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Abstract

Symmetry is a core concept when dealing with many physical sys-

tems. In this essay, the mathematical structures of the geometric sym-

metry, the internal symmetry and the supersymmetry are analysed.

Seeking the mathematical patterns of the fundamental particles are

crucial, therefore, this essay is a gentle introduction to the topic of

supersymmetry. Starting from the historic development, then followed

by the analysis of the algebras between the most general symmetries

for the S-matrix. The properties of superalgebras, supermultiplets and

their interpretations are introduced at the end. Different types of su-

persymmetry are discussed throughout the essay.
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1 Introduction

Supersymmetric theories of nature are a set of mathematical structures where

internal symmetry and spacetime symmetry (Poincare group) for usual quan-

tum field theory are extended to a new type of symmetry → supersymmetry

[1, 2]. The correspondence of the transformations between bosons and fermions

represents the elegance and importance of such theories. Moreover, it was ini-

tially realised by implementing the anti-commutators between the generators

of the above symmetry groups [3, 4]. In addition, the language of supersym-

metry is used in flat spacetime where geodesics are straight lines, whereas the

combination between the supersymmetry and the gravity can be applied to a

curved geometry setting in general [5]. Despite that the viewpoint of consid-

ering supergravity as a potential candidate of the unifying field theory which

avoids the horrible ultraviolet problems has changed, supergravity, as the name

of itself points out that the unification of four fundamental forces including

gravity can be expected from the perspective of regarding supergravity as a

low-energy effective field theory at present [6].

Quantum states which live on the Hilbert space can be generalised in the

basis of |a, s, p⟩ where each of the three letters demonstrate different types of

particles, spins and the associate 4-momentum respectively [7]. One of the

crucial internal symmetry among the elementary particles, the SU(3)f flavor

symmetry, was established to solve the interactions between quarks of the

same spin s [8]. Therefore, a potentially larger symmetry structure which

has inherent flavor symmetry and the transformations between different spins

s could be suggested as in the SU(6) group [7, 8, 9]. However, this SU(6)

structure is not the ultimate answer of the hardrons (under the relativistic

conditions) as well as the S-matrix, according to Coleman and Mandula (C-

M theory hereafter) in 1967, such that one has to construct a certain type

of symmetry group which contains the isomorphism structure merging the

spacetime symmetry group (Poincare group) and an internal symmetry one
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spontaneously [7, 8, 10, 11].

The historic development of supersymmetry was not only directly led by

the discoveries of Coleman and Mandula who were digging for the fundamental

symmetries of the S-matrix. Nonetheless, it was also inspired from seeking the

conformal invariant pattern for fermionic fields in string theory.

Proposition 1.1. The invariant conformal transformation is viewed as

follows [8],

Σ± → F±(Σ±)

where Σ is the spatial parameter, T stands for the time parameter paring

with the spatial ones Σ.

Σ± is therefore the light-cone coordinates in the form of Σ± = T±Σ√
2

and

F± represents two independent functions arbitrarily [8].

With two additional d-dimensional fermion field doublets Ψa
1(Σ, T ) and

Ψa
2(Σ, T ), an action for 1

2
-integer spin particles can be extended as [8, 12]:

S[X,Ψ] =

∫
dΣ+

∫
dΣ−(T ∂X

a

∂Σ+

∂Xa

∂Σ− + iΨa
2

∂

∂Σ+
Ψ2a + iΨa

1

∂

∂Σ−Ψ1a) (1)

where X is the bosonic field and T represents the string tension which dis-

tinguishes the time parameter T . The first term in the above brackets is the

bosonic term in string theory, and the rest of the expressions are the extended

fermionic actions in which two fermionic fields are involved in the system obey-

ing the Pauli’s exclusion theorem for fermions.

Hence, the fermionic fields Ψa
1(Σ, T ) and Ψa

2(Σ, T ), in order to keep the

conformal transformation invariance as stated in the Theorem 1.1, the invari-

ant conformal transformation upon the fermionic fields can be demonstrated

respectively as [8, 12]:
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Ψa
1(Σ, T ) → (

dF+

dΣ+
)−

1
2 Ψa

1(Σ, T ) (2)

Ψa
2(Σ, T ) → (

dF+

dΣ+
)−

1
2 Ψa

2(Σ, T ) (3)

Indeed, the fermionic fields Ψa
1 and Ψa

2 hold for (2 +d)-dimensional symmetric

invariance with two conformal ones plus the Lorentz invariance.

Noticeably, the interchange between the bosons and fermions can be ob-

tained from a special kind of symmetry → supersymmetry, which could be

derived from the above theory [8, 12]. The minuscule symmetry between in-

terchanging those two fields are displayed as follows:

δΨa
2(Σ

+,Σ−) = iT Θ2(Σ
−)

∂

∂Σ−X
a(Σ+,Σ−) (4)

δΨa
1(Σ

+,Σ−) = iT Θ1(Σ
+)

∂

∂Σ+
Xa(Σ+,Σ−) (5)

δXa(Σ+,Σ−) = Θ2(Σ
−)Ψa

2(Σ
+,Σ−) + Θ1(Σ

+)Ψa
1(Σ

+,Σ−) (6)

where Θ1 and Θ2 are the infinitesimal functions of the fermionic fields, similar

to the Grassmann variables which are anti-commuting with themselves [8].

Since both the action S in the above theory and the light-cone coordinates

Σ± suggest that this is a 2-dimensional supersymmetry in which the symmetry

transformation between different quantum states could result in the change of

the spin s, which differs from the flavor symmetry, the 4-dimensional field

theory satisfying the interchange between fermions and bosons is therefore

theoretically possible.
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One of the earliest supersymmetric model in 4-dimensions can be traced

back to 1970s, involving one Majorana field Φ and four bosonic fields A, B,

F and G. The minuscule transformations of the above fields are written as

[2, 8, 13, 14, 15]:

δA = ᾱΦ (7)

δB = −iᾱγ5Φ (8)

δΦ = ∂µ(A+ iγ5B)γµα + (F − iγ5G)α (9)

δF = ᾱγµ∂µΦ (10)

δG = −iᾱγ5γµ∂µΦ (11)

Therefore, a general Lagrangian density can be built up upon the above

fields and symmetry transformations in the following form [2, 3, 8, 13, 14, 15]:

L = Lf + Lm + Lg

= −1

2
∂µA∂

µA− 1

2
∂µB∂

µB − 1

2
Φ̄γµ∂µΦ +

1

2
(F 2 +G2)

+m[FA+GB − 1

2
Φ̄Φ] + g[F (A2 +B2) + 2GAB − Φ̄(A+ iγ5B)Φ]

(12)

where the Lagrangian density L is constructed by the free Lagrangian Lf =

−1
2
∂µA∂

µA− 1
2
∂µB∂

µB − 1
2
Φ̄γµ∂µΦ + 1

2
(F 2 +G2) showing on the second line

of eq(12), followed by two invariants Lm, Lg added together on the last line of

eq(12).

One potential invariant Lλ = λF can be further considered as a shift and

therefore can be neglected [3].
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The equations of motion for the scalar and pseudo-scalar fields F and G

can be found below respectively [2, 3, 8], which are useful to simplify the

expression of the Lagrangian density above.

F +mA+ g(A2 −B2) = 0 (13)

G+mB + 2gAB = 0 (14)

Hence, the same Lagrangian density can be re-expressed as [2, 3, 8, 14, 15]:

L = −1

2
∂µA∂

µA− 1

2
∂µB∂

µB − 1

2
Φ̄γµ∂µΦ +

1

2
(F 2 +G2)

− 1

2
(A2 +B2) − 1

2
mΦ̄Φ

− gmA(A2 +B2) − 1

2
g2(A2 +B2) −GΦ(A+ iγ5B)Φ

(15)

The above Lagrangian density, indicated as eq(15), provides the relationships

of the masses in different fields and many interactions which are the result of

supersymmetric invariance [3, 8].

Overall, the history of supersymmetry is developed closely to the sym-

metric transformations between different quantum states for both bosons and

fermions. In addition to the SU(3)f internal symmetry, the transformations

between the different values of the spin s can be considered as a result of

the supersymmetric actions. Thus, some field theories which satisfied super-

symmetry in 4-dimension can be then generated systematically. In short, the

following sections of this essay will focus on the mathematical construction

and the physical applications of the supersymmetry theory.
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2 Mathematical Preliminaries

2.1 Lorentz Group

Define the n×n identity matrix in the form of In, and the matrix elements of

In,m is:

In,m =

In 0

0 −Im

 (16)

Then, the Minkowski metric tensor can be also written as ηηη = I1,3 (The metric

signature for the 4-dimensional spacetime is (+,−,−,−) if not mentioned

afterwards).

Definition 2.1. A Lorentz group can be defined as [2, 5, 16]

O(t, x) = {M ∈ GL(n,R) : MT It,xM = It,x} (17)

where the term It,x in the 4-dimensional spacetime is the metric tensor

ηηη. As for higher dimensions of the (n+ 1)-spacetime, the 3-dimensional

space-like parameter x can be replaced by n where the structure of the

group O(t, n) remains the same as O(t, x).

Proposition 2.2. The Lorentz transformation of the metric tensor pre-

serves the form and notation of itself. The covariant form of the expres-

sion is:

Λµ
αΛν

βηµν = ηαβ (18)

where Λµ
ν is the matrix representation of the form of Lorentz transfor-

mation group.
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Notably, the indices labelling in Greek letters in the eq(18) are Lorentz

indices which are different from the matrix element indices.

Proposition 2.3. Because of the constraints detΛ = ±1 and |Λ0
0| ≥ 1,

there are four connected elements disconnected in the Lorentz group

O(t, n) as indicated in the following form [5, 16, 17]:

O(t, n) = L = L↑
+ ⊕ L↓

+ ⊕ L↑
− ⊕ L↓

− (19)

where ↑ and ↓ stand for the positive and negative sign of the time pa-

rameter, which also defines the orthochronous and non-orthochronous

Lorentz transformation respectively [5]. Moreover, the subscript plus or

minus sign indicates the determinant being 1 or −1. The notation of

O(t, n) rather than O(t, x) can be regarded as the generalisation from

4-dimensional spacetime to n-dimensional pseudo-Euclidean basis [5].

Therefore, some important subgroups of the Lorentz group O(t, n) can be

determined such that [5, 16, 17]:

SO(t, n) = L↑
+ ⊕ L↓

+ (20)

SO(t, n)+ = L↑
+ (21)

where the orthochronous Lorentz group SO(t, n) is a special orthogonal group

which is defined to obey the condition that detΛ = 1.

The proper orthochronous Lorentz group is therefore SO(t, n)+, satisfying

those two constraints and mapping to the light-cone aligning with the direction

of the time flows [5].
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Definition 2.4. The Lie algebra of the Lorentz group O(1, 3) for a 4-

dimensional spacetime is defined to be [5]:

o(1, 3) = {m ∈ M4×4(R) : mT = −ηmη} (22)

Proof 2.5. Using the exponential mapping for the Lie algebras, one can

write the Lorentz transformation matrix Λ explicitly as [5]:

O(1, 3) ∋ Λ(τ) = e(τm) (23)

Then, because of the fact that the Lie algebra o(1, 3) satisfies the Lorentz

transformation which preserves the metric, the following equality can be

obtained:

Λ(τ)TηΛ(τ) = η (24)

Differentiating both sides of the eq(24), it can be shown as [5]:

d

dt
[(eτm)Tη(eτm)]|t→0 = 0 (25)

⇒ [
d

dt
(eτm)T ]η(eτm)|t→0 + (eτm)Tη[

d

dt
(eτm)]|t→0 = 0 (26)

Hence,

mTη + ηm = 0 ⇐⇒ mT = −ηmη,∀m ∈ o(1, 3) (27)

2.2 Spinor Algebra 1

Moreover, if the inner product of the vector components can be written as

in the same signature as the matrix In,m is defined, such that < x, x >=

(x1)2 + (x2)2 + ...+ (xn)2 − (xn+1)2 − ...− (xn+m)2 = η(x, x), then the Clifford
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group Γn,m can be defined based on the Clifford algebras Cl(n,m) as follows

[16]:

Definition 2.6. A real Clifford algebra Cl(n,m) (Clifford algebra here-

after), relies hugely on the metric signature represented in the above in-

ner product with n positive inputs and m negative ones, can be defined

to satisfy the following properties apart from the associativity [16, 18]:

{ea, eb} = eaeb + ebea = 2In,m =


+1, a = b = 1, ..., n.

0, a ̸= b.

−1, a = b = m, ..., n+m.

(28)

Also, one possible orthonormal basis of the Clifford algebra is [16]:

{1, en1, en1en2, en1en2en3, ..., en1en2en3...en+m−1, en1en2en3...en+m−1en+m}

In the case of the scalar product satisfies η(x, y) = 0, where there is no

quadratic form in its expression, the Grassmann algebra can therefore

be obtained [16].

Proposition 2.7. The dimension of the Clifford algebra is 2n+m, if the

metric is denoted to be the same as the matrix In,m [16, 18].

Definition 2.8. Therefore, the Clifford group can be defined as [16]:

Γn,m ⊂ {x ∈ Cl(n,m) : ∀ν ∈ E, xνx−1 ∈ E} (29)

where E is a (n+m)-dimensional vector space over the real field.
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After introducing the Clifford group, there are a few subgroups to be classi-

fied which have significant relations to the Lorentz groups → orthogonal group

and its subgroups as introduced above in eq(20) and eq(21).

Definition 2.9. Define one of the subgroups of the Clifford group

Cl(n,m) ⊃ Pin(n,m), and then [16, 17]:

Pin(n,m) = {x ∈ Γn,m : |n(x)| = 1} (30)

where n(x) is the norm of element x in the Clifford group Cl(n,m). Since

x1, x2 ∈ Γn,m, the norm of the product of x1 and x2 can be re-written

as n(xy) = n(x)n(y) [16].

Other subgroups of the Clifford group can be expressed as follows [16, 17,

19]:

Spin(n,m) = Pin(n,m) ∩ Cl(n,m)even (31)

Spin+(n,m) = {x ∈ Spin(n,m) : n(x) = 1} (32)

where Cl(n,m)even is the even subalgebra of the Clifford algebra Cl(n,m)

satisfying the condition that n+m = even [16].

Proposition 2.10. The double covering map for a general group G, to

be acted on the space X evenly, can be written as ρ : X → X/G [20].

Subsequently, the subgroup of the Clifford group Spin+(n,m) ⊂

Cl(n,m) is the double cover of the subgroup of the orthogonal group

SO+(n,m) ⊂ O(n,m) [16, 17].

Before proving the above proposition, a double covering relationships in
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the Lie group theory can be simply understood in the following way that the

homomorphic (isomorphic when bijective) structures of different Lie groups

remain the same except for the mappings. The bijective mapping pattern is

therefore replaced by a 2-1 surjective structure.

Proof 2.11. Firstly, if an element y ∈ Spin+(n,m), then the negative

valued −y ∈ Spin+(n,m) is true [16]. Secondly, the kernel group of

the homomorphic relationship between the Spin+(n,m) group and the

SO+(n,m) group is Z2 [20]. Lastly, use the path-lifting characteristic

of the covering mappings to construct a smooth curve from −1 to 1

which subsequently proves the double-cover relationship between the

Spin+(n,m) and the SO+(n,m) groups [16, 20]. Introduce a path s(θ)

in the following form:

s(θ) = e(2θeaeb) = cos 2θ + sin 2θeaeb (33)

take θ in the range of [0, π
2
] to complete the path which indicates that

Spin+(n,m) is a double-cover of SO+(n,m) group.

Similarly, the double cover group relations can be extended to Spin(n,m)

as of SO(n,m) and Pin(n,m) as of O(n,m) respectively using the same tech-

nique of proof as shown above [20]. More importantly, for a simply-connected

double covering group Spin(n) (n > 3 to satisfy the simply-connected prop-

erty), it then can be treated as a universal covering group of SO(n) (SO(n) =

SO(n, 0), such that min(n,m) ≤ 1) [16, 19, 20].
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Proposition 2.12. The exact sequence of the n-dimensional (n > 3)

spin group Spin(n) is [19, 20, 21]:

1 → {−1,+1} → Spin(n) → SO(n) → 1

where 1 represents the type of groups contains single element [21].

The topological aspects of the Lorentz group → the orthogonal group

O(n,m) and its subgroup SO(n,m) are displayed as follows.

Proposition 2.13. The homeomorphic structure of the O(n,m) group

is O(n)×O(m)×Rnm [21]; The homeomorphic structure of the SO(n,m)

group is S(O(n) ×O(m)) × Rn,m [21].

The dimension of the above topological spaces is (n+m)(n+m−1)
2

[21].

2.3 Lorentz Algebra

For the restricted (proper orthochronous) Lorentz group SO+(n,m) (SO+(1, 3)

in the conventionally 4-dimensional spacetime), the corresponding Lorentz al-

gebra can be considered as the properties of the small perturbations near its

identity [5].
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Proposition 2.14.

Λ = 14×4 + ω (34)

ωµν = −ωνµ (35)

Λµ
ν = [e−

i
2
ωρσMρσ ]µν (36)

ωµ
ν = − i

2
ωρσMρσ

µ
ν (37)

Mρσ
µ
ν = i(ησνδρ

µ − ηρνδσ
µ) (38)

Using Proposition 2.2. eq(18), the invariance of the metric tensor indicates

the antisymmetric property of the small perturbation term ω as shown in

eq(35). Also, the matrix Mρσ
µ
ν is the generator of the Lorentz group as

described in eq(37) specifically. Therefore, since the antisymmetric property

of the perturbation matrix ω, to avoid the whole quantity being zero, the

generator must be antisymmetric as well. (The product of symmetric tensor

and antisymmetric tensor is zero) The explicit form of the Lorentz generator

is demonstrated as in eq(38). It is logical to apply the result in eq(22) in

the proper orthochronous Lorentz group such that the generators M form a

basis of the Lorentz algebra o(1, 3) [5]. Another property of the generators

of the Lorentz group is Hermitian. Since the transpose of a pair of matrix

indices µ, ν interchange, the minus sign obtained by the complex conjugate of

i cancels out. Then, the commutation relations of the generators M can be

demonstrated as follow [5]:

Proposition 2.15.

[Mµν ,Mρσ] = −i(ηµρMνσ − ηµσMνρ − ηνρMµσ + ηνσMµρ) (39)
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2.4 Poincare Group and its Algebra

The Lorentz invariance pluses the translation invariance equals to the Poincare

invariance as in ISO(1, 3) = SO(1, 3) ⋊ R4. The Poincare group is isometric

[5, 22]. Denote the Poincare group as P , the product of two consistent Poincare

transformations can be determined by [1, 2, 5, 8, 17]:

Proposition 2.16.

(Λi, ai) · (Λj, aj) = (ΛiΛj,Λiai + aj) (40)

The ai expressed above is the translation constant. The group (Λ, a) can

be decomposed into four components in its 5 × 5 matrix form [17].

Proposition 2.17.

(Λ, a) =

Λµ
ν aµ

0 1

 (41)

The resultant Poincare group P is the mixture of Lorentz group L and the

translation group T which form a semi-direct product in 4-D [5]. Similarly,

the Poincare group has 4 components as well as the Lorentz group, denoted

as [5]:

Proposition 2.18.

P = P ↑
+ ⊕ P ↓

+ ⊕ P ↑
− ⊕ P ↓

− (42)

Notably, the identity of the Poincare group is not trivially the identity ma-

trix, but a blended matrix in the form of containing all the diagonal elements

as 1, except for the last diagonal term as 0. So that, the identity in Poincare
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group is Pidentity = diag(1, 1, 1, 1, 0) [5].

Define the representation of the proper orthochronous Poincare group P ↑
+

as g(Λ, a), then the infinitesimal version of the representation matrix can be

expressed as [2, 5]:

Proposition 2.19.

g(Λ, a) = 1 − i

2
ωρσMρσ

µ
ν + iaµP

µ (43)

The above ω, a are all infinitesimal. Using the definition of the Lie algebra

given in eq(24), the nature of the generators M and P can be determined as

a tensor and a vector respectively [5]. The commutation relation between the

different generators Pi and Pj is 0 because the commutation reality between

different translations is satisfied universally in presumption. Finally, the com-

mutation relations between the different generator M and P can be obtained

as expanding the Lorentz matrix around identity. To sum up [2, 5, 17],

Proposition 2.20.

[Pµ, Pν ] = 0 (44)

[Mµν , Pχ] = −i(ηµχPν − ηνχPµ) (45)

According to the boost and rotation generators in the Lorentz transfor-

mation, the group SO(n,m) is related to the total angular momentum [2, 5].

However, as stated in the previous section, the double covering identity can

also be obtained if the group SO(n,m) is half-integer-valued [2]. The construc-

tion of Casimir operator is based on decomposing the Lie algebra so(1, 3; K) ∼

sl(2,C)× sl(2,C) [2, 5]. Consider the simplest representations as follow [2, 5]:
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Proposition 2.21. 1. (0, 0)-representation: total spin = 0; transforms

as a 1-D scalar[2, 5].

2. (1
2
, 0)-representation: total spin = 1

2
; transforms as a 2-D left-handed

spinor[2, 5].

3. (0, 1
2
)-representation: total spin = 1

2
; transforms as a 2-D right-

handed spinor[2, 5].

Consider a tensor of (2, 0)-type, the decomposition of the tensor T µν is [2],

T µν ∈ (
1

2
,
1

2
) ⊗ (

1

2
,
1

2
) = (

1

2
, 0) ⊗ (0,

1

2
) ⊗ (0,

1

2
) ⊗ (

1

2
, 0)

= [(1, 0) ⊕ (0, 0)] ⊗ [(0, 1) ⊕ (0, 0)]

= (1, 1) ⊕ (1, 0) ⊕ (0, 1) ⊕ (0, 0)

which suggests that the tensor of (2, 0)-type can be constructed by the a

scalar (spin-0) field, a spin-1 field and a spin-2 field [2]. Furthermore, every

spinor representation can be generated using direct products and direct sums

of the left and right-handed spinor fields [2, 5]. Notably, the Dirac spinor can

be represented according to the direct sum of the left and right-handed spinor

representations as (1
2
, 0) ⊕ (0, 1

2
) = (1

2
, 1
2
) [2, 5].

2.5 Spinor Algebra 2

To introduce the Weyl spinor representations, several concepts should be con-

sidered in prior. Define Mi as an arbitrary element of the group SL(2,C),

which can form a mapping between the group SL(2,C) and the automorphism

group A, then the representation g should satisfy the following equations [5],
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Proposition 2.22.

g(1SL(2,C)) = 1A (46)

g(Mi) · g(Mj) = g(Mi ·Mj) (47)

Therefore, the arbitrary element ψi in A can be structured as a linear

combination of its magnitude and the basis vector [5]:

Proposition 2.23.

ψ = ΣdimA
i=1 ψiêi (48)

⇒ g(M)ψ = ΣdimA
i=1 [ΣdimA

j=1 gi
j(M)ψj]êi (49)

The equivalent representations of g can be defined as satisfying the follow-

ing property: gi(M) = Ugj(M)U−1 [5]. So the inequivalent type of the rep-

resentations are actually the classification of the left and right-handed Weyl

spinor.

1. For the left-handed Weyl spinor [5],

ψ′
a = Ma

bψb

(a, b = 1, 2)

∀M ∈ SL(2,C)

where M is the representation mapping to itself in the special linear group

SL(2,C).

2. For the right-handed Weyl spinor [5],

ψ̄′
ȧ = (M)∗ȧ

ḃψ̄ḃ

(ȧ, ḃ = 1, 2)

∀M ∈ SL(2,C)
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where M∗ the complex conjugate of M is applied as a representation mapping

to itself again in the special linear group SL(2,C). The representations M and

its conjugation M∗ are not equivalent for which M∗ acts on the dual space A∗

opposed to A [5].

The transformations between the differently dotted spinors can be obtained

as follow [5]:

Proposition 2.24.

ψ′
a = Ma

bψb = (M−1T )abψ
b (50)

ψ̄′
ȧ = (M)∗ȧ

ḃψ̄ḃ = (M)∗−1T
ȧ

ḃ
ψ̄ḃ (51)

Similar to the process of lowering/raising the indices for the Lorentz ten-

sors, a spinor metric tensor ϵ is to lower or raise the indices in spinors [5].

Accordingly, as shown in the Figure 1, the transformation of the spinors with

different handed representations and different spinor indices can be generalised

by the metric for spinors. The relations between the differently dotted and

differently handed Weyl spinors can be therefore illustrated in Figure 2, where

the vector spaces and its corresponding dual spaces are given for each type

of Weyl spinors. Notably, only two kinds of Weyl spinor are not equivalent

algebraically, due to the property of the special linear group SL(2,C) [2, 5].

Proposition 2.25.

ϵ =

 0 1

−1 0

 (52)

The metric tensor ϵ is antisymmetric and the Grassmann variables can be

constructed based upon this. Below are two figures illustrating that the metric

tensor is the bridge between spinors and their corresponding spaces.
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Figure 1: Mapping relations between the vector space to the dual space for
Weyl spinors[5]

Figure 2: The space and transformation relations for differently dotted and
differently handed Weyl spinors[5]
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Two useful invariant expressions in the composition of the spinor fields can

be obtained as [5]:

(ψχ) = ψaχa (53)

(ψ̄χ̄) = ψ̄ȧχ̄
ȧ (54)

where a and ȧ vary from 1 to 2 as integer coefficients, ψ ∈ A∗ is the spinor in

the dual space of A where χ acts on. (In the above figures, the vector space

and its dual space are noted as F and F∗, to avoid any confusions, the notation

I have used for the rest of the essay is A)

Definition 2.26. Grassmann variables is defined based on the proper-

ties of the spinor algebra as [5, 23]:

{ψa, ψ
b} = {ψa, ψb} = {ψa, ψb} = 0 (55)

{χ̄ȧ, χ̄
ḃ} = {χ̄ȧ, χ̄ḃ} = {χ̄ȧ, χ̄ḃ} = 0 (56)

{ψa, χ̄ḃ} = 0 (57)

This anti-commuting relations are the direct result of the spin-statistic

theorem where bosons with integer-valued spins commute with each other and

fermions with half-integer-valued spins anticommute with each other [2, 5, 23,

24].
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Proposition 2.27. The Grassmann variables have the following calcu-

lation properties based upon the metric tensor ϵ[2, 5]:

θaθb = −1

2
ϵab(θθ) (58)

θaθb =
1

2
ϵab(θθ) (59)

θ̄ȧθ̄ḃ =
1

2
ϵȧḃ(θ̄θ̄) (60)

θ̄ȧθ̄ḃ = −1

2
ϵȧḃ(θ̄θ̄) (61)

(θθ)θa = 0 (62)

After introducing the anticommutation relations of the Grassmann vari-

ables, the different types of spinors from the special linear group (Lie group)

SL(2,C) and the algebraic properties of the proper orthochronous Lorentz

group (Lie group) L↑
+, the relationship between those two groups is led by a

universal cover such that [2, 5]:

Proposition 2.28.

L↑
+
∼= SL(2,C)/Z2 (63)

Similar to the Lorentz generator in the restricted Lorentz group L↑
+, the

generator for its universal-cover group has the following identities [5]:

Proposition 2.29.

Tr[σµνσρσ] =
1

2
(ηµρηνσ − ηµσηνρ) +

i

2
ϵµνρσ (64)

Tr[σ̄µν σ̄ρσ] =
1

2
(ηµρηνσ − ηµσηνρ) − i

2
ϵµνρσ (65)
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Definition 2.30. The Dirac 4-spinor can be defined as [2, 5]:

Ψ =

ϕ

ψ

 (66)

where ϕ ∈ A and ψ̄ ∈ Ȧ∗ are given.

In the γ-matrices representation, the Weyl spinor can be expressed as in

the rules for Clifford algebra [5].

{γµW , γ
ν
W} = 2ηµν14×4 (67)

where µ = 0, 1, 2, 3.

γ5W = iγ0Wγ
1
Wγ

2
Wγ

3
W (68)

Definition 2.31. In the Weyl basis [2, 5, 24],

γ0 =

 0 12×2

12×2 0

 (69)

γi =

 0 σi

σi 0

 (70)

γ5 =

−12×2 0

0 12×2

 (71)

The Dirac representation can also be concluded as follow [2, 5, 24]:
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Definition 2.32. In the canonical basis for the Dirac spinors[2, 5, 24],

γ0 =

12×2 0

0 −12×2

 (72)

γi =

 0 σi

σ̄i 0

 (73)

γ5 =

 0 σ0

σ̄0 0

 (74)

Finally, the Majorana representation can be obtained by [2, 5, 24]:

Definition 2.33. In the Majorana representation [2, 5, 24],

γ0 =

 0 σ2

−σ̄2 0

 (75)

γ1 =

iσ3 0

0 iσ3

 (76)

γ2 =

 0 −σ2

−σ̄2 0

 (77)

γ2 =

−iσ1 0

0 −iσ1

 (78)

γ2 =

σ2 0

0 −σ2

 (79)
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3 Supergroups, Superalgebras and Their Rep-

resentations

3.1 Commutation and anticommutation rules

As stated in the introduction, Coleman and Mandula tried to determine the

symmetry of the scattering matrix which led to the realization of the super-

symmetry to some extent. Now, the algebraic structure of supersymmetry can

be accordingly defined as the concepts of Lie superalgebra are involved [1, 2, 5].

To specify the difference between the Poincare algebra and the Poincare super-

algebra, one has to consider an additional Majorana term in the commutation

and anticommutation relations as followed [1, 2, 5, 8]:

Proposition 3.1.

{Qa, Q̄b} = 2(γµ)abPµ (80)

[Qa, Pµ] = 0 (81)

[Qa,M
µν ] = (σ4µν)abQb (82)

{Qa, Qb} = −2(γµC)abPµ (83)

where Qa is the Majorana spinor-charge, labelling from 1 to 4 [1, 2, 5, 8].

Also, σ4µν = i
4
[γµ, γν ] and Q̄a = (Q†γ0)a [1, 2, 5, 8].
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3.2 Lie superalgebra

Definition 3.2. To define a Lie superalgebra, for simplicity, taking the

mod2-graded vector spaces(because of the bosonic and fermionic fields),

which is to consider the composition laws of such two vector subspaces,

then [2, 5]:

L0 ⊕ L1 = L (84)

and the bilinear relation [2, 5],

[., .} : L× L→ L (85)

the generators with different grades have the following property [2, 5],

[ta, tb} = iCc
abtc (86)

where the grades for different generators are assigned by the vector

spaces they belong to [2, 5]. The subscript values 0 and 1 for L is the

corresponding values of the grade for each generators within its vector

space. The dimensions for different subspaces are D0 and D1 respec-

tively [2, 3].

The notation [., .} represents both the antisymmetric product as in

[., .] and the symmetric product as in {., .} respectively, depending on

whether the elements of the bosonic generator exists or not [2].

There are three properties for the Lie superalgebra which should be noticed

as demonstrated below:
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Proposition 3.3. 1. Composition law of the grades (for the elements

in the subspaces)[2, 5]

∀ti ∈ Li (i, j = 0, 1) [ti, tj} ∈ L(i+j)mod2 (87)

2. S-ACR property[2, 5]

∀ti ∈ Li tj ∈ Lj (i, j = 0, 1) [ti, tj} = −(−1)ij[tj, ti} (88)

3. S-JAC property[2, 5]

[tk, [ti, tj}}(−1)kj + [ti, [tj, tk}}(−1)ik + [tj, [tk, ti}}(−1)ji = 0 (89)

Since in the supersymmetry, the relationships between the bosons and

fermions have been imposed an additional symmetry. The above two vector

subspaces L0 and L1, building up the complete vector space L, are the spaces

for the boson-generators and fermion-generators respectively [2]. Hence, the

results of the bilinear products between different generators differ from the

number of the bosonic and fermionic generators contained in the commuta-

tion (or anticommutation) relations [2]. The results read off as the grading

property and the s-ACR property above suggested, such that [2, 5]:

[L0, L0} ⊂ L0 (90)

[L0, L1} ⊂ L1 (91)

[L1, L1} ⊂ L0 (92)

⇒ Ck
ji = −(−1)ijCk

ij (k = (i+ j)mod2) (93)
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The s-Jacobi identity can be achieved naturally as eq(101) and eq(102) in

the adjoint representation below [2],

Definition 3.4. Define the adjoint representation as [2],

adti : tj → adti(tj) = [ti, tj} (94)

⇒ [adti , adtj}(tk) − (−1)ij[adtj , adti}(tk) = ad[ti,tj}(tk) (95)

⇒ [adti , adtj} = ad[ti,tj} = iCk
ijadtk (96)

In Hilbert space, only when two operators are all in the fermionic space

L1, an anticommutation relation would be obtained [2]. Otherwise, the com-

mutator would be obtained for the presence of any bosonic operator [2].

[ti, tj} = titj − (−1)ijtjti (97)

For Hermitian generators, the structure constant has the following relation

[2],

C̄k
ij = −Ck

ji (98)

Denote bosonic generators as Ti and fermionic generators as Qα satisfying

the above three properties of the Lie superalgebras. Then, the interchanging

relations between the bosonic fields and the fermionic fields can be concluded

as in the following commutation/anticommutation relations [2]:

[Ti, Qα] = iCβ
iαQβ; {Qα, Qβ} = iCi

αβTi (99)

The only remaining structure constants are therefore listed below corre-

spondingly [2].
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Ck
ij = −Ck

ji, Cβ
iα = −Cβ

αi, Ci
αβ = −Ci

βα (100)

Proposition 3.5. The supersymmetric-Jacobi identity in the adjoint

representation are:

1. 3 generators in terms of 2 bosonic ones + 1 fermionic one[2]

Cβ
jαC

γ
iβ + Ck

ijC
γ
αk + Cβ

αiC
γ
jβ = 0 (101)

where (Ci)
β
α is the matrix element of the structure constant.

2. 3 generators in terms of 2 fermionic ones + 1 bosonic one[2]

Ci
βγC

δ
αi + Ci

αβC
δ
γi + Ci

γαC
δ
βi = 0 (102)

The adjoint representation for any group has the following property such

that the structure constants satisfy [2]:

[Ci, Cj] = −Ck
ijCk (103)

Notably, the structure constant for the vector space L determines the na-

ture of the algebra. In this case, the composition of two symmetric components

in the fermionic subspace L1 is still a symmetric term, unfulfilling the anti-

symmetric property for the Lie algebras in general[2]. Then, the fermionic

subspace L0 cannot form a Lie algebra, whereas, the bosonic subspace L0

forms one [2]. Thus, L does not form a Lie algebra because the antisymmetric

property cannot be satisfied without restrictions.

As stated above, the subspace of the bosonic generators L0 can form a Lie

algebra with its antisymmetric properties fulfilled. Assume L0 = su(2), the

representations read off [2],
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(Ci)
β
α =

i

2
(σi)

β
α (104)

⇒ [Ti, Qα] = −1

2
(σiQ)α {Qα, Qβ} = i(σ1σ2)αβTi [Ti, Tj] = iϵijkTk (105)

Subsequently, the generators can also be explicitly expressed in matrix form

such that [2],

Ti =

0 0

0 1
2
σi

 Q1 =


0 1 0

0 0 0

−1 0 0

 Q2 =


0 0 1

1 0 0

0 0 0

 (106)

The interchange between the bosonic fields and the fermionic fields can be

expressed mathematically in terms of the algebra of the above generators [2].

M =

 0 B

ϵBT D

 ϵ =

 0 1

−1 0

 (107)

where M is the Lie superalgebra of su(2) in matrix form. D is a Hermitian

2×2 matrix connecting the fermionic subspace L1 with fermionic subspace L1,

and B is a 2×1 matrix connecting the bosonic subspace L0 from the fermionic

subspace L1 [2].

In short,

 0 B

ϵBT 0

 ∈ L1

0 0

0 D

 ∈ L0 (108)

The Lie superalgebra of su(2) can therefore be concluded in the following

commutation/anticommutation relations [2]:
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Proposition 3.6.

[M1,M2} =

 0 B3

ϵBT
3 D3

 (109)

B3 = B[1D2] (110)

D3 = [D1, D2] + ϵ(BT
[1B2]) (111)

where the property ϵD = −DT ϵ is applied [2].

In addition, the s-Jacobi identity cannot be satisfied if the dimension of

the Lie group becomes 3 [2].

3.3 N = 1 supersymmetry

As mentioned in the introduction, the C-M theory states that the maximally

symmetric constitutions in the scattering matrix consists of the translation

generators Pµ, Lorentz generator Mµν and the internal symmetry generator

(as well as a Lie group generator) Bl [2, 5, 7, 25].

The Lie superalgebra is the mathematical tool to extend the symmetry

for the scattering matrix in C-M theory, in particular, the anticommutator is

applied as well as the commonly used commutator for the generators of both

the geometric symmetry groups and the internal symmetry groups [2, 5, 25].

As provided in Proposition 3.1, the commutation/anticommutation rela-

tions for the generators of the Poincare group (Mµν and Pµ), a compact Lie

group (Bl) and the Majorana spinors (Qα) can be generalised in terms of the

Weyl basis and its conjugate QA and Q̄Ȧ as [1, 2, 5, 8, 14, 15, 17]:
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Proposition 3.7.

{QA, QB} = 0 (112)

{QA, Q̄Ḃ} = 2(σµ)AḂPµ (113)

[QA, Pµ] = 0 (114)

[Mµν , QA] =
1

2
(σµν)BAQB (115)

[QA, Bl] = iSlQA (116)

[Bl, Bm] = icklmBk (117)

where S is a Hermitian matrix as the representation of the internal

symmetry, cklm is the structure constant of the corresponding lie group

[5].

According to the Haag-Lopuszanski-Sohnius theorem (H-L-S theory here-

after) [25], as an extension of the C-M theory, the most general symmetry in

the scattering matrix consist of a Lie group of any compact kind plus the Lie

superalgebra relations concluded in the Proposition 3.7 [5, 25]. Furthermore,

the commutators between the internal generators and the Poincare generators

are zero[5].

Consider eq(116), the (N = 1, N = 2, ...) supersymmetry is governed by

the dimensions of the representations of the Sl matrix [5]. In other words, the

number i of the spinor charges Qiα determines the dimensions of the super-

symmetry [1].

The Casimir operators defined in the superalgebra commute with three

types of the generators above, including the Lorentz generators, the translation

generators and the Majorana charge [2, 5]. There are two different explicit

expressions of the Casimir operators:
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Proposition 3.8. The first Casimir operator is [2, 5],

[P 2, Qa] = [P 2, Pµ] = [P 2,Mµν ] = 0 (118)

P 2 = P µPµ (119)

The second Casimir operator is [2, 5],

[C2, Qa] = [C2, Pµ] = [C2,Mµν ] = 0 (120)

where C2 is defined as [2, 5],

C2 = CµνCµν = (BµP ν −BνP µ)(BµPν −BνPµ) (121)

Bµ = Wµ +
1

4
Xµ =

1

2
ϵµνρσM

νρP σ +
1

4
(
1

2
Q̄γµγ

5Q) (122)

In analogy to the quantum harmonic oscillator, the creation operator Q̄

and the annihilation operator Q in supersymmetry accordingly govern the

bosonic and fermionic super-multiplets which can be subsequently obtained

after seeking the invariant Casimir operators [5, 14, 15].

Proposition 3.9.

{QA, Q̄Ḃ} = 2(σµ)AḂPµ (σµ)AḂ = (1, σi) (123)

The Hamiltonian operator can therefore be determined in supersymmetry

as it is constructed by the creation/raising and annihilation/lowering operators

[15]. As the time component of the momentum operator, the explicit form of

the Hamiltonian is [15]:
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Proposition 3.10.

H = P 0 =
1

4
(Q1Q

†
1 +Q†

1Q1 +Q2Q
†
2 +Q†

2Q2) (124)

In phenomenology, if supersymmetry is imposed in the standard model,

then the operation of a spinor charge operator acting on a bosonic field will re-

sult in a fermionic field [15]. The connection between the bosons and fermions

is therefore realised such that a group of boson and the corresponding fermion

(or vice versa) is generalised as a super-partner pair [15]. The spinor charge

is therefore the bridge to the super-partner particles which is inherited in the

supersymmetric laws in cooperation with the geometric symmetry.

Without considering the supersymmetry spontaneous breaking pattern, the

masses between the usual standard model particles and their super-partners

should be the same, since the first Casimir operator P 2 commutes with the

spinor charge and its conjugate [15]. The gauge transformation should also be

the same accordingly, because the commutation relation between the spinor

charges and the gauge operators is the same as the Casimir operator [15].

The number of the bosonic states is the same as the number of fermionic

states [2, 5, 15]. Therefore, the number of bosons and fermions is identical

even though the super-partner particles are involved [5, 15]. To see this, a new

operator counting the numbers of fermion should be introduced such that [15],

Proposition 3.11.

(−1)F |bosonic states⟩ = +1 |bosonic states⟩ (125)

(−1)F |fermionic states⟩ = +1 |fermionic states⟩ (126)

⇒ {(−1)F , Qα} = 0 (127)
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Proof 3.12. The proof of the equal number theorem between the bosons

and the fermions can be obtained by taking the trace of the following

identity [15],

Σi ⟨i| (−1)FP 0 |i⟩ =
1

4
(Σi ⟨i| (−1)FQQ† |i⟩ + Σi ⟨i| (−1)FQ†Q |i⟩)

=
1

4
(Σi ⟨i| (−1)FQQ† |i⟩ + Σij ⟨j|Q |i⟩ ⟨i| (−1)FQ† |j⟩)

=
1

4
(Σi ⟨i| (−1)FQQ† |i⟩ + Σi ⟨j|Q(−1)FQ† |j⟩)

=
1

4
(Σi ⟨i| (−1)FQQ† |i⟩ − Σi ⟨j| (−1)FQQ† |j⟩)

= 0

where P 0 ̸= 0. Q† = Q̄.

Tracing out the above operator is also a technique used in discovering the

index theorem in supersymmetry [5].

After defining the Hamiltonian and the number operators, the vacuum state

with supersymmetry can be correspondingly derived as below [2, 5, 14, 15].

Proposition 3.13. In the absence of the supersymmetric spontaneously

breaking, the supersymmetric vacuum is annihilated by the supersym-

metric lowering operator [2, 5, 15]:

Qα |0⟩ = 0 (128)

⇒ ⟨0|H |0⟩ = 0 (129)
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Figure 3: Supersymmetric spontaneously breaking [15]

Four probable supersymmetric symmetry broken patterns are illustrated

above [15]. The figure 3 illustrates the cases where the supersymmetry and

the internal symmetry are both not broken, only the internal symmetry is

broken, only the supersymmetry is broken and the supersymmetry as well as

the internal symmetry are all broken respectively [15].

The supersymmetric states, super-multiplets, are directly determined by

the mass, spin and the spin in one direction [2, 5, 15]. A single super-multiplet

quantum state can be represented as |m, s, s3⟩ [2, 5, 15].

The spinor charge and its conjugate anticommute with each other, giving

a rest frame with the particle rest mass m, the momentum 4-vector is pµ =

(m, 0, 0, 0) [2, 5, 14, 15]. The only non-vanishing term is {Qα, Q̄α̇} = 2mδαα̇

[1, 2, 5, 8, 14, 15]. Then, the supersymmetric algebra stated in the Proposition

3.7 are simplified and regenerated to the Clifford algebra as demonstrated in

the Definition 2.6 [15].

Since the quantum states of the supersymmetric particles are defined above
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in terms of several fundamental variables, then if the supersymmetric spon-

taneously breaking is not involved, the vacuum state with supersymmetry is

generalised as |Ωs⟩, which is often denoted as the ”Clifford Vacuum” because

of its algebraic property [2, 5, 15].

The supersymmetric vacuum is therefore zero after the annihilating oper-

ator acts on itself [2, 5, 15].

Proposition 3.14.

|Ωs⟩ = Q1Q2 |m, s′, s′3⟩ (130)

Q1 |Ωs⟩ = Q2 |Ωs⟩ = 0 (131)

The complete super-multiplet quantum states as in analogy to the Fock’s

space in the quantum field theory can be therefore constructed in the following

way [15]. Noticeably, the anticommutation relations of the spinor charge limit

the ways of applying creation operators to the supersymmetric vacuum so that

only the following remaining states survived [15].

|Ωs⟩

Q†
1 |Ωs⟩ , Q†

2 |Ωs⟩

Q†
1Q

†
2 |Ωs⟩

Since the quantum number that differs the supersymmetric vacuum states

is the spin as encoded in the subscripts s, suppose s = 0 in initial, the massive

super-multiplets below indicates one Majorana fermionic field and one complex

scalar field respectively [5, 15].
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state s3

|Ω0⟩ 0

Q†
1 |Ω0⟩ , Q†

2 |Ω0⟩ ± 1

2

Q†
1Q

†
2 |Ω0⟩ 0

Then, suppose s = 1
2
, the massive super-multiplets now represent one real

scalar field, one spin-1 vector field and two Majorana spinor fields [15].

state s3∣∣∣Ω 1
2

〉
± 1

2

Q†
1

∣∣∣Ω 1
2

〉
, Q†

2

∣∣∣Ω 1
2

〉
0, 1, 0,−1

Q†
1Q

†
2

∣∣∣Ω 1
2

〉
± 1

2

Thus, using the same idea, for a larger number of the spin in a specific

supersymmetric vacuum, the resultant field interpretations would have super-

multiplets with a larger spin value which is greater than 1 [15].

The massive cases are discussed above, determining the different field in-

terpretations with different spins. For massless super-multiplets, the quantum

states are specified in |E, λ⟩ such that the energy E and the helicity λ of

each particle form the complete basis [2, 5, 14, 15]. Choose the rest frame

as in pµ = (E, 0, 0, E) [5, 15]. Then the anticommutators between the spinor

charges became the following algebraic relations [1, 2, 5, 8, 14, 15]:
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Proposition 3.15. For massless super-multiplets [1, 2, 5, 8, 14, 15],

{Q1, Q
†
1} = 4E (132)

{Q2, Q
†
2} = 0 (133)

{Qα, Qβ} = 0 (134)

{Q†
α̇, Q

†
β̇
} = 0 (135)

Because all the terms above vanished except for one creation operator, the

vacuum state can be expressed in the following way [15]:

Proposition 3.16.

|Ωλ⟩ = Q1 |E, λ′⟩ (136)

Q1 |Ωλ⟩ = 0 (137)

Similarly, the super-multiplets only have two possible states for the mass-

less particles [15],

state λ

|Ωλ⟩ λ

Q†
1 |Ωλ⟩ λ+

1

2

To satisfy the C-P-T combined symmetries, the following conjugated super-

multiplets also exist [15],
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state λ∣∣∣Ω−λ− 1
2

〉
− λ− 1

2

Q†
1

∣∣∣Ω−λ− 1
2

〉
− λ

The super-multiplets are therefore containing different values of the helicity

in the massless particles case [15]. For instance, the original states and the

conjugated states when λ = 0 and λ = 1
2

are obtained similarly in accordance

to the steps above [15].

original state λ = 0

|Ωo⟩ 0

Q†
1 |Ωo⟩

1

2

conjugated state λ = 0∣∣∣Ω− 1
2

〉
− 1

2

Q†
1

∣∣∣Ω− 1
2

〉
0

original state λ =
1

2∣∣∣Ω 1
2

〉 1

2

Q†
1

∣∣∣Ω 1
2

〉
1
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conjugated state λ = 0

|Ω−1⟩ − 1

Q†
1 |Ω−1⟩ − 1

2

Therefore, when the helicity is selected to be λ = 0, the interpretation of

the supersymmetric states are constructed by one Weyl fermionic field plus

one complex scalar field which differs from the s = 0 massive super-multiplets

case by the nature of the fermions involved [15]. Moreover, when the helicity

is chosen to be λ = 1
2
, the super-multiplets consist of one Weyl fermionic field

plus one spin-1 gauge boson which appeared to be massless as opposed to

massive case stated before [15].

The official names of the super-partners between bosons and fermions can

be generalised below [1, 2, 5, 8, 14, 15],

Proposition 3.17.

fermion⇒ sfermion

quark ⇒ squark

gauge boson⇒ gaugino

gluon⇒ gluino
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4 Extended Supersymmetry

4.1 Superalgebras and the Super-multiplets

For N > 1 supersymmetry, the subtlety is the number of the spinor charges

varies to N . Then, the following algebra for the extended supersymmetry is

generalised as [1, 2, 5, 8, 14, 15].

Proposition 4.1.

{Qa
α, Q

†
α̇b} = 2σµ

αα̇Pµδ
a
b (138)

{Qa
α, Q

b
β} = 0 (139)

{Q†
α̇a, Q

†
β̇b
} = 0 (140)

where a, b = 1, ..., N [15].

The massless super-multiplets in the extended supersymmetry has the same

conditions as in the N = 1 supersymmetry such that [2, 5, 15]:

Proposition 4.2.

{Qa
1, Q

†
1b} = 4Eδab (141)

{Qa
2, Q

†
2b} = 0 (142)

The table for the super-multiplet states are concluded below [15],
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state helicity degeneracy

|Ωλ⟩ λ 1

Q†
1a |Ωλ⟩ λ+

1

2
N

Q†
1aQ

†
1b |Ωλ⟩ λ+ 1

N(N − 1)

2

... ... ...

Limiting the values of the helicity for the massless particles and the values

of spin for the massive particles in the range of |λ| ≤ 1 as well as
∣∣λ+ N

2

∣∣ ≤ 1

[15]. Then, the number of the spinor charges is required as N ≤ 4 [15].

Take the N = 2 supersymmetry to start with, the super-multiplets states

are therefore [15],

state helicity degeneracy

|Ω−1⟩ − 1 1

Q† |Ω−1⟩ − 1

2
2

Q†Q† |Ω−1⟩ 0 1

conjugated state helicity degeneracy

|Ω0⟩ 0 1

Q† |Ω0⟩
1

2
2

Q†Q† |Ω0⟩ 1 1
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Noticeably, the above extended super-multiplet is based on the N = 1

super-multiplets with corresponding helicities λ = 0 and λ = 1
2

[15].

The hyper-super-multiplets are defined with the helicity λ = −1
2

[15].

state helicity degeneracy∣∣∣Ω− 1
2

〉
− 1

2
1

Q†
∣∣∣Ω− 1

2

〉
0 2

Q†Q†
∣∣∣Ω− 1

2

〉 1

2
1

The first entry of the above hyper-multiplets table corresponds to χα, the

second entry of the the states is ϕ and the last state above is labelled as ψ†α̇

[15]. χα and ψ†α̇ are fermionic fields where the gauge transformation should

be invariant in terms of ψαχα [15].

4.2 Central Charges

The algebra for the central charges is developed based on the extended super-

symmetric algebra such that the anticommuting components are not merely

zero [5, 14, 15, 25].

Proposition 4.3.

{Qa
α, Q

†
α̇b} = 2σµ

αα̇Pµδ
a
b (143)

{Qa
α, Q

b
β} = 2

√
2ϵαβZ

ab (144)

{Q†
α̇a, Q

†
β̇b
} = 2

√
2ϵα̇β̇Z

∗
ab (145)

where ϵ = iσ2 [15].
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For a special case when N = 2, the above relations reduce to the following

ones [15, 25]:

Proposition 4.4.

{Qa
α, Q

†
α̇b} = 2σµ

αα̇Pµδ
a
b (146)

{Qa
α, Q

b
β} = 2

√
2ϵαβϵ

abZ (147)

{Q†
α̇a, Q

†
β̇b
} = 2

√
2ϵα̇β̇ϵabZ (148)

where ϵ = iσ2 [15].

Then, define the following operators to simplify the anticommutators [15],

Aα =
1

2
[Q1

α + ϵαβ(Q2
β)†] (149)

Bα =
1

2
[Q1

α − ϵαβ(Q2
β)†] (150)

⇒ {Aα, A
†
β} = δαβ(M +

√
2Z) (151)

⇒ {Bα, B
†
β} = δαβ(M −

√
2Z) (152)

The variables on the right hand side of the above simplified anticommuta-

tors are the super-multiplet mass M and the central charge Z which form a

complete basis for the quantum states of the super-multiplets as |M,Z⟩ [15].

Short and long super-multiplets are discussed in the context of existence

of the central charges [15].
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For the s = 0 case [15],

state 2j + 1

|Ω0⟩ 0

A† |Ω0⟩ 2

(A†)2 |Ω0⟩ 1

For the s = 1
2

case [15],

state 2j + 1∣∣∣Ω 1
2

〉
2

A†
∣∣∣Ω 1

2

〉
1 + 3

(A†)2
∣∣∣Ω 1

2

〉
2

The above two tables of super-multiplets appeared to be the same as the

corresponding N = 1 massive super-multiplets states [15]. Moreover, the

quantities of the super-multiplets are also the same as the corresponding N =

2 massless super-multiplets [15]. Each short-super-multiplets has the state

quantities four times less than the long-super-multiplets in the above example

[15].
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5 Conclusion

In this essay, the topics of the historic motivations for the development of

the supersymmetry, the geometric symmetry, the internal symmetry and ul-

timately the supersymmetry are discussed respectively. The pavement to the

supersymmetry is constructed by the mathematical building blocks. There

are some aspects of the advanced topics that is not included in the essay, such

as the physical examples of the Anti-de-Sitter superalgebra, the field theory

incorporate with the supersymmetry as well as the supersymmetric theory in

a curved spacetime, etc. The author shall endeavour to continue learning the

fundamentals of those topics. The mathematical realisations of some useful

theorems are worth reading in the future.
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