equations of motion with the

variable S = e−3A+CC ′. The Einstein equation (2.27) now takes the form,

A′′ + 3 (A′)
2
+ 6A′B′ +

7

r
A′ =

1

3

(
C ′2) e−6A+2C

B′′ + 3A′B′ + 6 (B′)
2
+

13

r
B′ +

3

r
A′ = −1

6

(
C ′2) e−6A+2C

6B′′ + 3A′′ − 6A′B′ + 3 (A′)
2 − 6 (B′)

2 − 6

r
B′ − 3

r
A′ =

1

2

(
C ′2) e−6A+2C

(3.12)

Notice that the scalar dilaton vanishes in this case, resulting in the equation of motion for the

dilaton (B.9) being trivially satisfied. And, the equation of motion of the gauge field becomes,

∇2C + (C ′ − 3A′ + 6B′)C ′ = 0. (3.13)
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Since the scalar coupling constant a is zero, ∆ is determined to be 4. Consequently, according

to Equation (B.23), the relationship between A, B, and C is given by:

3A = −6B = C (3.14)

Additionally, we will arrive at the same relationship by requiring the solution to be supersym-

metric, which will be demonstrated by solving for the Killing spinor in the upcoming section.

Substitute all the field contents’ ansatz into the field equation of gauge field, we obtain,

∇2e−C = 0 (3.15)

And the general solution to this Laplacian equation is given by,

e−C = 1 +
k

r6
(3.16)

Then, the M2-brane solution is given by,

ds2 =

(
1 +

k

r6

)−2/3

dxidxjηij +

(
1 +

k

r6

)1/3

dysdytδst

Aijk = ϵijk

(
1 +

k

r6

)−1

,

(3.17)

where all other components of the 3-form gauge field and other field contents are zero. Since

the transverse part of space-time is isometric, it is convenient to write them in the spherical

symmetric form,

ds2 =

(
1 +

k

r6

)−2/3

dxidxjηij +

(
1 +

k

r6

)1/3 (
dr2 + r2dΩ2

7

)
(3.18)

By taking the r → 0 limit and discarding the constant 1 in the brackets, we obtained the near

horizon metric,

ds2 = k1/3
(
r4

k
dxidxjηij +

1

r2
dr2 + dΩ2

7

)
. (3.19)

By substitute ρ = k1/2/2r2, we can see immediately that the geometry near r = 0 has an

AdS4 × S7 geometry,

ds2 → 1

4
k1/3

[
1

ρ2
(
dxidxjηij + dρ2

)
+ 4dΩ2

7

]
(3.20)

A more rigorous analysis can give rise to the full picture of the entire space-time. Like the

Schwarzschild metric, the metric of M2-brane solution has a singularity at r = 0. However,

one can calculate the space-time curvature from the curvature components to show that this is
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actually a coordinate singularity. This coordinate singularity corresponds to a horizon. Hence

we can extend through the coordinate singularity into other region of the space-time. By

changing the parameter r to R,

r =
k

1
6R

1
2

(1−R3)
1
6

(3.21)

we rewrite the solution into the form,

ds2 =

[
R2
(
dxidxjηij

)
+

1

4
k1/3R−2dR2

]
+ k1/3dΩ2

7

+
1

4
k1/3

[(
1−R3

)−7/3 − 1
]
R−2dR2 + k1/3

[(
1−R3

)−1/3 − 1
]
dΩ2

7

Aijk =R
3ϵijk.

(3.22)

As we approach the r = 0 horizon, which is now the R = 0 horizon, the metric tends to,

ds2 →
[
R2
(
dxidxjηij

)
+

1

4
k1/3R−2dR2

]
+ k1/3dΩ2

7, (3.23)

where Ω7 is the volume of the unit sphere in 7 dimensions. We can further write the metric in

the bracket into the standard AdS metric form by letting ρ = −k1/6

2R

ds2 → 1

4
k1/3

[
1

ρ2
(
dxidxjηij + dρ2

)
+ 4dΩ2

7

]
(3.24)

once again we obtain the standard form of AdS4 × S7.

Thus we conclude that the near horizon M2-brane space-time geometry is AdS4 × S7 as

R → 0, while become flat space as R → 1. This metric only covers part of the entire space-time.

We can proceed through the horizon and approach a true singularity as R → −∞. However,

unlike the Schwarzschild metric, this R → −∞ singularity is timelike [26].

One may notice that the solution to the Laplacian equation (3.15) is a linear differential

equation. Hence, any linear combination of solutions can solve the equation, and e−C takes the

form

e−C = 1 +
∑
i

k

(r − ri)6
(3.25)

where ri specifies the position of each membrane. Thus, the single membrane solution can be

generalised into the multi-membrane solution to the supergravity equation of motion, which is

given by,

ds2 =

(
1 +

∑
i

k

(r − ri)6

)−2/3

dxidxjηij +

(
1 +

∑
i

k

(r − ri)6

)1/3

dysdytδst

Aijk = ϵijk

(
1 +

∑
i

k

(r − ri)6

)−1

.

(3.26)
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The reason for that we can perform linear superposition on membrane solutions is due to the

no-force condition [25]. It states that the gravitational attraction between two widely separated

membrane is exactly cancelled by an equal and opposite repulsive form from the contribution

of the anti-symmetric tensors, which is to say that the gravitational force is cancelled by the

electric force between two separated membranes, allowing us to linearly stack them together.

3.3 Killing Spinor

As mentioned earlier in Section 2.4, we discussed the pure bosonic solution to supergravity,

truncating all the fermionic terms. In order to determine the number of preserved supersym-

metries in this truncation, we need to analyse the Killing spinor given in Equation (2.31). Since

Equation (2.31) is linear in the Grassmannian parameter ϵ, the anti-commuting identity of ϵ is

not relevant for solving the equation, so we can treat it as an ordinary commuting object [26].

To solve the Killing spinor in the p-brane background, we need to choose a basis for the Γ

matrices. Considering the Γ matrix in (2.31), we can define them in the vielbein basis,

{Γa,Γb} = ηab. (3.27)

where ηab is the Minkowski metric. We can express the usual Γ matrices in terms of the world

coordinates by using the vielbein as Γm = Γbe
b

m . Additionally, we can perform a 3− 8 split on

the Γ matrices, separating them into components for D = 3 and D = 8:

Γm =
(
γi ⊗ Σ9,1(2) ⊗ ΣM

)
(3.28)

where γi and ΣM are the Dirac matrices for D = 3 and D = 8, respectively. Here, Σ9 ≡

Σ3 · · ·Σ10 forms the chiral projection operators 1
2
(1± Σ9).

The spinor parameter can also be split as:

ϵ = ε⊗ η(r) (3.29)

where ε is a constant SO(2, 1) spinor, and η(r) is an SO(8) spinor that is isotropic. The SO(8)

spinor η(r) can be further decomposed into chiral spinors using the projection operators.

Plugging in the gauge field solution, spin connection, and the Γ matrices, the supercovariant
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derivative can be written as:

D̂i = ∂i −
1

2
γie

−AΣM∂Me
AΣ9 −

1

6
γie

−3AΣM∂Me
C ,

D̂M = ∂M +
1

4
e−B

(
ΣMΣN − ΣNΣM

)
∂Ne

B − 1

24
e−3A

(
ΣMΣN − ΣNΣM

)
∂Ne

CΓ9

− 1

6
e−3A∂MeCΓ9.

(3.30)

We substitute the supercovariant derivatives into Equation (2.31) and solve for the Killing

spinor conditions, obtaining:

3A = −6B = C (3.31)

which is the same condition for determining the M2-brane solution. Additionally, we find:

η(r) = η0e
− 1

6
C (3.32)

where η0 is a constant SO(8) spinor, which is a chiral spinor given by,

1

2
(1 + Σ9)η0 = 0 (3.33)

This reduces the number of supersymmetries by half, indicating that half of the rigid super-

symmetry is preserved in the M2-brane background.
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4 M2-Brane Action

We have seen that the supergravity in ten dimensions is the low-energy effective theory to

the ten-dimensional superstring theory. Analogue to that, the eleven-dimensional supergravity

might be related to some supermembrane theory. Bergshoeff et al. [5] constructed such action

for the supersymmetric M2-brane that known as the supermembrane action, which is given by,

S = T2

∫
d2ξ

[
−1

2

√
−γγijE a

i E
b

j ηab +
1

2

√
−γ +

1

6
ϵi1i2i3E A1

i1
E A2

i2
E A3

i3
AA3A2A1

]
. (4.1)

The action contains the Polyakov version of the 2-brane action terms and a Wess-Zumino

term involving the super 3-form. We will explain this action in the following sections. For such

action of M2-Brane in eleven dimension background to preserve supersymmetry, the space-time

background has to satisfy certain constraints, which turns out to be the equation of motion of the

eleven-dimensional supergravity [4,5]. This constrain coming from demanding supersymmetry is

inherited from the kappa symmetry in the Green-Schwarz superstring action, which was inspired

by the kappa symmetry preserved in the action of Brink–Schwarz superparticle [27]. In this

section, we will demonstrate the formulation of the supermembrane action, and demonstrate

the close relation between the super-M2-brane action and the eleven-dimensional supergravity.

4.1 M2-Brane as a Source of Eleven Dimensional Supergravity

We can view the supermembrane action as the consistent source term of the supergravity. In

the section 3.2, we have found the M2-brane solution for 11-dimensional supergravity, and we

have also seen that the solution does not cover the entire space. To make this solution valid

within the entire space-time, we have to introduce the source term [25]. For example, we can

add a delta source at r = 0, therefore modify the key equation of solving for the M2-brane

solution (3.15) into,

∇2e−C = 6kΩ7δ
8(y) (4.2)

where Ω7 is the volume of a unit seven-sphere S7. The similar effect also applies to the Einstein

equation.

Therefore we give the combination of pure supergravity (2.1) and the action for superme-
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mbrane (4.1),

S =
1

2κ211

∫
d11x

[
e

(
R− 1

48
Fm1···m4F

m1···m4

)
+

1

(12)4
ϵm1···m11Fm1···m4Fm5···m8Am9m10m11

]
+ T2

∫
d3ξ

[
−1

2

√
−γγij∂iXa∂jX

bηab +
1

2

√
−γ +

1

6
ϵi1i2i3∂i1X

m1∂i2X
m2∂i3X

m3Am3m2m1

]
(4.3)

Once again, we consider only the bosonic terms by setting all the fermionic fields to zero and

discard the Grassmann odd coordinate dependence. The formulation of the supermembrane

action will be discussed in the following subsections.

With the source term included, the equations of motion get modified. The Einstein equation

are enhanced by the matter tensor from the source term,

Rmn −
1

2
gmnR = κ211Tmn, (4.4)

where TMN now being,

κ211Tmn =
1

12

(
F m2m3m4
m Fnm2m3m4 −

1

12
gmnFm1···m4F

m1···m4

)
− κ211T2

∫
d3ξ

1

e

√
−γγij∂iXm∂jXnδ

11(x−X)

(4.5)

The field equation for the 3-form gauge field is given by,

∂m (eFmm1m2m3) +
1

1152
ϵm1···m11Fm4···m7Fm8···m11

= 2κ211T2

∫
d3ξϵi1i2i3∂i1X

m1∂i2X
m2∂i3X

m3δ11(x−X).
(4.6)

And the membrane field equation is given by varying Xm,

∂i
(√

−γγij∂jXngmn

)
+

1

2

√
−γγij∂iXn∂jX

p∂mgnp

+
1

6
ϵi1i2i3∂i1X

n∂i2X
p∂i3X

qFmnpq = 0
(4.7)

Then, the solution to the Xm field equations is given by,

X i = ξi, i = 0, 1, 2

Xs = 0, s = 3, . . . , 10.
(4.8)

Substituting this classical solution into the field equation of gauge field, one obtained the

source-enhanced version of (3.15), which is given by,

∇2e−C = 2κ211T2δ
8(y). (4.9)

Comparing this with (4.2), the relation of tension in supermembrane action and the gravita-

tional constant is given by,

k =
κ211T2
3Ω7

. (4.10)
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This solution can also be generalised to N-membrane solution as mentioned in (3.26). Then

the constant k and tension T2 of 2-brane will scale with the factor N as

k → k

N
,

T2 →
T2
N
.

(4.11)

4.2 Bosonic p-Brane Action

In order to construct the super-p-brane action, we should start with the simplest bosonic brane

action. The bosonic p-brane action in D-dimensional space-time is given by the Nambu-Goto

action,

S = −Tp
∫
dp+1ξ

√
− dethij (4.12)

where ξi are the coordinates on the worldvolume, and hij is the induced metric on the world-

volume defined through the metric on the flat target space ηmn,

hij = ∂iX
m∂jX

nηmn. (4.13)

We can also deduce the same equation of motion via the Polyakov action by introducing an

auxiliary metric γij(ξ),

S = Tp

∫
dp+1ξ

(
−1

2

√
−γγij∂iXm∂jX

nηmn +
1

2
(p− 1)

√
−γ
)
. (4.14)

The special conformal case p = 1, where the cosmological term vanishes, is the string theory

case that we are familiar with.

We can generalise this action to formulate the bosonic part of p-brane action in the curved

space-time by changing ηmn → gmn. This is the Howe-Tucker form of p-brane coupled to gravity,

S = Tp

∫
dp+1ξ

(
−1

2

√
−γγij∂iXm∂jX

ngmn +
1

2
(p− 1)

√
−γ
)
. (4.15)

The equation of motion of Xm is given by,

γij
(
∂i∂jX

m − Ωk
ij(γ)∂kX

m + Ωm
np(g)∂iX

n∂jX
p
)
= 0 (4.16)

where Ωk
ij(γ) and Ωm

np(g) are the Christoffel connections of γij and gmn, respectively.

The field equation of γij is give by,

γij = ∂iX
m∂jX

ngmn. (4.17)
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We can substitute the field equation of γ into the equation of motion of xm to obtain the same

equation of motion for Xm that we determined from the Nambu-Goto form action generalised

into curved space-time,

S = −Tp
∫
dp+1ξ

√
− det (∂iXm∂jXngmn) (4.18)

demonstrating that (4.18) is equivalent to (4.15) at classical level.

4.3 Supermembrane Action

With the bosonic membrane action in hand, we can extend to superspace to construct the

supermembrane action. We start with the formulation of the coordinate ZM for the superspace:

ZM = (Xm, θµ) (4.19)

with the Grassmann even coordinate Xm and Grassmann odd coordinate θµ. We also define

the supervielbein E A
M (Z) analogue to the vielbein. Indices M are the world indices with

M = (m,µ), and indices A are the tangent space vielbein indices A = (a, α). We also define

the pull-back of the supervielbein from the superspace to the worldvolume,

E A
i =

(
∂iZ

M
)
E A

M (4.20)

The gauge field that the super-p-brane couple to must also be the super-(p + 1)-form gauge

field AAp+1...A1 .

Superbranes can be classified into various types. Those which dynamics are fully determined

by the worldvolume of the superbrane itself are called the simple superbrane. There are other

types of superbrane that have gauge fields in its worldvolume. For example, the D-brane requires

a vector field Aµ in its worldvolume in addition to the superspace coordinates. However, the

later is beyond the scope of this dissertation.

The M2-brane is a simple superbrane, making it easy to formulate. The general simple

superbrane action can be written in two parts: the kinetic term and the gauge coupling term.

The kinetic term is the supersymmetric generalisation of the bosonic p-Brane action,

SK = Tp

∫
dp+1ξ

[
−1

2

√
−γγijE a

i E
b

j ηab +
1

2
(p− 1)

√
−γ
]

(4.21)

We notice that the summation of the target space metric is only over the Grassmann even

indices, a feature of the superspace formalism [16]. The second part, namely the gauge coupling
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term, contains the coupling to the background fields,

SG = q

∫
dp+1ξ ϵi1...ip+1E A1

i1
· · ·E Ap+1

ip+1
AAp+1...A1 (4.22)

These two parts are related by the κ symmetry, which matches the number of bosonic and

fermionic degrees of freedom. This κ symmetry is inspired by the κ symmetry in the superpar-

ticle action [28]. The κ symmetry also constraints the number of p one can have in a given D

dimensional space-time. We will discuss these in detail later. For now, we will adapt the result

that the value of p must satisfy [29],

D − p− 1 =
1

4
nminN, for p ≥ 2, (4.23)

where nmin is the minimum degrees of freedom of spinor in D dimensions, and N is label for

supersymmetry. Apparently, the M2-brane has D = 11, p = 2, nmin = 32 and N = 1, which

satisfied the constraint.

Combining all together, we obtain the general action for the super-p-brane [5]:

S = Tp

∫
dp+1ξ

[
−1

2

√
−γγijE a

i E
b

j ηab +
1

2
(p− 1)

√
−γ

+
1

(p+ 1)!
ϵi1...ip+1E A1

i1
· · ·E Ap+1

ip+1
AAp+1...A1

]
.

(4.24)

which is the generalised supersymmetric action for (4.14) plus super-gauge field coupling term

(Wess-Zumino term.) At p = 1, this supermembrane action reduces to the Green-Schwarz

superstring action, as seen in the later section.

The equation of motion of the worldvolume metric γij gives rise to the so-called embedding

equation,

γij = E a
i E

b
j ηab = ∂iX

m∂jX
ngmn (4.25)

The supermembrane action is manifestly target-space supersymmetric. Therefore, the

bosonic and fermionic degrees of freedom should match to satisfy the supersymmetric con-

dition. However, this is not the case as we considered initially. For example, in the case of

D = 11, p = 2 supermembrane, the bosonic target-space coordinates take 11 values, while the

Majorana spinor in eleven-dimension has 32 spinor degrees of freedom. We should also consider

the gauge symmetry in the worldvolume.

The three-dimensional worldvolume diffeomorphism invariance is given by,

δu(3)ZM = ui∂iZ
M ,

δu(3)γij = uk∂kγij + 2∂[iu
kγj]k

(4.26)
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which should be subtracted from the number of bosonic degrees of freedom, leaving only 11−3 =

8 bosonic degrees of freedom. On the other hand, the Majorana spinor satisfies the first-

order equation of motion on the worldvolume, rather than the second-order equation of motion

satisfied by the bosons. Hence, we expect that the spinor degrees of freedom will match twice

the bosonic degrees of freedom. Even though we considered all the bosonic gauge symmetries

and the order of field equations, there is still a discrepancy of a factor of 2. This difference can

only be resolved by introducing the fermionic gauge symmetry, also known as the κ symmetry.

The κ symmetry is a fermionic gauge symmetry generated by a Majorana spinor κα, which is

both a tangent space spinor and a worldvolume scalar [30]. The transformation parameterised

by κα has a projector that reduces the number of degrees of freedom by half [31].

The transformation rules of the κ symmetry for general super-p-brane action are given by,

δEa = 0,

δEα = κβ(1 + Γ)αβ.
(4.27)

where δEA = δZME A
M , A = (a, α) and Γα

β is given by,

Γα
β =

(−1)
d(d−3)

4

d!
√
−γ

ϵi1...idE a1
i1

· · ·E ad
id

(Γa1...ad)
α
β (4.28)

where d = p + 1 is the worldvolume dimension, and Γa are the Dirac matrices in the vielbein

basis. The choice of Γα
β is made such that it satisfies the equation

Γα
γΓ

γ
β = δαβ , (4.29)

provided that the equations of motion of the action are satisfied. Consequently, the operators
1
2
(1 ± Γ)αβ become projection operators. As a result, kappa symmetry implies that we can

gauge away half of the fermionic degrees of freedom Eα. This is why the term "fermionic gauge

symmetry" is used. With such fermionic gauge symmetric, we can match the physical bosonic

and fermionic degrees of freedom in eleven-dimension, and therefore demonstrates the manifest

supersymmetric.

Several constraints must be satisfied for the super-p-brane action to admit κ symmetry [31].

The field strength F = dA should satisfies,

Fαap+1...a1 = 0

Fαβγap−1...a1 = 0

Fαβap...a1 =
(−1)p+

1
4
(p+1)(p−2)

2p!

(
Γa1...ap

)
αβ

(4.30)
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The superspace torsion is given by,

TA = dEA + EBΩ(g)B
A =

1

2
EBECTBC

A (4.31)

where Ω(g)B
A is the connection one-form on the curved target space. The constraints on the

torsion are then given by,
ηca(T

c
b )α = 0,

T a
αβ = Γa

αβ.
(4.32)

We noticed a remarkable consequence that these constraints imply the equations of motion

of a maximally supersymmetric supergravity theory, e.g. D = 11 supergravity or D = 10 type

II supergravity. Therefore, the background is demanded to be the corresponding maximally

supersymmetric supergravity for the supermembrane action to be supersymmetric.

4.4 Green-Schwarz Superstring in Flat Superspace

Before we move on to solve the supermembrane action, it is convenient for us to look at the

superstring action. We will provide a covariant description of type IIA superstrings in the flat

space background by combining the global super-Poincare invariance and local κ symmetry [27].

The Green-Schwarz superstring action is generalised from the Brink–Schwarz superparticle

action. The covariant action for massless superparticle is known as,

S =
1

2

∫
dτe−1EmEnηmn (4.33)

where Em = ∂τX
m − iθ̄γm∂τθ, and e is the square root of the one-dimensional metric. The

dotted variable stands for taking the derivative with respect to the worldline parameter τ . The

superparticle action is invariant under the global supersymmetry transformations parameterised

by a constant Majorana spinor ϵ [32],

δXm = iϵ̄Γmθ, δθ = ϵ, (4.34)

and a hidden local κ symmetry given by [28],

δXm = iθ̄Γmδθ, δθµ = i(Γm)
µ
νE

mκν , δe = −4e∂τ θ̄
µκµ (4.35)

where κµ is an arbitrary function of τ .
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Given the Brink–Schwarz superparticle action, it is natural that one may think of general-

ising it to the superstring action, which is given as,

S = T1

∫
d2ξ

√
−γγijEi

mEj
nηmn. (4.36)

Considering that the type IIA superstring has two Majorana-Weyl fermions θ1, θ2 of opposite

chirality and each with 16 components, the pull-back of supervielbein Ei
m is given by,

Ei
m = ∂iX

a − i
(
θ1µ(Γa)µν∂iθ

1ν + θ2µ(Γa)µν∂iθ
2ν
)
. (4.37)

as we only interested in the bosonic part. However, this action does not admit the κ symmetry.

We restored this symmetry by introducing an extra term in the action,

S = T1

∫
d2ξ

(
− 1

2

√
−γγijEi

mEj
nηmn

− iϵij∂iX
m
(
θ̄1Γm∂jθ

1 − θ̄2Γm∂jθ
2
)
+ ϵij θ̄1Γm∂iθ

1θ̄2Γm∂jθ
2

)
.

(4.38)

This action is invariant under both the global supersymmetric transformation and local κ

symmetry transformation.

4.5 The M2-brane in D=11 Flat Superspace

Section 4.2 shows that the eleven-dimensional supergravity is a consistent background of the

supermembrane in the eleven-dimensional target space. The flat space is a trivial solution to

the field equations of eleven-dimensional supergravity and thus can be chosen as the background

where the supermembrane moves in [31].

The flat space supervielbein in D = 11 is given by,

EM
a = (δm

a,−i(Γa)µνθ
ν) , EM

α = (0, δµ
α) . (4.39)

As stated in section 4.4, we will not distinguish contracting between a and m. Then, Ei
A is

given by,

Ei
A =

(
∂iX

a − iθ̄ρ(Γa)ρσ∂iθ
σ, ∂iθ

α
)

(4.40)

We eliminate the 3-form gauge field and obtain the super-2-brane action in flat background

[33,34],

S =T2

∫
ξ3
[
−1

2

√
−γγijEi

aEj
bηab +

1

2

√
−γ

−iϵijkθ̄Γab∂iθ

(
Ej

aEk
b + iEj

aθ̄Γb∂kθ −
1

3
θ̄Γa∂jθθ̄Γ

b∂kθ

)]
.

(4.41)
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Notice that this supersymmetric action is similar to (4.33) and (4.38). So, it is natural that one

consider this action as a further generalisation of the Green-Schwarz Superstring action that

admits the local ϵ supersymmetry and local κ symmetry.

The equations of motion, after integrating out the 3-form gauge field A, with respect to γij,

Xm, and θ are given by,

γij = Ei
mEim, (4.42)

∂i
(√

−γγijEj
m
)
+ ϵijkEi

n∂j θ̄Γ
m

n∂kθ = 0, (4.43)

(1− Γ)γijEi
mΓm∂jθ = 0, (4.44)

respectively. The Γ is given in (4.28) taking p = 2.

The flat space admit the super-Poincare symmetry, which generators are momentum Pm,

angular momentum Mmn, and super charges Q. The canonical momentum Km = ∂L
∂Ẋm

is given

by,

Km = −T2
2

[√
−γγ0jEj

m + ϵ0jk
(
Ej

n +
i

2
θ̄Γn∂θ

)
θ̄Γk

m∂jθ

]
(4.45)

We can further integrating over ξ1ξ2 to obtain the conserved momentum Pm, which is given

by,

Pm = −T2
2

∫
dξ1dξ2

[√
−γγ0jEj

m + ϵ0jk
(
Ej

n +
i

2
θ̄Γn∂θ

)
θ̄Γk

m∂jθ

]
(4.46)

Similarly, we can also obtain the conserved angular momentum Mmn, which is given by,

Mmn =

∫
dξ1dξ2

[
XmKn −XnKm − iT2

4

√
−γγ0iEi

pθ̄ΓpΓ
mnθ +

T2
8
ϵ0ijEi

pEj
qθ̄ΓpqΓmnθ

+
iT2
8
ϵ0ij
(
Ei

p +
i

3
θ̄Γp∂iθ

)(
θ̄ΓqΓmnθθ̄Γpq∂jθ + θ̄ΓpqΓ

mnθθ̄Γq∂jθ
)]

(4.47)

The rest of the supercharges Qµ are determined to be,

Qµ = −T2
2

∫
dξ1dξ2

[
2i
√
−γγ0iEi

m(Γm)
µ
νθ

ν − ϵ0ijEi
mEj

n(Γmn)
µ
νθ

ν

− 4i

3
ϵ0ij
(
Ei

m +
2i

5
θ̄Γm∂iθ

)(
(Γmn)

µ
νθ

ν θ̄Γn∂jθ + (Γn)µνθ
ν θ̄Γmn∂jθ

) ]
.

(4.48)
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4.6 Classical Solutions of M2-Brane Action in Flat Superspace

Unlike string theory, we cannot choose a particular gauge to put the equations of motion of

the M2-brane into linear form, making it impossible to find the general solution. However, we

can find specific classical solutions in a particular background [31]. The fermionic solution is

always solved by θ = 0; therefore, the equation of motion is reduced to that of the bosonic

membranes. For a classical solution to the bosonic membrane with fermionic terms set to zero,

one can verify the condition δS = 0 to check if the solution is supersymmetric, like we did

in section 3 for the supergravity action. We present here some stable classical solution in flat

space:

(1) String Solution. We can perform a double dimensional reduction to compactify one di-

mension on a circle; the ansatz is given by,

X10 = ξ2, ∂ξ2X
m = 0, m = 0, . . . , 9, (4.49)

resulting in a flat ten-dimensional background (Mink)10×T 1. We will discuss in detail the

double dimensional reduction in section 5. Then, the theory reduces to a ten-dimensional

superstring theory, and all the string solutions will solve the equations of motion of the

M2-brane.

(2) Static Toroidal Membrane. We can further perform a double dimensional reduction,

namely wrapping around a torus, to reduce to a nine-dimensional superparticle theory.

The ansatz are give by,

X10 = ξ2, X9 = ξ1, ∂ξ2X
m = 0, m = 0, . . . , 8, (4.50)

The extended object has reduced to a massive point particle, whose mass is given by the

energy on the toroidal membrane. The equation of motion of the particle is given by,

Xm = Xm
0 + pmξ0, p2 = m2 (4.51)

(3) Spherical Solutions. A spherically symmetric solution of M2-brane was first founded

by Dirac when solving for the static model of membrane carrying electric charges [35].

There is no static solution without the presence of electric charge; however, a periodically

pulsating membrane solution is valid, similar to the pulsating string solution of string
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theory [36]. The solution is given by,

X0 = ξ0, X1 = ρ(ξ0) sin ξ1 cos ξ2, X2 = ρ(ξ0) sin ξ1 sin ξ2,

Xm = 0, m = 3, . . . , 10.

(4.52)

where ρ(ξ0) is solved from the equation,

ρ̇+
1

ρ20

√
(ρ40 − ρ4) = 0, ρ0 > 0 (4.53)

(4) Pancake Membrane. Kikkawa and Yamasaki initially propose this solution as a solution

of an open membrane propagating in a Minkowski space-time with dimension greater or

equal to 5 [37]. The solution for the M2-brane in the eleven-dimensional background can

be written as,
X0 = ξ1,

X1 + iX2 = ξ1eiωξ
0

, X3 + iX4 = ξ2eiωξ
0

,

Xm = 0, m = 5, . . . , 10.

(4.54)

This solution describes a disk spinning in the five-dimensional space-time.

The spinning disc solution is an open membrane solution that breaks the supersymmetry.

Hence, we considered only the closed membrane solution to avoid the issue [31]. For

consistency, the open membrane solution was generalised to the closed membrane solution

by identifying the boundaries of two copies of the disc-like membrane [38].

One can perform the semi-classical quantisation by fluctuating around these classical solu-

tions [6].

4.7 p-Branes as Solitons

We have introduced the supermembrane action as the source term of the 11d supergravity;

nevertheless, there is another interpretation of supermembranes as solitons. The solitons are

the topological defects in quantum field theory [39], leading to the non-perturbative effects of

the theory. The p-brane can be viewed as the solitons that solve the equations of motion of the

corresponding quantum field theory [40].

The soliton approach of supermembranes was through the effective action for the extended

solitons of supersymmetric field theories. It was first noticed that the effective action of the
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D = 6, N = 1 abelian supersymmetric gauge theory is the Green-Schwarz covariant superstring

action in four-dimensional space-time [30]. Such a solution to the gauge theory is referred to

as the soliton. Later on, the generalisation of this superstring theory inspired the construction

of the supermembrane action. It was argued that certain types of membranes correspond to

solitons of some supergravity background [41]. The types of supermembranes are listed as the

H, C,R sequences, which are sequences of p-branes in D-dimensional target space-time [29].

It was also postulated in the same paper that the O sequence, which contains the string in

10d supergravity and 2-brane in 11d supergravity, would present the same property. Later

studies have shown that these extended objects include the σ-model source and hence are not

solitons [25,42]. However, the super-five-brane was proved to be the soliton solution to the 11d

supergravity, but it is not our main focus here [43].
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5 Dimensional Reduction of Supergravity and M2-Brane

It was shown that the D=10 type IIA supergravity can be obtained from the D=11 supergravity

by dimensional reduction [20]. It is also known that we can deduce the action of type IIA su-

perstring from the action of supermembrane in D = 11 supergravity background. However, we

have seen that the extended object in D=11 supergravity is a two-dimensional membrane, not

the one-dimensional string. Hence, to match the dimensions, one must reduce the worldvolume

dimension from three to two and the target space dimension from eleven to ten. In this section,

we will show how we derive the D=10 type IIA supergravity from the D=11 supergravity via

the Kazula-Klein dimensional reduction, and how one can obtain the superstring action from

the supermembrane action via the double dimensional reduction.

The string theory has thought to be special due to the Weyl symmetry that only presents

when p = 1. It is not obvious that the Weyl symmetry van emerge from the double dimensional

reduction from the M2-brane theory that does not admit Weyl symmetry itself. We will see that

the Weyl symmetry does arise from the residual symmetry of the three-dimensional worldvolume

diffeomorphism after dimensional reduction.

5.1 From D = 11 Supergravity to D = 10 Type IIA Supergravity

In this section, we rewrite the index convention for clarity: the hatted indices run over all eleven-

dimensional coordinates, and non-hatted indices run over all ten-dimensional coordinates.

To carry out the dimensional reduction, naturally, we can separate ten space-time coordi-

nates from the original eleven dimensions,

xm̂ = (xm, y), m = 0, . . . , 9. (5.1)

The dimensional reduction is to compactify the eleventh dimension on a circle S1, which means

that the eleventh coordinate is identified as y = y+2πRc. Then, we can represent the periodic

dependence of the eleventh coordinate by its Fourier modes. For example, for a field ϕ(xm̂) in

eleven dimension, it can be expressed as,

ϕ(xm̂) = ϕ(xm, y) = ϕ(xm) +
∑
n̸=0

einθϕn(x
m) (5.2)

where θ = y
R
. Thus, one field in eleven dimensions will correspond to an infinite number of

fields in ten dimensions, as n can take any possible integers. However, the non-zero modes,
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where n ̸= 0, will be massive in ten-dimensional space-time due to their momentum in the

compactifying eleventh dimension. Such massive particles are called Kaluza–Klein particles.

Such massive particle looks troublesome. However, one could see that the momentum of

such massive modes is inversely proportional to the radius of the compactifying s=dimension

Rc. Hence, as we take the Rc → 0 limit, such modes become infinitely massive and entirely

decoupled from the theory, with only the massless zero modes left.

The general form of metric that is reduced by one dimension is given by,

ds2d+1 = e2αdϕds2d + e−2(d−2)αdϕ (dy + Amdx
m)2 (5.3)

where ϕ is a scalar field and

αd =

√
1

2(d− 1)(d− 2)
. (5.4)

The choice of the constant αd ensures that the action after dimensional reduction takes the

canonical form without the extra exponential of ϕ. Substituting d = 10 into this general

expression, we find the decomposition of the eleven-dimensional metric,

ds211 = e
1
6
ϕds210 + e−

4
3
ϕ(dy + Amdx

m)2 (5.5)

And the metric is given by,

g
(11)
m̂n̂ =

 e
1
6
ϕgmn + e−

4
3
ϕAmAn Ame

− 4
3
ϕ

Ane
− 4

3
ϕ e−

4
3
ϕ

 (5.6)

Or, we can write in terms of the vielbein,

e(11)m̂
â =

 e
1
12

ϕem
a e−

2
3
ϕAa

0 e−
2
3
ϕ

 , e(11)â
m̂ =

 e−
1
12

ϕea
m −Ane

− 1
12

ϕ (e−1)a
n

0 e
2
3
ϕ

 (5.7)

where â runs through 0 to 10 and a runs through 0 to 9. We use the local Lorentz symmetry

to set eya = 0. To obtained the pre-factor factor from compactifying on the circle, we integrate

out the eleventh dimension, ∫ 2πRc

0

dy
√
g11yy = 2πRce

− 2
3
ϕ (5.8)

With the vielbein given above, we can deduce the dimensional reduction of the Einstein term

in the action,∫
d11xe(11)R(g(11)) = 2πRc

∫
d10xe(10)

(
R(g(10))− 1

2
∂mϕ∂

mϕ− 1

4
e−

3
2
ϕFmnF

mn

)
, (5.9)
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where Fmn = 2∂[mAn] is the field strength of Am. Notice that the e on the LFS is of the

eleven-dimensional vielbein while the e on the RHS is the ten-dimensional. One can check that

these terms match those in (2.16).

Then, we consider the dimensional reduction of the gauge field term e
48
F

(11)
m̂1...m̂4

F (11)m̂1...m̂4 .

The 3-form gauge field Am̂n̂p̂ can be divided into two ten-dimensional objects, one with the

circle direction y and one without,

A
(11)
m̂n̂p̂ = (Cmnp, Bmn) (5.10)

where we take A(11)
mn10 to be Bmn and A(11)

mnp to be Cmnp to agree with the convention in type IIA

supergravity. Therefore, the 4-form field strength Fm̂n̂p̂q̂ decomposes into,

F
(11)
mnp10 = 3∂[mBnp] = Hmnp

F (11)
mnpq = 4∂[mCnpq] = Fmnpq

(5.11)

and written on vielbein basis,

F
(11)
a1a2a310

= e−
5
12

ϕHa1a2a3

F (11)
a1a2a3a4

= e−
1
3
ϕ
(
Fa1...a4 + 4A[a1Ha2a3a4]

)
= F̂a1a2a3a4

(5.12)

Then we got,

1

48
F

(11)
â1...â4

F (11)â1...â4 =
1

48
e−

2
3
ϕF̂a1a2a3a4F̂

a1a2a3a4 +
4

48
e−

5
6
ϕHa1a2a3H

a1a2a3 (5.13)

Substituting back the vielbein, we obtain the dimensional reduction of the gauge field term,∫
d11xe(11)

1

48
F

(11)
m̂1...m̂4

F (11)m̂1...m̂4

= 2πRc

∫
d10xe(10)

(
1

48
e−

1
2
ϕF̂m1...m4F̂

m1...m4 +
1

12
eϕHm1...m3H

m1...m3

)
(5.14)

Finally, the Chern-Simons term can be transformed easily considering that the antisymmetry

of the wedge products,

F
(11)
4 ∧ F (11)

4 ∧ A(11)
3 = F

(10)
4 ∧ F (10)

4 ∧B(10)
2 (5.15)

Putting everything together, we derived the dimensional reduction of the D = 11 super-

gravity action on a circle,

S10 =
2πRc

2κ211

∫
d10xe(10)

(
R(g(10))− 1

2
∂mϕ∂

mϕ− 1

4
e−

3
2
ϕFm1m2F

m1m2

− 1

48
e−

1
2
ϕF̂m1...m4F̂

m1...m4 − 1

12
eϕHm1...m3H

m1...m3

)
+

∫
F4 ∧ F4 ∧B2

(5.16)
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which is precisely the bosonic part of the action for type IIA supergravity. Thus, we have

obtained the D = 10 type IIA supergravity from the D = 11 supergravity.

5.2 Double Dimensional Reduction

One can obtain an action of the type IIA superstring coupled to an N = 2, D = 10 supergravity

background from the action of supermembrane coupled to an D = 11 supergravity background

via double dimensional reduction [4]. The notion of "double" comes from the fact that we

simultaneously compact the worldvolume and target space-time on a circle to reduce dimension,

which reduces the target space and worldvolume dimension by one. We can also see that the

conformal symmetry of string theory arises from the dimensional reduction process as the

residual symmetry of the three-dimensional diffeomorphism [44].

Following the dimensional reduction on the supergravity action, we move to the dimensional

reduction on the action of the supermembrane coupled to the supergravity background. The

action is given in (4.1). We will first work on the pure bosonic sector given in (4.3).

Also, we can do the two-one splitting for the worldvolume coordinates,

ξ î = (ξi, ρ), i = 0, 1. (5.17)

and also for the target space coordinates,

X(11)m̂ =
(
X(10)m, Y

)
. (5.18)

Then, we can choose the partial static gauge choice such that ρ = Y . Several ansatz were made

for the double dimensional reduction to be carried out. We demand that,

∂ρX
m = 0 (5.19a)

∂ργîĵ = 0 (5.19b)

∂Y gm̂n̂ = 0 (5.19c)

∂YAm̂n̂p̂ = 0 (5.19d)

Then, a suitable choice of ten-dimensional components from the eleven-dimensional fields is

given by,

g
(11)
m̂n̂ = e−

2
3
ϕ

 gmn + e2ϕAmAn Ame
2ϕ

Ane
2ϕ e2ϕ

 (5.20)
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Using the embedding equation (4.25), we determine the induced metric on the worldvolume

after dimensional reduction,

γ
(3)

îĵ
= g

(3)

îĵ
= e−

2
3
ϕ

 γij + e2ϕAiAj Aie
2ϕ

Aje
2ϕ e2ϕ

 (5.21)

where γij = gij = ∂iX
m∂jX

ngmn is the induced metric ion the world-sheet in ten-dimensional

target space, and Ai = ∂iX
mAm. We determine that,

det
(
γ
(3)

îĵ

)
= det

(
γ
(2)
ij

)
(5.22)

since γ(3) is a three-by-three matrix.

Recall that the membrane field equation is given by (4.7), by substituting the ansatz above,

we reduce the dimension to ten,

∂i
(√

−γγij∂jXngmn

)
+

1

2

√
−γγij∂iXn∂jX

p∂mgnp

+
3

6
ϵi1i2i3∂i1X

n∂i2X
p∂i3Y Fmnp10 = 0

(5.23)

Using (5.19), we have only ∂ρy ̸= 0. Therefore, the membrane field equation becomes,

∂i
(√

−γγij∂jXngmn

)
+

1

2

√
−γγij∂iXn∂jX

p∂mgnp

+
1

2
ϵij∂iX

n∂jX
pHmnp = 0

(5.24)

where Hmnp = Fmnp10 is the 3-form field strength from dimensional reduction of Fm̂n̂p̂q̂. We

notice that (5.24) is just the equation of motion of the action,

S =

∫
d2ξ

(
1

2

√
−γγij∂iXm∂jX

ngmn +
1

2
ϵij∂iX

m∂jX
nBmn

)
. (5.25)

with respect to Xm. This action describes a one-dimensional string coupled to the type IIA

supergravity background.

Consequently, dimensional reduction reduces the eleven-dimensional membrane to a ten-

dimensional string, eliminating the cosmological term
√
−γ. It also changes the Wess-Zumino

term from being coupled to a three-form into being coupled to a two-form. The other field

contents in the type IIA supergravity, Cmnp, Am, and ϕ are decoupled from the bosonic sector

but will still couple to the theory in the fermionic sector.

The double dimensional reduction differs from conventional Kaluza-Klein dimensional re-

duction by making the partial gauge choice ρ = Y , which means we compactify the target space

and worldvolume on the same circle. The ansatz (5.19b) indicates that we discard the massive

modes on the worldvolume in the reduction. Such truncation of massive modes is proved to be

consistent with the membrane and the background supergravity [45].
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5.3 From Supermembrane to Superstring

We have discussed the dimensional reduction of the bosonic part of the eleven-dimensional

membrane action coupled to supergravity. Likewise, we can perform dimensional reduction

on the full supermembrane action in superspace [4]. For simplicity, we eliminate the auxiliary

metric by writing in the Nambu-Goto form of action,

S(11) = T3

∫
d3ξ

[
−
√

− det
(
Eî

âEĵ
b̂ηâb̂

)
+

1

6
ϵî1 î2 î3E Â1

î1
E Â2

î2
E Â3

î3
AÂ3Â2Â1

]
. (5.26)

Similarly, we separate the eleventh dimension of the bosonic sector,

ZM̂ = (Xm, Y, θµ) = (ZM , Y ), (5.27)

All 32 supercharges are preserved under the dimensional reduction from D = 11 to D = 10,

hence all the Grassmann odd coordinates are preserved. We imposed the same ansatz,

∂ρZ
M = 0 (5.28)

and identify ρ = y as in the bosonic case.

Then, the Kaluza-Klein ansatz of the supervielbein is given by,

E(11)
M̂

Â =

 EM
a EM

α EM
10

Ey
a Ey

α Ey
10


=

 EM
a EM

α + AMχ
α ΦAM

0 χα Φ

 ,

(5.29)

where EM
a and EM

α are the components of the ten-dimensional supervielbein EM
A, AM is the

superspace U(1) gauge field. Φ and χα are superfields. The leading orders of them are dilaton

ϕ and dilatino λα, respectively. As we did for the vielbein, we imposed local Lorentz symmetry

to set E(11)
y
a = 0.

The gauge fields AM̂N̂P̂ decomposed into,

A
(11)

M̂N̂P̂
= (CMNP , BMN) (5.30)

where we have identified A(11)
MNP = CMNP and A(11)

MNy = BMN .

Substituting all the reduced ten-dimensional fields into the supermembrane action (5.26)

and setting θµ = 0, we obtained the action of superstring that coupled to a supergravity
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background,

S(10) = T1

∫
d2ξ

(
−
√
− detEi

aEj
bηab +

1

2
ϵij∂iZ

M∂jZ
NBNM

)
. (5.31)

where all constants are absorbed into T1 = 2πRcT2.

We can determine the κ symmetry after dimensional reduction. Substituting the K-K

ansatz, the transformation law in ten dimensions is determined to be,

δZm = 0,

δZα = κβ(1 + Γ(10))αβ.
(5.32)

where Γ(10) is determined from Γ(11) via identifying a3 = 11,

(Γ(10))αβ =
1

6
√
−γ

ϵijEi
a1Ej

a23
(
Γ
(11)
[a1a2

Γ
(11)
11]

)α
β

=
1

2
√
−γ

ϵijEi
a1Ej

a2
(
Γ(11)
a1a2

Γ
(11)
11

)α
β

(5.33)

which is equivalent to the one obtained from the general expression (4.28) since Γ
(11)
a = Γ

(10)
a

for a = 1, . . . , 10. The compact coordinate y also transformed under the κ symmetry,

δy = −κβ
(
1 + Γ(10)

)α
βAα (5.34)

Hence, to maintain the partial gauge choice y = ξ3, a worldvolume diffeomorphism of

u(3) = (0, 0, κβ(1 + Γ(10))αβAα) (5.35)

must be made.

5.4 Weyl Invariance from the Three-Dimensional Worldvolume Dif-

feomorphism

Now we consider the symmetry of the theory after dimensional reduction. The superstring

theory should have Weyl symmetry on the two-dimensional world sheet. However, with the

ansatz given in (5.19), the worldsheet only admits a two-dimensional diffeomorphism with no

further residual local symmetry. The diffeomorphism parameter is given by,

u(3) î(ξ1, ξ2, ρ) =
(
u(2)i(ξ1, ξ2), 0

)
(5.36)

It was shown that the Weyl symmetry can arise from the residual three-dimensional diffeomor-

phism invariance by imposing the appropriate form of Kaluza-Klein ansatz [44].

39



The reason we do not retain the Weyl invariance is that we put the theory in the partial

gauge ρ = y. Instead, we can release the gauge choice by setting ∂ρy = 1, or equivalently,

y = ρ+ f(ξ0, ξ1) (5.37)

where f is an arbitrary function. Now the diffeomorphism parameter uî is given by,

u(3) î(ξ1, ξ2, ρ) =
(
u(2)i(ξ1, ξ2), uρ(ξ1, ξ2)

)
(5.38)

and the residual symmetry group is the two-dimensional diffeomorphism

δu(2)xm = ui∂ix
m

δu(2)γij = uk∂kγij + (∂iu
k)γkj + (∂ju

k)γki

(5.39)

with additional residual symmetries given by,

δuρxm = uρ∂ρx
m = 0

δuρy = uρ∂ρy = uρ

δuργîĵ = (∂îu
ρ)γρĵ + (∂ĵu

ρ)γρ̂i

(5.40)

Those residual symmetries yield the transformation law of f ,

δf(ξ1, ξ2) = uρ(ξ1, ξ2) (5.41)

Then, we modify the decomposition of the worldvolume metric to be depended on f(ξ0, ξ1),

γ
(3)

îĵ
= e−

2
3
ϕ′

 e−f(ξ0,ξ1)γij + e2ϕ
′
GiGj Gie

2ϕ′

Gje
2ϕ′

e2ϕ
′

 (5.42)

while the decomposition of the target space metric gm̂n̂ is kept the same as in (5.20). We can

determine that relation of the determinant of the induced metric is given by,√
− det γ

(2)
ij = ef

√
− det γ

(3)

îĵ
(5.43)

considering that γij is an 2× 2 matrix, from which we can further determined that,

δuργij = uργij. (5.44)

Thus, uρ plays the role of the Weyl symmetry factor eϕ under the Weyl transform γ′ij = eϕγij.

Substituting the embedding equation we can also determine γij, Gi, and ϕ′,

ϕ′ = ϕ,

Gi = ∂ix
mAm + ∂if,

γij = ef (∂ix
m∂jx

ngmn) .

(5.45)
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5.5 Dilaton Dependence of Type II Superstring Theory

The ten-dimensional type II supergravity theory presents an NS-NS sector multiplied by the

tree-level factor e−2ϕ while the R-R sector is not. Studying the dilaton coupling to the R-R

sector from the view of the worldsheet would provide a clear understanding of the dilaton

dependence of higher order terms as we go beyond the effective theory [46].

The conjecture was made that the R-R fields have an extra eϕ factor that cancelled the

tree-level dilaton coupling. Therefore, the dilaton dependence vanishes in the kinetic term in

the superstring action while the presence in the Weyl anomaly beta function, which has the

standard form of R +D2ϕ+H2 + e2ϕ(F 2
[2] + F 2

[4]) = 0.

Studying the eleven-dimensional origin of the dilaton will help us understand the nature of

dilaton dependence. As mentioned in the previous section, we can obtain the D = 10 super-

gravity from the supermembrane coupled to the D = 11 supergravity via double-dimensional

reduction. The origin of the dilaton is the (11,11) component of the D = 11 metric; the R-R

one-form gauge field is the (11,m) vector in the D = 11 metric, while the RR three-form gauge

field is from the (m,n,p) component of the D = 11 three-form gauge field. We consider only

RR fields coupling terms obtained from the Wess-Zumino term, expanding in the field contents

to the leading order gives the following expression,

1

6
ϵî1 î2 î3E Â1

î1
E Â2

î2
E Â3

î3
AÂ3Â2Â1

= −1

8
ϵî1 î2 î3∂îZ

M̂ ÊM̂
â∂ĵZ

N̂ ÊN̂
b̂∂k̂Z

P̂ ÊP̂
α̂
(
θ̄γâb̂

)
α̂
+ . . . .

(5.46)

From the double dimensional reduction we obtained the ten-dimensional Wess-Zumino term,

the leading order is an NS-NS gauge coupling term while the O(θ2) order term is an R-R

coupling term, which is given by,

1

2
eϕϵij∂ix

m∂jx
nθ̄

[
1

8
FmpΓnΓ

p +
1

288
FklpqΓ11Γn

(
Γklpq

m − 8Γklpδsq
)]
θ. (5.47)

Similarly, the Nambu-Goto term in the supermembrane action after double dimensional reduc-

tion and expanding in the higher order of θ of superfields give rise to a parity-even R-R gauge

fields coupling with the same eϕ pre-factor.

The existence of the eϕ factor of the R-R form gauge fields after double dimensional reduction

is consistent with our conjecture of the extra eϕ factor made previously. One can also determine

that for higher kth order coupling terms of R-R gauge fields in type IIA superstring effective

action, the extra factor would be e(k+n−2)ϕ, where n is the genus on the string worldsheet.
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Other than the pre-factor of eϕ, the type II supergravity also admit a dilaton term that

takes the form, ∫
d2ξ

√
−γϕR(γ) (5.48)

This term does not present in the classical analysis in our previous discussion in double di-

mensional reduction. In fact, this term can be regarded as arising from quantising the mem-

brane [47]. In the same paper, a conclusion is also presented that this construction of dilaton

term only works with critical dimension, which rules out the non-critical supermembrane.
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6 Conclusions and Outlook

In this dissertation, we delved into the fundamental concepts of the M2-brane. We reviewed how

the M2-brane couples to 11d supergravity and how it reduces to superstrings in ten dimensions.

We began by introducing supergravity in eleven dimensions and type II supergravities in ten

dimensions. The discussion then proceeded to the Killing spinor condition for the pure bosonic

solution that admits global supersymmetry.

Subsequently, we derived the classical solution of supergravities. In particular, we solved

the M2-brane solution of the eleven-dimensional supergravity by employing the brane ansatz,

which features an isotropic transverse space and a worldvolume recognising a three-dimensional

diffeomorphism. For detailed calculation, readers are referred to Appendix B. This section also

highlighted that the M2-brane solution possesses a horizon at r = 0. The geometry near the

horizon is AdS4 ×S7, and we demonstrated that we can extend the metric to the entire space-

time by introducing the M2-brane source term. We also mentioned the possibility of stacking

multiple M2-branes.

The next segments of this dissertation presented the action for the M2-brane in eleven di-

mensions, followed by the derivation of the classical solution to the M2-brane action. Firstly,

the bosonic p-brane action in flat and curved backgrounds was given. The generalisation of

the bosonic brane action into the supermembrane action was illustrated. Then, the κ symme-

try was introduced for supermembrane action to match the bosonic and fermionic degrees of

freedom. We noted that the requirement of the supermembrane action admitting κ symmetry

is equivalent to the equations of motion of the eleven-dimensional supergravity, demonstrating

the close relation between them. We described Brink-Schwarz superparticle and Green-Schwarz

superstring action to discuss the κ symmetry further. Classical solutions of the M2-brane ac-

tion in flat space were also discussed. Finally, we ended this section by discussing the soliton

interpretation of supermembrane.

In the last part, we discussed the dimensional reduction of supergravity and the M2-brane.

First, we introduced the Kaluza-Klein reduction of the 11D supergravity to 10D type II A

supergravity by compacting one spatial degree of freedom on a circle. The decomposition

of field components into lower-dimensional fields was illustrated. Then, using a partial gauge

choice, we compacted both the target space and worldvolume of the M2-brane action, obtaining

the Green-Schwarz superstring coupled to the supergravity background. We verified that the
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κ symmetry is preserved in the dimensional-reduced superstring theory. Moving to the Weyl

symmetry exclusive to string theory, we established that with an appropriate gauge choice, the

Weyl symmetry can be revived from the residual symmetry of the worldvolume diffeomorphism

for the M2-brane action. The final point of discussion centred on the dilaton dependence in type

II superstring theory and the dilation term emerging from the quantisation of the membrane

action.

The exploration of the M2-brane and M-theory remains an active and evolving area. Over

the past several decades, various properties of the M2-brane have been discovered, providing

us strong confidence that it is the fundamental object in the proposed M-theory. Moreover,

the role of the M2-brane is important in formulating a consistent quantum gravity theory in

eleven dimensions. Notably, the M2-brane in M-theory is not a straightforward analogue to

the fundamental strings in string theory. This complexity arises because the M2-brane is non-

perturbative, making it difficult to quantise. Nonetheless, a way to approach a quantum theory

is through semi-classical quantisation, which is to study the fluctuation around the classical

solutions [6, 48,49].

Moreover, the advancements in the AdS/CFT correspondence give a new way to study the

M-theory. Specifically, the ABJM theory, which is a gauge theory, is postulated to be the

dual for M-theory on AdS4 × S7/Zk [50, 51]. Delving into these topics will offers insights into

properties of M2-branes, extending beyond the scope of this review.
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A Notation Convention

In this essay we use the following conventions:

gmn = (−,+, . . . ,+), (A.1)

ϵ012 = ϵ012 = −1, (A.2)

{Γm,Γn} = −2ηmn (A.3)

We label the indices with the following rules:

(1) In the bosonic case: We split the coordinate in to (p+1,D-p-1) form: xm = (xi, ys). The

transverse coordinates labelled by indices s when discussing the membrane ansatz.

(2) In the supersymmetric case: TheM for the superspace coordinate ZM , and can be divided

into Grassmann even coordinate xm and Grassmann odd coordinate θµ, M = (m,µ). The

supervielbein E A
M with tangent space supervielbein indices A = (a, α).

(3) In world-volume formalism: The worldvolume coordinates ξi with worldvolume indices i.

And target space coordinates are labelled by the corresponding superspace indices.

(4) In dimensional reduction: The hatted indices are the indices of higher dimensions, while

the lower dimension coordinates are labelled by un-hatted indices.

B Solving for the M2-brane Ansatz

With the ansatz for all the field contents in hand, we can insert them into the field equations

to solve for the p-brane (a p-dimensional extended object) solution. Using the vielbein, we can

obtain the Ricci tensor, which is needed for later analysis. The differential one-form is given

by em = e m
m dxm. Similar to the space-time indices, the tangent space indices also split as

m = (i, s). Substituting the ansatz, we obtain the vielbein basis:

ei = eA(r)dxiδii, es = eB(r)dysδss. (B.1)

The spin connection 1-form ωij = ω
ij

i dxi can be obtained from the torsion-free Cartan

structure equation,

dei + ωi
j ∧ ej = 0. (B.2)
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The spin connection is determined as following,

ωij = 0,

ωit = e−B(r)δtt∂tA(r)e
i

ωst = e−B(r)δtt∂tB(r)es − e−B(r)δss∂sB(r)et.

(B.3)

The curvature 2-form Rm
n can be determined via the equation:

Rm
n = dωm

n + ωm
p ∧ ω

p
n (B.4)

From the curvature 2-form, we can obtain the Ricci tensor, with the non-zero terms given by:

Rij =− ηije
2(A−B)

(
A′′ + d (A′)

2
+ d̃A′B′ +

(d̃+ 1)

r
A′

)

Rst =− δst

(
B′′ + dA′B′ + d̃ (B′)

2
+

(2d̃+ 1)

r
B′ +

d

r
A′

)

− ysyt
r2

(
d̃B′′ + dA′′ − 2dA′B′ + d (A′)

2 − d̃ (B′)
2 − d̃

r
B′ − d

r
A′

)
,

(B.5)

where d = p+ 1 represents the worldvolume dimension, d̃ = D − d− 2, and prime denotes the

derivative with respect to r.

Then, we can substitute the curvature components, Ricci tensor, and the gauge field ansatz

into the Einstein equation:

A′′ + d (A′)
2
+ d̃A′B′ +

(d̃+ 1)

r
A′ =

d̃

2(D − 2)
S2 (B.6a)

B′′ + dA′B′ + d̃ (B′)
2
+

(2d̃+ 1)

r
B′ +

d

r
A′ = − d

2(D − 2)
S2 (B.6b)

d̃B′′ + dA′′ − 2dA′B′ + d (A′)
2 − d̃ (B′)

2 − d̃

r
B′ − d

r
A′ +

1

2
(ϕ′)

2
=

1

2
S2 (B.6c)

where the first equation is derived from Rij, the second is from the δst sector of Rst, and the

third one is from the ysyt
r2

sector. The S term on the right-hand side (RHS) of the equations is

given by,

S =


(
e

1
2
aϕ−dA+C

)
C ′ electric: d = n− 1, ς = +1

λ
(
e

1
2
aϕ−d̃B

)
r−d̃−1 magnetic: d = D − n− 1, ς = −1

(B.7)

when considering the graviton coupling to the n − 1-form gauge field. We can also determine

the equation of motion for the gauge field:

∇2C + (C ′ − dA′ + d̃B′)C ′ = 0. (B.8)
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where ∇2 is the Laplacian in the transverse space {ym}, and for the dilaton:

ϕ′′ + dA′ϕ′ + d̃B′ϕ′ +
(d̃+ 1)

r
ϕ′ = −1

2
ςaS2 (B.9)

where ς = ±1 for the electric or magnetic ansatz.

One may notice that the left-hand side (LHS) of the dilaton’s equation of motion bears a

resemblance to the Laplacian of the isotropic field ϕ in the transverse space:

∇2ϕ = ϕ′′ +
d̃+ 1

r
ϕ′. (B.10)

As we will see in the later section, in order to preserve supersymmetry, the solution should

satisfy the following condition:

dA′ + d̃B′ = 0. (B.11)

Substituting this constraint into the equations (B.6) and (B.9) and using the Laplacian, we

obtain:

∇2A =
d̃

2(D − 2)
S2, (B.12a)

∇2ϕ = −1

2
ςaS2, (B.12b)

d(D − 2)
(
A′2)+ 1

2
d̃
(
ϕ′2) = 1

2
d̃S2, (B.12c)

where we have eliminated B from the equations [52].

We can deduce from equation (B.12a) and (B.12b) that the ansatz for gauge field and dilaton

admit a linear relation:

ϕ′ =
−ςa(D − 2)

d̃
A′. (B.13)

For simplicity, we introduce a new notation ∆:

a2 = ∆− 2dd̃

D − 2
. (B.14)

Then, we can write (B.12c) in terms of ∆:

S2 =
∆ϕ′2

a2
, (B.15)

hence the equations of motion become one equation of ϕ only:

∇2ϕ+
ς∆

2a
ϕ′2 = 0 (B.16)

and can be further simplified into the form of the Laplace equation:

∇2e
ς∆
2a

ϕ = 0. (B.17)
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This Laplace equation can be easily solved with the assumption that the transverse space is

isotropic
1

rD−d−1
∂r

(
rD−d−1∂re

ς∆
2a

ϕ
)
= 0 (B.18)

by the solution

e
ς∆
2a

ϕ = 1 +
κ

rD−d−2
= 1 +

κ

rd̃
≡ H(y), κ > 0 (B.19)

where the boundary condition is set to 0, i.e. ϕ|r→∞ = 0, for asymptotically flat solution. The

integration constant κ is set to be positive to ensure there is no naked singularity at finite r,

like the mass M in the Schwarzschild metric. Apply the same flat boundary condition on A

and B, using (B.13), we can obtain the expression for A in terms of H,

eA = H
−2d̃

(D−2)∆ (B.20)

Recall we have the constraint dA′ + d̃B′ = 0, we can also express B in terms of H,

eB = H
2d

(D−2)∆ (B.21)

We can obtain the relation between C that determined the gauge field and A that determine

the metric via equation (B.7) and (B.15),

∂re
C =

−
√
∆

a
e−

1
2
aϕ+dAϕ′. (B.22)

where we have used that a is negative when taking the square root. One can also check that

this solution satisfies the equation of motion of the gauge field (B.8). In electric coupling case

where ς = 1, we can rewrite (B.22) by absorbing proper coefficient into the derivative,

∂re
C =

2√
∆
∂re

dA− 1
2
aϕ (B.23)

Thus, collecting all the terms, the Mp-brane solution for D-dimensional general supergravity

theory is given by,

ds2 = H
−4d̃

(D−2)∆dxidxjηij +H
4d

(D−2)∆dysdytδst (B.24a)

eϕ = H
2a
ς∆ ς =

+1, electric

−1, magnetic
(B.24b)

H(y) = 1 +
k

rd̃
, (B.24c)

with C(r) satisfied the relation given in (B.23),

eC =
2√
∆H

(B.25)
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