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Abstract

The application of physics had expanded into new territories over the past cen-
tury, as statistical physics flourished and it became possible to describe a large class
of natural phenomena through the study of criticality and phase transitions. It
became clear that the approaches from physics may grant quantitative perspectives
to research in other scientific disciplines. Existing theories, mathematical tools and
analysis techniques from physics lend well to formulate quantitative descriptions of
more exotic systems. Such interdisciplinary exchanges continues to deepen our un-
derstanding of the natural and human societies. The field of sociophysics received
increasing attention over the past few decades. I explain the justifications and rel-
evance of physics behind the conception of the field of study, and examine some
models with a focus on language competition models.

Statement of Contribution

I hereby affirm that this thesis has been composed in its entirety from my own
work, using my own words. I promise that where necessary, I have cited or given
credit to the original authors whose work I have referenced in support to the the-
sis. Except where explicitly stated, all figures within this work have been produced
by myself with the help of standard computing software such as Mathematica or
Python. All computational numerical work were carried out using scripts and pro-
grammes that were written independently by myself using standard software pack-
ages, and run on my personal laptop.

Yiwen Yang

i



Contents

1 Introduction 1

1.1 Origin of Sociophysics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The Physics Analogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Modelling Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Language Competition Dynamics 5

2.1 Abrams-Strogatz Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Model Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Further Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Evolutionary Dynamics Model . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Model Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Symmetric Nowak Model . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Equilibrium Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.4 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.5 Further Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Microscopic Models 21

3.1 Microscopic AS Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.2 Correlation Functions . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.3 Further Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Conclusions 32

4.1 Extra Models for Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

ii



1 Introduction

After millennia of development and change in science, physics has concretely established
itself as a vital component in our description of the universe. Physics is the fundamental
study of the natural world, which means that much of the development of other technical
subjects have been inextricably linked to it. This comes naturally as physics is a subject
which values quantitative approaches at its core; physics applies analytical methods using
the language of mathematics, thereby enabling rigorous and logical statements for theories
in technical fields.

Over the past century, interdisciplinary fields at the interface between physics and
other subjects have experienced comparable growth to more traditional fields of physics1.
From traditional intersections such as biophysics and geophysics2, to the more exotic
subjects such as econophysics and sociophysics, which originate in humanity sciences3,
physics as a discipline has transcended its age-old confines of solely dealing with matter
and energy. An integral driving force of this development is the advances in computational
physics. The availability of computation power and large scale data for research has
enabled a vastly different way of studying these high complexity topics4. Statistical
analysis of data illustrates trends and patterns of many dynamical systems in the real
world, which are studied by physicists who construct models to explain these phenomena.
The access to computers enables numerical modelling methods for modern sciences in the
21st century, which were not possible for centuries prior.

In this work, we focus on reviewing the field of sociophysics and discuss its philosophi-
cal origins, principles, potential, and progress. We examine several language competition
models to demonstrate the possibilities of sociophysics and their relevance in understand-
ing the complex dynamics of human societies.

1.1 Origin of Sociophysics

Despite the rapid progress in sociophysics during the recent decades, the study of human
societies with the tools of physics and mathematics is not a recent idea. The seeds
of sociophysics were sown long before the advent of modern physics. The seventeenth
century English philosopher Thomas Hobbes was deeply fascinated with the rationalist
process of understanding the world through logic and deduction, an approach to learning
and discovery that would soon become a driving force for the Scientific Revolution. In his
magnum opus of political philosophy, Leviathan, Hobbes constructed a logical argument
for why the human system of governance was a natural occurrence arising from human
nature and interactions. In his thesis, he compared humans to intricate machines which
were complex yet still obey the same laws of motion as any other ordinary object, and thus
their dynamics could be studied and predicted using principles similar to those governing
mechanical systems. In the titular metaphor, the whole society, the Leviathan, displayed
a vastly different behaviour to that of the individual actors, the humans. This idea is
similarly recognised in modern physics: in the famous words of theoretical physicist Philip
Anderson, “More Is Different”5; the dynamics that emerges from a system composed of a
large number of interacting bodies is vastly different from the dynamics of the individuals.
The work of Hobbes lacked in rigour of its details, as his arguments were not based
on any established scientific disciplines, yet his idea of understanding societies via the
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actions of its constituents would persevere and become part of the founding principles of
sociophysics.

The nineteenth century philosopher Auguste Comte suggested in his book series6 that
human societies could be described and understood through a similar approach to the
scientific method, via the cycle of theory and experimental verification. He also valued
the idea that quantitative reasoning should be the guide to humanity’s decision making
processes. Most importantly, he noticed the possibility in establishing the study of human
societies as a theory similar to other natural sciences like chemistry and physics. Comte
viewed sociophysics (or sociology, as he later renamed the study) as a natural extension of
the existing physical sciences. He thought of it as an ultimate theory that stems from the
collective knowledge of all other scientific theories describing nature. The nigh impossible
complexities of human society, all to be coalesced into one coherent theory.

Figure 1: The hierarchy of sciences, not so different to Comte’s original vision. Ev-
ery science is built on top of existing theories of another science. But in reality it is
not so compartmentalised, modern science supports exchange of ideas across disciplines.
Furthermore, because of the complexities of interacting systems, one could not simply
extrapolate the dynamics of a larger scale system from understanding its fundamental
constituents. Source: xkcd comics https://xkcd.com/435/

Perhaps it was this grand ambition of an ultimate theory for societies that caused
Comte to disagree with the ideas of his contemporary, Adolphe Quetelet, in developing
sociophysics7. Quetelet was a statistician who studied, among other things, human popu-
lations with statistical methods. While Quetelet conducted his statistical studies, Comte
did not believe that the theory of societies could be uncovered by studying statistics
alone. Despite Comte’s disapproval, statistics would become the basis of modern studies
of sociophysics, as they provide the necessary empirical results to verify many theories.
Sociophysics theories on the other hand could only reasonably make predictions in a sta-
tistical sense. Through statistics the theory-experiment cycle of the scientific method was
made possible, and the foundations of sociophysics were laid by the use of statistics over
the centuries of sociology studies.

In hindsight it is obvious that statistics plays a key role in describing large scale phe-
nomena such as social behaviours and trends; however, it took significant time before
statistics was treated with proper attention as part of a formal theory. A lot of philoso-
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phers and physicists at the time, Comte for example, were rather fixated on the idea
of determinism in physical laws, which stood unopposed for years. The upheaval of de-
terministic philosophy arrived with the discovery of quantum effects and the consequent
development of quantum mechanics. The foundations of determinism was challenged, and
it became apparent that probability and statistics had a vital role in the fundamental
laws of nature.

Ettore Majorana noted in an article8, which was only disclosed after his disappearance,
that the laws of physics reformed by quantum mechanics necessitated a probabilistic
description down to the irreducible elements. An analogy was drawn between statistical
laws of physics and those of social science, where a statistical picture was required due
to the inherent complexity of the agents involved. It may not be the direct influence of
Majorana, since the article was never published, but certainly the shift in paradigm away
from determinism led the scientific community to reevaluate the importance of statistics
and probability in modern epistemology. The use of statistics is no longer an admission
of the imperfections of human methods of observation and measurement, but rather a
tool to describe nature in its fundamental aspect.

Sophisticated modelling attempts began with Serge Galam, one of the influential mod-
ern sociophysicists9. Galam advocated fervently for the development of interdisciplinary
physics when statistical physics and the physics of phase transitions were starting to be
understood rigorously. It took a long time before the sociology and physics communities
to acknowledge his call, and a major factor was the reluctance of either parties to engage
with literature from the other. However, after several publications by Galam and other
independent authors, interest in the subject grew throughout the late nineties and at the
start of the millennium. Many of the innovative and seminal work within sociophysics
were developed during those few decades.

1.2 The Physics Analogy

Incorporation of statistics is essential to the study of human societal patterns and be-
haviours, but sociophysics is far from the only field where statistics has been extensively
put to use. Statistical mechanics is a contemporary field of physics founded on classical
thermodynamics, which enables the description of macroscopic properties of substances in
terms of the microscopic properties of its constituents. In the famous Maxwell-Boltzmann
distribution for the velocities of particles in an ideal gas,

f(v)d3v =

(
m

2πkT

) 3
2

exp
(
− mv2

2kT

)
d3v, (1.1)

there is an implicit connection between the microscopic properties of particles, masses m
and velocities v, and the macroscopic property, temperature T , of the entire body of gas.
This is a celebrated result from classical thermodynamics, and it relies on a statistical
description of the system at hand in the form of a probability distribution for properties of
its microscopic constituents. The theory of statistical mechanics successfully generalises
the translation between micro- and macro-scopic properties for other states of matter,
and through later developments, to quantum mechanical descriptions of matter.

This connection between micro- and macro-scopic quantities is exactly what allows
fields such as condensed matter physics to flourish, or even be possible to conduct mean-
ingful studies at all. The analogy with social physics is then a natural extension of the
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ideas of statistical mechanics: if it is possible to describe properties of interacting systems
involving a large number (∼ 1023) of particles, then with a proper set of assumptions it
should be possible to do the same for human societies. In the analogy, society is the
macroscopic system composed of a large number of individual agents that interact via
some nontrivial mechanism.

The difference to keep in mind with this analogy is that even though human societies
are formed with a much lower number of independent agents compared to e.g. condensed
matter systems, as the agents are much more complex fundamentally. It is no longer valid
to describe the microscopic properties with only mass and velocity, but other intrinsic
properties are also required to model the complex human-human interactions. Unlike
in field theory, there are no consensus or mathematical constraints on the precise form
of these intrinsic properties. They are model dependent and may be scalars, vectors,
matrices, or anything else that could construct a plausible and consistent theory. A key
challenge for sociophysics is to identify a suitable form of the intrinsic properties that does
not trivialise the underlying complex nature of the agents, yet still admits quantitative
analysis.

In essence, sociophysics is the study of mathematical theories that describe the struc-
tures and interactions present within human societies, often inspired by underlying analo-
gies with statistical physics. A set of assumptions is often used to simplify the system so
the theories can be analysed with a more manageable set of parameters. The information
from the theory ultimately condenses into some statistically measurable quantity that
can be interpreted in relation to the system of interest within the society.

1.3 Modelling Methods

There are often many ways of approaching the theoretical study of a physical system.
Courtesy of the established analytical techniques in physics from centuries of studying the
natural world, there are a suite of mathematical tools readily available to sociophysicists.

A natural description of human society is a system which consists of a large number
of independent agents that are available to interact with the surrounding environment.
As a consequence of the interactions, the agents may attempt to change some aspect of
themselves to accommodate their existence within the society. This is quite a reduction
of the complex human experience, but an attempt to describe every aspect at once would
be an unrealistic endeavour, much like the study of interactions in fundamental physics.
Models which directly realise this description are Agent-Based Models (ABM), which are
often implemented as numerical simulations with a probabilistic updating rule. The in-
crease in computational power of consumer computers in the recent decades have enabled
many opportunities to analyse sociophysics models in this way.

While ABMs reflect the intuitive understanding of societies as a collection of indi-
viduals, physicists often prefer models with a more rigorous mathematical framework so
more analytical approaches may be taken. Mean field approximations help express ABMs
in terms of macroscopic dynamics by taking the average of relevant quantities over all
agents; the interactions and evolution of agents are translated to the dynamics of the
macroscopic quantities. This is achieved by analysing the model equations directly, ap-
proximating a numerical simulation where the number of agents approach infinity, and
agents interact with all other agents simultaneously, so any local effects of the model
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are averaged out. One could also start directly with a macroscopic dynamics model,
which describes macroscopic quantities using a set of differential equations. In this form,
the models can be analysed using the approaches in dynamical systems such as stability
analysis.

Neither of the models is entirely superior to the other. In macroscopic dynamical
models, it is straightforward extract the statistical quantities as they are already explicitly
part of the model, and the differential equations allow physicists to use their analytical
insight on understanding the dynamics of the systems. On the other hand, ABMs are
arguably more accurate to real societies by modelling individuals instead of the system as
a whole. Even though the macroscopic model could be thought of as the large N limit of
the number of interacting agents, in the limit the two types of models may have different
predictions regarding the same systems10, and it is the sociophysicists’ responsibility to
assess and reconcile such differences.

1.4 Outline

In this section, we reviewed the historical perspective behind the development of socio-
physics and its fundamental principles. We also provided a quick summary for the typical
types of models used for systems that sociophysics is interested in. The outline for the
rest of the paper is as follows.

In Section 2, we introduce and go through in detail the analysis of a few models
that describe language competition, an indispensable part in shaping human societies. In
Section 3, we expand one of the analytical macroscopic models by translating it into an
ABM and explore some more features of the model that are not readily accessible within
the dynamical systems framework. Finally, in Section 4, we will summarise the contents
of this essay and provide pointers towards other subject areas available within the vast
field of sociophysics.

2 Language Competition Dynamics

A unique feature of human societies is the sophistication in our method of communication,
where we can convey complex ideas through languages in writing and in speech. More
interesting still, human languages are not static objects; languages that are used within
human populations evolve over time. Language evolution takes place at a much faster pace
in contrast to biological evolution, albeit still at a longer timescale compared to average
human lifetimes11. There are clear evidences of language evolution in human literature
and written records e.g. Middle English to (Early-)Modern English, and even more
recently in the spread of neologisms. To the sociophycisists, there are information readily
available to construct and verify models about various features of language evolution.

Much like biological species, languages do not simply coexist within a closed system.
The number of speakers of languages grow and wane as the speakers interact within the
society. In the contemporary human society, languages are becoming extinct at a rate of
about one every forty days, and the rate is expected to continue to accelerate12. In the
interest of preserving human heritage as well as providing a perfect testing ground for
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sociophysical theories, the dynamics of language competition and extinction has been a
key interest of study for sociophysicists.

In this chapter we examine two of the influential macroscopic models for describing
language competition dynamics, the Abrams-Strogatz model and the Nowak Model. The
analysis involved mostly pen and paper work, which altogether were carried out over the
course of a few weeks, plus some numerical integration within Mathematica where exact
results were not possible.

2.1 Abrams-Strogatz Model

A simple nonlinear dynamics model for language competition was formulated by Abrams
and Strogatz13, which described the competition between the populations of speakers of
two different languages. The Abrams-Strogatz (AS) model is a macroscopic dynamics
model that models the average population as supposed to the individuals within them.
This can be seen as a mean field approximation of some microscopic model where any
agent can interact with any other agent instantaneously at every timestep, and the num-
ber of agents approaches infinity.

The original AS model has two populations that speak two different languages, with
population numbers x and y respectively. In the most general form, the dynamics of the
two populations is governed by the equations

dx

dt
= −Pxyx+ Pyxy

dy

dt
= Pxyx− Pyxy, (2.1)

where Pxy denotes the probability of the population x to be converted to population y,
and analogously from y to x for Pyx. Abrams and Strogatz proposed the constraints
that Pxy|y=0 = Pyx|x=0 = 0, based on the idea that no population should be converted to
using an extinct language. Additionally Pxy and Pyx should be a monotonically increasing
function of y and x respectively, which is a reasonable assumption considering we do not
have any further intuition on how the dynamics should manifest. The AS model chooses,
arbitrarily,

Pxy = syy
a Pyx = sxx

a, (2.2)

where sy and sx are arbitrary constants of proportionality, and a is a model parameter
that roughly encodes how well a population converts its opposition to their language. To
get a better intuition on the parameters at this stage, we require some further assumptions
for the AS model.

After substituting Equation 2.2 into the AS model, we reduce the number of parame-
ters by a redefinition τ ≡ (sx + sy)t, which changes the time scale but allows us to define
a new parameter s ≡ sx/(sx + sy) ∈ [0, 1], such that the AS model may be rewritten as

ẋ ≡ dx

dτ
= −(1− s)yax+ sxay

ẏ ≡ dy

dτ
= (1− s)yax− sxay. (2.3)
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We note that the two equations sum to zero, so there is always a net zero change in
population of the whole system. Therefore it is always possible to rescale the population
variables such that x + y = 1. The two equations therefore encode exactly the same
dynamics, which is governed by the single differential equation

ẋ = sxa(1− x)− (1− s)(1− x)ax. (2.4)

Here the parameter s is a measure of the relative status of the language spoken by popu-
lation x, and likewise 1− s for population y ≡ 1− x. A higher status parameter favours
the conversion from the opposing population to itself and vice versa. The parameter a
performs a similar function, but describes more nonlinear tendencies. A larger value of a
produces smaller transition probabilities until the population becomes a majority, and a
small a produces high transition probabilities except at very low population fractions; the
parameter essentially measures how quickly the system goes to a state where one pop-
ulation dominates completely. Sometimes a is called the volatility parameter14, where
counterintuitively a system with large a is less volatile than one with a small a.
Furthermore, there exists a Z2 symmetry in Equation 2.4 by exchanging x↔ 1− x and
s ↔ 1 − s. This symmetry manifests itself as we find solutions to the system, and may
be used as a sanity check.

A limiting case of the AS model is when a = 1, then the equations reduce to

ẋ = (2s− 1)x(1− x), (2.5)

which is simply the logistics equation that already has a long history associated with
population growth with saturation15. The logistics equation has already been covered in
many literature modelling ecological systems, including in linguistic systems16, so we do
not focus on this limiting case here. On the other hand, a = 0 gives an uninteresting
linear differential equation and does not contribute much to understanding the dynamical
system. Hence we are left with two cases 0 < a < 1 and a > 1, which we now discuss.

2.1.1 Model Analysis

As a standard procedure of analysing nonlinear differential equations, we look at the
equilibrium solutions for the equation and their stability. That is, we start by solving for
x in the condition

ẋ = 0 = sxa(1− x)− (1− s)(1− x)ax. (2.6)

There are two obvious solutions, x = 0 and x = 1. There is an additional solution x = x∗
upon rearrangement, such that it is the solution to the algebraic equation

x∗
1− x∗

=

(
1

s
− 1

) 1
a−1

. (2.7)

Again, the solutions manifest a Z2 symmetry where x = 0 and x = 1 are mapped into
each other while x = x∗ is invariant.

For linear stability analysis, we linearise the system 2.4 around an equilibrium solution,
x = x̄ + δx̃, where δx̃ is an infinitesimal perturbation around the equilibrium. Then
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expanding the system to linear order in the perturbation, we find

ẋ = s(x̄+ δx̃)a(1− x̄− δx̃)− (1− s)(1− x̄− δx̃)a(x̄+ δx̃)

= sx̄a
(

1 + a
δx̃

x̄
+ · · ·

)
(1− x̄− δx̃)− (1− s)(1− x̄)a

(
1− a δx̃

1− x̄
+ · · ·

)
(x̄+ δx̃)

≈ sx̄a(1− x̄)− sx̄a
(

1− a1− x̄
x̄

)
δx̃− (1− s)(1− x̄)ax̄− (1− s)(1− x̄)a

(
1− a x̄

1− x̄

)
δx̃

=

[
sx̄a
(
a
(1

x̄
− 1
)
− 1
)

+ (1− s)(1− x̄)a
(
a
( 1

1− x̄
− 1
)
− 1
)]
δx̃. (2.8)

We have used the binomial expansion from the first line to the second, using the assump-
tion that the perturbation is infinitesimal. From the third line to the fourth we used the
fact that x̄ is an equilibrium solution and obeys 2.6, so the nonperturbative terms vanish.
Finally, assume the dynamical behaviour of the perturbation is solely exponential, so the
perturbation can be decomposed as δx̃ = eΓtδx, with a characteristic growth rate Γ and
a time independent δx. With this ansatz we rearrange the linearised equation into{[

sx̄a
(
a
(1

x̄
− 1
)
− 1
)

+ (1− s)(1− x̄)a
(
a
( 1

1− x̄
− 1
)
− 1
)]
− Γ

}
eΓtδx = 0.

=⇒ Γ =

{[
sx̄a
(
a
(1

x̄
− 1
)
− 1
)

+ (1− s)(1− x̄)a
(
a
( 1

1− x̄
− 1
)
− 1
)]
. (2.9)

The stability of the solution is given by the growth rate Γ = Γ(a, s). A positive Γ
leads to an unstable solution and a negative Γ leads to a stable solution. For the simple
x = 0, x = 1 solutions it is straight forward to see that

Γ|x̄=1 =

{
−s, a > 1

∞, 0 < a < 1
Γ|x̄=0 =

{
−(1− s), a > 1

∞, 0 < a < 1
(2.10)

recalling that s ∈ [0, 1], for a > 1 both x = 0 and x = 1 solutions are stable, but become
unstable in the regime 0 < a < 1.

Next we examine the last equilibrium solution x̄ = x∗ which satisfies Equation 2.7.
Substituting into Equation 2.9 and simplifying yields

Γ|x̄=x∗ = (1− s)(1− x∗)a
x∗

1− x∗

[
s

1− s
( x∗

1− x∗
)a−1

(
a

(
1

x∗
− 1

)
− 1

)
+

1− x∗
x∗

(
a

(
1

1− x∗
− 1

)
− 1

)]
= (1− s)(1− x∗)a−1

[
a(1− x∗)− x∗ + a(1− (1− x∗))− (1− x∗)

]
= (1− s)(1− x∗)a−1(a− 1), (2.11)

where from the first to second line we used Equation 2.7.
The first two factors in Γ|x̄=x∗ are both positive definite, so the stability of the system
depends solely on the a− 1 factor. Hence, the equilibrium behaves as

Γ|x̄=x∗

{
> 0, a > 1 unstable
< 0, 0 < a < 1 stable

(2.12)
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There are two different regimes of stability to consider. For a low volatility system
with a > 1, the only stable equilibrium solutions are at x̄ = 1 and x̄ = 0. Therefore the
system will almost always tend to a state where one population ends up extinct, except for
the edge case where the system starts exactly on the unstable equilibrium with no further
perturbations. For a high volatility system with 0 < a < 1 the stability switches for the
equilibrium solutions, and only the x∗ equilibrium is stable. In this regime the system
tends towards a coexistence state with both populations occupying a nonzero fraction of
the total population, with the exact fractions dependent on the model parameters a and
s.

The AS model equations can be integrated directly with the help of Mathematica,
which we use to confirm our equilibrium and stability analysis results. This involves about
an afternoon of work, where I got Mathematica to numerically solve the model equations
with an array of initial conditions and a range of model parameters. Figure 2 shows the
trajectories of population x for a select number of parameter values and a range of initial
conditions. The coexistence equilibrium x∗ is marked for checking against analytical
results. It is straight forward to verify that x∗ = 0.5 for s = 0.5 in Equation 2.7, and is
otherwise dependent on the value of parameter a. We see that the coexistence equilibrium
is unstable for a = 1.3 > 1, but becomes stable and attractive for a = 0.7 < 1.

2.1.2 Further Discussion

Abrams and Strogatz fitted the model by regression to some real world data on the
decline of minority language populations. They found a roughly constant a = 1.31±0.25
across different samples13, but a more recent analysis puts tension on their estimated
values and suggests new values that have drastically different qualitative behaviour11.
In addition, the parameter a is a dimensionless mathematical model parameter and is
difficult to determine outside of empirical methods. We should note the model is supposed
to be minimal and unavoidably has some problems when it comes to modelling real
world systems. There are no mechanisms in the AS model to implement the existence of
bilingual populations in the system, which certainly exist in the real world.

There have been many extensions to the AS model. The Minett-Wang (MW) model17

incorporates a bilingual population, which serves as a buffer with different transition rates
to and from the monolingual populations. This leads to possible asymmetric behaviour,
in contrast to the AS model which is fully symmetric between the two populations. The
problem with the MW model is the fact that there are no stable equilibrium states with
any bilingual population, and all individuals end up as monolinguals, which is inconsistent
with observations.
The Mira-Paredes model18 is a similar extension to the AS model which includes some
degree of mutual intelligibility between the monolingual populations in addition to a
bilingual population, resulting in stable equilibria with nonzero bilingual populations.
The model is fitted to historical data for Hispanic languages in Galicia. The problem
with this model is that mutual intelligibility between populations may not always be
assumed, and the stable bilingual population configuration is specific to languages with
a high degree of mutual intelligibility.

There are also a number of agent-based models inspired by the AS model. These
models typically result in more varied dynamical behaviours than the more deterministic
AS model. Reviews and examples of agent-based language competition models can be
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Figure 2: Solutions to the AS model equations for selected parameter values. The co-
existence equilibrium solution x∗ is denoted by a dashed blue line. The initial values
are chosen to be x = 0.1 to x = 0.9, equally spaced. For (i) and (iii) with a > 1, the
coexistence equilibrium is unstable and the system moves away from it to x = 1 or x = 0
depending on the initial conditions. For (ii) and (iv) the coexistence equilibrium is sta-
ble and attracts all initial states of the system. For a > 1, the coexistence equilibrium
position decreases with an increase in s but for 0 < a < 1 the coexistence equilibrium
increases instead with an increase in s.

found in various literature2,17,19. We cover in detail one implementation of the microscopic
AS model in Section 3

2.2 Evolutionary Dynamics Model

A key feature of languages in the real world that we would like to model is the coexistence
of multiple languages over long timescales, without the inevitable extinction of all but one
dominant language. An alternative model for language competition in which this arises
naturally is the evolutionary dynamics model created by Nowak and collaborators around
the 2000s20. One application of Nowak’s model was to determine evolutionary properties
of different language learning strategies and the mechanism of language acquisition, and
how one coherent language emerges within a population from a constrained set of possible
grammars21. This model, however, is quite general and also provides an apt description
for competing language variations and their dynamical behaviours.
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The principle of evolutionary dynamics is to incorporate the mechanism of Darwinian
evolution, i.e. survival of the fittest, into the dynamical behaviour of the model. Devel-
opment in areas of mathematics such as evolutionary game theory have led great progress
in formulating a rigorous theory of evolutionary dynamics. The theory has seen applica-
tions from population genetics to social dynamics and medicine. A detailed account of
the theory and its applications can be found in Nowak’s review22.

The general principle of evolutionary dynamics is as follows. The system is divided
into several populations, whereby some interaction mechanism dictates the fitness of a
population. The reproductive success of a population is then proportional to the fitness.
This generates equations of motion that describe how populations evolve depending on
model parameters and initial conditions. The key point is that since the mathematical
theory is agnostic to the exact physical manifestation of the populations it is describing,
it can be applied to e.g. human and bacteria populations alike. It is applicable even to
more abstract populations with variation in traits such as natural languages, which we
will discuss in this section.

The model equations were provided by Nowak et al. in their original paper, as well as
a few of the key equations we provide here; however, the exact derivation of the equations
were not provided in detail in the paper and required thorough working with the model
equations. The analytical on paper and numerical work from Mathematica were done
and checked over a week. The exact formulation of the model has also been modified by
myself to better suit the thesis.

2.2.1 Model Equations

We consider a language with a discrete set of possible languages L1, . . . , Ln and corre-
spondingly a population divided into n subpopulations xi, i = 1, . . . , n, such that the
population xi uses the language Li. We do not consider here the existence of bilingual
populations. Note that there are different ways to define what a language is in term of
this model. Nowak’s original paper20 described a language Li as one possible set of asso-
ciations between a list of objects and a list of words explicitly constructed in the form of
matrices. Here, however, we take the approach from a later paper23. We do not care how
the Li manifest themselves, except that there is an n× n compatibility matrix Aij such
that the probability that a sentence from speaker of Li can be understood by a speaker
of Lj. From this definition it is reasonable to assume that Aii = 1 and 0 ≤ Aij < 1. Note
that in general we can have Aij 6= Aji asymmetric, and there is no further restrictions
on the form of the compatibility matrix. This means the model has a huge number of
degrees of freedom in parameter space, which is why the model in this form is impractical
for analytical approaches.

The payoff function F (Li, Lj) ≡ 1
2
(Aij +Aji), which can be interpreted as the average

success in communication between languages Li and Lj, is used to define the fitness of a
population:

fi =
∑
j

xjF (Lj, Li). (2.13)

The fitness fi is a measure for the reproductive success of the population xi.

In the reproduction process, we introduce the inheritance matrix Qij that quantifies
the accuracy at which a language is learned when passing down to the next generation.
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Qij denotes the probability that a child of Li speakers learns by mistake the language Lj.
Recall that a language in this case delimits minor differences in expression that might
cause difficulties in communication. In reality this learning mistake may correspond to,
for example, minor pronunciation differences in words. Finally, by definition Qij is (the
transpose of) a stochastic matrix, since any child should learn one of the languages in
the complete set Li; the inheritance matrix satisfies

∑
j Qij = 1. Similarly, there are no

further inherent restrictions on the form of Qij so there remains a huge degree of freedom
in the parameter space.

Before we motivate the dynamical equations for the model, we impose a few more
constraints on the population, to make the model more analytically tractable:

(P1) The subpopulation variables can always be normalised by the total population, so
we define them as proportions of population,

∑
i xi = 1.

(P2) The total population over time is assumed to be constant,
∑

i ẋi = 0, where the
dot denotes time derivative.

Thus the dynamical equations for the population can be written down as

ẋi =
∑
j

xjfjQji − φxi. (2.14)

where φ ≡
∑

i fixi is the expectation value of fitness across the entire population. The
purpose of the second term is to impose condition 2 from above:∑

i

ẋi =
∑
j

xjfj
∑
i

Qji − φ
∑
i

xi

=
∑
j

xjfj − φ = 0, (2.15)

where we have used the fact that Qij is stochastic and condition (P1). These equations
describe the macroscopic evolution of the population proportions, with no reference to
the exact form of interaction between individuals speaking different languages.

This is a set of n coupled first order nonlinear differential equations, where the nonlin-
earity is hidden in the variables fi and φ. It is difficult to solve this equation analytically,
and some numerical results were presented by Nowak et al. in their foundational paper
of the model20. For any useful analytical results to be obtained, a few more assumptions
are required.

2.2.2 Symmetric Nowak Model

In literatures that study this system of equations, a common approach is to assume some
degree of symmetry in the parameters of the system and exploit that symmetry to arrive
at some analytical solution24,21. Here we demonstrate how that approach simplifies our
dynamical system.

Consider the case Aij = a,∀i 6= j so all off-diagonal elements of Aij are equal to
some constant, while Aii = 1 is still true for all diagonal elements. Hence we can write
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elementwise Aij = δij(1− a) + a, where δij is the Kronecker delta function. Then fitness
function for the subpopulation xi becomes

fi =
1

2

∑
j

(Aij + Aji)xj =
∑
j

Aijxj

=
∑
j

(δij(1− a) + a)xj = (1− a)xi + a
∑
j

xj

= (1− a)xi + a, (2.16)

where in the last step we used condition (P1). Next consider a similar condition for
the inheritance matrix, Qii = q,Qij = 1

n−1
(1 − q) ≡ u,∀j 6= i. The form of the off

diagonal elements is restricted by the stochastic property of Q. These two assumptions
on the comprehension and inheritance matrices drastically reduce the complexity of the
dynamics, since now only 2 parameters a and q are required to specify the model.

One could interpret these assumptions as introducing a permutation symmetry Sn

into the system, where now we describe n equivalent languages in competition with each
other. Without a priori knowledge on the specifics of the languages, it is reasonable to
assume that no languages is inherently different from others.

To proceed, the equations of motion may be simplified with these assumptions:

ẋi =
∑
j

xjfjQji − φxi

= (fiQii − φ)xi +
∑
j 6=i

xjfjQji

=
[
((1− a)xi + a)q −

∑
j

xj((1− a)xj + a)
]
xi +

∑
j 6=i

xj((1− a)xj + a)u

= (1− a)qx2
i + aqxi − (1− a)

(
x3
i −

∑
j 6=i

x2
jxi
)
− axi + (1− a)u

∑
j 6=i

x2
j + au(1− xi)

= (1− a)
[
− x3

i + qx2
i +

∑
j 6=i

x2
j(u− xi)

]
− au(nxi − 1), (2.17)

where going to the fourth line we used the relation
∑

j 6=i xj = 1− xi from (P1); going to
the fifth line we used 1 − q = (n − 1)u. The nonlinearity of the dynamics is explicit in
this new form of the equations.

2.2.3 Equilibrium Solutions

One typical approach for this type of equation is to find equilibrium solutions of the
system to learn about the behaviour of fixed points. An equilibrium solution is a point in
configuration space p ∈ Rn where ẋi = 0. There are different families of solutions, each
corresponding to a number of dominant populations with the rest present as minority
populations24. Detailed analysis of the possibilities becomes quite involved so here we
proceed using an ansatz with only 1 dominant population.

From the symmetry of the original system, assume that after choosing a dominant
population there will still be an unbroken permutation symmetry among the minority
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populations, which have identical dynamics. Because of the Sn symmetry assume, without
loss of generality, that the equilibrium solution takes the form

x1 = X, xj =
1−X
n− 1

, j = 2, . . . , n. (2.18)

Substituting the ansatz into Equation 2.17 yields n equations for X. But n − 1 of those
equations are redundant since condition (P2) implies ẋ1 = −

∑n
j=2 ẋj. Our ansatz had

the minority populations obeying the same dynamics, so if the LHS is zero then all n− 1
other equations are trivially satisfied. Thus it is sufficient to find the equilibrium solution
for x1 alone. To do so, we solve the equation

−X3 + qX2 +
(1−X)2

n− 1

(
1− q
n− 1

−X
)
− a(1− q)(nX − 1)

(1− a)(n− 1)
= 0. (2.19)

This is an algebraic equation for X which can be solved straightforwardly with computer
algebra packages such as Mathematica. There are three solutions for the cubic equation,

X0 =
1

n
, (2.20)

X± =
1

2(n− 1)

(
(1 + (n− 2)q)±

√
D
)
, (2.21)

where

D = (1 + (n− 2)q)2 − 4(1 + a(n− 2))(n− 1)(1− q)
(1− a)

. (2.22)

The symmetric equilibrium solution X0 corresponds to the state where all subpop-
ulations are equal in proportion and there is no dominant population. This solution is
independent of a and q, therefore it exists for all model parameters. From the symmetry
of the equations of motion, it is not surprising that such a solution exists.

The asymmetric equilibrium solutions are much more interesting. In the absence of
any inheritance inaccuracies, q = 1, the solutions are X+ = 1 and X− = 0. The former
solution corresponds to a state where there is only one surviving population, and all
minority languages have gone extinct. This is similar to the default equilibrium state for
the AS models. The latter solution corresponds to the disappearance of one population
and a symmetric configuration for the rest. This solution will be shown later to be
unstable.

In order for the asymmetric solution to exist, we require the equilibrium population
X± to be real. This imposes the condition D ≥ 0 which can be solved for conditions on q
or a. Figure 3 shows the behaviour of D across a range of model parameters. In general
for a fixed a solutions exist only above a certain value of q = q∗, at which point there
actually exists a bifurcation. A quick calculation of dD

dq
shows that D is a monotonically

increasing function of q, which means the equilibrium points X± grow increasingly distant
as q increases.

Some further analytical results could be obtained by looking at the system in the large
n� 1/a ≈ 1/q limit. In this limit 2.21 becomes

X± →
1

2n

(
nq ±

√
(nq)2 − 4an2(1− q)

1− a

)
=
q

2

(
1±

√
1− 4a

1− a
1− q
q2

)
. (2.23)
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Figure 3: Plot of values of D with n = 20 for 0 ≤ a ≤ 1 and 0 ≤ q ≤ 1. The surface
D = 0 is marked in blue. D is a monotonically in q but has a more complicated form in a,
going from quadratic for low q to monotonically decreasing for large q. Real equilibrium
solutions for the system in Equation 2.17 only exist for D ≥ 0.

An approximate value for q∗ can be solved for in this regime

1− 4a

1− a
1− q∗
q2
∗

= 0

=⇒ q∗ = 2

√
a√

a+ 1
, (2.24)

which approaches 1 as a→ 1, as illustrated in Figure 3. In this limit neither the equilib-
rium population nor the critical q∗ depend on the model parameter n.

2.2.4 Stability Analysis

The existence of multiple equilibrium solutions for certain parts of the parameter space
suggests looking at the stability of these solutions to better understand the dynamics.
A standard way to approach stability analysis for nonlinear systems is to linearise the
system near the equilibrium solutions and analyse the linear system instead23.

Expand around the solutions with

x1 = X + ỹ1 xj =
1−X
n− 1

+ ỹj, j = 2, . . . , n. (2.25)

Substitute this expansion into Equation 2.17 and ignoring terms quadratic and above in
ỹi yields, for the first equation,

ẋ1 = (1− a)

[
− 3X3ỹ1 + 2qXỹ1 −

(1−X)2

n− 1
ỹ1 + 2

1−X
n− 1

(u−X)
∑
j>1

ỹj

]
− aunỹ1,

(2.26)

where we have used the fact that X is a solution of the equilibrium system and satisfies
Equation 2.19 to eliminate the constant terms. Next assume that the only time depen-
dence of the perturbations ỹi around the equilibrium are exponential, ỹi = eΓtyi, where
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Γ is the growth rate of the perturbation and yi now time independent initial conditions
for the linearised system. Then with some rearrangement the linearised equation can be
written as

αy1 + β
∑
j>1

yj = 0, (2.27)

where

α = 3X3 − 2qX +
(1−X)2

n− 1
+

Γ

1− a
+

a(1− q)n
(1− a)(n− 1)

, β = 2
(1−X)(X − u)

n− 1
.

A similar albeit longer calculation for the other equations yields

γyj + δ
∑
l 6=j
l>1

yl + εy1 = 0, (2.28)

where j = 2, . . . , n for a total of n− 1 equations, and coefficients are defined as

γ =
Γ

1− a
+ (n+ 1)

(1−X
n− 1

)2

+X2 − 2q
1−X
n− 1

+
a(1− q)n

(1− a)(n− 1)
,

δ = 2
(q −X)(1−X)

(n− 1)2
, ε = 2X

q −X
n− 1

.

These equations can be further simplified using condition (P2), since
∑

i ẋi = ΓeΓt
∑

i yi =
0 =⇒

∑
i yi = 0 if we assume Γ 6= 0. This gives a useful relation y1 = −

∑
j>1 yj.

Therefore the linearised system of equations can be written as, from Equation 2.27,

(β − α)
∑
j>1

yj = 0, (2.29)

and from Equation 2.28,

γyj − δyj + δyj + δ
∑
l 6=j
l>1

yl − ε
∑
l>1

yl = 0,

=⇒ (γ − δ)yj + (δ − ε)
∑
l>1

yl = 0. (2.30)

This is now a system linear of equations for perturbations around equilibrium solutions,
and can be written in the form of a matrix acting on the vector of perturbations

β − α . . . . . . . . . β − α
γ − ε δ − ε . . . . . . δ − ε
δ − ε γ − ε δ − ε . . . δ − ε
... . . . ...
... . . . ...

δ − ε . . . . . . δ − ε γ − ε




y2
...
...
...
yn

 = 0. (2.31)

The matrix, however, is not fully linearly independent. The first row is proportional to
the sum of the other n − 1 rows and hence may be ignored in the analysis of this set of
linear equations.
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Define J to be the matrix in Equation 2.31 with first row removed. For any nontrivial
solution of these equations to exist (i.e. where yi 6= 0), there must exist an eigenspace
with eigenvalue λi = 0. By symmetry of the form of J, the eigenvectors can be easily
obtained. One eigenvector is v1 = (1, . . . , 1)T , which corresponds to eigenvalue

λ1 = (γ − ε) + (n− 2)(δ − ε).

The other eigenvectors need be orthogonal to v1. One possible choice of basis is to
have (1, 0, . . . , 0,−1, 0, . . . , 0)T , for −1 occurring in the k th row, giving a total of n− 2
eigenvectors. This gives an n− 2 fold degenerate eigenspace with eigenvalue

λ2 = γ − δ.

The stability of solutions can be determined by substituting in Equations 2.20 and 2.21,
then solving λ1 = 0 and λ2 = 0 for Γ. By definition, Γ > 0 corresponds to an unstable
equilibrium while Γ < 0 corresponds to a stable one.

For the fully symmetric solution X0 = 1/n this gives

0 = γ − δ =
Γ

1− a
+
n+ 2

n2
− 2q

n
+

a(1− q)n
(1− a)(n− 1)

− 2
nq − 1

n2(n− 1)

=⇒ Γ =
1

n(n− 1)

[
(n(2q − 1)− 1)(1− a)− a(1− q)n2

]
. (2.32)

The other condition λ1 = 0 gives the exact same result for Γ, which was confirmed in
Mathematica by solving the algebraic equation for Γ.
Out of the parameters of the system, the self-inheritance accuracy q is the most relevant
for understanding useful dynamics, since it is the parameter that can change over time
as a result of social factors; a and n are both intrinsic properties of the languages in the
model and should not vary much over time because the evolution of languages themselves
are not taken into account.
Γ is linear in q, so simply solve Γ < 0 for q to find the region in parameter space which
give stable equilibria, which yields

q <
(1− a)(n+ 1) + an2

2n(1− a) + an2
≡ q0. (2.33)

Furthermore, substituting q = q0 into Equation 2.21 we find X−|q=q0 = 1/n. So in fact
the fully symmetric equilibrium solution becomes unstable at its intersection with the
negative branch of the asymmetric solution.

The same approach could be applied to the asymmetric solutions, but the expression
becomes too unwieldy to be written down concisely. Going through the algebra is not
particularly enlightening, so again we consult Mathematica for the algebra and study the
properties of our system graphically. The basic procedure remain the same, except the
asymmetric solution is substituted into the conditions λ1 = 0 and λ2 = 0 then solved for
Γ
Figure 4 shows the behaviour of the growth rate Γ of the perturbations. Two differently
coloured curves correspond to the Γ for different eigenvectors. There are no asymmetric
solutions below q = q∗, as expected. The X+ solutions (solid lines) always have Γ < 0 and
are thus always stable, because all decays will die off exponentially over a characteristic
time scale 1/Γ.
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The X− solutions start with one eigenvector unstable and the other stable, but they
cross over at q = q0 where the unstable eigenvector becomes stable and vice versa. This
means that the negative branch of the asymmetric solution will always be unstable, since
in any equilibrium state there will be at least one eigenvector whose perturbations grow
exponentially and moves the populations away from the equilibrium state.

0.80 0.85 0.90 0.95 1.00

-0.5

-0.4

-0.3
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0.0

0.1

q

Γ

Eigenvector Stability

q* q0

λ1

λ2

Figure 4: Plot of the growth rate Γ of the perturbations against values of the self-
inheritance accuracy parameter q. Parameters used for the plot are a = 0.5 and n = 20.
The solid lines are obtained from X+ solutions and dashed lines from X− solutions. The
black curve shows Γ for the eigenvector with eigenvalue λ1 and the blue curve for eigen-
vectors with eigenvalue λ2. The red shaded region denotes where Γ > 0 and hence where
perturbations become unstable. The special values q∗, where the asymmetric solutions be-
gin to exist, and q0, where the asymmetric solution X− intersects the symmetric solution
X0, are also marked on the plot.

2.2.5 Further Discussion

The dependence of the equilibrium populations on q is shown in Figure 5, taking into
account the stability of the solutions as discussed in the previous section. The asymmetric
equilibrium X− equilibrium is always unstable, and the X+ equilibrium is always stable.
The symmetric equilibrium X0 crosses over from stable to unstable at the intersection
q = q0 with the X− branch. The figures have been given for a specific set of model
parameters, but the general trend and features of the equilibrium solutions do not change
with values of 0 ≤ a < 1 and n > 2.
This particular analysis of the model relies upon the symmetry of the comprehension and
inheritance matrices A and Q to make simplifying assumptions. Therefore, there will be
other equilibrium solutions for asymmetric configurations of model parameters which have
been ignored for this discussion, but more details can be found in the references provided
within this section. Here we will assume that the parameters stay in the symmetric
Nowak model regime, to a good approximation.

The general behaviour is that below a critical q < q∗, there is only one stable equilib-
rium solution and any initial value of populations xi will settle down to the fully symmetric
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Figure 5: Plot of the equilibrium solutions of the original system in Equation 2.14.
Parameters are a = 0.5 and n = 20. The equilibrium population x is plotted against the
self-inheritance accuracy parameter q. X0 is the fully symmetric equilibrium where all
populations share the same proportion of the total population. X± are the asymmetric
equilibria where there is one dominant population with proportion x. The dashed lines
denote unstable solutions, as determined within this section. Special values q∗ and q0 are
marked on the plot. The solid line of the X0 solution extends all the way down to q = 0,
which is not shown in order to highlight the more interesting behaviour at large q.

solution xi = 1/n, ∀i = 1, . . . , n. For the region q∗ ≤ q < q0 there exist two stable equi-
librium states, X+ and X0. The state in which the system ends up depends on the initial
conditions. From the stability analysis prior, there are two types of eigenvectors for per-
turbations on the X− equilibrium solution. The eigenvector v1 = (1, . . . , 1)T corresponds
to the eigenvalue λ1 and is unstable for q∗ ≤ q < q0. Recall that for any perturbation
vector we assume the total population stays constant, so implicitly x1, the dominant pop-
ulation, experiences unstable perturbations on the X− branch. It either grows towards
the majority-minority equilibrium or the symmetric equilibrium. The other eigenvec-
tors v2 as given prior are stable within this parameter range, for perturbations that are
essentially reshuffling of populations within the minority groups.

As the parameter grows to q ≥ q0, the X0 equilibrium loses stability and the two
eigenvectors for the X− branch switch roles; however, in this regime the X− solution
implies that the assumed dominant population is proportionately less than the other
populations. In this case the solution no longer has a valid physical interpretation and
we assume that the system never ends up in this state. Then the system essentially has
one stable equilibrium at the X+ solution in this regime.

The equilibrium analysis gives us some insight into the qualitative behaviour of the
system. From an assumption of a symmetric set of parameters, the model exhibits a sort of
phase transition behaviour starting at q = q∗ that takes the system from a disordered state
with n languages (speakers) in equal proportions to a more ordered state with a single
dominant language. Importantly the dominance of one language does not necessarily lead
to the extinction of all other languages, and for most values of the inheritance accuracy
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parameter q the equilibrium state has a non-zero population for the minorities.

Note that in our analysis we assume without loss of generality that one particular
population x1 ends up as the dominant one, but due to symmetry the same solution exists
for any of the other populations. Therefore there are in fact n equivalent equilibrium
states with a dominant language, and which one the system ends up in depends on the
initial conditions.

In the Nowak model that we have presented in this section, the emergence of language
is explained as a natural result of evolutionary dynamics. In particular, languages and
their interactions are modelled akin to biological species, which evolve by natural selection
subject to a fitness parameter. With a quantitative mathematical model we are able to
study the evolution and competition within systems consisting of multiple languages.
From studying the equilibria of the dynamical model equations and their stability, we
gain intuition on the qualitative behaviour of the system, which can help verify the
model in the physical world.

An area suitable to apply the model is in language shift. Mitchener suggests as ex-
ample the shift from Old English to Middle English to be a case that can be suitably
modelled with a evolutionary dynamics model24. There are more cases in history involv-
ing language shifts that possibly admit a qualitative description using this model.
Following the introduction of another language into a monolingual population, either by
increased social exposure or by education policies, the q parameter decreases as a speaker
population maybe converted to some other closely related language. If the parameter
does not decrease far enough, then the population distribution will stay near the original
equilibrium state of having a single dominant language unless subjected to a large pertur-
bation; if q decreases past the critical q∗, then the original stable equilibrium disappears
and the system ends up in the disordered state with equal populations of speakers across
all languages.
Both of these situations can be observed in real life language distributions. From a recent
study, the distribution of French and Dutch speakers in Belgium reflect that of the X+

equilibrium; the distribution of Spanish and Catalan speakers in Catalonia reflect that
of the X0 equilibrium25. While the evolutionary dynamics model does not capture any
sophisticated details in spatial distribution, complex social structure or bilingual popu-
lations, it can regardless provide a perspective on why these types of distributions might
occur naturally as they are stable equilibria of dynamical systems.

Unfortunately, quantitative predictions and tests of the model prove to be difficult
due to the ambiguity in definition of the parameters26. The model parameters a and q are
tricky to quantify, not to mention that they are parameterising a simplified symmetric
case of the matrices A and Q. As mentioned previously in this section, the precise
definition of a language in terms of the model is not clear and there is no exact method
of determining whether two languages are different, so the dimension n of the model is
also not clear.

Further contemporary studies on evolution dynamics of languages involve, e.g. using
more formal bifurcation theory24 and introducing learning strategies so there is a depen-
dence q = q(a) in the parameters23 for more accurate modelling. There is also work that
uses evolution dynamics to explain the natural emergence of words and syntax27, which
is not directly related to language competitions but nonetheless demonstrates the greater
scope of applications of the theory.
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3 Microscopic Models

Agent based models are essential to constructing sociophysics theories. In ABMs, the
dynamics in the system is delegated to the behaviour of the individual agents. The most
effective way to implement ABMs are through numerical simulations, where agents are
placed on some underlying topology and the agents’ intrinsic values are updated iter-
atively through a set of rules. The dynamics of the system are studied by extracting
relevant macroscopic variables from the population of agents. Numerical simulation of
ABMs have become more accessible than ever for study thanks to the increase in comput-
ing power of commercial computers, so sociophysicists can run simulations at reasonable
scales even on their laptops.

There are a few important aspects to consider in the designs of numerical simulations
for ABMs. The topology on which the model is simulated significantly affects the dy-
namics. The topology of a model is often phrased in the language of complex networks,
which we will not cover in detail here; a comprehensive review of complex networks is
available in literature28 and there have been investigations into the effect of social network
structures on language evolution29.

We consider models which implement two simple network types: fully connected net-
works and regular networks. In an ABM on a fully connected network, every agent is
capable of interacting with every other agent, so the agent updates its own properties
based on the combined information from the whole population. When there are a large
number of agents, the fully connected network approximates macroscopic models.
A regular network ABM is one where every agent has an equal number of neighbours
that they can interact with. This is often realised as a 2D lattice which is a regular
network with four neighbours. On regular networks, every agent only sees their imme-
diate neighbours which causes interesting local effects to become manifest. Lattices also
better reflect how real life societies behave, as humans have a limited mobility range that
restricts their social interactions to close neighbours. Though in reality social networks
may be more accurately modelled by more sophisticated complex network structures.

(a) Fully connected network

(b) Regular network

Figure 6: Two networks with N = 9 nodes, or agents in an ABM. The structure of the
two types of networks are vastly different. In a fully connected network (a) every agent
can interact directly with every other agent, but in a regular network (b) only those who
are neighbours can interact.

Another important consideration in setting up ABMs is the iterated evolution rules of
the agents, which constitutes the details of the model. The cellular automaton (CA) mod-
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els, popularised by Conway’s Game of Life30, involve identical individual agents on a 2D
lattice which obey a set of simple rules that change their state after every timestep. The
CA models are used to study complex phenomena which arise from simple constituents
which are unaware of the global state of the system31.
As an alternative, a common approach to numerical simulations in physics is the Monte
Carlo (MC) method of random sampling. In MC simulations, random variables are used
to obtain a state of the system which is part of a statistical distribution. With enough
runs of the simulation one may recover information about macroscopic properties or fea-
tures of the system. The Ising model is a well-known example where MC simulations
have been successful in describing the physical system. Compared to CAs which are de-
terministic, MC sampling is intrinsically random, and is more suitable in capturing the
randomness of the agents which compose human societies. Indeed, the Ising model has
been adapted to model human opinion dynamics32, where binary opinions are chosen as
the analogue of up/down spins of electrons in ferromagnets.

In this section we consider a MC model for language competition, using a microscopic
Abrams-Strogatz model that is based on the AS model discussed in Section 2.1. The
simulation was written in one sitting, but further analysis of the results required extra
quantities that need be computed from the simulations using suitable algorithms. Writing
extra code to carry out the analysis and visualise the results took up most of the project
time.

3.1 Microscopic AS Model

Monte Carlo methods have been applied to study the AS model and its variants before19,33.
Here we make a similar attempt to study the AS model as an ABM using numerical
simulations. The model proceeds as follows.

1. Start with an N ×N square lattice filled randomly with an initial proportion xi of
speakers of one language.

2. At every timestep, select N ×N random cells on the lattice to be updated
3. For every cell, sample the density either

(a) locally, by computing the density of speakers in the four neighbouring cells, or

(b) globally, by computing the density of speakers over the entire lattice.

4. Compute the transition probability pyx = sxa or pxy = (1 − s)ya depending on
whether the cell was aligned with population y or x, respectively. s and a are model
parameters corresponding to relative status and volatility of the two languages,
similar to the macroscopic AS model.

5. Roll a random number and change the cell to the opposite alignment if the number
is less than the transition probability p.

6. Repeat from step 2 until the required timesteps are reached.

In principle, the update rule is a good approximation to the AS model locally. When
the sampling is taken to be global in step 3, the results should resemble those from the
macroscopic analysis. There are a few caveats with this particular implementation of the
microscopic AS model.
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One technicality with the simulation is that we have chosen to use asynchronous
random updates, where N ×N random cells are chosen at every timestep to be updated
sequentially. An alternative is regular updating where cells are updated in a fixed order,
usually corresponding to the index order of the cells in computer memory. The two
different update styles had been found to give tangible but minute effects on the results33,
so we only consider one update style here. Additionally, the whole grid maybe updated
via synchronous updates where all cells are updated simultaneously, but this can be very
memory intensive and is impractical for this project.

In lattice simulations, periodic boundary conditions (PBCs) are often used to ex-
clude the consideration of edge effects. With PBCs a 2D lattice wraps around east-west
and north-south so e.g. the neighbour of the easternmost cell is the westernmost cell,
effectively simulating the system on a torus. PBCs also simplify the computation of cor-
relation functions, which will be discussed in a later section, due to the isotropy of the
lattice.

The simulations presented here were all produced with custom Python code written
independently by myself using mainly the numpy and matplotlib libraries. Regarding
the timescale of the simulations, each run with a 100× 100 lattice over t = 100 timesteps
takes on average half a minute to run on my laptop. Some of the results involve averaged
values over ten runs, which can take up to ten minutes to run depending on the model
parameters.

3.1.1 Simulation Results

We first verify the validity of the simulation by verifying some of the expected behaviours.
Figure 7 shows the evolution of population density x averaged over ten runs. Over
the same number of timesteps, we observe a much steeper change in x for the global
compared to the local sampling rules. For global sampling, the results agree with features
of the macroscopic analysis, c.f. Figure 2. In particular, initial populations xi > 0.5
are attracted to the population x = 1 while xi < 0.5 are attracted to x = 0. The
unstable equilibrium solution x = 0.5 is stable for all times in the macroscopic case, but
it spontaneously decays for Monte Carlo simulations due to the statistical perturbations
shifting the population away from the equilibrium state. However, the equilibrium decays
into x = 1 and x = 0 with equal probabilities, so the statistical average the solution still
agrees with the macroscopic analysis, as shown in the figure.

Different sampling rules lead to significant differences in decay timescales of the sys-
tem. For global sampling it takes most initial values of xi about t = 20 timesteps to
reach one of the equilibrium states, while for local sampling it takes much longer, only
reaching equilibrium after t = O(100) (not shown in figure). For the rest of this section
we will focus on using local sampling rules as they reveal new features of the model.

An interesting case to study is when the two languages in the system are asymmetric,
i.e. s 6= 0.5. According to the macroscopic analysis, there will be some critical population
x∗ that the x population will evolve monotonically towards or away from, depending on
the value of the a parameter. However, the microscopic AS model does not fully agree
with these predictions. Figure 8 shows the evolution of a population x with inferior
status for a few initial conditions. The decay profiles roughly follow exponentials, which
are straight lines on the log-linear axes. The slope becomes less steep for larger initial
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Figure 7: Time evolution of the population x in an MC simulation of the microscopic AS
model with parameters s = 0.5, a = 1.3 without PBCs. A set of initial populations xi
between 0 and 1 are simulated. Results shown are averaged over ten independent runs.
The time scale has been cut off at t = 50 to help see the shape of the curves in the global
case. Left figure shows the simulation run with local sampling rules and right figure with
global sampling rules. Local sampling leads to a much longer time to reach equilibrium.
Global sampling leads to qualitative behaviour that resembles the macroscopic analysis
in Figure 2.

populations, which corresponds to slower exponential decay rates. Straight lines are fitted
to the log-linear plots to find exact values of the exponential decay rates. The fits are done
with a generic linear regression fit from numpy, with weights to adjust for exponentially
decreasing values of the data.

For most samples the evolution strays away from the exponential at the start and final
parts of the curves. The starting behaviour for a few initial conditions can be seen more
clearly on the right panel of the figure. This is possibly due to the coarsening effect on an
initially random lattice, where agents rapidly seek to reach consensus in their immediate
neighbourhood. The data deviates from the exponential towards the end of the curve. It
is not clear why exactly this behaviour arises and more runs could help by improving the
statistics of the current data. A possible explanation is that due to the random update
rules in this implementation of the model, it is more difficult to choose the last few cells of
a language, so it takes extra timesteps to fully eliminate the population. This hypothesis
can be easily tested by modifying the model to use regular update rules, but was not
done here due to time considerations.

The model parameters mean that x is the population with an inferior status, so unless
it starts at a majority it will almost certainly be eliminated. However, the superior status
population y = 1 − x is not fully eliminated except for very large initial x populations.
In the simulation only x = 0.9 came close to the elimination of the superior population.
In the right panel of Figure 8, for xi = 0.7 there is an initial increase in population
corresponding to the coarsening effect, but the population reaches a maximum at t ∼ 100
and begins to decrease exponentially. This is assumed to continue until the initial majority
population x is eliminated. For xi = 0.8 the turnaround takes much longer and the system
remains in a metastable state for longer than the simulation was run.

An alternative perspective on the dynamics of this system is available through another
variable. The interface density ρ is defined as the density of neighbouring cell pairs which
have opposite alignments and is commonly used to analyse phase transitions in Ising-like
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Figure 8: Plots of the population of x over 500 timesteps from one run of the simulation
with model parameters s = 0.4, a = 3.0 in a log-linear plot. Note the different axes
between the left and right plots. Most of the population curves follow exponentials, with
deviations at the start and end. Straight lines are fitted to the population curves to
obtain the slopes and hence decay rates of the exponentials.

sociophysics models34. The interface density is maximum when the lattice is completely
random with an equal occurrence of both populations, in which case ρ = 0.5 for the case
of two populations. When the lattice is homogeneous ρ = 0 as there are no longer any
interfaces. Essentially, ρ is larger when the system is more disordered.

Figure 9 shows two distinct trends in evolution of the interface density. The left
panel shows densities which decrease exponentially, after an initial coarsening stage which
rapidly decreases interface densities. This behaviour is consistent with the exponential
decrease found in the population evolution plot. The right panel plots show interface
density evolution for large initial x populations, which similarly goes through a coarsening
stage but ends in a plateau. For xi = 0.8 and xi = 0.9 this is consistent with them
reaching a metastable state with varying proportions of the superior population y. The
plateau for xi = 0.7 continues even after the population enters the exponential decay
phase in Figure 8. A possible explanation is because in the initial conditions where x is
at an initial majority, the superior population y only exists in small pockets. When the
pockets expand uniformly, there are no drastic changes to the shapes of these clusters
since they are initially too spread apart to merge. If the simulation was run for longer,
an exponential decay might be observed for the curves in the right panel.

Both the population and the interface density are measurements which describe global
properties of the lattice. While interface density does capture some feature of the popu-
lation clusters, it does not quantify any length scales that arise in the model. A standard
quantity used for studying length scales in Ising models are correlation functions, which
can similarly be applied to the microscopic AS model. This will also help understand the
behaviour of the model for different volatility parameters a.
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Figure 9: Plots of the interface density over 500 timesteps from the same run as in Figure
8. There are two distinct shapes of the curves which are shown in separate plots. Straight
line fits are also done on the log-linear axis to find the exponential decay rates. Note the
initial interface density is maximum for xi = 0.5 and decreases for xi > 0.5, which can
be seen in the right panel.

3.1.2 Correlation Functions

Correlation functions are useful statistical measurements for physical systems which quan-
tifies the level of disorder within a system. For numerical simulations on a 2D lattice such
as the one we have done here, the two point correlation functions can be defined analo-
gously to 2D Ising models35:

C(x,x′) = 〈S(x)S(x′)〉, (3.1)

where x and x′ in general are four-vectors of discrete points in space and time, though
most of the time spatial and temporal correlation functions are calculated separately;
S(x) = ±1 are spins (in this case they are technically adopters of one of the two languages,
but we will refer to them as spins for brevity and to highlight the analogy with the Ising
model); the angled brackets 〈·〉 denote a statistical average. At the extremes, two points
are completely correlated if C = 1, anticorrelated if C = −1, and uncorrelated if C = 0.

If we exploit the isotropy of a 2D lattice with periodic boundary conditions and
rotational symmetry of the model, the spatial correlation function may be written in
terms of radial distances between two points on the lattice

C(0, R) = Z−1
∑
|~r|=R

∑
~x

S(t, ~x)S(t, ~x+ ~r), Z =
∑
|~r|=R

∑
~x

1, (3.2)

where the vectors e.g. ~x are now spatial three vectors, and the distance is defined in
terms of the L1 norm |~r| = |r1| + |r2| to be computationally more adequate for the 2D
lattice.

The temporal correlation function is one dimensional by definition, so it does not
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require any further reductions in degree of freedom. Explicitly, it is defined as

C(T, 0) = Z−1
∑
~x

S(t, ~x)S(t+ T, ~x), Z =
∑
~x

1. (3.3)

Sometimes, one could define population specific correlation functions Cs(x,x
′) where

the sums in the above equations are taken over position vectors of one fixed population
s = ±1. However, for this analysis we are mostly interested in equilibrium configurations
where both populations are symmetric, so this will not be necessary.

Figure 10 shows lattices at the end of the simulations with the same model parameters
except a, where we choose three values to illustrate the qualitative differences. The
simulations had been run with PBCs to facilitate the computation of correlation functions.
The simulations had parameters xi = 0.5, s = 0.5 so they would remain in equilibrium for
longer timescales than the simulations were run for, such that we can focus on studying
the stable lattice configurations that appear in the AS model. As discussed in Section
2.1, a low volatility parameter a < 1 corresponds to high volatility i.e. more disorder in
the system, while a high volatility parameter a > 1 corresponds to low volatility. This is
reflected in the lattice simulations.
For a = 0.3 the lattice does not look too different from a completely random lattice
configuration. The main difference is that there are some more clusters of one or the
other population. As volatility decreases (increasing a), the lattice settles down into
more ordered configurations. The a = 1.0 case has much larger clusters compared to
both random and a = 0.3 lattices, but there are still pockets of the opposing population
interspersed between large clusters. For a = 3.0 the small pockets almost completely
disappear, leaving only large contiguous clusters of either population.

We quantify these features through spatial correlation functions, where the existence
of large clusters manifests as a longer correlation distance. The code used to compute cor-
relation functions were written independently by myself with standard numpy functions.
Figure 11 shows the correlation functions computed for the four simulations discussed
previously. The zero correlation line is marked on all of the plots, and we define the
correlation length λ as the distance at which the correlation first crosses zero, interpo-
lated where necessary. Note that usually correlation lengths are defined in terms of an
exponential curve fitted to the curve, but we define it in a different way due to the lack of
data. With additional computing resources, running multiple simulations could be useful
for eliminating any statistical variation at the tails of the curves.
From the data we have, the random lattice has a correlation length less than one unit
distance of the lattice, which means a completely uncorrelated lattice, as expected. With
volatility parameter at a = 0.3, the correlation length is still quite short at λ = 4.63,
which captures the small clusters that form in the lattice at this volatility parameter.
The correlation length continues to increase for a = 1.0, but decreases again for a = 3.0.
From the lattices in Figure 10, the boundaries between the two populations are less clearly
defined for the a = 1.0 case, which could have led to the large correlation length.

As mentioned above, we also measure the temporal correlation to ascertain how
quickly the grid changes over time. Figure 12 shows the temporal correlation function for
a range of volatility parameters between a = 0.3 and a = 3.0. The correlation stays high
over longer timescales for larger values a, where the lattice is less prone to rapid changes
and large clusters are formed which will stay stable for long times. For smaller a the
clusters are small and move around more sporadically, so correlation decreases rapidly
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random a = 0.3

a = 1.0 a = 3.0

Figure 10: Top left lattice is completely randomly generated with equal probabilities
for both populations. The rest are 100 × 100 lattices at the end of the MC simu-
lation after t = 500 timesteps, using the same random number generator seed. All
simulations are run with xi = 0.5 and s = 0.5, but with different volatility param-
eter a as displayed in the labels. PBCs are applied for all three of these simula-
tions in preparation for computing correlation functions. Full movie of the simula-
tions can be accessed at: https://drive.google.com/file/d/1C1tvZTDn2c3zFJoFP_
7__0hQYA6lJ-p2/view?usp=sharing (Google compresses the video with the builtin
player so download the video for better quality viewing).

over time. For a < 1 the correlation data also becomes quite noisy below ∼ 10−2. This
could be similarly caused by the lattice being more erratic at low a values, with cells
flipping back and forth rapidly, so the long time correlations are largely random. Similar
to before, these noisy phenomena would be elucidated if more data were available through
more runs of the simulation.
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Figure 11: Spatial correlation functions computed for the four final lattice arrangements
in Figure 10. The correlation is obtained from one single run so there are likely statis-
tical noise present. The correlation length, distance at which the first zero crossing for
correlation, is achieved is shown on each of the plots, along with the zero correlation line.

We define analogously the correlation time τ as the time taken for the temporal
correlation to drop below an arbitrary threshold, which we take to be 0.1 here. Together
with correlation length we examine the dependence of correlation length/time scales on
the volatility parameter a. This is motivated by the Ising model where correlation lengths
have an interesting dependence on temperature, and volatility is intuitively an analog of
temperature for our system.

Figure 13 shows both the correlation length and time dependence on a. Because of
the unoptimised algorithm used to compute spatial correlations, it takes around a minute
to compute the correlation function from one lattice, so only one lattice was used for each
of the data points. The correlation length data could be significantly improved if a more
efficient algorithm could be implemented. For temporal correlation, the algorithm was
much more efficient essentially because time is one dimensional, so better averaged data
were available.

The correlation length appears to peak around a = 1.4, falling rapidly towards zero
for a < 1 and a slower fall for a > 1. The shape of the a dependence of λ roughly
resembles the correlation length divergence at critical temperature in the Ising model.
However, due to the uncertainties in the data this behaviour should be confirmed once
better data are available. On the other hand, correlation time displays a clear sigmoid
shape with a sharp transition at a = 1, where we identified, both in the macroscopic
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Figure 12: Temporal correlation functions computed for a number of simulations run on
the same 100× 100 lattice with PBCs, with parameters xi = 0.5, s = 0.5 but for a range
of a as shown in the legend. The data is collected over a single run of the simulation for
each parameter, so there are quite a lot of statistical noise. The blue dashed line is the
constant line where correlation equals 0.1.

analysis and in the simulations, a qualitative difference in the dynamics of the system.
This also resembles the transition from order to disorder around the critical temperature
in the Ising model, though in that case the correlation length peak also lines up with the
critical temperature.

3.1.3 Further Discussion

We have studied the microscopic AS model as an ABM of language competition through
MC simulations. The evolution of population densities follow exponentials, but takes
place over longer timescales when compared to the macroscopic analysis. Results show
that with even a slight advantage in the relative status of one language, it becomes
difficult to completely eliminate that language, even if it starts at an initial disadvantage
in population. The interface densities similarly follow exponentials when one population
takes over, but remains nearly constant for metastable states. There are also interesting
dependence of the model dynamics on the volatility parameter, which warrants further
studies.

Beyond population densities and correlation functions, another way to quantify the
lattice configurations is through directly counting clusters. Cluster sizes and number den-
sities are important quantities used in studying statistical system such as percolation36.
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Figure 13: Variation of correlation length/time, as defined in the text, over a range of
volatility parameters between a = 0.3 and a = 3. The correlation length plot has much
noisier data because only one run is used for each data point. Correlation length displays
a peak at a ∼ 1.4 and correlation time appears as a sigmoid shaped function in a.

A standard cluster counting algorithm could be implemented on the lattice in the future
to further study the properties of the system.

At a practical level, the AS model was originally developed as a model describing
language competition. The problem with the macroscopic model, as discussed in Section
2.1.2, is that the volatility parameter a is a dimensionless model parameter that does not
have any intuitive physical or sociological interpretation. However, we find here that a
has quantifiable effects on the typical length scales in equilibrium state. This means that
with more available resources, it is plausible that one could make a fit to real world data,
possibly with time series data as well, to extract the model parameters while accounting
for features in spatial distributions, which were not considered in the original work by
Abrams and Strogatz13. A similar study was done recently by Kauhanen et al. on fitting
a linguistic temperature for linguistic features over the world37, though in their case a
much more sophisticated stochastic model was used.

It is also worth mentioning that there are many assumptions and limitations in this
simple microscopic AS model. No population dynamics have been included, since all
interactions happen on a static lattice with a fixed number of agents. In reality these
agents would be able to reproduce, whereby the languages they speak are inherited or
mutated. The interaction between agents should also have some dependence on the
similarity in their languages. The languages here are only categorical with one relative
status parameter to encode their differences. There are no reference to the specific features
of each language, which can often be quite complex. Caution should be exercised when
implementing extra features to sociophysical models such as the AS model. Furthermore,
one could consider including geographical information in the regular lattice, or run the
model on more sophisticated complex network structures. These additions are useful to
more accurately model language competition in real life, but they might also introduce
complexities to the model that are not necessarily relevant. It is the responsibility for
sociophycisists to make judicious choices on which model details are needed to accurately
describe real life systems.

The numerical simulations in this work have been mostly proof of concepts, to demon-
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strate that MC simulations are capable of leading to useful conclusions in sociophysics
studies. Further work would likely require greater computation power, in order to run the
simulations over larger time scales and on larger lattices. The number of agents scales as
∼ N2 where N is the length scale of the lattice, so many of the simulations run in this
project would scale algebraically without further optimisations. More efficient algorithms
and faster computer programs, e.g. in C++ instead of Python, are desirable if larger scale
simulations are attempted.

Therefore, while the sociophysical models have been interesting from a physics per-
spective, it still requires more work to apply them to real world situations and draw
meaningful conclusions. The connection between the model parameters and real life data
are not yet clear. But the potential is there for these models to provide accurately de-
scriptions for language competition dynamics and hence inspire new ideas on how the
trend of language extinction can be stalled or even reversed.

4 Conclusions

Most of this work was dedicated to exploring various dynamical models for language
competition, where we explored a few of the influential models in sociophysics literature.
In doing so, we saw that physics provides powerful tools, from analytical techniques to
quantitative intuition, to analyse sociological systems. Even though the agents in social
systems were humans who are capable of exhibiting complex behaviour on their own,
it was not entirely hopeless to prescribe models that govern their collective behaviour.
Statistical physics and complex systems provided the integral connection between the
nature of the individual and the characteristics of the collective.

We examined two analytical models, the Abrams-Strogatz model and the Nowak
Evolutionary Dynamics model, for language competition. Both resembled special com-
petition within biological systems, though in this case the human population acts as a
proxy through which different languages may compete. Using stability analysis, we found
that both systems have dynamical behaviour that explains the coexistence of multiple
languages. The Nowak model provided the mechanism to explain how a shift in domi-
nance between languages might occur. We also examined the microscopic AS model as
an example of agent based models and an extension to the AS model. We found that the
microscopic dynamics exhibit an interesting dependence on the model parameters.

It is not surprising that we find parallels between traditional physical systems and
these exotic dynamical systems, where the language of physics can be used to provide
insight and grant new perspectives on problems from other fields of science. Physics and
mathematics is universal in describing our world, and many complex problems in our
world may be reduced by assumption into analytically tractable models. But in doing so
we must not forget that sociophysics is not a replacement for sociology, as there are many
social dynamics whose full complexities cannot be captured by reductive assumptions
imposed by sociophysics. Knowledge from both disciplines should be made compatible
through meaningful communications between the scientists working in either fields. Only
then may we eventually reach the ultimate theory of sociology as dreamt of by Auguste
Comte in his philosophical endeavour.
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4.1 Extra Models for Interest

There are many more interesting models in sociophysics which require attention and
further development, and due to time constraints it is impractical to cover more models
in similar detail to the few which have already been presented. More comprehensive
reviews of sociophysical models and their applications are available, among others, in the
various works cited throughout this essay2,38,26.
Here we briefly highlight a few more areas of sociophysical modelling, both in and outside
the subject of language dynamics and evolution. This is to provide further support to
the claim of the potential of sociophysics as an alternative approach to innovate for the
traditionally subjective studies of social sciences.

The Schulze-Stauffer model39 uses an alternative representation for individual lan-
guages in modelling language spread and competition. In their model, individual lan-
guages are represented as bitstrings, a sequence of zeros and ones. Starting with a single
origin language, populations reproduce iteratively with a mutation probability, which ei-
ther flips one of the bits within the bitstring or, in one extension of the model, replaces
it with one from an arbitrarily defined superior language. The authors found that the
emergence of a dominant language is dependent on the mutation probabilities; at a low
mutation rate the origin language dominates with a few trailing behind, while at high mu-
tation rates the population size distribution of languages begin to qualitatively resemble
real world data.

De Oliveira’s model40 also studies the evolution of an initial ancestor language, but
with an additional consideration of spatial effects. The ABM simulation is conducted
on a square lattice, where the ancestor language mutates and colonises new locations
within the lattice, intended to simulate the spread of human languages on Earth from
one common ancestor. The relation between linguistic diversity and the lattice size are
found to mirror experimental observations.

The Axelrod model41 is a model of cultural dynamics, their spread and assimilation.
The model realises cultural features in the form of vectors carried by agents, who interact
and modify their own cultural vector based on some predetermined rule. This model also
leads to regions of dominance of one culture or coexistence of many cultures, depending
on the specific parameters of the model.

Social Impact Theory models42 are a class of opinion dynamics models, which attempt
to predict opinion formation in and across communities. These can be thought of as
extensions to Ising-like models, which are the simplest opinion dynamics models. The
model assumes inhomogeneity in the agents’ abilities to form opinions and convince other
agents of their opinions. The model exhibits many interesting dynamics such as formation
of stable clusters of opinions, metastable states and phase transitions. An extension of
the model43 introduces spatial dynamics where agents migrate and opinions are spread
via a field that reacts to the existence and spatial distribution of individual opinions.
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