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Abstract

This paper reviews the reformulation of Type II supergravity theory as a generalized

geometry in mathematical details. The generalized tangent bundle is studied as an exact

Courant algebroid. Generalized differential geometry is studied on the Courant algebroid

extended by the density bundle detT ∗, with O(d, d) × R+ structure. The mathematical

structures of the generalized geometric objects are reviewed. These includes generalized

version of the Levi-Civita connection. With the generalized geometric tools developed,

the Type II theories are finally formulated in a Spin(9, 1)× Spin(1, 9)-covariant form as

a generalized analogue of the Einstein theory.
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Chapter 1

Introduction

In the physical point of view, the generalized geometry is the geometry for supergravities,

which are commonly regarded as low-energy limits of the string theory. As a geomet-

ric theory, generalized geometry studies the generalized structures [1, 2, 3], which are

extensions of the structure of tangent bundles. For Type II supergravity theories, the

generalized structure is E ≃ T⊕T ∗ [4], where local diffeomorphism symmetry is extended

with NS-NS gauge symmetry, and structural group becomes O(d, d). It turns out that

differential geometry with generalized structures are in close relation with supergravity

theories.

In this dissertation we reviews the mathematical structures of the generalized geometry

for Type II supergravities, that is, d = 10 IIA and IIB supergravity. The Type II

theories will be reformulated as the theory in generalized geometric formalism. Such

theory will have manifested local Spin(9, 1)×Spin(1, 9) symmetry, analogous to ordinary

gravity theories. Generalized geometric objects are usually constructed in analogues of

conventional ones. Particular interesting object is the generalized Levi-Civita connection,

which leads to generalized curvatures that build up the Type II theory resembling the

Einstein gravity. The generalized version of Type II theories also admit supersymmetry.

To be more specific, to the leading order of the fermions, it captures both bosonic and

fermionic actions, equations of motion, and the supersymmetry variations in simple forms

by virtue of the generalized connection.

This review follows canonically [4], with more details in the derivations. Mathematics are

introduced more extensively, but proofs are all presented. The description of the Type II

supergravity theories is in democratic formalism [5]. It provides a unified treatment for

IIA and IIB theories, and is more natural in connection with string theory.

1



2 Chapter 1. Introduction

The structure of this paper is as follow. We start with the bosonic symmetries of the Type

II theory, which largely motivate the construction of generalized tangent bundle. The

generalized tangent bundle is an exact Courant algebroid [6], and its basic structure and

the general properties are studies in Chapter 2. Then we develop the generalized geometry

on the Courant algebroid. We will introduce density detT ∗ to describe the dilaton in

Type II theories, and this leads to O(d, d) × R+ structure. The generalized analogues

are introduced, for example, tensors, Lie derivative, connections, and torsion. Tensorial

curvature arises after reviewing the generalized version of the metric and Levi-Civita

connnetion. The corresponding structure is O(p, q) × O(q, p). Finally, after completing

the Type II supergravities with fermions, we establish the full generalized geometric

formalism.

Finally, some comments on the notations; cf. D. If P is a fiber bundle, we may use P

denotes both manifold p : P → M , and sections of p over open subsets. For example,

ω ∈ Ω2 denotes a two-form defined over some open set, while global sections will be

emphasized by ω ∈ ΓΩ2. The same convention applies to C∞(G), which denotes the

smooth G-valued functions on M . In the case G = R, we simply write C∞. T, T ∗ by

default are tangent and cotangent bundles. Usually, morphisms are well-defined for both

local and global sections.



Chapter 2

Generalized Tangent Bundle

Generalized geometry [3] is the study of structures on a generalized tangent bundle E.

It exhibits a close relation to supergravity theories. In the case of Type II supergravity,

we are interested in E ≃ T ⊕ T ∗, which admits many structures making it a Courant

Algebroid. Before studying its properties, it will be motivating to review the symmetries

in Type II supergravities that lead to a generalized structure. We will be in democratic

formalism [5]; conventions are summarized in A.

2.1 Bosonic Symmetries in Type II Supergravity

2.1.1 The Bosonic Sector

Type II fields in bosonic sector are

• gµν

• Bµν

• ϕ

 NS-NS

space-time metric

two-form potential

dilaton

• A
(n)
µ1...µn

}
R-R n-form potenitials

where n odd for type IIA and even for type IIB. Explicitly,

IIA: {gµν , Bµν , ϕ, A
(1)
µ1 , A

(3)
µ1µ2µ3 , A

(5)
µ1...µ5 , A

(7)
µ1...µ7 , A

(9)
µ1...µ9}

IIB: {gµν , Bµν , ϕ, A
(0), A

(2)
µ1µ2 , A

(4)
µ1...µ4 , A

(6)
µ1...µ6 , A

(8)
µ1...µ8}

.

3



4 Chapter 2. Generalized Tangent Bundle

The bosonic pseudo-action has form

SB =
1

2κ2

ˆ √
−g

[
e−2ϕ

(
R+ 4(∂ϕ)2 − 1

12
H2

)
− 1

4

∑
n

1

n!

(
F

(n)
(B)

)2]
, (2.1)

where H = dB and F
(n)
(B) are the n-form R-R field strengths. Type II theories have gauge

symmetries: B and A(n) are locally defined gauge fields. It is convenient to define the

sum

A =
∑

n even or odd

A(n), A ∈ Λ•T ∗. (2.2)

The gauge transformations take form

B 7→ B + dλ, A 7→ A+ dΛ̂− A ∧ dΛ̂−mΛ̂, (2.3)

where λ ∈ Ω1 and Λ̂ =
∑

n Λ̂
(n) ∈ Ω•, n even for IIA, odd for IIB, are local forms. m is

the constant mass parameter for IIA; m = 0 for IIB. We are using “A-basis”; cf. (A.8).

The field strengths are gauge invariant and globally defined as

H = dB,

F(B) =
∑
n

F
(n)
(B) = eB ∧ (dA+m),

(2.4)

where eB = 1 +B + 1
2
B ∧ B + . . . . The action is pseudo, because we have to impose by

hand the self-duality relation

F
(n)
(B) = (−1)[n/2] ∗ F (10−n)

(B) , (2.5)

where [n] denotes the integer part, ∗ is the Hodge dual operator. This does not follow

from the equations of motion:

0 = Rµν −
1

4
HµαβH

αβ
ν + 2∇µ∇νϕ− 1

4
e2ϕ
∑
n

1

(n− 1)!
F

(n)
(B)µα1...αn−1

F
(n)
(B)

α1...αn−1

ν
,

0 = ∇α
(
e−2ϕHαµν

)
− 1

2

∑
n

1

(n− 2)!
F

(n)
(B)µνα1...αn−2

F
(n−2)
(B)

α1...αn−2

,

0 = ∇2ϕ− (∇ϕ)2 + 1

4
R− 1

48
H2,

0 = dF(B) −H ∧ F(B),

(2.6)

which correspond to variations δgµν , δBµν , δϕ and the Bianchi identity for F(B) by its defi-
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nition (2.4), respectively, and ∇ is the Levi-Civita connectoin. Note that these equations

are put in the form retrieving string β-functions [7] after setting R-R fields to zero.

We will introduce the fermions with supersymmetry in 4. For now we shall focus on the

NS-NS gauge symmetries, and see how it “generalizes” infinitesimal diffeomorphisms, i.e.

vector fields.

2.1.2 Gauge Symmetry

NS-NS sector has a gauge symmetry associated with B indicated in (2.3). As an analogue,

in electrodynamics, the global structure the Maxwell Aµ is defined by connections on

U(1)-principal bundles over the spacetimeM , and a gauge is described by a local section.

Similarly, associated to two-form potentials B is a much larger space define overM , called

gerbe [2, 1, 8, 9]. It can be considered as a receptacle for the topological obstruction to

construct a desired fiber bundle due to the degree 3 cohomology. The relevant gerbes

will have gauge group U(1), since B is abelian and the string theory implies that flux H

is quantized [10].

The field B encodes a connective structure along with a curving on a U(1)-gerbe. Given

a good covering {Ui} over M , the field B is defined by two-forms B(i) ∈ Ω2(Ui) patched

on Ui ∩ Uj via

B(i) = B(j) − dΛ(ij), (2.7)

where one-forms Λ(ij) satisfy

Λ(ij) + Λ(jk) + Λ(ki) = dΛ(ijk), (2.8)

on Ui ∩ Uj ∩ Uk, where Λ(ijk) ∈ C∞(U(1)). Fix a covering {Ui}, U(1)-valued functions

{Λ(ijk)} defines the gerbe1, one-forms {Λ(ij)} with (2.8) defines the connective structure,

and local two-forms {B(i)} defines the curving. Globally defined three-form field strength

H = dB is the 3-curvature. A data of B field (2.7) including both the connective structure

and curving often refers to the “connection” on the gerbe {Λ(ijk)}. The relation between

the notion presented here and the general one is summarized in C.

Note that by (A.9), the ”A-basis” has a similar patching over {Ui}. In terms of A defined

1The functions gijk = exp
(
iΛ(ijk)

)
are required to satisfy 2-cocycle condition gjklg

−1
iklgijlg

−1
ijk = 1 on

Ui ∩ Uj ∩ Uk ∩ Ul.
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in (2.2),

A(i) = edΛ(ij) ∧ A(j) + dΛ̂(ij), (2.9)

where Λ̂(ij) is a sum of even forms in IIA, odd in IIB.

Over {Ui}, the local gauge symmetry takes form2

B(i) 7→ B(i) − dλ(i), A(i) 7→ edλ(i) ∧ A(i). (2.10)

The compatibility condition of the connective structure requires dλ(i) = dλ(j) on Ui ∩Uj.

Thus {dλ(i)} is equivalent to a globally defined two-form ω ∈ Ω2(M), such that dω = 0,

ω|Ui
= dλ(i). In another word, the group of gauge symmetries is the abelian group of

closed two-forms Ω2
closed(M).

2.1.3 NS-NS Bosonic Symmetries

As for all gravity theories, supergravity has diffeomorphism invariance. The group is de-

noted by Diff(M). This is an infinite-dimensional Lie group, whose (infinite-dimensional)

Lie algebra is the space of vector fields T (M), where the Lie bracket is the ordinary Lie

bracket between vector fields [11].

The combination of the two symmetries in NS-NS sector, Diff(M) and Ω2
closed(M), forms

the total symmetry group GNS. The gauge transofrmations and diffeomorphisms do

not commute, so the group only has semi-direct product structure GNS = Diff(M) ⋉
Ω2

closed(M). The fibered structure in terms of exact squence of groups is

1 Ω2
closed(M) GNS Diff(M) 1. (2.11)

Note that we can identify Ω2
closed(M) with its tangent spaces by linearity, so the tangent

space of group GNS at the identity is Γ(T ⊕ Ω2
closed). However, the group structure, thus

its Lie algebra, is not as trivial as its fibered structure. For example, v+ω ∈ Γ(T ⊕ Ω2
closed)

will not lead to the general combined symmetry one would expect. We shall see this now.

Let v be a vector field and {λ(i)} a set of one-forms defined over {Ui} and consider a

2there is a choice of sign in the gauge transform in order to match the generalized geometry conven-
tions.
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general variation combining both diffeomorphism and gauge transformation

δv+λg = Lvg, δv+λϕ = Lvϕ, δv+λB(i) = LvB(i) − dλ(i). (2.12)

The variation of a curving {B(i)} on a gerbe is a globally defined 2-form on M [8]; this

is analogous to the fact that variation of a connection is an one-form. Therefore the

patching (2.7) implies that {λ(i)} has to be patched as

dλ(i) = dλ(j) − LvdΛ(ij). (2.13)

In particular, {dλ(i)} in a general variation (2.12) does not define an element in Ω2
closed(M).

Thus we can hardly identify the structure of the infinitesimal variations in the represen-

tation Γ(T ⊕ Ω2
closed). This could be a motivation for an alternative description of the

symmetries.

We further note that since λ(i) + df(i) defines the same gauge transformation to λ(i), and

using the celebrated Cartan formula Lv = ivd+ div, patching (2.13) is equivalent to

λ(i) = λ(j) − ivdΛ(ij) (2.14)

on Ui ∩ Uj. We are ready to construct the generalized tangent bundle.

2.2 Courant Algebroid

Each U(1)-gerbe with a connective structure defines a Courant algebroid, hence gener-

alized tangent spaces. This is similar to the fact that each principal bundle defines an

Atiyah algebroid A = TP/G ≃ T ⊕ adP [12], and a connection there plays the role of

the curving {B(i)} here, which we will turn to in 2.2.3. In fact, Courant Algebroid can

be viewed as a higher-degree generalization of Lie algebroid [3].

2.2.1 The Constructions

We have seen the general infinitesimal variation of the bosonic fields in (2.12) by a com-

bination of vector and local one-forms; they are expected to be our generalized tangents,

as an additional “one-form direction” at each point.

Let M be a manifold, T, T ∗ its tangent and cotangent bundle respectively. Given a

connective structure on a U(1)-gerbe over M , there is an open cover {Ui} such that B
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is patched as in (2.7). On each patch Ui, we extend the vectors v(i) ∈ TUi by one-forms

λ(i) ∈ T ∗Ui as

0 T ∗Ui EUi := TUi ⊕ T ∗Ui TUi 0, (2.15)

so V(i) = v(i) + λ(i) defines a section of EUi. We then patch EUi according to (2.14)

v(i) + λ(i) = v(j) +
(
λ(j) − iv(j)dΛ(ij)

)
(2.16)

on Ui ∩ Uj. Sequences (2.15) descend to the exact sequence of vector bundles

0 T ∗ E T 0, (2.17)

where the vector bundle E is the generalized tangent bundle.

This is well-defined. Indeed, by definition, v(i) = v|Ui
for some v ∈ ΓT , while one-forms

do not have a global amalgamation. The connective structure (2.8) implies the cocycle

condition (B.1) by

iv
(
dΛ(ij) + dΛ(jk) + dΛ(ki)

)
= iv

(
d2Λ(ijk)

)
= 0.

Remark 2.1. Note that the sequence (2.15) furnishes local coordinates for E, namely

those of TUi ⊕T ∗Ui. Any other choice of {Ui} with gauges over each neighbourhood will

only lead to a different coordinates.

Remark 2.2. However, in the definition of E we have used the connective structure (2.8).

Given another connective structure {Λ′
(ij)}, their difference {Λ′

(ij) − Λ(ij)} satisfies the

cocycle condition (B.1), hence defines a Ω1-bundle, as an affine bundle of all principal

U(1)-connections. This implies E will be twisted by such a Ω1-bundle. However, this

“twist” is more or less a shearing: all so-constructed generalized tangent bundles are

isomorphic to T ⊕ T ∗ 3, even as a Courant algebroid. This symmetry will be reviewed in

2.2.3.

Remark 2.3. The construction of E does not depend on the specific content about {B(i)}
for a given connective structure. We will return to them in 2.2.3 too.

Importantly, E admits canonically a O(d, d) metric ⟨·, ·⟩ defined by the quadratic form

⟨v + λ, v + λ⟩ = ivλ. (2.18)

3T ∗ means the same thing as Ω1
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This is well-defined since iv(i)λ(i) = iv(j)λ(j)−i2vdΛ(ij) = iv(j)λ(j). Corresponding symmetric

form ⟨·, ·⟩ : E ⊗ E → C∞(R) is

⟨V,W ⟩ = 1

2
(⟨V +W,V +W ⟩ − ⟨V, V ⟩ − ⟨W,W ⟩). (2.19)

This metric yields an O(d, d)-structure F for vector bundle E as (B.7).

The split signature of ⟨·, ·⟩ has some interesting consequences. By the classification of

spinors [13], Spin(d, d) has two real-type (Majorana) spin representations dual to each

other if d odd, self-dual of d even. Reality of the spin representations allows the standard

exterior algebra models for complex spinors [14] in real scalar. They turn out to be

differential forms in this case.

Explicitly, on each coordinate neighbourhood Ui, the forms Si := Λ•T ∗Ui can be made

into a Clifford module by Γi : EUi ⊗ Si → Si,

Γ(v + λ)Ψ = ivΨ+ λ ∧Ψ, (2.20)

so for V,W ∈ EUi,

{Γ(V ),Γ(W )} = 2 ⟨V,W ⟩ , (2.21)

since iv ◦ λ∧+λ∧ ◦ iv = ivλ on Ω•. As ⟨·, ·⟩ is compatible among patches, Si over Ui can

be patched by Clifford Module isomorphisms

Ψ(i) = edΛ(ij) ∧Ψ(j) (2.22)

on Uij, and thus define a Spin(d, d) spinor bundle (S,Γ) over M . Truly,

Γ
(
(v(i) + λ(i)

)
Ψ(i) = ivΨ(i) + λ(i) ∧Ψ(i)

= ive
dΛ(ij) ∧Ψ(j) + edΛ(ij) ∧ ivΨ(j) + (λ(j) − ivdΛ(ij))e

dΛ(ij) ∧Ψ(j)

= edΛ(ij) ∧
(
ivΨ(j) + λ(j)Ψ(j)

)
= edΛ(ij) ∧ Γ

(
(v(j) + λ(j)

)
Ψ(j).

This defines the Clifford module S, and it becomes Spin(d, d)-spin bundle if we tensor a

line bundle S⊗(detT ∗)−1/2. (d, d) signature always have even dimension, so S decomposes

into chiral spinors S⊗ (detT ∗)−1/2 = S+⊗ (detT ∗)−1/2⊕S−⊗ (detT ∗)−1/2, defining two

Spin(d, d) spinor bundles. Locally, Si = S+
i ⊕ S−

i corresponds to decomposition into

even and odd degree forms Λ•T ∗Ui = (Λ•T ∗Ui)
0 ⊕ (Λ•T ∗Ui)

1. We will see, up to an

isomorphism, this is also true globally.
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The Spin(d, d)-invariant spinor pairing also extends to S since transition functions are

morphisms. It is given by the Mukai pairing [3]: (·, ·) : S+ ⊗ S− → ΛdT ∗ for d odd,

(·, ·) : S± ⊗ S± → ΛdT ∗ for d even as

(Ψ,Ψ′) =
∑
n

(−1)[(n+1)/2]Ψ(d−n) ∧Ψ′(n), (2.23)

so (·, ·) : S+ ⊗ (detT ∗)−1/2 ⊗ S− ⊗ (detT ∗)−1/2 → C∞.

Finally, the differential operator d : Λ•T ∗ → Λ•T ∗ also induces a well-defined map on S,

d : S± −→ S∓,

Ψ 7−→ dΨ,
(2.24)

because dΨ(i) = d
(
edΛ(ij) ∧Ψ(j)

)
= edΛ(ij) ∧ dΨ(j).

2.2.2 Derived Bracket

Less obvious canonical structure on E is a bracket.

Note that Γ defines an embedding into the graded Lie algebra Γ : E → (End(S), [·, ·]),
where [·, ·] is the graded commutator, and the grading is given by the chirality. The image

of E under Γ will not be closed under [·, ·], but will be closed under a derived bracket

[15]. This bracket [·, ·]d : End(S)⊗R End(S) → End(S) is defined by

[X, Y ]d = [[X, d], Y ], (2.25)

where d ∈ End(S) is just defined in (2.24). It is no longer a graded Lie bracket, but will

be a graded Leibniz algebra, or Loday algebra [15], on End(S). Induced bilinear map on

E will satisfy the Jacobi identity, but is not antisymmetric.

Proposition 2.1. On the image of E in End(S),

[v + λ,w + ξ]d = [v, w] + Lvξ − iwdλ, (2.26)

where we identify E with its image, v+λ,w+ξ ∈ E, and [v, w] is the Lie bracket between

vector fields v, w.
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Proof. Let’s first check that the expression (2.26) is well-defined on E. On Uij,

[v, w] + Lvξ(i) − iwdλ(i) = [v, w] + Lv(ξ(j) − iwdΛ(ij))

− iwd(λ(j) − ivdΛ(ij))

= [v, w] + Lvξ(j) − iwdλ(j)

−
(
LviwdΛ(ij) − iwd(ivdΛ(ij))

)
,

where, by Lv = ivd+ div, i[v,w] = Lviw − iwLv,

LviwdΛ(ij) − iwdivdΛ(ij) = i[v,w]dΛ(ij) + iwLvdΛ(ij)

− iwLvdΛ(ij) + iwivd
2Λ(ij)

= i[v,w]dΛ(ij),

so

[v, w] + Lvξ(i) − iwdλ(i) = [v, w] +
(
Lvξ(j) − iwdλ(j) − i[v,w]dΛ(ij)

)
.

Therefore, it suffices to consider the local product structure (2.15).

Next, recall the definition (2.20), bracket (2.25) between forms and vectors can be easily

obtained using Cartan formulae and [ξ∧, d] = dξ∧ as

[v, w]d = [[iv, d], iw] = [Lv, iw] = i[v,w] = Γ([v, w]),

[v, ξ∧]d = Lv ◦ ξ ∧ −ξ ∧ ◦Lv = Lvξ∧ = Γ(Lvξ),

[λ∧, v]d = [[λ∧, d], iv] = [dλ∧, iv] = −ivdλ∧ = Γ(−ivdλ),

[λ∧, ξ∧]d = [dλ∧, ξ∧] = 0,

where [·, ·] is the graded commutator in End(S). (2.26) follows from linearity. ■

Proposition 2.2. [·, ·]d satisfies the Jacobi identity,

[U, [V,W ]d]d = [[U, V ]d,W ]d + [V, [U,W ]d]d, (2.27)

where U, V,W ∈ E sections.

Proof. This can be obtained from (2.26) by a direct computation. However, there is

a more elegant way using the property of derived brackets. The Jacobi identity (2.27)
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essentially follows from that of (End(S), [·, ·])

[U, [V,W ]d]d = [[U, d], [[V, d],W ]]

= [[[U, d], [V, d]],W ] + [[V, d], [[U, d],W ]] (graded Jacobi identity)

= [[[[U, d], V ], d],W ] + [V, [U,W ]d]d (nilpotency of [·, d])

= [[U, V ]d,W ]d + [V, [U,W ]d]d.

■

Remark 2.4. It is not hard to see that [·, ·]d also satisfy the Leibniz rule

[v + λ, f(w + ξ)]d = f [v + λ,w + ξ]d + (vf)(w + ξ), (2.28)

where f is a smooth function.

We shall from now on omit subscript “d”, and (E[·, ·]) will always refer to the bracket

induced by the derived bracket. It is often called Dorfman bracket. From the propositions

above, Dorfman bracket is almost a Lie bracket except that it is not antisymmetric,

[v + λ, v + λ] = Lvλ− ivdλ = divλ = d ⟨v + λ, v + λ⟩ , (2.29)

which is related to the canonical pairing. Let’s summarize the canonical structures on

the generalized tangent bundle E and their properties.

Definition 2.1. [6] A Courant algebroid E is an extension of real vector bundles

0 T ∗ E T 0,
ρ∗ ρ

(2.30)

where T, T ∗ denote the tangent and cotangent bundles over M , together with a metric

⟨·, ·⟩ of split signature, such that ⟨ρ∗λ, V ⟩ = 1
2
λ(ρ(V )), and a bilinear bracket [·, ·] on

sections of E. They are required to satisfy

i). [U, [V,W ]] = [[U, V ],W ] + [V, [U,W ]], (Jacobi Identity)

ii). [V, fW ] = f [V,W ] + (ρ(V )f)W, (Leibniz Rule)

iii). ρ(V ) ⟨U,W ⟩ = ⟨[V, U ],W ⟩+ ⟨U, [V,W ]⟩ , (Invariance of ⟨·, ·⟩)

iv). [V, V ] = ρ∗d ⟨V, V ⟩ . (Antisymmetry Anomaly)

We are interested in the case where (2.30) is exact for the specific reason.
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Proposition 2.3. The generalized tangent bundle (2.17) is an exact Courant algebroid.

Proof. It remains to show the property iii). By linearity it suffices to prove the the case

U = W . Let V = v + λ,W = w + ξ, by (2.26)

ρ(V ) ⟨W,W ⟩ = Lv(iwξ) = i[v,w]ξ + iwLvξ = 2(⟨[V,W ], ξ⟩+ ⟨[V,W ], w⟩) = 2 ⟨[V,W ],W ⟩ .

■

Remark 2.5. The antisymmetry anomaly implies that

[V,W ] = −[W,V ] + 2d ⟨V,W ⟩ , (2.31)

where we always use anchor and coanchor ρ, ρ∗ to identify generalized tangents with

vectors and one-forms.

The antisymmetrization of the Dorfman bracket is the Courant bracket,

JV,W K :=
1

2
([V,W ]− [W,V ]). (2.32)

Note that

JV,W K = [V,W ]− d ⟨V,W ⟩ = −[W,V ] + d ⟨V,W ⟩ , (2.33)

and for exact Courant algebroid

Jv + λ,w + ξK = [v, w] + Lvξ − Lwλ− 1

2
d(ivξ − iwλ). (2.34)

2.2.3 Splittings

Let E be the generalized tangent bundle (2.17). We now present the promised isomor-

phism E ≃ T ⊕T ∗. Every vector bundle underlying an exact Courant algebroid has such

a structure.

An isomorphism E ≃ T ⊕ T ∗ compatible with the exact sequence (2.30) is equivalent to

the existence of a splitting. Recall that a splitting means a map s : T → E such that

ρ ◦ s = 1, and the corresponding isomorphism is defined by E ≃ s(T ) ⊕ kerρ ≃ T ⊕ T ∗.

We say a splitting s isotropic if ⟨s(T ), s(T )⟩ = 0.
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Theorem 2.1. There is an one-to-one correspondence between isotropic splittings s :

T → E and curvings of a connection B.

To be more specific, let {Ui} a good cover, {Λ(ij)} the connective strucuture that de-

termines E. Then there is an one-to-one correspondence between s and a collection of

two-forms {B(i)} patched as (2.7).

Proof. Given a curving {B(i)}, and a vector v, on each coordinate neighborhood Ui, the

splitting is defined by s(v)(i) = v + ivB(i), which is well-deinfed on E because s(v)(i) =

v+ivB(j)−ivdΛ(ij) = s(v)(j)−ivdΛ(ij) on Uij. Isotroy follows from ⟨s(v), s(v)⟩ = i2vB(i) = 0

by linearity.

Conversely, every isotropic splitting s defines on each Ui a bilinear map χ(i) by ivχ(i) :=

s(v)(i) − v, so ivχ(i) = s(v)(j) − ivdΛ(ij) − v = iv
(
χ(j) − dΛ(ij)

)
, having patching (2.7)

by definition. And χ(i) is a two-form since s is isotropic: χ(i)(v, v) = 2 ⟨χ(i)(v), v⟩ =

⟨s(v), s(v)⟩ − ⟨v, v⟩ = 0. ■

Remark 2.6. We can write out explicitly the isomorphism E ≃ T ⊕ T ∗. Let {êa} be a

basis for T , and {ea} its dual in T ∗. Then by theorem 2.1, the generalized tangent bundle

E has basis

ÊA =

Êa = êa + iêaB for A = a

Ea = ea for A = a+ d
. (2.35)

Then the explicit isomorphism is given by

E
∼−−→ T ⊕ T ∗,

V 7−→ V(B),
(2.36)

where if V = vaÊa+λaE
a ∈ E, then V(B) = vaêa+λae

a ∈ T ⊕T ∗. (2.35) is an additional

structural on the frame bundle, which leads to a reduction; we will come to that in the

next chapter.

Remark 2.7. The isomorphism of frames implies the isomorphism of the spinors S ≃ Λ•T ∗

given by

S
∼−−→ Λ•T ∗,

Ψ 7−→ Ψ(B),
(2.37)

where Ψ(B)|Ui
= eB(i) ∧Ψ(i). It is easy to see that it is well-defined. Indeed, it is a Clifford
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morphism since

Γ(B)(êa)Ψ(B) = iêa(e
B(i) ∧Ψ(i))

= iêaB(i) ∧ eB(i) ∧Ψ(i) + eB(i) ∧ iêaΨ(i)

= eB(i) ∧ Γ(Êa)Ψ(i),

Γ(B)(e
a)Ψ(B) = ea ∧ eB(i) ∧Ψ(i) = eB(i) ∧ Γ(Ea)Ψ(i).

Now we note that T ⊕T ∗ is also an exact Courant bracket, with structures defined in the

same manner without a patching. It is natural to compare the two Courant algebroid

structures: the canonical one on T⊕T ∗, and the one induce by the splitting. By definition

of the splitting (2.36), the metric ⟨·, ·⟩ is preserved. However, as can be seen from the

proof of proposition 2.1, the Dorfman bracket on T ⊕ T ∗ will be twisted; i.e. the bracket

of E in terms of sections of T ⊕ T ∗ is

[v + λ,w + ξ](B) = [v, w] + Lvξ − iwdλ+ iviwH, (2.38)

where H = dB is the 3-curvature.

In fact, E ≃ T ⊕ T ∗ is a Courant algebroid isomorphism if and only if H = 0; i.e.

when the gerbe is flat [3]. In particular, when B is shifted by a closed two-form, B 7→
B + ω, ω ∈ Ω2

closed, the corresponding two splittings are isomorphic Courant algebroids.

The description of a Courant algebroid is independent of coordinates, so there is also

diffeomorphism invariance. We can conclude a notable result: the symmetry of a Courant

algebroid is the same as the NS-NS sector symmetry GNS = Diff(M)⋉Ω2
closed(M) in Type

II supergravities.

Recall that two connective structures will have two generalized tangent bundles related

by an Ω1-torsor. This corresponds to shifts by exact two-forms, so resulting the same

Courant algebroid E.

By (2.38), the 3-curvature of a connection B is also given by

iviwH(u) = ⟨[s(v), s(w)], u⟩ , (2.39)

where s is the splitting defined by B. While the connective structure (2.8) is a sym-

metry, the curving {B(i)} will contribute to H, thus twist the Dorfman bracket. Since

every curving is dfferent by a two-form, the cohomology class [H]/2π ∈ H3(M,R) does
not depend on any splitting. Actually, [H] classifies the isomorphism class of Courant

algebroid [16].
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2.2.4 Relation to Gerbes

We may summarize that the isomorphism class of the constructed Courant algebroid

is completely determined by a gerbe, and the connections B correspond to isotropic

splittings.

Isomorphism classes of exact Courant algebroids are H3(M,R). It is known that every

3-curvature H of an U(1)-gerbes is in the class [H]/2π ∈ H3(M,Z), and isomorphism

classes of U(1)-gerbes are in one-to-one correspondence with H3(M,Z) [8]. So the charac-
teristic class (2.39) of the Courant algebroid determined by an U(1)-gerbe is in H3(M,Z).
Conversely, if an exact Courant algebroid given a splitting s, and [H]/2π ∈ H3(M,Z),
where H is defined by (2.39), it is isomorphic a generalized tangent bundle we have

constructed [3].



Chapter 3

Generalized Geometry

Generalized tangent bundle admits many analogous constructions from the ordinary ge-

ometry, which are reviewed in B.2. These generalized objects turn out to furnish a

geometric framework for the Type II supergravities. We study the generalized geometric

objects in this chapter, and establish the connection to Type II theories after introducing

the fermionic sector in the next chapter. Techniques in the treatment of vector bundles

are reviewed in B.1.

3.1 Generalized Differential Geometry

3.1.1 O(d, d)× R+ structure

To describe dilaton, we will need to study the weights on tensors. Recall that, on a d-

dimensional manifold M , the weight of a tensor is given by the representation detT ∗ :=

ΛdT ∗. It is a real line bundle. The p-tensor product (detT ∗)p has weight p. Every

f ∈ Diff(M) induces a map

detT ∗ −→ detT ∗, Φ 7−→ (det df)Φ. (3.1)

The Lie derivative on the tensor representation is

Lv : (detT
∗)p −→ (detT ∗)p, Φ 7−→

(
vµ∂µ + p∂µv

µ
)
Φ, (3.2)

since Lfv(Φ) = Lv(fΦ) for top forms Φ ∈ detT ∗.

17
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Let E be the generalized tangent bundle (2.17), we may introduce the first weighted

tensor, obtained by twisting the generalized tangent bundle by the line bundle detT ∗,

Ẽ := detT ∗ ⊗ E. (3.3)

The canonical pairing (2.18) of E induces a reduction of its structural bundle. In the

notation of B.1, let FẼ be the frame bundle of Ẽ, then the reduction F̃ ⊂ FẼ takes form

F̃ =
{
(ÊA(x)) ∈ FẼ : x ∈M, ⟨ÊA, ÊB⟩ = Φ2ηAB

}
, η =

1

2

(
0 1

1 0

)
, (3.4)

where Φ ∈ detT ∗ non-vanishing by definition of FẼ. It is immediate that this defines an

O(d, d) × R+-principal bundle. F̃ is called the generalized structure bundle, and frames

{ÊA} ∈ F̃ are called conformal basis. The topology of F̃ encodes both the topology of

T and of the B-field gerbe [4], as true for the O(d, d)-bundle F of the Courant algebroid

E; cf. 2.2.4. Note that specifying a global non-vanishing conformal factor Φ ∈ Γ(detT ∗)

leads to a reduction of structure bundle F ↪→ F̃ , by ÊA 7→ Φ⊗ ÊA.

One particular conformal basis is the coordinate basis. Locally it is induced by the

inclusion FUi ↪→ F̃Ui, where V ∈ ẼUi has representation V = vµ(∂/∂xµ)+λµdx
µ. Then

the generalized basis is {ÊA} = {∂/∂xµ} ∪ {dxµ}. It will be convenient to use index M

to refer to this frame, on E or Ẽ. Then the components of V will be

V M =

vµ for M = µ

λµ for M = µ+ d
. (3.5)

This local structure in fact extends to a global one, by the splitting (2.35) of E. There

will be a two-step reduction of the structure bundle F̃ :

GL(d,R)⋉Rd(d−1)/2 =: Gsplit ⊂ Gsplit × R+ ⊂ O(d, d)× R+. (3.6)

For {êa}, {ea} basis for T, T ∗ in duality, the Gsplit-structure is defined by the split frames

for Ẽ as

ÊA =

Êa = (det e)⊗ (êa + iêaB) for A = a

Ea = (det e)⊗ ea for A = a+ d
,

⟨ÊA, ÊB⟩ = (det e)2ηAB,

(3.7)
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and Gsplit × R+-structure is defined by the conformal split frames as

ÊA =

Êa = e−2ϕ(det e)⊗ (êa + iêaB) for A = a

Ea = e−2ϕ(det e)⊗ ea for A = a+ d
,

⟨ÊA, ÊB⟩ = (e−2ϕ det e)2ηAB,

(3.8)

where ϕ ∈ C∞. The transition function M ∈ C∞(Gsplit × R+) between two conformal

split frames takes form

M = σ(detA)−1 ⊗

(
1

ω 1

)
·

(
A

(A−1)T

)
, (3.9)

where σ ∈ C∞(R+), A ∈ C∞(GL(d,R)), and ω ∈ Ω2. σ is a rescaling, A transforms

coordinates êa 7→ êa(A
−1)ba, and ω transforms the splitting B 7→ B + ω, where ω needs

to be closed to preserve Dorfman bracket. This confirms Gsplit = GL(d,R)⋉Rd(d−1)/2 ⊂
O(d, d)× R+.

The point of these frames is that fix a bosonic pair (B, ϕ), (3.7) or (3.8) determines a

splitting Ẽ ≃ detT ∗ ⊗ (T ⊕ T ∗) by

Ẽ
∼−−→ detT ∗ ⊗ (T ⊕ T ∗),

vaÊa + λaE
a 7−→ (det e)⊗ (vaêa + λae

a).
(3.10)

Note that in coordinate frames, these are exactly V = v + λ 7−→ V(B) = (v + λ− ivB)

and V 7−→ V(B,ϕ) = e2ϕ(v + λ− ivB).

We finally comment that the reduction (3.6) of the structure bundle F̃ implies that patch-

ing of Ẽ requires only transitions function in the subgroup C∞(Gsplit) ⊂ C∞(O(d, d) ×
R+).

3.1.2 Generalized Tensors

We may now establish the generalized tensor calculus, including weights.

Consider vector bundles associated to the generalized structure bundle (3.4) by the

O(d, d)× R+-representations of form

E⊗n
(p) = (detT ∗)p ⊗ E ⊗ · · · ⊗ E, (3.11)
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then we call a section of E⊗n
(p) a generalized tensor of weight p. Recall E∗ ≃ E by the

canonical pairing, so it suffice to label only one type of rank. O(d, d)×R+-structure also

admits spin representations since E has (S,Γ) defined by (2.22). It is given by

S±
(p) = (detT ∗)p−1/2 ⊗ S±, (3.12)

so sections of S±
(p) is called generalized spinors of weight p. The Mukai pairing (2.23)

extends to S±
(p), as a map (·, ·) : S±

(p) ⊗ S±
(p) → (detT ∗)2p. Note that S±

(1/2) = S±. Similar

to (3.10), the map Ψ 7→ Ψ(B) defined by (2.37) can be extended to the isomorphism

(B, ϕ) : S±
(p)

∼−−→ (detT ∗)p−1/2 ⊗ Λeven/oddT ∗,

Ψ 7−→ Ψ(B,ϕ) = e(2p−1)ϕeB ∧Ψ.
(3.13)

The Dorfman bracket on E is a derivative in the sense of 2.1. This derivative can be

generalized to tensors. For V ∈ E, we define the Dorfman derivative LV as follow. On

W ∈ E, it is the Dorfman bracket

LVW = [V,W ]. (3.14)

On Φ ∈ (detT ∗)p,

LVΦ = Lρ(V )Φ, (3.15)

where ρ is the anchor. Then LV extends to any E⊗n
(p) by the differential of the tensor

representation (3.11).

This can be stated more explicitly in terms of local coordinate frames. We need to first

bring the partial derivative operator to the generalized setting. This can be done by the

adjoint map of the anchor (ρ)∗ : T ∗ → E∗, v∗ 7→ v∗ ◦ ρ, and yields in a frame {EM} in E∗

dual to the coordinate frame

∂M =

∂µ for M = µ

0 for M = µ+ d
, (3.16)

so if V = v + λ, V N∂N = vµ∂µ, and index is raised by E∗ ⟨·,·⟩−1

−−−→ E as

∂M =

0 for M = µ

2∂µ for M = µ+ d
. (3.17)
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This compares with the map induced by coanchor ρ∗ by

∂Mf = 2(ρ∗df)M . (3.18)

Then by (2.26) and (B.12), (3.14) says

LVW
M = V N∂NW

M + (∂MV N − ∂NV M)WN , (3.19)

as

∂MV
N = (∂µv

ν + ∂µλν),

∂MVN − ∂NV
M = ∂µv

ν − ∂νv
µ + (∂µλν − ∂νλµ).

Note that this implies for V = v + λ the Dorfman derivative LV extends the (minus)

adjoint action of aµν := ∂νv
µ ∈ gl(d.R) ⊗ C∞ in the Lie derivative Lρ(V ) (B.12) by the

two form ω = dλ via the element in o(d, d)⊗ C∞

(
a 0

−ω −aT

)
. (3.20)

Additionally, by (3.9), this element is in gsplit ⊗ C∞. Next, by (3.2), (3.15) becomes

LVΦ = V N∂NΦ + p(∂NV
N)Φ, (3.21)

which corresponds to the (minus) adjoint action of LieR+ = R element

−pTr a. (3.22)

With these notions, we can write out the Dorfman derivative of any generalized tensor

via their adjoint actions by o(d, d)⊕ R. For α ∈ E⊗n
(p) , we have

LV α
M1...Mn = V N∂Nα

M1...Mn + (∂M1V N − ∂NV M1)α M2...Mn
N + . . .

· · ·+ (∂MnV N − ∂NV Mn)α
M1...Mn−1

N + p(∂NV
N)αM1...Mn ,

(3.23)

where the indices are lowered by the canonical ⟨·, ·⟩. The argument using representation

immediately applies to spinors. If Ψ ∈ S±
(p), we define

LVΨ = V N∂NΨ+
1

4
(∂MV N − ∂NV M)ΓMNΨ+ p(∂NV

N)Ψ, (3.24)
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where ΓMN = 1
2
[ΓM ,ΓN ], and

1
4
[ΓM ,ΓN ] is the embedding of o(d, d) into the Clifford

algebra.

Finally, we note that we have seen the operator (3.16) before, namely, in (2.24) as the

graded derivation on S(1/2), since

dΨ =
1

2
ΓM∂MΨ, (3.25)

where the factor 1
2
comes from raising the index M by metric η in form (3.4).

3.1.3 Generalized Connections

In analogue with (B.9), we can define covariant differentiation in the direction of gener-

alized tangents.

Definition 3.1. [6] A generalized connection on a vector bundle V over M is an R-linear
morphism of vector bundles

D : V −→ E ⊗ V , (3.26)

satisfying the Leibniz rule

D(fV ) = (2ρ∗df)⊗ V + fDV, (3.27)

for V ∈ V , f ∈ C∞.

Remark 3.1. Again the conventional factor of 2 in front of the coanchor comes from raising

the index. Given a splitting (not necessarily isotropic) s : T → E, (3.27) implies that D

decomposes as D = s(χ) + 2ρ∗(∇), where ∇ : V → T ∗ ⊗ V is an ordinary connection on

V , and χ ∈ T ⊗ End(V) is an endomorphism valued vector field.

In the case V = E, we are interested in the connections that is compatible with the

O(d, d)-structure; that is, a generalized connection such that

d ⟨V,W ⟩ = ⟨DV,W ⟩+ ⟨V,DW ⟩ , (3.28)

where ⟨·, ·⟩ is the canonical pairing on E. Similar to the conventional differential geometry,

this implies, in frame indices (any frame), D takes form

DMW
A = ∂MW

A + Ω A
M BW

B, (3.29)
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where Ω ∈ E∗ ⊗ o(E), so

ΩMAB = −ΩMBA. (3.30)

This extends to the case V = Ẽ by an exterior tensor product of representations, so

DMW
A = ∂MW

A + Ω̃ A
M BW

B, (3.31)

where Ω̃ ∈ E∗ ⊗ (o(E)⊕ gl(detT ∗)) and

Ω̃ A
M B = Ω A

M B − ΛMδ
A
B, (3.32)

for an O(d, d)× R+-compatible generalized connection D.

Given a connection D : Ẽ → E ⊗ Ẽ, exact same treatment for the Dorfman derivative

applies to extend D to tensors E⊗n
(p) . If D compatible, it also extends to spinors S±

(p).

Namely,

DMα
A1...An = ∂Mα

A1...An + Ω A1
M Bα

BA2...An + . . .

· · ·+ Ω An
M Bα

A1...An−1B − pΛMα
A1...An ,

DMΨ =

(
∂M +

1

4
Ω AB

M ΓAB − pΛM

)
Ψ.

(3.33)

As hinted by remark 3.1, a conventional connection ∇ with a splitting induces a gener-

alized connection by setting χ = 0. This has a refinement.

Example 3.1. Fix a bosonic pair (B, ϕ), an affine connection ∇ on T induces a compat-

ible generalizd connection D on Ẽ as follows. Note first that (B, ϕ) determines a set of

conformal splitting frames of form (3.8). Let ŝ : Ẽ ≃ detT ∗ ⊗ (T ⊕ T ∗) be the splitting

defined by these frames as in (3.10), then ∇ extends to Ẽ by

Ẽ detT ∗ ⊗ (T ⊕ T ∗) T ∗ ⊗ detT ∗ ⊗ (T ⊕ T ∗) T ∗ ⊗ Ẽ,ŝ ∇ 1⊗ŝ−1

(3.34)

denoted again by ∇. Now 2ρ∗∇ : Ẽ → E ⊗ Ẽ is manifestly a compatible generalized

connection. We may denote this connection by D∇
(B,ϕ) or simply D∇.

Again, we may work out this explicitly in covariant indices. IfW ∈ Ẽ, then in a conformal

split frame {ÊA} defined by (B, ϕ)

W = WAÊA = waÊa + ξaE
a.
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By the splitting ŝ, wa, ξa are identified as components of weighted tensors in detT ∗ ⊗ T

and detT ∗ ⊗ T ∗, so we have the expression

D∇
M(wa + ξa) =

∇µw
a +∇µξa for M = µ

0 for M = µ+ d
, (3.35)

with

Ω A
M B =

ω a
µ b + ω b

µ a for M = µ

0 for M = µ+ d
,

ΛM =

ω a
µ a for M = µ

0 for M = µ+ d
,

(3.36)

where ω a
µ b are the components of the connection ∇ in frames {êa}, {ea} associated to

{ÊA}.

3.1.4 Gerneralized Torsion

When a generalized connection D is defined on E, it is natural to compare the connec-

tion derivative with the Dorfman bracket. This is the notion of torsion. In generalized

geometry, it is defined in analogue with the ordinary torsion (B.13).

Definition 3.2. [6] The generalized torsion T ∈ Γ(Λ2E ⊗ E) of a generalized connection

D on E is defined by

T(V,W,U) = ⟨DVW −DWV − JV,W K, U⟩+ 1

2
(⟨DUV,W ⟩ − ⟨DUW,V ⟩), (3.37)

where J·, ·K is the Courant bracket.

Note that Dorfman bracket is antisymmetrized to compare with DVW −DWV , and the

last two terms are needed for torsion T to be a tensor.

Proposition 3.1. T is well-defined, and if D is compatible with ⟨·, ·⟩, then T ∈ Γ(Λ3E).

Proof. The linearity in U is trivial. Since by definition T is antisymmetric in V,W , it

suffices to check for V . By definition of the connection D,

DfVW = fDVW, DW (fV ) = fDWV + ρ(W )fV, DU(fV ) = fDUV + ρ(U)fV.
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By (2.31), (2.33), and Leibniz rule,

JfV,W K = −[W, fV ] + d ⟨fV,W ⟩

= −f [W,V ]− ρ(W )fV + df ⟨V,W ⟩+ fd ⟨V,W ⟩

= fJV,W K − ρ(W )fV + df ⟨V,W ⟩ .

So

T(fV,W,U) = fT(V,W,U) + ⟨−ρ(W )fV + ρ(W )fV − df ⟨V,W ⟩ , U⟩+ 1

2
⟨ρ(U)fV,W ⟩

= fT(V,W,U) + ⟨V,W ⟩
(
1

2
ρ(U)f − ⟨df, U⟩

)
= fT(V,W,U).

Now assume (3.28), then (2.33) implies

JV,W K = [V,W ]− ⟨DV,W ⟩ − ⟨V,DW ⟩ = −[W,V ] + ⟨DV,W ⟩+ ⟨V,DW ⟩ . (3.38)

Then with 2.1. (iii)

T(V,W,U) = ⟨DVW −DWV − [V,W ], U⟩

+
1

2
(⟨DUV,W ⟩+ ⟨V,DUW ⟩) + 1

2
(⟨DUV,W ⟩ − ⟨DUW,V ⟩)

= ⟨DVW −DWV, U⟩+ ⟨DUV,W ⟩ − ⟨[V,W ], U⟩

= ⟨DVW −DWV, U⟩+ ⟨DUV,W ⟩ − (−⟨W, [V, U ]⟩+ ρ(V ) ⟨W,U⟩)

= ⟨DVW −DWV, U⟩+ ⟨DUV,W ⟩+ ⟨[V, U ],W ⟩ − 2 ⟨d ⟨W,U⟩ , V ⟩

= ⟨DVW −DWV, U⟩+ ⟨DUV,W ⟩ − 2 ⟨⟨DW,U⟩+ ⟨W,DU⟩ , V ⟩+ ⟨[V, U ],W ⟩

= ⟨DVW −DWV, U⟩+ ⟨DUV,W ⟩ − ⟨DVW,U⟩ − ⟨W,DVU⟩+ ⟨[V, U ],W ⟩

= −(⟨DVU −DUV,W ⟩+ ⟨DWV, U⟩ − ⟨[V, U ],W ⟩)

= −T(V, U,W ).

This suffices. ■

Remark 3.2. From the proof we actually find a more concise expression for T when D is

compatible. Namely,

T(V,W,U) = ⟨DUV,W ⟩+ ⟨DVW −DWV − [V,W ], U⟩ . (3.39)

One will find it familiar if we express ⟨DUV,W ⟩+ ⟨DVW −DWV, U⟩ in coordinate basis
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and switch the positions of the first and second terms, as

UN

(
VMD

MWN + (DNV M −DMV N)WM

)
.

Indeed, this is the form of the Dorfman derivative on E. This allows us to write an

analogue to (B.16)

T(V )W = LD
VW − LVW, (3.40)

where W ∈ E, LD
V denotes (3.19) with D in place of ∂, and T(V ) ∈ Λ2E ≃ o(E) acts on

E by adjoint action.

Remark 3.3. We can view (3.40) from another perspective. When D is compatible, the

action of D on spinors S(1/2) = S analogous to (3.25) is well-defined

/DΨ =
1

2
ΓMDMΨ. (3.41)

A formal definition of “derived bracket”

[V,W ] /D = [[V, /D],W ]

will give you LD
V . But we stress that this is not a derived bracket since in general /D

2 ̸= 0

but will be a “curvature”. By the uniqueness of the operator d and (3.40), T = 0 if and

only if /D = d.

We may extend the notion of generalized torsion to connections D : Ẽ → E⊗ Ẽ on Ẽ by

either representation argument or remarks 3.2, 3.3. Using (3.40), the generalized torsion

T ∈ Γ(ad F̃ ⊗ E), where ad F̃ = o(E) ⊕ gl(detT ∗) ≃ Λ2E ⊕ R, and is defined by the

adjoint action on α ∈ E⊗n
(p)

T(V ) · α = LD
V α− LV α. (3.42)

Then by proposition 3.1 we have T ∈ Γ(Λ3E ⊕ E), so T decomposes as

T = T1 − T2, (3.43)

where T1 ∈ Λ3E and T2 ∈ E.

If {ÊA} is a general conformal frame, then {Φ−1ÊA} is an orthonormal basis for E. We

use this orthonormal basis to derive the components of T ∈ Γ(Λ3E ⊕ E) for a compatible

connection D on Ẽ with components as in (3.31). Let T has index structure T(ÊA)
M

N =
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TM
AN . Then by (3.39),

TABC = T(Φ−1ÊB,Φ
−1ÊC ,Φ

−1ÊA)

= Ω̃ACB + Ω̃ D
D BηAC + Ω̃BAC − Ω̃CAB

+ Φ∂BΦ
−1ηAC − ⟨[Φ−1ÊB,Φ

−1ÊC ],Φ
−1ÊA⟩

= −3Ω̃[ABC] + Ω̃ D
D BηAC − Φ−2 ⟨[Φ−1ÊB, ÊC ], ÊA⟩ ,

(3.44)

where Φ∂BΦ
−1ηAC comes from term DB(Φ

−1V B) = ∂BΦ
−1+Φ−1DB(V

B) in the extended

action of D on Ẽ.

Example 3.2. We continue the example 3.1 by calculating the generalized torsion for

the connections D∇
(B,ϕ). (B, ϕ) determines a splitting, then we may use coordinate ba-

sis {êµ, eµ} to define the conformal split frame (3.8) with Φ = e−2ϕ det e so that the

orthonormal basis {Φ−1ÊA} takes form (2.35). Then by the Leiniz rule

[Φ−1ÊB, ÊC ] = Φ
(
[Φ−1ÊB,Φ

−1ÊC ]
)
+
(
LΦ−1ÊB

Φ
)
Φ−1ÊC , (3.45)

and

⟨[Φ−1ÊB,Φ
−1ÊC ],Φ

−1ÊA⟩ = ⟨[êµ + iêµB + eµ, êν + iêνB + eν ], êσ + iêσB + eσ⟩

= ⟨Lêµ(iêνB)− iêνd
(
iêµB

)
, êσ + iêσB + eσ⟩

= ⟨iêν iêµdB, êσ + iêσB + eσ⟩

=
1

2
iêσ iêν iêµdB

Φ−1
(
LΦ−1ÊB

Φ
)
⟨Φ−1ÊC ,Φ

−1ÊA⟩ = −(2∂Bϕ)ηCA

the last term in (3.44) reduces to

Φ−2 ⟨[Φ−1ÊB, ÊC ], ÊA⟩ =
1

2
HBCA − (2∂Bϕ)ηCA,

where H = dB and the embedding Λ•T ∗ ↪→ Λ•E∗ is induced by the map defining (3.16).

In the case ∇ is torsion free, the generalized torsion of D∇ becomes

TABC = −1

2
HBCA + (2∂Bϕ)ηCA. (3.46)

After raising indices with ⟨·, ·⟩−1, we have T ∈ Γ(Λ3E ⊕ E) and the decompostion (3.43)
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take form

T1 = −4H, T2 = −4dϕ, (3.47)

where factors are from η, and importantly, similar to (3.18), after raising indices with

coefficients added in front, H and dϕ now denote the embedding with respect to the

coanchor T ∗ ρ∗

↪−→ E.

3.1.5 A Curvature Operator

One may expect a generalized version of the curvature (B.17) of the form

R(V,W,U) = [DV , DW ]U −DJV,W KU. (3.48)

However, this cannot be made tensorial as for generalized torsion since the fact relation

JfV, gW K = fgJV,W K + fρ(V )gW − gρ(W )fV +
1

2
⟨V,W ⟩ (gdf − fdg) (3.49)

differs from that of Lie bracket by an antisymmetric anomaly implies

R(fV, gW, hU) = fghR(fV, gW, hU)− 1

2
h ⟨V,W ⟩D(gdf−fdg)U. (3.50)

So (3.48) is linear only for ⟨V,W ⟩ = 0. This requires an additional structure: if C1, C2 ⊂
E orthogonal subbundles, then R ∈ Γ(C1 ⊗ C2 ⊗ o(E)) is a tensor.

The last component in the NS-NS bosonic fields, metric g, will supply such a structure

as we are going to see.

3.2 Generalized Levi-Civita Connection

3.2.1 Generalized Metric

Note that in (3.10) the bosonic doublet (B, ϕ) determines a twisted conformal split. We

now make an extension by describing the NS-NS triplet (B, ϕ, g) in the generalized setting.

Definition 3.3. [6] A generalized metric on Ẽ is an O(p, q)×O(q, p)-structure G̃ ⊂ F̃ .
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This definition makes sense because of this.

Theorem 3.1. There is an one-to-one correspondence between the triplet (B, ϕ, g) and

generalized metrics on Ẽ.

Proof. Let G̃ be a generalized metric on Ẽ. Firstly, G̃ determines a non-vanishing Φ ∈
Γ(detT ∗). Locally, if {ÊA} ∈ G̃Ui, then by definition (3.4), ⟨ÊA, ÊB⟩ = Φ2

i ⊗ηAB for some

Φi ∈ detT ∗Ui. As G̃ is globally defined, and η is O(d, d)-invariant, Φi is forced to satisfy

the cocycle condition (B.1) with respect to R+, thus descends to a global non-vanishing

section Φ ∈ Γ(detT ∗). Then Φ defines an isomorphism of vector bundles

(Φ) : E
∼−−→ Ẽ,

V 7−→ Φ⊗ V.
(3.51)

This induces anO(p, q)×O(q, p)-structure on E, and we may identify G̃ with this structure

on E. The group structure of O(p, q)×O(q, p) ∈ O(d, d) implies an orthogonal splitting

E = C+ ⊕ C−, (3.52)

such that

G̃ ≃ {{ÊA} : ⟨ÊA, ÊB⟩ = Φ2ηAB}, (3.53)

where

ÊA =

Ê+
a ∈ C+ for A = a

Ê−
ā ∈ C− for A = ā+ d

, ηAB =

(
ηab

−ηāb̄

)
, (3.54)

and ηab, ηāb̄ are flat metrics of signature (p, q). Each subspace has dimension d = p + q,

and endowed with metrics defined by

g+ = Φ−2ηabE
+a ⊗ E+b ∈ (C+ ⊗ C+)

∗, g− = Φ−2ηāb̄E
−ā ⊗ E−b̄ ∈ (C− ⊗ C−)

∗, (3.55)

where {E±} denote the dual basis. Thus

Φ−2 ⟨·, ·⟩ = g+ ⊕ (−g−). (3.56)

Then the restrictions of anchor ρ on C± are isomorphic, and their inverses

ŝ± : T
∼−→ C± ⊂ E, (3.57)
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which are (importantly, non-isotropic) splittings of the exact sequence (2.30), induce the

metric

g = ŝ∗+g+ = ŝ∗−g− (3.58)

of signature (p, q) on T . The pull-back metrics must be equal by the O(d, d)-structure. By

definition, ŝ± : T → E are isometric and anti-isometric, respectively, up to a conformal

factor Φ.

Now, we have the volume form
√
−g ∈ Γ(detT ∗), so there exits ϕ ∈ Γ(C∞(R)) that

defines a transition function in detT ∗ by

Φ = e−2ϕ
√
−g. (3.59)

Let s : T → E defined by

s =
1

2
(ŝ+ + ŝ−), (3.60)

then s is an isotropic splitting by definition (3.55), and by theorem 2.1 is given by a

B-field.

Conversely, given a bosonic triplet (B, ϕ, g), the O(p, q) × O(q, p)-structure is directly

given by the frames

Ê+
a = Φ

(
ê+a + e+a + iê+aB

)
,

Ê−
ā = Φ

(
ê−ā − e−ā + iê−ā B

)
,

(3.61)

where Φ is given by (3.59), {ê+a }, {ê−ā }, with dual {e+a}, {e−ā} respectively, are orthonor-

mal frames for the metric g, so

g = ηabe
+a ⊗ e+b = ηāb̄e

−ā ⊗ e−b̄,

g(ê+a , ê
+
b ) = g(ê−a , ê

−
b ) = ηab,

(3.62)

and the indices in (3.61) are lowered by ηab, ηāb̄. It is easy to check that (3.61) satisfies

(3.53) and (3.54). ■

Remark 3.4. Note that in (3.53),(3.54), we used a different form of η from that used for

F̃ in (3.4). Two forms of η are related by a bundle isomorphism defined by a constant

GL(2d,R)-transition function. The structures on E in definition 2.1 are independent of

this choice. It will be convenient to stick to this structure bundle when O(p, q)×O(q, p)-



3.2. Generalized Levi-Civita Connection 31

structure is introduced, as we shall do so from now on. For example, they are related to

g-orthonormal bases by (3.61).

Remark 3.5. As noted in the proof, ŝ± are not isotropic, but (conformally) orthogonal and

anti-orthogonal. In particular, (3.61) is in contrast with isotropic conformal split frames

(3.8). The point is that metric on T is g, while metric on E is the canonical pairing

Φ−2 ⟨·, ·⟩. The generalized metric G̃ encodes (B, ϕ, g) onto the canonical structures of Ẽ

by bundle reduction.

We may single out the conformal density (3.59) and define an O(p, q)×O(q, p)-invariant

tensor, which may also be called generalized metric G ∈ E ⊗ E

G = Φ−2
(
ηabÊ+

a ⊗ Ê+
b + ηāb̄Ê−

ā ⊗ Ê−
b̄

)
. (3.63)

By (3.61) and (3.62), G in coordinate frames has form

GMN =
1

2

(
g −Bg−1B −Bg−1

g−1B g−1

)
MN

. (3.64)

TheO(p, q)×O(q, p)-invariant pair (G,Φ) has the same information as G̃, and parametrize

the coset space (O(d, d)× R+)/O(p, q)×O(q, p).

3.2.2 O(p, q)×O(q, p)-Structure

We will need to work with components of full O(p, q) × O(q, p)-covariance, so it will be

useful to get into more details. Theorem 3.1 tells us that the O(p, q)×O(q, p)-structure G̃
consists of conformal frames {Ê+

a }∪{Ê−
ā } of form (3.61) determined by a bosonic triplet

(B, ϕ, g). The pull-backs ŝ∗±G̃ along the splittings (3.57) reduce to the O(p, q)-bundle

over M , defined by g, by projections onto the first and second factors.

There are four pairings, {g, g+, g−,Φ−2 ⟨·, ·⟩} on T ,C±, and E respectively. They are

related by (3.56),(3.58), and allow us to raise and lower indices. On C± we use g±, and

on E we continue to use Φ−2 ⟨·, ·⟩. This means ηab for a, b, c, . . . , ηāb̄ for ā, b̄, c̄, . . . , and

ηAB for A,B,C, . . . . Then the image of the coframes {E±} in C± are {Ê+a}, {Ê−ā},
satisfying

g+(Ê
+a, Ê+

b ) = δab,

⟨Ê+a, Ê+
b ⟩ = Φ2δab,

g−(Ê
−ā, Ê−

b̄
) = δāb̄,

⟨Ê−ā, Ê−
b̄
⟩ = −Φ2δāb̄,

(3.65)
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and

ÊA =

Ê+a for A = a

−Ê−ā for A = ā+ d
∈ Ẽ,

⟨ÊA, ÊB⟩ = Φ2δAB .

(3.66)

With these basis, we identify the space with its dual, so raising and lowering indices are

now considered as an automorphism in Ẽ or E.

We omit Φ by the identification Ê± ∼ Φ−1Ê± for now. Note then the duals E± ∼ ΦE±.

By (3.61) and covariance, one easily finds the following. The anchor ρ takes form

ρ : E −→ T,

V aÊ+
a + V āÊ−

ā 7−→ V aê+a + V āê−ā ,
(3.67)

with restrictions
ρ± : C±

∼−−→ T,

V aÊ+
a 7−→ V aê+a ,

V āÊ−
ā 7−→ V āê−ā ,

(3.68)

whose inverses are splitting (3.57). And coanchor ρ∗

ρ∗ : T ∗ −→ E,

λae
+a = λāe

−ā 7−→ 1

2

(
λaÊ

+a − λāÊ
−ā
)
,

(3.69)

where again an extra 1
2
from raising index, while the embedding for the operator (3.16)

take form

T ∗ 2ρ∗−−→ E
⟨·,·⟩−−→ E∗,

λae
+a = λāe

−ā 7−→ λaÊ
+a − λāÊ

−ā 7−→ λaE
+a − λāE

−ā.
(3.70)

Note that G̃-frames are free of factor 2 in raising indices. This is by the virtue of the

imposed compatibility between metric self-dualities summarized in the commutative di-

agram

C+
∗ T ∗ C−

∗

C+ T C−

(ŝ+)∗

g−1
+

(ρ+)∗ (ρ−)∗

g−1

(ŝ−)∗

g−1
−

ρ+

g+

ŝ+ ŝ−

g

ρ−

g− , (3.71)

where if we identify C± ≃ C±
∗ by g±, then ρ∗ = 1

2
((ρ+)

∗ + (ρ−)
∗) = 1

2
(ρ)∗, so the
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embedding 2ρ∗ : T ∗ → E is precisely the adjoint map of anchor (ρ)∗ : T ∗ → E∗ raised

by (g±)
−1, which is compatible with ±⟨·, ·⟩, as shown in (3.67), (3.69), and (3.70); cf.

(3.18).

We note that embeddings (3.69) and (3.70) extend to tensors (T ∗)⊗n → E⊗n
(p) in a natural

way. And by ρ∗ = 1
2
((ρ+)

∗ + (ρ−)
∗) we obtain O(p, q) × O(q, p)-covariant components,

where by (3.68)

(ρ±)
∗ : T ∗ ∼−−→ C±,

λ+a e
+a 7−→ λ+a Ê

+a,

λ−ā e
−ā 7−→ λ−ā Ê

−ā.

(3.72)

Then we have covariant components for forms by the following identification

ΛnT ∗ ΛnE ΛnC+ ⊕ (Λn−1C+ ⊗ C−)⊕ · · · ⊕ (C+ ⊗ Λn−1C−)⊕ ΛnC−
Λnρ∗ ∼ .

(3.73)

One last O(p, q)×O(q, p)-covariant object to mention is the Spin(p, q)×Spin(q, p) spinors.
In expectation to describe supergravity, where notions of spinors are needed in supersym-

metry, we may further assume (M, g) have spin structure to include Spin(p, q)-spinors. In

this case, the generalized metric (B, ϕ, g) will then have Spin(p, q)×Spin(q, p)-structure.
Then subbundles (C±, g±) with metrics (3.55) have spinor bundles (S(C±), γ±), respec-

tively. Let γa, γā denote the G̃-frame components of γ±, then

1

2
{γa, γa} = ηab,

1

2
{γā, γā} = ηāb̄. (3.74)

Note that we also have (2.21) on Spin(d, d)-spinors S±
(p) for (E, ⟨·, ·⟩), where in G̃-frames

1

2
{ΓA,ΓB} = ηAB, ηAB =

(
ηab

−ηāb̄

)
. (3.75)

They are related by

S(1/2) ≃ S(C+)⊗ S(C−), (3.76)

where isomorphism takes form

ΓA =

γa ⊗ 1 for A = a

γ(d) ⊗ γāγ(d) for A = ā+ d
, (3.77)
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where γ(d) is the top gamma in Cliff(C±). This isomorphism is established essentially

because the orthogonal decomposition (3.56) induces the Clifford isomorphism

Cliff(E, ⟨·, ·⟩) ≃ Cliff(C+, g+)⊗ Cliff(C−,−g−).

Then the chiralities on S(C±) correspond to two chirality operators Γ(±) defined on S(1/2),

given by

Γ(+) =
1

d!
ϵa1...adΓa1 . . .Γad , Γ(−) =

1

d!
ϵā1...ādΓā1 . . .Γād . (3.78)

In (B) splitting (3.13) for S(p), these are related to the Hodge dual ∗ of forms with respect

to g:

Γ(+)Ψ
(n)
(B) = (−1)[n/2] ∗Ψ(n)

(B), Γ(−)Ψ
(n)
(B) = (−1)d(−1)[(n+1)/2] ∗Ψ(n)

(B), (3.79)

where [n/2] arises from the transposition of indices, and [(n + 1)/2] = [n/2] − n. This

can be checked by noting in (B) splitting, the action of G̃-frames is

Γ(Ê±
a/ā) ·Ψ(B) = iê±

a/ā
Ψ(B) ± e±a/ā ∧Ψ(B). (3.80)

3.2.3 Torsion-free Metric Connections

With basic tools sorted, we finally come to the generalized Levi-Civita connections.

Definition 3.4. A generalized connection D on Ẽ is said to be compatible with the

generalized metric G̃ ∈ F̃ if

DG = 0, DΦ = 0, (3.81)

where (G,Φ) is defined in (3.59) and (3.63).

It is equivalent to say D acts within G̃. Specifically, note that the compatibility implies

that the connection D can be identified as

D : E
(Φ)−−→ Ẽ

D−−→ E ⊗ Ẽ
1⊗(Φ)−1

−−−−−→ E ⊗ E, (3.82)

a generalized connection respecting metric G on E.
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In frames, if wa
+Ê

+
a + wā

−Ê
−
ā ∈ Ẽ,

DM(wa
+ + wā

−) = ∂M(wa
+ + wā

−) + Ω a
M bw

b
+ + Ω ā

M b̄w
b̄
−, (3.83)

it is the requirement to satisfy

ΩMab = −ΩMba, ΩMāb̄ = −ΩMb̄ā. (3.84)

Theorem 3.2. Given a generalized metric G̃, there exists a torsion-free, compatible

generalized connection D on Ẽ.

Proof. Let ∇ be the Levi-Civita connection for the metric g. Similar to example 3.1

(3.34), there is a sequence defining D∇
(B,ϕ,g)

Ẽ T ⊕ T T ∗ ⊗ (T ⊕ T ) E ⊗ Ẽ,ŝ ∇ (ρ)∗⊗ŝ−1

(3.85)

where ŝ is defined using (3.51) and (3.68) by

ŝ : Ẽ E T ⊕ T.
(Φ)−1 ρ+⊕ρ−

(3.86)

Note that by definition, ŝ−1 = ŝ+ ⊕ ŝ−. In G̃-frames,

D∇
M

(
wa

+ + wā
−
)
=

∇µw
a
+ +∇µw

ā
− for M = µ

0 for M = µ+ d
, (3.87)

where on the right hand side wa
+, w

ā
− are identified as components of vectors in T with

basis {ê+a }, {ê−ā }, by ŝ. Obviously this is manifestly O(p, q)×O(q, p)-compatible.

Since ∇ is Levi-Civita, the volume form density is invariant ∇
√
−g = 0, which tells us

that D∇
(B,ϕ,g) coincides with D

∇(g)
(B,ϕ) in example 3.1 with ΛM = 0. Therefore D∇

(B,ϕ,g) has

the generalized torsion T∇ as (3.47) in example 3.2.

Analogous to the ordinary geometry, by remark 3.1, given another generalized connection

D on Ẽ, it differs from D∇ by a tensor Σ ∈ Γ(E ⊗ End(Ẽ)) as

D = D∇ + Σ. (3.88)

If D is compatible, this implies Σ ∈ Γ(E ⊗ o(Ẽ)) ≃ Γ(E ⊗ (o(p, q)⊕ o(q, p))); that is, in
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orthonormal frames {Φ−1ÊA} on E where {ÊA} are G̃-frames

Σ a
M b̄ = Σ ā

M b = 0,

ΣMab = −ΣMba, ΣMāb̄ = −ΣMb̄ā.
(3.89)

Now by (3.44) and (3.47), the generalized torsion T ∈ Γ(Λ3E ⊕ E) of D has components

(T1)ABC = −4HABC − 3Σ[ABC], (T2)A = −4dϕA − Σ C
C A, (3.90)

where H, dϕ are embedded into Λ3E ⊕E by Λ3ρ∗ ⊕ ρ∗ as commented after (3.47). Then

we obtain a torsion-free compatible D if we set Σ to let (3.90) vanish. ■

Remark 3.6. Despite the existence, such a connection is not completely determined by

(B, ϕ, g) in contrast with the conventional Levi-Civita connection. Indeed, let’s work out

the solution set of Σ ∈ Γ(E ⊗ o(p, q)⊕ E ⊗ o(q, p)) that yields torsion-free compatible

connections D in (3.88).

We first simplify the tensor equations (3.90) by O(p, q)×O(q, p)-compatibility. We con-

tinue to use the frames introduced in the proof. By (3.68),(3.69), if frames {ÊA} of Ẽ

are defined in (3.66), the components of H, dϕ under embedding (3.73) with respect to

the induced frames are then

ρ∗ =
1

2
((ρ+)

∗ + (ρ−)
∗),

dϕ ∈ C+ ⊕ C−,

Λ3ρ∗ =
1

8
Λ3((ρ+)

∗ + (ρ−)
∗),

H ∈ (Λ3C+)⊕ (Λ2C+ ⊗ C−)⊕ (C+ ⊗ Λ2C−)⊕ (Λ3C−),

dϕA =

1
2
∂aϕ for A = a

1
2
∂āϕ for A = ā+ d

, HABC =



1
8
Habc for (A,B,C) = (a, b, c)

1
8
Habc̄ for (A,B,C) = (a, b, c̄+ d)

1
8
Hab̄c̄ for (A,B,C) = (a, b̄+ d, c̄+ d)

1
8
Hāb̄c̄ for (A,B,C) = (ā+ d, b̄+ d, c̄+ d)

,

(3.91)

where right hand sides are components in Λ•T ∗. Together with (3.89) and (3.90), we

obtain the tensor equations

Σ[abc] = −1

6
Habc,

Σ[āb̄c̄] = +
1

6
Hāb̄c̄,

Σābc = −1

2
Hābc,

Σab̄c̄ = +
1

2
Hab̄c̄,

Σ a
a b = −2∂bϕ,

Σ ā
ā b̄ = −2∂b̄ϕ,

Σabc + Σacb = Σāb̄c̄ + Σāc̄b̄ = 0,

(3.92)
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where the signs arised when lowering the middle index of Σ because of the convention in

(3.66). This is a system of inhomogeneous linear equations, having C∞-linear space of

solutions. The general solution takes form

Dāw
b
+ = ∇āw

b
+ − 1

2
H b

ā cw
c
+,

Daw
b̄
− = ∇aw

b̄
− +

1

2
H b̄

a c̄w
c̄
−,

Daw
b
+ = ∇aw

b
+ − 1

6
H b

a cw
c
+ − 2

d− 1

(
δ b
a ∂cϕ− ηac∂

bϕ
)
wc

+ + A+
a
b

cw
c
+,

Dāw
b̄
− = ∇āw

b̄
− +

1

6
H b̄

ā c̄w
c̄
− − 2

d− 1

(
δ b̄
ā ∂c̄ϕ− ηāc̄∂

b̄ϕ
)
wc̄

− + A−
ā
b̄

c̄w
c̄
−,

(3.93)

where A± ∈ Γ(C± ⊗ (Λ2C±)) satisfying

A+
[abc] = 0,

A−
[āb̄c̄]

= 0,

A+
a
a

b = 0,

A−
ā
ā

b̄ = 0
(3.94)

parametrize the affine space of torsion-free compatible generalized connections. Note that

indices a, b, c, ā, b̄, c̄ are raised by ηab, ηāb̄ in O(p, q)×O(q, p)-covariance.

3.2.4 Unique Operators

We expect generalized objects having applications to supergravity theories to be com-

pletely determined by field configuration (B, ϕ, g). So we seek for the objects that depend

only on the solution class parametrized by A±. For further constructions, we note some

typical operators that are class-function.

From (3.93) there are the immediate ones

D+ : C+ → C− ⊗ C+,

D− : C− → C+ ⊗ C−,

Dāw
b
+ = ∇āw

b
+ − 1

2
H b

ā cw
c
+;

Daw
b̄
− = ∇aw

b̄
− +

1

2
H b̄

a c̄w
c̄
−.

(3.95)

By tracing, we note

D+· : C+ → C∞,

D−· : C− → C∞,

Daw
a
+ = ∇aw

a
+ − 2(∂aϕ)w

a
+;

Dāw
ā
− = ∇āw

ā
− − 2(∂āϕ)w

ā
−;

(3.96)

are class-functions because of (3.94).
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Less trivial are the ones on spinors. For ϵ± ∈ S(C±),

D+ : S(C+) → C− ⊗ S(C+),

D− : S(C−) → C+ ⊗ S(C−),

/D
+
: S(C+) → S(C+),

/D
−
: S(C−) → S(C−),

Dāϵ
+ =

(
∇ā −

1

8
Hābcγ

bc

)
ϵ+;

Daϵ
− =

(
∇a +

1

8
Hab̄c̄γ

b̄c̄

)
ϵ−;

γaDaϵ
+ =

(
γa∇a −

1

24
Habcγ

abc − γa∂aϕ

)
ϵ+;

γāDāϵ
− =

(
γā∇ā +

1

24
Hāb̄c̄γ

āb̄c̄ − γā∂āϕ

)
ϵ+;

(3.97)

are independent of A±, where actions of compatible D on S(C±) are given by identifying

Ẽ with E as

DMϵ
+ =

(
∂M +

1

4
ΩMabγ

ab

)
ϵ+, DMϵ

− =

(
∂M +

1

4
ΩMāb̄γ

āb̄

)
ϵ−.

In the last two expressions in (3.97), A± are removed because of the identity γaγbc =

γabc + ηabγc − ηacγb, where γabcA+
abc = γabcA+

[abc] = 0, (ηabγc − ηacγb)A+
abc = 2ηabγcA+

abc =

2γcA+
a
a
c = 0, and similar for A−. This is a very useful identity, let’s note down its

generalizations

γaγb1...bn = γab1...bn + n · ηa[b1γb2 . . . γbn],

γb1...bnγa = γb1...bna + n · γ[b1 . . . γbn−1ηbn]a.
(3.98)

The proof is simply a combinatorics.

3.2.5 Generalized Curvatures

The subbundles C± are orthogonal, so the operator (3.48) is tensorial on C± ⊗ C∓,

and has components
(
R c

ab̄ d
, R c̄

ab̄ d̄

)
,
(
R c

āb d, R
c̄

āb d̄

)
, but is by no means unique. However,

further structures in ordinary geometry do have certain uniquely determined generalized

analogues. First, note that we have the expression of Ricci tensor in form (B.19) when

connection is torsion-free.

Definition 3.5. The generalized Ricci tensor of a torsion-free compatible connection D

is the tensor R ∈ Γ(C+ ⊗ C−) satisfying

Rab̄w
a
+ = [Da, Db̄]w

a
+, (3.99)

for all w+ ∈ C+.
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Remark 3.7. The index structure implies that R is uniquely determined by (B, ϕ, g). The

generalized Ricci tensor can also be equivalently defined by R ∈ Γ(C− ⊗ C+)

R · w− = [D−·, D+]w−. (3.100)

Note that O(p, q)×O(q, p)-structure does not distinguish C±, and this symmetry implies

the equivalence.

Theorem 3.3. In an aligned G̃-frame, where ê+a = ê−a in the definition (3.61), R has

components

Rab = Rab −
1

4
HacdH

cd
b + 2∇a∇bϕ− 1

2
e2ϕ∇c

(
e−2ϕHcab

)
. (3.101)

Remark 3.8. Components of arbitrary unaligned frames can be obtained by O(p, q) ×
O(q, p)-covariant transformations.

Proof. Let the frames aligned, so Ê−b̄ ∼ Ê+b. By (3.95) and (3.96),

DaDbw
a
+ = ∇a

(
∇bw

a
+ − 1

2
H a

b cw
c
+

)
− 2(∂aϕ)

(
∇bw

a
+ − 1

2
H a

b cw
c
+

)
− 1

2
H d

a b

(
∇dw

a
+ − 1

2
H a

d cw
c
+

)
= ∇a∇bw

a
+ − 1

2
∇aH

a
b cw

c
+ − 2(∂aϕ)∇bw

a
+ +

1

2
(∂aϕ)H

a
b cw

c
+ +

1

4
H d

a bH
a

d cw
c
+,

(3.102)

and since covariant derivative commutes with tracing,

DbDaw
a
+ = ∇b(∇aw

a
+ − 2(∂aϕ)w

a
+)

= ∇b∇aw
a
+ − 2∇b(∂aϕ)w

a
+ − 2(∂aϕ)∇bw

a
+,

(3.103)

so

Rabw
a
+ = [Da, Db]w

a
+

= DaDbw
a
+ −DbDaw

a
+

= [∇a,∇b]w
a
+ − 1

4
HacdH

cd
b wa

+ + 2∇b∇aϕw
a
+ − 1

2
∇cHcabw

a
+ +

1

2
(∂cϕ)Hcabw

a
+

= Rabw
a
+ − 1

4
HacdH

cd
b wa

+ + 2∇b∇aϕw
a
+ − 1

2
e2ϕ∇c

(
e−2ϕHcab

)
wa

+,

(3.104)

by (B.19) and symmetry of Rab. ■
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Remark 3.9. If the frames are aligned using tensor Rāb in the alternative definition (3.100),

we will have a sign flip in the antisymmetric part

Rab = Rab −
1

4
HacdH

cd
b + 2∇a∇bϕ+

1

2
e2ϕ∇c

(
e−2ϕHcab

)
. (3.105)

This can be seen by observing the unique operators and consider a sign flip on H.

No contractions can be made for generalized Ricci tensor. However, note that by the

virtue of Spin(p, q) × Spin(q, p)-covariance, the generalized Ricci tensor can also be de-

fined by its action on spinors by operators (3.97) as

1

2
Rab̄γ

aϵ+ = [γaDa, Db̄]ϵ
+,

1

2
Rābγ

āϵ− = [γāDā, Db]ϵ
−. (3.106)

This definition works for ordinary geometry, and by Clifford algebra, the conventional

Ricci scalar of a Levi-Civita connection, where Rab is symmetric, has expression

−1

4
Rϵ = −1

4
Rabg

abϵ = −1

4
Rabγ

aγbϵ = −1

2
γa[γb∇b,∇a]ϵ

= −1

2

(
γaγb∇b∇a − γa∇aγ

b∇b

)
ϵ = −1

2

(
2∇a∇a − 2γa∇aγ

b∇b

)
ϵ

=
(
γa∇aγ

b∇b −∇a∇a

)
ϵ.

(3.107)

Therefore we obtain a sensible definition of the curvature scalar in generalized geometry.

Definition 3.6. The generalized curvature scalar of a torsion-free compatible connection

D is the scalar S satisfying

−1

4
Sϵ+ =

(
γaDaγ

bDb −DāDā

)
ϵ+, (3.108)

for all ϵ+ ∈ S(C+).

Remark 3.10. It is obvious uniquely determined by (B, ϕ, g). Again, we have the equiv-

alent definition

−1

4
Sϵ− =

(
( /D

−
)2 −D− ·D−

)
ϵ−, (3.109)

for all ϵ− ∈ S(C−).

Theorem 3.4. The generalized curvature scalar S is well-defined, and it has expression

S = R+ 4∇2ϕ− 4(∂ϕ)2 − 1

12
H2. (3.110)
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Proof. It suffices to work in aligned frames by covariance. By (3.97),

DaDaϵ
+ =

(
∇a − 1

8
Ha

bcγ
bc − 2(∂aϕ)

)(
∇a −

1

8
Hadeγ

de

)
ϵ+

= ∇a∇aϵ
+ − 1

8
∇a
(
Habcγ

bcϵ+
)

− 1

8
Ha

bcγ
bc∇aϵ

+ +
1

64
Ha

bcγ
bcHadeγ

deϵ+

− 2(∂aϕ)∇aϵ
+ +

1

4
(∂aϕ)Hadeγ

deϵ+

= ∇a∇aϵ
+ − 1

8
γbc∇aHabc ϵ

+

− 1

4
γbcHa

bc∇aϵ
+ +

1

64
γbcγdeHa

bcHade ϵ
+

− 2(∂aϕ)∇aϵ
+ +

1

4
(∂aϕ)Hadeγ

deϵ+,

(3.111)

since ∇γ = 0. Also

γaDaγ
bDbϵ

+ =

(
γa∇a −

1

24
Hdefγ

def − γa∂aϕ

)(
γb∇b −

1

24
Hhlkγ

hlk − γb∂bϕ

)
ϵ+

= γa∇aγ
b∇bϵ

+ − 1

24
γa∇a

(
Hhlkγ

hlkϵ+
)
− γa∇a

(
γb(∂bϕ)ϵ

+
)

− 1

24
Hdefγ

defγb∇bϵ
+ +

1

24× 24
Hdefγ

defHhlkγ
hlkϵ+ +

1

24
Hdefγ

defγb(∂bϕ)ϵ
+

− γa(∂aϕ)γ
b∇bϵ

+ +
1

24
γa(∂aϕ)Hhlkγ

hlkϵ+ + γa(∂aϕ)γ
b(∂bϕ)ϵ

+

= γa∇aγ
b∇bϵ

+

− 1

24
γaγhlk∇aHhlkϵ

+ − 1

24
γaγhlkHhlk∇aϵ

+

− γaγb(∇a∇bϕ)ϵ
+ − γaγb(∂bϕ)∇aϵ

+

− 1

24
γdefγbHdef∇bϵ

+ +
1

24× 24
γdefγhlkHdefHhlkϵ

+ +
1

24
γdefγbHdef (∂bϕ)ϵ

+

− γaγb(∂aϕ)∇bϵ
+ +

1

24
γaγhlk(∂aϕ)Hhlkϵ

+ + γaγb(∂aϕ)(∂bϕ)ϵ
+.

(3.112)
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Then(
γaDaγ

bDb −DaDa

)
ϵ+ =

(
γa∇aγ

b∇b −∇a∇a

)
ϵ+

+

(
− 1

24
γaγhlk∇aHhlk +

1

8
γbc∇aHabc

)
ϵ+

+

(
− 1

24
γaγhlkHhlk −

1

24
γdefγaHdef +

1

4
γbcHa

bc

)
∇aϵ

+

+
(
−γaγb(∇a∇bϕ) + γaγb∂aϕ∂bϕ

)
ϵ+

+
(
−γaγb(∂bϕ)− γbγa(∂bϕ) + 2∂aϕ

)
∇aϵ

+

+

(
1

24× 24
γdefγhlkHdefHhlk −

1

64
γbcγdeHa

bcHade

)
ϵ+

+

(
1

24
γdefγbHdef (∂bϕ) +

1

24
γaγhlk(∂aϕ)Hhlk −

1

4
(∂aϕ)Hadeγ

de

)
ϵ+.

(3.113)

Let’s exam the expressions in each line.

(
γa∇aγ

b∇b −∇a∇a

)
ϵ+ = −1

4
Rϵ+, (3.114)

by (3.107). Now use (3.98) we have identity

γaγhlk = γahlk + 3 · ηa[hγlγk]

= γahlk + ηahγlk − ηalγhk + ηakγhl,
(3.115)

which reduces the term

1

24
γaγhlk∇aHhlk =

1

24

(
γahlk∇aHhlk + γlk∇aHalk − γhk∇aHhak + γhl∇aHhla

)
=

1

24

(
γahlk∇aHhlk

)
+

1

8
γbc∇aHabc,

(3.116)

by antisymmetry. But

γahlk∇aHhlk = γahlk∇[aHhlk] = γahlkdHahlk = 0, (3.117)

because ∇ Levi-Civita and H closed. Thus(
− 1

24
γaγhlk∇aHhlk +

1

8
γbc∇aHabc

)
ϵ+ =

(
−1

8
γbc∇aHabc +

1

8
γbc∇aHabc

)
ϵ+ = 0.

(3.118)
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Again by (3.115), and another application of (3.98)

γdefγb = γdefb + γefηdb − γdfηeb + γdeηfb, (3.119)

we have reductions

1

24
γaγhlkHhlk =

1

24
γahlkHhlk +

1

8
γbcHa

bc ,

1

24
γdefγaHdef = − 1

24
γadefHdef +

1

8
γbcHa

bc ,
(3.120)

so (
− 1

24
γaγhlkHhlk −

1

24
γdefγaHdef +

1

4
γbcHa

bc

)
∇aϵ

+

=

(
−2× 1

8
γbcHa

bc +
1

4
γbcHa

bc

)
∇aϵ

+ = 0.

(3.121)

A simple application of Clifford algebra yields

−γaγb(∇a∇bϕ) + γaγb∂aϕ∂bϕ = −1

2
{γa, γb}(∇a∇bϕ) +

1

2
{γa, γb}∂aϕ∂bϕ

= −
(
∇2ϕ

)
+ (∂ϕ)2.

(3.122)

Similarly,

(
−γaγb(∂bϕ)− γbγa(∂bϕ) + 2∂aϕ

)
∇aϵ

+ = (−2∂aϕ+ 2∂aϕ)∇aϵ
+ = 0. (3.123)

Note that

γhlk =
1

3

(
γhγlk − γlγhk + γkγhl

)
,

and again by three application of (3.119)

1

24× 24
γdefγhlkHdefHhlk =

1

24× 24
· 1
3
· 3
(
γdefhγlkHdefHhlk + 3 · γefγlkHa

efHalk

)
=

1

24× 24
γdefhγlkHdefHhlk +

1

24× 8
γefγlkHa

efHalk.

(3.124)

Here

γdefhγlkHdefHhlk = γdefhγlkH[defHhlk] = γdefhγlk(H ∧H)defhlk = 0, (3.125)
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since H ∧H = 0 for being three form and abelian. Then(
1

24× 24
γdefγhlkHdefHhlk −

1

64
γbcγdeHa

bcHade

)
ϵ+

=

(
1

24× 8
γefγlkHa

efHalk −
1

64
γbcγdeHa

bcHade

)
ϵ+

=

(
−2

3
· 1

64
γbcγdeHa

bcHade

)
ϵ+.

(3.126)

Similar procedure using

γde =
1

2

(
γdγe − γeγd

)
, γbcγd = γbcd + γbηcd − γcηbd, (3.127)

yields(
−2

3
· 1

64
γbcγdeHa

bcHade

)
ϵ+ = −2

3
· 1

64
· 1
2
2 ·
(
γbcdγeHa

bcHade − 2 · γcγeHab
cHabe

)
=

2

3
· 1

64
· 2
(
γcγeHab

cHabe

)
=

2

3
· 1

64
· 2
(
γceHab

cHabe + ηceHab
cHabe

)
=

1

48

(
HabcHabc

)
=

1

48
H2.

(3.128)

Finally, similar to the third line (3.121), apply again (3.115) and (3.119), we obtain

1

24
γdefγbHdef (∂bϕ) +

1

24
γaγhlk(∂aϕ)Hhlk =

1

24
· 2 · 3(∂aϕ)Hadeγ

de =
1

4
(∂aϕ)Hadeγ

de,

(3.129)

so (
1

24
γdefγbHdef (∂bϕ) +

1

24
γaγhlk(∂aϕ)Hhlk −

1

4
(∂aϕ)Hadeγ

de

)
ϵ+ = 0. (3.130)

Gathering non-vanishing terms and by definition (3.108), upon multiplying factor −4 we

have the expression (3.110) as desired. ■

Remark 3.11. The alternative definition (3.109) will yield exact the same expression.



Chapter 4

O(9, 1)×O(1, 9) Generalized Gravity

We are now ready to formulate the Type II theories in terms of generalized geometry.

It will be a gravity theory with local O(9, 1) × O(1, 9) symmetry. The expressions of

generalized curvatures in (3.101) and (3.110) may readily look familiar. Yet, before

starting to establish the formalism, we first introduce a more complete picture of the

Type II theories than we did in 2.1. As we have noted, not only the bosonic sector but

also the fermionic sector to the leading order will fit into this formalism. Furthermore,

the supersymmetry between the two sectors also admit generalized notions. Let’s briefly

review these degrees of freedom. Again, we are in democratic formalism [5] and basic

conventions are listed in A.

4.1 d=10 Type II Supergravity

4.1.1 Supersymmetry

Type II theories have local d = 10, N = 2 supersymmetry. The classification of spinors

[13] tells us that for d = 10 ≡ 2 MOD 8, signature 9 − 1 ≡ 0 MOD 8, we have two

irreducible real (Majorana) semi-spin representations of Spin(9, 1) dual to each other,

i.e. different chirality. They are 16 and 16′ as in the Dynkin diagram

10

16

16′
, (4.1)

45
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where 10 is the fundamental representation for vectors. The local supersymmetries take

form

IIA: M10|(1,1), IIB: M10|(2,0), (4.2)

which means the 32 supercharges are in spinorial representations

IIA: 16′ ⊕ 16, IIB: 16⊕ 16, (4.3)

so IIA is non-chiral and IIB is chiral. On a spinor manifold, we can build associated

spinor bundles S− ⊕ S+ and 2S+ then the supersymmetry variations are parameterizaed

by sections ϵ ∈ S± ⊕ S+, which has decomposition

IIA: ϵ = ϵ+ + ϵ−, γ(10)ϵ± = ∓ϵ±,

IIB: ϵ =

(
ϵ+

ϵ−

)
, γ(10)ϵ± = ϵ±,

(4.4)

where in IIA we group the semi-spin representations into the irreducible Clifford Mod-

ule, and γ(10) is the top gamma for the spin structure. The supersymmetry algebra is

constructed by the symmetric map S± ⊗ S± → V, ϵ⊗ ϵ′ 7→ ϵ̄±γϵ′±.

4.1.2 Fermionic Degrees of Freedom

Fermions are in R-NS, NS-R sectors. The fields are

{ψµ, λ}, (4.5)

where ψµ are gravitini, λ are dilatini. Similar to supercharges, they come in pair, non-

chiral in IIA, chiral in IIB. The corresponding representations for the spinor bundles

are

IIA: {10 ∗ (16′ ⊕ 16),16⊕ 16′)},

IIB: {10 ∗ (16⊕ 16),16′ ⊕ 16′)},
(4.6)

where ∗ is the Cartan composite, so 10 ∗ 16,10 ∗ 16′ are the irreducible summands

in 10 ⊗ 16,10 ⊗ 16′ with the largest highest integral weights, respectively; thus the

index structure in (4.5). Note that ψµ, λ are in opposite chirality, and we also have the
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decomposition

IIA:
ψµ = ψ+

µ + ψ−
µ ,

λ = λ+ + λ−,

γ(10)ψ±
µ = ∓ψ±

µ ,

γ(10)λ± = ±λ±,

IIB:

ψµ =

(
ψ+
µ

ψ−
µ

)
, γ(10)ψ±

µ = ψ±
µ ,

λ =

(
λ+

λ−

)
, γ(10)λ± = −λ±.

(4.7)

To fit into generalized geometry, we consider instead of λ± the fields

ρ± := γµψ±
µ − λ±. (4.8)

Since the map γ : V ⊗ S± → S∓,

IIA : ρ± ∈ S±, IIB : ρ± ∈ S−. (4.9)

4.1.3 Equations of Motions and SUSY Variations

The fermionic actoin, up to quadratic order in fermions, is [4]

SF = − 1

2κ2

ˆ √
−g
[

e−2ϕ
(
2ψ̄+ · /∇ψ+ − 4ψ̄+ · ∇ρ+ − 2ρ̄+ /∇ρ+

+2ψ̄− · /∇ψ− − 4ψ̄− · ∇ρ− − 2ρ̄− /∇ρ−

−1

2
ψ̄+ · /Hψ+ −H(ψ̄+γψ+)− 1

2
H(ρ̄+γ(2)ψ+) +

1

2
ρ̄+ /Hρ+

+
1

2
ψ̄− · /Hψ− +H(ψ̄−γψ−) +

1

2
H(ρ̄−γ(2)ψ−)− 1

2
ρ̄− /Hρ−

)
−1

4
e−ϕ
(
ψ̄+
µ γ

ν /F (B)γ
µψ−

ν + ρ̄+ /F (B)ρ
−
)]
,

(4.10)

where ∇ is the Levi-Civita connection. The equations of motion, up to linear order of

fermions, are

1

16
eϕ
∑
n

(±1)[(n+1)/2]γν /F
(n)
(B)γµψ

∓
ν =

(
/∇∓ 1

24
/H − /∂ϕ

)
ψ±
µ ± 1

2
γνH λ

νµ ψ±
λ

−
(
∇µ ∓

1

8
Hµνλγ

νλ

)
ρ±,

(4.11)
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1

16
eϕ
∑
n

(±1)[(n+1)/2] /F
(n)
(B)ρ

∓ =

(
∇µ ∓

1

8
Hµνλγ

νλ − 2∂µϕ

)
ψ±µ

−
(
/∇∓ 1

24
/H − /∂ϕ

)
ρ±,

(4.12)

which correspond to variations δψ±
µ , δρ

± of the action (4.10), respectively. We also include

here the bosonic pseudo-action (2.1) and equations of motion (2.6) for completeness:

SB =
1

2κ2

ˆ √
−g

[
e−2ϕ

(
R+ 4(∂ϕ)2 − 1

12
H2

)
− 1

4

∑
n

1

n!

(
F

(n)
(B)

)2]
, (4.13)

and

0 = Rµν −
1

4
HµαβH

αβ
ν + 2∇µ∇νϕ− 1

4
e2ϕ
∑
n

1

(n− 1)!
F

(n)
(B)µα1...αn−1

F
(n)
(B)

α1...αn−1

ν
,

0 = ∇α
(
e−2ϕHαµν

)
− 1

2

∑
n

1

(n− 2)!
F

(n)
(B)µνα1...αn−2

F
(n−2)
(B)

α1...αn−2

,

0 = ∇2ϕ− (∇ϕ)2 + 1

4
R− 1

48
H2,

0 = dF(B) −H ∧ F(B).

(4.14)

Now we have the type II supergravity theories invariant under the supersymmetry trans-

formations [4]

δeaµ = ϵ̄+γaψ+
µ + ϵ̄−γaψ−

µ ,

δBµν = 2ϵ̄+γ[µψ
+
ν] − 2ϵ̄−γ[µψ

−
ν],

δϕ− 1

4
δ log(−g) = −1

2
ϵ̄+ρ+ − 1

2
ϵ̄−ρ−,(

eB ∧ δA
)(n)
µ1...µn

=
1

2
e−ϕ
(
ψ̄+
ν γµ1...µnγ

νϵ− − ϵ̄+γµ1...µnρ
−)

∓ 1

2
e−ϕ
(
ϵ̄+γνγµ1...µnψ

−
ν + ρ̄+γµ1...µnϵ

−),
(4.15)

for bosons, where eµ is an g-orthonormal frame and the sign in the last line is minus for

IIA, plus for IIB, and

δψ±
µ =

(
∇µ ∓

1

8
Hµνλγ

νλ

)
ϵ± +

1

16
eϕ
∑
n

(±1)[(n+1)/2] /F
(n)
(B)γµϵ

∓,

δρ± =

(
/∇∓ 1

24
/H − /∂ϕ

)
ϵ±,

(4.16)

for fermions.
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4.2 Generalized Geometry Formalism

Now set us into the generalized geometry studied in Chapter 2, 3, and we start estab-

lishing the isomorphism between supergravities and generalized gravities. Here we will

be interested in the case (p, q) = (9, 1).

4.2.1 Supergtavity Fields

NSNS Sector

By theorem 3.1, we immediately have the correspondence between bosonic triplet and

the generalized metric

(B, ϕ, g) ≃ (G,Φ) ∼ O(d, d)

O(9, 1)×O(1, 9)
× R+. (4.17)

The generalized tangent bundle E indeed encodes the NS-NS gauge symmetry.

Proposition 4.1. The variation

δVG = LVG, δVΦ = LVΦ, (4.18)

for V ∈ E, is equivalent to the infinitesimal NS-NS bosonic variation (2.12).

Proof. In coordinate frames, generalized tensor G has form (3.64) while the Dorfman

derivative takes form of adjoint actions by matrix (3.20). Let a· denote the adjoint action
on the entries, then for V = v + λ, the direct computation yields

LVG = V A∂AG− a · 1
2

(
g −Bg−1B −Bg−1

g−1B g−1

)
+

1

2

(
dλg−1B −Bµβdλναg

−1βα dλg−1

dλg−1 0

)

= Lv
1

2

(
g −Bg−1B −Bg−1

g−1B g−1

)
+

1

2

(
dλg−1B +Bg−1dλ dλg−1

−g−1dλ 0

)

=
1

2

(
g′ −B′g′−1B′ −B′g′−1

g′−1B′ g′−1

)
,

where g′ = Lvg, g
′−1 = Lvg

−1, and B′ = B − dλ are exactly variations of g,B in (2.12).

For ϕ, it is by definition (3.15) that LVΦ = LvΦ. ■
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Remark 4.1. Note that

[δV , δW ] = δJV,W K, (4.19)

which can be seen by the Jacobi’s identity when action is restricted on E, and the

general case follows. Therefore the variation by the generalized tangents is an algebra

homomorphism from the Courant bracket on E to the Lie bracket of gNS, the Lie algebra

of Diff(M)⋉Ω2
closed(M). Thus the Courant bracket generalizes the ordinary Lie algebra,

and yields the notion of Courant algebroid in studying the symmetries.

Fermions

The two components of fermions now fit into the Spin(9, 1)×Spin(1, 9)-covariance in the

generalized geometry. Recall the Spin(9, 1)-spinor bundles S(C±) defined in 3.2.2 with

gamma matrices (3.74), and let S±(C+), S
±(C−) be the further decomposition 16⊕ 16′

under the chirality. Now by (4.4), (4.7), and (4.9), we have the Spin(9, 1) × Spin(1, 9)-

covariant definition of fermions in Type II theories, as generalized objects

IIA

ψ+
ā ∈ Γ

(
C− ⊗ S−(C+)

)
,

ρ+ ∈ Γ
(
S+(C+)

)
,

ϵ+ ∈ Γ
(
S−(C+)

)
,

ψ−
a ∈ Γ

(
C+ ⊗ S+(C−)

)
,

ρ− ∈ Γ
(
S−(C−)

)
,

ϵ− ∈ Γ
(
S+(C−)

)
,

IIB

ψ±
ā/a ∈ Γ

(
C∓ ⊗ S+(C±)

)
,

ρ± ∈ Γ
(
S−(C±)

)
,

ϵ± ∈ Γ
(
S+(C±)

)
,

(4.20)

RR Fields

Consider the locally defined polyform field strengths F(i) = dA(i). The patching (2.9)

of local A potentials implies that {F(i)} has patching (2.22), and therefore we find the

generalized objects being generalized spinors

IIA:

IIB:

F ∈ Γ(S+
(1/2)),

F ∈ Γ(S−
(1/2)).

(4.21)
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Recall that S±
(1/2) = S± is the weight-half generalized spinors of (E, ⟨·, ·⟩), and the ±

chirality corresponds exactly to even and odd forms. In fact, T -duality suggests that

R-R field strengths have Spin(10, 10)-trasnformatations [4, 17]. Comparing with the

definition (2.4), the splitting (3.13) implies the image F(B) in Λ•T ∗ of F under B-splitting

is precisely the F
(n)
(B) formulated in the Type II supergravities.

The (B, ϕ, g)-structure allows us to do further factorization (3.76), with additional chi-

ralities (3.78). Using the the spinor norms on S(C±), which is namely the intertwiners

C, C̄ : S(C±) → S∗(C±) defined in (A.3), we may introduce operators associated to

F ∈ S(1/2),

F# = FC̄ : S(C−) → S(C+),

F T
# = CF : S(C+) → S(C−),

(4.22)

The index structure looks like (F#)
a
ā = F ab̄C̄b̄ā and (F T

#)
ā
a = CabF

bā, so there involves

a transpose in the latter case. We explicitly define such an operator. As usual, (B, ϕ, g)

defines a split

S(1/2)
∼−→ Λ•T ∗, F 7→ F(B,ϕ) := eϕeB ∧ F, (4.23)

and let the frames aligned e+ = e− = e, so S(C+) ≃ S(C−), and then we define the map

using Λ•T ∗ ≃ Cliff(9, 1;R)

F# = /F (B,ϕ) :=
∑
n

1

n!
F

(n)
(B,ϕ)a1...an

γa1...an . (4.24)

It extends to a map in (4.22) by Spin(9, 1) × Spin(1, 9)-covariance. Using the identity

Tr(γa1...anγb1...bn) = (−1)[n/2]Tr(I) · δa1b1 . . . δ
an
bn
, we have the relation

F = e−ϕe−B ∧ 1

32

∑
n

1

n!

[
(−1)[n/2]Tr

(
γ(n)F#

)]
, (4.25)

where γ(n) = γa1...ane
a1 . . . ean , and 32 comes from the dimension of the spinor space. A#

can also be defined for R-R fields A, but only locally because its gauge symmetry is not

in O(d, d)-formalism.

Finally, the self-duality conditions (2.5) become the chirality conditions

Γ(−)F = −F, (4.26)

where Γ(−) is defined in (3.79). Indeed, for d = 10, (−1)[(10−n)/2] = (−1)[(n+1)/2]+1.
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4.2.2 Supersymmetry

Bosons

Note that the generalized metric (B, ϕ, g) ≃ (G,Φ) ≃ G̃ encodes its structure on frames

(3.61).

Definition 4.1. We define the Spin(9, 1)×Spin(1, 9)-covariant generalized SUSY trans-

formations δ as

δÊ+
a = (δ log Φ)Ê+

a − (δΛab̄)Ê
−b̄,

δÊ−
ā = (δ log Φ)Ê−

ā − (δΛbā)Ê
+b,

δA# = 16
(
γaϵ+ψ̄−

a − ρ+ϵ̄−
)
∓ 16

(
ψ+
ā ϵ̄

−γā + ϵ+ρ̄−
)
,

(4.27)

where

δ log Φ = ϵ̄+ρ+ + ϵ̄−ρ−, δΛaā = ϵ̄+γaψ
+
ā + ϵ̄−γāψ

−
a , (4.28)

and in the expression for δA#, the upper sign is for IIA, lower for IIB.

Proposition 4.2. δ reproduces the supersymmetry (4.15).

Remark 4.2. Note that for Spin(9, 1)×Spin(1, 9)-covariance in generalized geometry, the

variation of a single orthonormal frame is extended to a pair of O(9, 1)×O(1, 9)-frames.

Proof. Note first that

δ log Φ = −2δϕ+
1

2
δ log(−g) (4.29)

is consistent with the third line of (4.15). By (3.61), the variations of G̃-frames in (4.27)

and the form of parameter (4.28) imply the variation δB for aligned frames, and the

variations of a pair of g-orthonormal frames {e±}

δe+a
µ = ϵ̄+γµψ

+a + ϵ̄−γaψ−
µ , δe−ā

µ = ϵ̄+γāψ+
µ + ϵ̄−γµψ

−ā, (4.30)

which by (3.62) both yield the SUSY variation of g

δgµν = 2ϵ̄+γ(µψ
+
ν) + 2ϵ̄−γ(µψ

−
ν). (4.31)
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When the two frames are aligned e+a = e−a = ea, these variations only differ from (4.15)

by Lorentz transformations

δe+a
µ = δe+a

µ − Λ+a
be

+b
µ , δe−a

µ = δe−a
µ − Λ−a

be
−b
µ , (4.32)

where Λ±a
b = ϵ̄±γaψ±

b − ϵ̄±γbψ
±a.

For R-R potentials, we compare (4.25) with the generalized variation in aligned frames.

Note that by (A.3) and (A.5), together with identity

ϵ̄γ(n)γχ = ϵTCγ(n)C
−1CγC−1Cχ

= (−1)[(n+1)/2]+1
(
χTCγγ(n)ϵ

)T
= (−1)[(n+1)/2]+1χ̄γγ(n)ϵ,

(4.33)

where there is an extra minus because of supersymmetry, we can rewrite δA in (4.15) as

(
eB ∧ δA

)(n)
µ1...µn

=
1

2
e−ϕ(−1)[(n+1)/2]

[(
−ϵ̄−γνγµ1...µnψ

+
ν − ρ̄−γµ1...µnϵ

+
)

∓
(
−ψ̄−

ν γµ1...µnγ
νϵ+ + ϵ̄−γµ1...µnρ

+
)]

=
1

2
e−ϕ(−1)n(−1)[n/2]Tr

[(
γµ1...µnψ

+
ν ϵ̄

−γν + γµ1...µnϵ
+ρ̄−

)
∓
(
γµ1...µnγ

νϵ+ψ̄−
ν − γµ1...µnρ

+ϵ̄−
)]
,

(4.34)

where in the last equation the supersymmetry applies again. Now by (4.25) we find this

is consistent with the covariant form

δA
(n)
# = (−1)n16

[
(ψ+

ā ϵ̄
−γā + ϵ+ρ̄−)∓ (γaϵ+ψ̄−

a − ρ+ϵ̄−)
]
. (4.35)

Noting that (−1)n and ∓ in the middle are −1 with upper sign for IIA, +1 lower sign for

IIB, respectively, we are done. ■

Fermions

Definition 4.2. We continue to define the Spin(9, 1)× Spin(1, 9)-covariant generalized

SUSY transformations δ

δψ+
ā = Dāϵ

+ +
1

16
F#γāϵ

−,

δψ−
a = Daϵ

− +
1

16
F T
#γaϵ

+,

δρ+ = γaDaϵ
+,

δρ− = γāDāϵ
−.

(4.36)
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Proposition 4.3. δ reproduces the supersymmetry (4.16).

Proof. This is a direct observation of the definition of unique operators (3.97) and the

definition of F#, F
T
# in (4.24). In particular, from (4.22) we have

F T
# = (CF#C

−1)T , (4.37)

and by (A.5) one can see the sign (−1)[(n+1)/2] is contained in F T
# . ■

4.2.3 Equations of Motion

We finalize the formalism with Spin(9, 1)× Spin(1, 9)-generalized gravity theories.

Theorem 4.1. The generalized gravity of Type II supergravity theories has bosonic

pseudo-action

SB =
1

2κ2

ˆ (
ΦS +

1

4
(F,Γ(−)F )

)
, (4.38)

where S is the generalized curvature scalar, (·, ·) is the Mukai pairing defined in (2.23),

with equations of motion

0 = Rab̄ −
1

8
Φ−1(F,Γab̄F ),

0 = S,

0 = dF,

(4.39)

where Φ−1 identifies Ẽ and E, and d is defined in (2.24) and (3.25). They are local

O(9, 1)×O(1, 9)-covariant forms of (4.13) and (4.14).

Proof. The first statment follows from theorem 3.4 and definitions. Let’s verify the

expression

(F,Γ(−)F ) = −(F, F )

= −(
∑
n

(−1)[(10−n)/2] ∗ F (n), F )

= −
∑
n

(−1)[(n+1)/2]+1(−1)[(n+1)/2] ∗ F (n) ∧ F (n)

= −
∑
n

(F (n))2,

(4.40)
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where we denote F(B) as F , and the self-duality were used twice.1

Note that (3.110) is different from (4.13) by an integration by part

ˆ
e−2ϕ

√
−g(4∇2ϕ− 4(∂ϕ)2) =

ˆ
e−2ϕ

√
−g(8(∇ϕ)2 − 4(∂ϕ)2)

=

ˆ
e−2ϕ

√
−g(4(∂ϕ)2).

(4.41)

(3.110) also proves the δϕ equation of motion, and Bianchi identity is just by definition.

The first equation of motion encodes both δgµν and δBµν bosonic equations of motion as

symmetric and antisymmetric parts in aligned frames. The NS-NS sector is handled by

the theorem 3.3.

For R-R fields, let {ê+a }, {ê−ā } be a pair of g-orthonormal bases, by the action of the

Clifford algebra (3.80) in G̃-frames under (B)-split, we find

Γab̄ =
1

2
[Γa,Γb̄] = ΓaΓb̄, (4.42)

since {Γa,Γb̄} = 0, and

ΓaΓb̄F = (iê+a + e+a ∧)(iê−
b̄
− e−

b̄
∧)F

= Fb̄a + e−
b̄
∧ Fa + e+a ∧ Fb̄ − e+a ∧ e−

b̄
∧ F,

(4.43)

where we denote Fa for iê+a F and similar for b̄, and we used {iê+a , e
−
b̄
} = 0 by Spin(9, 1)×

Spin(1, 9)-covariance. Then by self-duality

(F,ΓaΓb̄F ) = (
∑
n

(−1)[(10−n)/2] ∗ F (n),ΓaΓb̄F )

= −
∑
n

(
∗ F (n) ∧ F (n+2)

b̄a

)
−
∑
n

(
∗ F (n) ∧ e−

b̄
∧ F (n)

a

)
−
∑
n

(
∗ F (n) ∧ e+a ∧ F (n)

b̄

)
+
∑
n

(
∗ F (n) ∧ e+a ∧ e−

b̄
∧ F (n−2)

)
=
∑
n

(
F

(n)

b̄a
· F (n−2) + F (n)

a · F (n)

b̄
+ F

(n)

b̄
· F (n)

a − F
(n)

ab̄
· F (n−2)

)
,

(4.44)

1Note that our convention (A.1) on Hodege dual is ∗F ∧ F = −F 2, where the last sign comes from
the Minkowski signature.



56 Chapter 4. O(9, 1)×O(1, 9) Generalized Gravity

which in aligned frames becomes

(F,ΓaΓbF ) = 2
∑
n

(
F (n)
a · F (n)

b − F
(n)
ab · F (n−2)

)
. (4.45)

Noting that Φ−1 provides a factor of e2ϕ (which also pulls a density into a tensor) and

the constant coefficient gives the correct normalization compare to (3.101), we obtain the

R-R terms in δg, δB equations of motion. ■

Theorem 4.2. The Type II generalized gravity has the fermionic action

SF = − 1

2κ2

ˆ
2Φ
[
Tr ψ̄+ /D

+
ψ+ + Tr ψ̄− /D

−
ψ−

+2ρ̄+D+ · ψ+ + 2ρ̄−D− · ψ−

−ρ̄+ /D+
ρ+ − ρ̄− /D

−
ρ−

−1

8

(
ρ̄+F#ρ

− + ψ̄+
ā γ

aF#γ
āψ−

a

)]
,

(4.46)

with equations of motion

1

16
γbF#γāψ

−
b = /D

+
ψ+
ā −D+

ā ρ
+,

1

16
γ b̄F T

#γaψ
−
b̄
= /D

−
ψ−
a −D−

a ρ
−,

− 1

16
F#ρ

− = /D
+
ρ+ −D+ · ψ+,

− 1

16
F T
#ρ

+ = /D
−
ρ− −D− · ψ−,

(4.47)

where the unique generalized operators are defined in (3.97). These generalized objects

provide the Spin(9, 1) × Spin(1, 9)-covariance for fermionic sectors (4.10) and (4.11),

(4.12).

The proof is a trivial practice to rewrite fermionic sectors in terms of generalized objects.

Theorem 4.3. The generalized SUSY variations (4.36) of the fermionic equations of

motion recovers the bosonic ones (4.39).

Proof. Note that the first and last two equations arise the equivalent variations by the

symmetry of Spin(9, 1) × Spin(1, 9)-compatibility, so it suffices to consider one of them

from each group.
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Varying the first equation yields

1

16
γaF#γā

(
Daϵ

− +
1

16
F T
#γaϵ

+

)
= γaDa

(
Dāϵ

+ +
1

16
F#γāϵ

−
)
−Dā

(
γaDaϵ

+
)

1

16
· 1

16
γaF#γāF

T
#γaϵ

+ = γaDaDāϵ
+ −Dāγ

aDaϵ
+ +

1

16
(γaDaF#)γāϵ

−,

so we have (
1

2
Raā −

1

162
γaF#γāF

T
#

)
γaϵ+ = 0,

1

16
(γaDaF#)γāϵ

− = 0,

(4.48)

where the second equation is immediately dF = 0 by (3.25) and the fact that D is

torsion-free. Trace of the first equation in particular tells us that

8Raā −
1

162
Tr(γaF#γāF

T
#) = 0, (4.49)

where a factor of 16 is the dimension of the chiral spinor ϵ+. By definition (4.24), similar to

(4.25), on chiral spinors, the intertwiners C, C̄ are related to the Mukai pairing by factors

of 16 in the isomorphism (3.76). Then by (3.77), under identifications by (B, ϕ, g), we

have

(F,ΓaāF ) = (F, γaγ
(10)Fγ(10)γā)

=
1

162
Tr(Cγaγ

(10)Fγ(10)γāC̄F
T )

=
1

162
Tr(CγaC

−1Cγ(10)Fγ(10)γāF#)

=
1

162
Tr(Cγaγ

(10)C−1F T
#γ

(10)γāF#)

=
1

162
Tr((γaγ

(10))TF#γāγ
(10)F T

#)

=
1

162
Tr(γ(10)γaF#γāγ

(10)F T
#).

By (4.20), the chiralities imply the γ(10) acts as identities, and so (4.49) becomes

8Raā − Φ−1(F,ΓaāF ) = 0. (4.50)
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Finally, the variation of the third equation of motion is

− 1

16
F#γ

āDāϵ
− = γaDaγ

aDaϵ
+ −Dā

(
Dāϵ

+ +
1

16
F#γāϵ

−
)

0 =
(
( /D

+
)2 −D+ ·D+

)
ϵ+ +

1

16
DāF#γāϵ

−,

which are

S = 0, dF = 0. (4.51)

■



Chapter 5

Summary

We thus finished reviewing the generalized geometry for Type II supergravity theories.

From the fact that the generalized tangent bundles have the same symmetry structure

as NS-NS sector in Type II theory and by developing generalized geometric objects on it

we finally lead to an amazing reformulation of Type II supergravities by encoding them

in Spin(9, 1) × Spin(1, 9)-structures. This mathematics is beautiful. As presented in

theorems 4.1 and 4.2, supergravities are just Einstein theory with generalized geometry.

All generalized objects are analogous to conventional ones, such as Levi-Civita connection,

torsion and curvatures, in which sense we constructed a generalized gravity theory for

Type II theories with local Spin(9, 1)× Spin(1, 9) covariance. Notable difference to the

conventional geometry is the non-tensorial curvature and non-uniqueness of the Levi-

Civita connection. But all relevant operators turn out to be covariant and unique.

As mentioned at the beginning, this review follows the paradigmatic reference [4], but

there is one minor discrepancy found in deriving the mathematics, which is indicated in

(4.1), where the generalized version of the equation of motion for gµν , Bµν has a factor

−1/8 instead of 1/16 in front of the R-R field term. This could be a consequence of

certain convention. The derivations and proofs of them are fully presented here, one can

feel free to check this discrepancy with [4].

There are extended generalized structure with Ed(d)×R in place of O(d, d)×R+, describ-

ing eleven-dimensional supergravity restricted to d-dimension [18], sequel to the main

reference [4]. It is interesting that supergravity theories, not merely Type II, admit

generalized geometric formalisms with different generalized structural group. This gen-

eral relationship between generalized geometries and supergravities, which are low-energy

limit of string theories, may be the probe of certain larger symmetries in full string theory
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that taking generalized objects as sensible limits, making the story more interesting. This

is one of the future directions of my journey in generalized geometry.



Appendix A

Conventions

The conventions follow [4], recorded here for completeness. The metric has the mostly

plus signiture (−+ · · ·+). Indices µ, ν, λ, . . . for the spacetime coordinate; a, b, c, . . . for

the tangent space; A,B,C, . . . for the generalized coordinate. Symmetrization of indices

is of weight one. On forms,

ω(k) =
1

k!
ωµ1...µk

dxµ1 ∧ · · · ∧ dxµk

ω(k) ∧ η(l) = 1

(k + l)!

(
(k + l)!

k!l!
ω[µ1...µk

ηµk+1...µk+l]

)
dxµ1 ∧ · · · ∧ dxµk+l

∗ω(k) =
1

(10− k)!

(
1

k!

√
−gϵµ1...µ10−kν1...νk

ων1...νk

)
dxµ1 ∧ · · · ∧ dxµ10−k

(A.1)

where ϵ01...9 = −ϵ01...9 = 1.

Gamma matrices γ : T ∗ ⊗ S → S and γ• : Λ•T ∗ ⊗ S → S by

{γµ, γν} = 2gµν , γµ1...µk = γ[µ1 . . . γµk]. (A.2)

Use the antisymmetric transpose intertwiner C : S → S∗

CγµC−1 = −(γµ)T , CT = −C, (A.3)

so

Cγµ = (Cγµ)T , (A.4)

and Cγ : S⊗S → T corresponds to a symmetric morphism, which is unique up to a real

factor if S irreducible [13]. Thus C ∈ (S ⊗ S)∗ is the unique pairing on each irreducible
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component up to a real factor. The Majorana conjugate then defined by ϵ̄ = C∗(ϵ) = ϵTC.

The useful identities are

Cγµ1...µnC−1 = (−1)[(n+1)/2](γµ1...µn)T ,

ϵ̄γµ1...µnχ = (−1)[(n+1)/2]χ̄γµ1...µnϵ.
(A.5)

The top gamma γ(10) ∈ Cliff(T ) by

γ(10) = γ0γ1 · · · γ9 = 1

10!
ϵµ1...µ10γ

µ1...µ10 . (A.6)

Dirac slash with weight one for Ψ ∈ Λ•T ∗ by

/Ψ = γ•(Ψ) =
∑
k

1

k!
Ψµ1...µk

γµ1...µk . (A.7)

R-R potentials in “C-basis” {C(n)} have gauge transformations, parameterized by a set

of p-forms {Λ(p)}, of form [5]

C(p) 7→ C(p) + dΛ(p−1) +H ∧ Λ(p−3), (A.8)

where H is defined in (2.4). This is p-form electrodynamics when H = 0. C(n) couples

with D(p − 1) brane in string theory, making branes charged. Define the sum C as in

(2.2), “A-basis” used in 2.1.1 is related to “C-basis” by

A = e−B ∧ C. (A.9)

Note that dC(p) is not gauge invariant if H ̸= 0, the gauge invariant field strength is given

by (2.4). The R-R gauge symmetry is much larger than p-form electrodynamics because

of Chern-Simons terms in Type II theories [19].



Appendix B

Differential Geometry

Generalized geometry involves analysis on vector bundles and their tensors, and devel-

ops many constructions analogous to the ordinary differential geometry. This appendix

reviews those basic elements in the scope of convential geometry. A general reference to

fiber bundles in physics, [20].

B.1 Vector Bundle

Definition B.1. A vector bundle V of rank d is a fiber bundle π : V → M whose fiber

π−1(x) is a vector space for each x ∈ M , and whose local trivializations ϕU : π−1(U)
∼−→

U × Rn are fiber-wise linear isomorphisms.

Tangent bundle T is a vector bundle over M with fiber Rd. The generalized tangent

bundles E and Ẽ is a vector bundle with fiber R2d.

A data of covering {Ui}, functions πi : Ui × Rd → Ui, and fiber-wise linear transition

functions ϕij = ϕ−1
ji : π−1

i (Ui ∩ Uj)
∼−→ π−1

j (Ui ∩ Uj) define a vector bundle over M with

trivializations ϕUj
◦ ϕ−1

Ui
= ϕij if and only if it satisfies the cocycle condition

ϕij = ϕikϕkj (B.1)

on Ui∩Uj ∩Uk. (B.1) provides an equivalence relation for gluing locally defined bundles.

The set of data satisfying the cocycle condition is called a descent datum.

Rank d vector bundle has structural group GL(d,R), meaning that isomorphisms defined

by transition functions ϕα◦ϕ−1
β |{x}×Rn , x ∈ Uα∩Uβ, values in GL(d,R). Collecting all the
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ordered bases (ea(x)) of vector spaces π
−1(x) over x ∈M yields a principal fiber bundle

F =
{
(ea(x)) : x ∈M and ea(x) a basis of π−1(x)

}
(B.2)

called frame bundle. Its smooth structure and right group action is induced by coordi-

nates
{
xa, (gαβ)

b
c

}
. An object defined on F that is invariant under the diffeomorphic

action of GL(d,R) will be called equivariant (or covariant). Such an object will be

”frame-independent” in the sense that a section of F transforms to any other points by

equivariance.

Given a group representation ρ : GL(d,R) → GL(V ) of the structural group, the asso-

ciated vector bundle of the principal bundle F with respect to ρ is a vector bundle with

fiber V defined by

Vρ = (F × V )/GL(d,R), (B.3)

which is a quotient by the left action g · (f, v) = (f · g−1, ρ(g)v). The action of g ∈
C∞(GL(d,R)) on F induces one on Vρ

g : Vρ −→ Vρ,

(f, v) ·GL(d,R) 7−→ (f · g−1, v) ·GL(d,R).
(B.4)

A map L : Vρ → Vσ between associated bundles is called covariant if it intertwines the

representations: σ(g) · L(v) = L(ρ(g) · v). The infinitesimal version of the covariance

is in terms of adjoint actions (the differential), dσ(A) · L(v) = L(dρ(A) · v), where A ∈
gl(d.R) ⊗ OM , and OM the smooth functions defined on M . In the language of D,

gl(d.R)⊗OM is the adjoint bundle.

As an important example, T , the tangent bundle over d-dimensional manifold M , has

GL(d,R)-bundle of bases

FM = {(êa(x)) : x ∈M and êa(x) a basis of Tx} (B.5)

and the group action of (A−1)ba ∈ GL(d,R) reads

êa 7→ ê′a = êb(A
−1)ba, va 7→ v′a = Aa

bv
b (B.6)

for any local section v = vaêa of T .

T is associated to FM by the defining representation ρdef = id. The vector bundle

associated to FM by the dual representation ρ∗def : A 7→ ρdef(A
−1)T , is the cotangent
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bundle T ∗. The associated bundle with respect to the tensor representation ρp,q :=

(ρdef)
⊗p ⊗ (ρ∗def)

⊗q is the tensor bundle T p
q , whose sections are tensors of (p, q)-type.

Tensors T p
q have fiber of dimension dp+q, by (B.2) there is a structural group GL(dp+q,R),

which is of much larger frame bundle F|T p
q |. Whenever there exists a subbundle P of a

principal bundle F whose structural group G is a subgroup of GL(d,R), we say the

structural group GL(d,R) is reducible to G, and P is called a G-structure. T p
q admits a

GL(d,R)-structure by construction.

The existence of a metric tensor g ∈ ΓS(T ∗ ⊗ T ∗) reduces GL(d,R) to O(p, q), where

(p, q) is the signiture of g. An explicit O(p, q)-structure P ⊂ FM is given by

P =
{
(êa) ∈ FM ; g(êa, êb) = η

(p,q)
ab

}
, (B.7)

where in η
(p,q)
ab , p is the number of +1’s. At each x ∈M , all metrics at x define the coset

space

g|x ∈ GL(d,R)/O(p, q). (B.8)

G-structure on FM can impose topological conditions on M as it restricts the transition

of tangents. For examples, when G = SL(d,R), M is necessarily orientable; if d even and

G = GL(d/2,C), M admits almost complex structure[4].

A connection ∇ : V → T ∗ ⊗ V is an R-linear morphism of vector bundles obeying the

Leibniz rule

∇(fv) = df ⊗ v + f∇v. (B.9)

Note that its codomain has tensor covariance. A connection ∇ is called affine if it

is defined on V = T . Every connection induces a principal connection 1-form ω ∈
gl(d.R) ⊗ Ω1

F on the principal bundle F , whose pullback along a section of F gives the

index form

∇µv
a = ∂µv

a + ω a
µ bv

b. (B.10)

A principal connection induces a connection for each associated vector bundle by its

representation of the structural group. A connection ∇ is compatible with a G-structure

P ⊂ F if the corresponding connection of principal bundle F reduces to one on P .
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B.2 Tensors in Differential Geometry

Let’s complete this appendix by listing objects in ordinary differential geometry having

generalized analogues, for references.

The Lie derivative Lv encodes the infinitesimal diffeomorphism generated by vector v.

On a vector field w in T ,

Lvw = −Lwv = [v, w], (B.11)

where [·, ·] denotes the Lie bracket. This forms the (infinite-dimensional) Lie algebra of

the diffeomorphism group of M , Diff(M). On a tensor field α ∈ T p
q , in coordinates

Lvα
µ1···µp

ν1···νq =v
µ∂µα

µ1···µp
ν1···νq

− (∂µv
µ1)αµµ2···µp

ν1···νq − (∂µv
µp)αµ1···µp−1µ

ν1···νq (B.12)

+ (∂ν1v
µ)αµ1···µp

µν2···νq +
(
∂νqv

µ
)
αµ1···µp

ν1···νq−1µ
.

Note that the second and third lines are in the (minus) adjoint action of the tensor

representations dρp,q : gl(d.R) → End(Vρp,q) by Lie algebra aµν = ∂νv
µ ∈ gl(d.R) ⊗ OM .

The first term is due to the translation of points in M .

Given a general affine connection ∇ on T , the torsion T ∈ Γ(T ⊗ Λ2T ∗) of ∇ is defined

by comparing with the Lie bracket on T

T (v, w) = ∇vw −∇wv − [v, w]. (B.13)

In coordinates,

T µ
νλ = ω µ

ν λ − ω µ
λ ν , (B.14)

where ω is in (B.10) with coordinate basis. Tensorially, in a general basis

T a
bc = ω a

b c − ω a
c b + [êb, êc]

a. (B.15)

Also, torsion compares the Lie derivative with ∇,

(ivT )α = L∇
v α− Lvα, (B.16)

where iv is the interior product, L∇
v is (B.12) with ∇ in place of ∂, and ivT , in indices

form (ivT )µν = vλT µ
λν , acts on a tensor field α by regarding it as a section in gl(d.R)
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adjoint bundle. This form of definition will be applied in the generalized geometry.

The Riemann tensor R ∈ Γ(Λ2T ∗ ⊗ T ⊗ T ∗) of a connection ∇ is given by

R(u, v)w = [∇u,∇v]w −∇[u,v]w, R λ
µν ρv

ρ = [∇µ,∇ν ]v
λ − T ρ

µν ∇ρv
λ, (B.17)

where [∇µ,∇ν ]v
λ = ∇µ(∇νv

λ)−∇ν(∇µv
λ), the second ∇ acts on the rank two tensors by

tensor representations. It measures the failure of ∇ being a Lie algebra homomorphism.

The Ricci tensor is obtained by tracing R

Rµν = R σ
σµ ν . (B.18)

In particular, if ∇ is torsion-free, T = 0, (B.17) and (B.18) implies that

Rbav
a = [∇a,∇b]v

a. (B.19)

If ∇ is the Levi-Civita connection, it defines a symmetric tensor, and in Riemannian

geometry it in turn defines a quadratic form on T measuring mean sectional curvature of

planes containing the vector.

Furthur tracing yields the Ricci scalar

R = gµνRµν , (B.20)

again, having some notion of mean sectional curvatures.



Appendix C

B-field Gerbe

This appendix is a complement to the introduction of gerbe in 2.1.2. For more details

about gerbes [2, 1, 8, 9].

In short, U(1)-gerbe is a space fibered over the manifold M whose fibers are groupoids

locally isomorphic to the groupoid of all principal U(1)-bundles connected by bundle

isomorphisms. Let {Ui} be a good cover, transitions of two bundles Pi, Pj over two

open sets Ui, Uj are given by an isomorphism of bundles uij = u−1
ji : Pi|Uij

≃ Pj|Uij

between their pull-backs on the intersection Uij = Ui ∩ Uj. Over every three open sets

Uijk = Ui∩Uj ∩Uk, the composition gijk = uijujkuki : Pi|Uijk
≃ Pi|Uijk

, being U(1)-bundle

isomorphism, is a U(1)-valued transition function, and can be written

gijk = exp (iΛ(ijk)). (C.1)

A connective structure assigns covariantly a bundle of connections one-forms Co(Pi) over

each local principal bundles Pi in fibers. A curving assigns covariantly a curvature two-

form K(∇i) to each object ∇i ∈ Co(Pi). A gauge over Ui involves a choice of bundle Pi

in the isomorphism class, and a choice of ∇i ∈ Co(Pi). Fix a gauge for each Ui, we can

define an one-form over Uij as a difference of connections,

iΛ(ij) = (uji)∗(∇j)−∇i, (C.2)

and by gauge transformation of connections

iΛ(ij) + iΛ(jk) + iΛ(ki) = (uijujkuki)∗∇i −∇i = g−1
ijkdgijk. (C.3)

dK(∇i) will turn out to be independent of ∇i, globally defined, and is called 3-curvature
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of the connective structure with curving K. We can see that this description is parallel to

the description in 2.1.2: given a gauge choice {(Ui, Pi,∇i)}, B(i) = K(∇i) and H = dB

is the 3-curvature.



Appendix D

Sheaves

Finite dimensional differential geometry possess another equivalent description, namely,

structural sheaf [21]. This appendix shed some light on it, to explain the ideas behind

certain notations used.

For any open set U ⊂ Rn, there corresponds a ring of smooth functions defined on U ,

C∞(U); for any two open sets V ⊂ U ⊂ R, restriction defines a ring homomorphism

C∞(U) → C∞(V ), f 7→ f |V ; fix an open set U , for any covering U =
⋃
{Ui}i∈I , and

a collection of functions fi ∈ C∞(Ui), fj ∈ C∞(Uj) that coincide on the intersections

fi|Ui∩Uj
= fj|Ui∩Uj

, i, j ∈ I, a unique function h ∈ C∞(U) can be defined by h|U =

f, h|V = g. This defines a sheaf of ring over Rn. Denote the collection of open sets in Rn

as O(Rn); i.e. the topology of Rn. With these properties, C∞ can be considered as a map

that sends each U ∈ O(Rn) the ring C∞(U), and each inclusion V ⊂ U the resctriction

map. Together with the gluing property, C∞ actually characterizes the smooth structure

over Rn [13].

Let M be an n-dimensional manifold and let OM denote the function defined similarly

as above, with smooth functions in M in place of Rn. Since a manifold is modeled on

Rn, its not hard to see that OM and C∞ are locally isomorphic; to be more specific, for

every m ∈M , there exists a coordinate neighbourhood (U, x) at m, OM(U) ≃ C∞(x(U)).

The two functors OM , C
∞ are not equal, just as M is in general only locally Euclidean.

Indeed, OM characterizes the smooth structure onM . This can actually be seen from the

fact that all elementray building blocks in ordindary differential geometries are defined

using smooth functions. Functor OM deserves to be called the structural sheaf of M .

Therefore a manifold M can be completely defined as a topological space with a ring-

valued functor OM locally isomorphic to C∞. So manifolds are ringed spaces. Abstractly,
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given a functor F like OM , the element of F(U) are natrually called sections over U .

Sections of OM are, and supposed to be, called functions on M . All kind of notions in

differential geometry can be defined using OM . For example, a smooth map between

manifolds, differential, vector bundle, forms, connection, and curvature. One refers to

[13] and [21] for furthur interests.

Now some remarks on my notation can be made. The sections can be considered as an

evaluation of sheaves. For example, the sections of tangent bundle Γ(TM) can be thought

equivalently as T (M), where T is the locally free OM -module representing the tangent

bundle. The description of a bundle TM →M and a functor T are interchangeable; this

is done by functor of points [13]. Most of the sheaves in differential geometry, vector

bundles in particular, are representable by suitable fiber bundles.

While the two descriptions are equivalent, notations can be made concise having both

pictures in mind. For instance, the functor T is one less letter from TM . For sections,

T (U) (or simply TU) is less cumbersome than Γ(TU). When dealing with morphisms

of sections, it is better viewed in sheaf language. For example, morphism in sheaves of

vector spaces ∇ : V → T ⊗V instead of ∇ : Γ(V) → Γ(TM ⊗V), where the former refers

to sections over all open sets. However, Γ is still useful by defining it as the global section

functor Γ(F) = F(X), omitting the reference to the base space. It will be handy to use

f ∈ F to denote f ∈ F(U), meaning a section of F without specifying an explicit U .

It should be noted that Tx could be confusing by refering to both germs of sheaf T at

x and the fiber of bundle T at x. But OM is a local ring, Ox projects to R fiber in a

unique manner, namely, its value at x. Given enough local information, the two are again

equivalent.

Sheaf language also takes some advantages when dealing with algebraic structures, since

sheaves directly value in them. For example, the direct sum and tensor product of two

vector bundles are simply those of OM -modules in pure algebraic language. Also the

exact sequence

0 T ∗ E T 0 (D.1)

makes sense in terms of sheaves: the arrows are natural transformations. The patching

(2.16) defines an exact sequence of presheaves, and after taking the associated sheaf, the

locally free OM -module E is representable by the generalized tangent bundle, denoted by

E again.
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[4] André Coimbra, Charles Strickland-Constable, and Daniel Waldram. Supergravity

as generalised geometry i: type II theories. Journal of High Energy Physics, 2011(11),

nov 2011. 1, 18, 47, 48, 51, 59, 61, 65

[5] Eric Bergshoeff, Renata Kallosh, Tomás Ort́ın, Diederik Roest, and Antoine Van

Proeyen. New formulations of d = 10 supersymmetry and d8-o8 domain walls.

Classical and Quantum Gravity, 18(17):3359–3382, aug 2001. 1, 3, 45, 62

[6] Marco Gualtieri. Branes on poisson varieties, 2010. 2, 12, 22, 24, 28

[7] Joseph Polchinski. String Theory, volume 1 of Cambridge Monographs on Mathe-

matical Physics, page 77–120. Cambridge University Press, 1998. 5

[8] J.-L Brylinski. Loop spaces, characteristic classes, and geometric quantization.

Birkhäuser, 1993. 5, 7, 16, 68

[9] Angelo Vistoli. Notes on grothendieck topologies, fibered categories and descent

theory, 2007. 5, 68

[10] J. Polchinski. String theory. Vol. 2: Superstring theory and beyond. Cambridge

Monographs on Mathematical Physics. Cambridge University Press, 12 2007. 5

[11] Richard S. Hamilton. The inverse function theorem of nash and moser. Bulletin of

the American Mathematical Society, 7(1):65–222, 1982. 6

[12] Janusz Grabowski, Alexei Kotov, and Norbert Poncin. Geometric structures encoded

in the lie structure of an atiyah algebroid, 2009. 7

72



REFERENCES 73

[13] Pierre Deligne. Quantum Fields and strings: A course for mathematicians. American

Math. Soc., 2000. 9, 45, 61, 70, 71

[14] Roe Goodman and Nolan R. Wallach. Symmetry, Representations, and Invariants.

Springer, Dordrecht, Netherlands, 2009. 9

[15] Yvette Kosmann-Schwarzbach. Derived brackets. Letters in Mathematical Physics,

69(1-3):61–87, jul 2004. 10
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