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Abstract

In this dissertation, we will introduce 11-dim and Type IIB supergravities, both of which

allow us to find solutions describing spacetime under the backreaction from branes. These

solutions typically contain an AdS factor and hold significant importance in the context of

the AdS/CFT correspondence, a topic that will be extensively reviewed in this dissertation.

Notably, we will delve into a newly discovered type of brane solution - D3 branes wrapped

over spindles. These are different from other well-known wrapped brane scenarios, where

supersymmetry is realized through a topological twist.
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Chapter 1

Introduction

Gravity, electromagnetism, weak interactions, and strong interactions are the four funda-

mental interactions known at present. The Standard Model of particle physics, described

by quantum field theory (QFT), properly captures the last three forces, and it is currently

our best scientific theory of nature. Gravity, on the other hand, is only described classically

by general relativity (GR).

Expanding the Einstein-Hilbert action with the substitution gµν = ηµν +M−1
P hµν [1],

whereMP is the Planck mass, leads to massless Fierz-Pauli action plus self-interactions. In

particular, the self-coupling term is characterised by M−1
P , possessing a mass dimension of

−1 and hence non-renormalisable. As a result, developing a consistent (i.e. UV-complete)

quantum theory of gravity is a critical subject of study.

String theory is one approach to quantum gravity. In fact, it is sometimes praised

as the theory of everything, attempting to unify all fundamental forces, including grav-

ity. Its original formulation (bosonic string theory) contains many drawbacks, like the

lack of fermions and the presence of tachyons. These issues are quickly handled by intro-

ducing supersymmetry (SUSY), resulting in superstring theories. However, there are five

different approaches to include SUSY, hence there are five distinct mathematically consis-

tent superstring theories: Type IIA, Type IIB, Type I, Heterotic E8 × E8, and Heterotic

SO(32) [Kiritsis, 2].

So, which one should we use to describe our physics? Fortunately, we do not have to

choose. They are linked by non-perturbative dualities. For example, the physics described

by Type IIB in R1,8×S1 with radius R is the same one described by Type IIA in R1,8×S1
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with radius α′/R1. This is known as T-duality [3]. As a result, superstring theories are

not physically distinct. Indeed, they represent the various limits of M-theory, a quantum

theory that exists in 11-dim.

However, the precise formulation of M-theory remains unknown, although certain as-

pects of it have been well-studied. For instance, its low-energy dynamics can be approx-

imated by 11-dim supergravity. Likewise, the low-energy limits of superstring theories

correspond to five distinct 10-dim supergravity theories.

Roughly speaking, supergravity is GR plus local supersymmetry. Hence, we can find

metric solutions, as we typically do. In particular, there are solutions that describe the

spacetime geometry under the presence of branes — extended objects apparent in both

string theory and M-theory. These brane solutions generally have an AdS factor, making

them very interesting for studying Maldacena’s AdS/CFT2 conjecture [4].

The AdS/CFT correspondence is a truly amazing equivalency between two theories

that seem unrelated. It conjectures that a gravitational (quantum) theory on AdSd+1

(e.g. string theory or M-theory) is equivalent to a conformal field theory (i.e. QFT with

conformal symmetry) in d-dim. The most well-known example of the correspondence is

Type IIB superstring theory on AdS5 × S5 being dual to N = 4 SU(N) super Yang-Mills

(SYM) theory.

In particular, the low-energy limit of Type IIB superstring on AdS5×S5, i.e. Type IIB

supergravity, corresponds to the strong coupling regime of SYM theory, where perturba-

tion theory does not apply. As a result, the AdS side enables us to calculate non-trivial

information about the CFT side, which was previously thought to be impossible (and vice

versa) [5]. Furthermore, we may be able to gain a better grasp of M-theory by using its

dual CFT description.

Many examples of AdS/CFT come from supergravity brane solutions. In fact, the above

AdS5×S5 case can be understood from the planar D3-brane solution. Similarly, other brane

solutions, like planar M2 or M5-branes, also give AdS/CFT examples. Following that, we

will present more complicated brane solutions, such as branes wrapped over calibrated

cycles or spindles, all of which have AdS factors.

1Here, α′ = l2s is a constant that characterises the length scale ls of string theory.
2AdS: Anti-de Sitter spacetime, CFT: Conformal Field Theory
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Notation

We will work in conventional natural units, i.e. ℏ = c = 1, and the Lorentzian signature

will be mostly plus. Greek letters µ, ν, ρ, σ typically represent full spacetime indices, al-

though there are exceptions that will be explained in context. While spinor indices are

rarely utilised, they are represented by the Greek letters α, β when necessary. For internal

symmetry indices, we typically use Latin letters i, j, k, and for vierbein indices, we gener-

ally use a, b, c. In most cases, notations should be clear from context, and any specific or

unusual notations will be explained as needed.

Outline

The following is the dissertation outline:

• In Chapter 2, we will introduce 11-dim supergravity and Type IIB supergravity, and

then explore some solutions. In particular, we will find out that many solutions are

asymptotically AdS.

• In Chapter 3, we will introduce the AdS/CFT correspondence. Then, we will moti-

vate the duality between Type IIB in AdS and SYM theory by looking at D3-branes

in two perspectives.

• In Chapter 4, we will justify how branes can be wrapped in different spacetime

geometries. Then, we will learn that the near horizon geometry describing wrapped

branes can be found by solving lower-dim supergravities. In particular, we can wrap a

D3-brane over a spindle, which has many new interesting features that are discovered

very recently.
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Chapter 2

Supergravity

Before we go into supergravity, let us discuss about supersymmetry (SUSY). Typically,

the symmetry generators fulfil the commutator relations [Ta, Tb] ∼ Tc. However, mathe-

matically, there is nothing that prevents us from obtaining symmetry fulfilling the anti-

commutator relations {Ta, Tb} ∼ Tc.

This allows us to construct the super-Poincaré algebra (in 4-dim) by introducing the

following relations [6]

{Qα, Qβ} = 2(Cγµ)αβPµ, [Qα, Jµν ] =
1

2
(γµν)

β
α Qβ (2.1)

where C is the charge conjugation matrix, Pµ and Jµν are Poincaré generators, and α, β =

1, ..., 4 are spinor indices, as the second relation indicates. Qα in particular is a Majorana

spinor. We refer to theories that remain invariant under transformations generated by

supercharges Qα (in this case, there are 4 supercharges) as SUSY theories.

We can already deduce several key consequences of SUSY. First of all, a SUSY theory

must have an equal number of fermions and bosons in terms of degrees of freedom. This is

because the action of Qα on a field Ψ alters its spin-statistics, and unequal numbers would

result in a different theory, thus not a symmetry.

Subsequently, we can observe that when SUSY is introduced to GR, which is based on

general coordinate invariance (i.e. local Poincaré), it must be a local symmetry. Conversely,

a local SUSY theory must contain gravity. This is all clear when considering (2.1), i.e. local

SUSY = local Poincaré. Hence, such a theory is simply referred to as supergravity [7], which
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includes a metric and at least one gravitino1.

In fact, the algebra can be extended to include more supercharges

{Qi
α, Q

j
β} = 2(Cγµ)αβδ

ijPµ (2.2)

where i, j = 1, ...,N . So, SUSY theories are characterised by N , which is also the number

of gravitini when it is local. We can see that if Qi
α →M ijQj

α, then the algebra is invariant

when MTM = 1. This results in an internal symmetry for supercharges known as the

R-symmetry. For example, it is U(1) for the N = 1 case, as shown by reformulating the

algebra using Weyl spinors

{Q, Q̄} ∼ Pµ, {Q,Q} = 0, {Q̄, Q̄} = 0 (2.3)

where spinor indices have been omitted for simplicity. This is invariant under Q → eiθQ,

and so U(1).

The SUSY algebra can be extended further [6]

{Qi
α, Q

j
β} = 2(Cγµ)αβδ

ijPµ + CαβU
ij + (Cγ5)αβV

ij (2.4)

where U ij and V ij are termed central charges, where “central” refers to the centre of our

symmetry group, and so they commute with the rest of algebra. These are not included

in N = 1 algebra because they are antisymmetric (as are C and Cγ5). To ensure that the

Hilbert space is positive-definite, we must restrict the right-hand side of (2.4), which yields

the Bogomol’nyi-Prasad-Sommerfield (BPS) bound, and states that saturate the bound

are known as BPS states [8].

We will now go through a quick overview of the SUSY representation theory. We

refer to lecture notes [9, 10] or textbooks [11, 12] for a more in-depth discussion. We

will start by examining basic facts about Poincaré algebra. Its irreducible representations

(irreps) are classified according to their mass (i.e. massive or massless) and spin/helicity.

These correspond to momentum squared P 2 (mass) and Pauli-Lubanski squaredW 2 (spin)

1A gravitino ψα
µ is a spin-3/2 field and plays the role of the gauge field for local SUSY. Notably, its

gauge parameter is a spinor.
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Casimir operators.

However, W 2 is no longer Casimir for SUSY since it requires the same amount of

fermions and bosons. So, what are the irreps for SUSY? In general, we take an arbitrary

massive or massless state |λ⟩ with the spin λ, then apply supercharges to create other

states like |λ+ 1⟩. The irrep is made up of all of these states.

In N = 1 theory, for example, if we start with a massless scalar |0⟩, the resulting irrep

is known as the chiral multiplet, which consists of two |0⟩, one |1/2⟩, and one |−1/2⟩. In

other words, it contains a massless complex scalar and a Weyl spinor. Likewise, if we start

from a |−1/2⟩ state, we obtain the vector multiplet, which is given by a gauge vector and

a Weyl spinor. In both scenarios, fields differed by spin-1/2. This is because (2.1) relies

on a single Majorana spinor Qα as the SUSY generator.

Hence, in theories with N > 1, we can expect to find fields distributed across a range

of spin values within a multiplet. If we limit our theory at most spin-2 fields2, we get a

matching number for N , which is N = 8, i.e. 32 supercharges. This sets the maximum

amount of supercharges that a supergravity can have.

In higher dimensions, the number of components for spinors increases. Specifically, in

11-dim, the Majorana spinor already consists of 32 components, giving rise to a unique

supergravity theory. Similarly, in 10-dim, SUSY generators are characterised by Majorana-

Weyl spinors, consisting of 16 components. This gives us two distinct maximal (32 super-

charges) supergravities, which are recognised as Type IIA and Type IIB.

In this chapter, we will focus on 11-dim supergravity and Type IIB. We shall start with

11-dim supergravity, which in fact looks to be less complicated than Type IIB. Following

that, we will discuss some simple vacuum solutions and some planar brane solutions.

2.1 11-dim Supergravity

As stated in the introduction of this chapter, there is only one possible supergravity in

11-dim. This is also a remarkable feature since its uniqueness corresponds to what we

assumed to be the unique theory, M-theory.

To begin, we are aware that 11-dim supergravity includes a metric gµν and a gravitino

2Higher-spin fields should be avoided since they yield inconsistent interacting QFTs in Minkowski [13].
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ψα
µ . The metric has 44 (on-shell3) degrees of freedom, while the gravitino exhibits 128. As

a result, there is an imbalance in favor of bosonic degrees of freedom. This disparity is

reconciled through the introduction of a 3-form field A(3). Therefore, the field content of

11-dim supergravity comprises a metric, a gravitino, and a 3-form.

We will now establish some conventions for spinors in this context. We work with an

11-dim (spacetime) Clifford algebra, which is generated by gamma matrices Γa satisfying

the relation

{Γa,Γb} = 2ηab (2.5)

where a and b represent vielbein indices. Alternatively, the antisymmetrised products of

gamma matrices, i.e. {Γa,Γab, . . . ,Γ012...10}, also generate the Clifford algebra, in which we

take the convention Γ012...10 = −1. Furthermore, it is important to note that 1
4
Γab generates

the group Spin(10, 1). We also define the charge conjugation matrix as Γ0. Consequently,

the Dirac adjoint4 ϵ̄ = ϵTΓ0, where ϵ is a Majorana spinor.

The complete action of 11-dim supergravity was originally derived by Cremmer, Julia,

and Scherk back in 1978 [14]. However, we will focus on a simplified version in which only

bosonic fields are considered by setting ψ = 0. This leads to the following action

S =
1

2κ211

∫
R ⋆ 1− 1

2
F(4) ∧ ⋆F(4) −

1

6
F(4) ∧ F(4) ∧ A(3), 2κ211 ≡ (2π)8l9P (2.6)

where lP is the Planck length, R is the Ricci scalar, and F(4) = dA(3) is the field strength.

Consequently, the equations of motion are

Rµν =
1

12
(F 2

µν −
1

12
gµνF

2), d ⋆ F +
1

2
F ∧ F = 0 (2.7)

where F 2
µν = Fµσ1σ2σ3F

σ1σ2σ3
ν and F 2 = Fσ1σ2σ3σ4F

σ1σ2σ3σ4 . The SUSY transformations

are, schematically [15]

δg ∼ ϵψ, δA ∼ ϵψ, δψ ∼ ∇̂ϵ+ ϵψψ (2.8)

3In this case, this means they are irreps of the little group SO(9).
4The Dirac adjoint is identical to Majorana conjugation since ϵ is a Majorana spinor.
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where ϵ is a Majorana spinor that parameterises the transformation, and ∇̂ represents

some derivative operator. Since ψ = 0, the only non-trivial transformation is

δψµ =

[
∇µ +

1

288
(Γ ν1ν2ν3ν4

µ − 8δν1µ Γν2ν3ν4)Fν1ν2ν3ν4

]
ϵ (2.9)

where ∇µ = ∂µ +
1
4
ωµαβΓ

αβ is the usual Levi-Civita connection.

Therefore, for consistency (i.e. ψ = 0), we require δψ = 0. The trivial case is just

ϵ = 0, meaning no SUSY at all. So, we are looking for non-trivial solutions that preserve

SUSY, and such ϵ is referred to as a Killing spinor. This nomenclature is justified if we

define Kµ ≡ ϵ̄Γµϵ, then we can show that it is a Killing vector [16]. This can be generalised

to Kij
µ for any Killing spinor ϵi.

Furthermore, the presence of Killing spinors indicates a highly limited condition that

provides crucial insights into the geometry. For example, it has been proved that in cir-

cumstances where a timelike Killing spinor exists (i.e. its associated Killing vector is

timelike), the Einstein equations are automatically satisfied, subject to the flux satisfying

its corresponding equations of motion [16].

Even before delving into the equations of motion, the theory itself can offer valuable

insights. Specifically, the 3-form potential must have sources, namely the M2-branes and

M5-branes. To illustrate this, let us draw an analogy with electromagnetism coupled to a

charged particle, described by the following action

S ∼
∫
dλ

√
−gµν

dxµ

dλ

dxν

dλ
+ qAµ

dxµ

dλ
(2.10)

where Aµ is a 1-form, and q represents the electric charge. Therefore, we anticipate that

a 3-form potential is coupled to a 3-dim worldvolume, specifically originating from the

M2-brane. Similarly, we expect the existence of M5-branes that are magnetically coupled

to Aµνρ, i.e. coupling to a 6-form potential Ãµ1...µ6 given by ⋆F(4) = dÃ(6).
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2.2 Type IIB Supergravity

Recall that there are two unique maximal supergravities in 10-dim. This arises from the

fact that the SUSY generators are represented by Majorana-Weyl spinors, allowing us to

construct two distinct maximal supergravities, i.e. N = (1, 1) Type IIA or N = (2, 0)

Type IIB.

For our interests, we will concentrate on Type IIB supergravity. However, it is worth

mentioning a few words about Type IIA. It can be derived from the Kaluza-Klein reduction

of 11-dim supergravity on S1 (for detailed information, please refer to Appendix A). In

this reduction, the 11-dim metric decomposes into a 10-dim metric, a scalar field, and a

1-form potential. Similarly, the 3-form potential in 11-dim also decomposes into a 3-form

and a 2-form potentials in 10-dim. One can verify that these fields indeed possess the

correct number of degrees of freedom, which amounts to 128, by examining their on-shell

components, i.e. irreps of SO(8). Thus, we may already anticipate seeing certain extended

objects, such as a D4-brane5. Furthermore, the 2-form potential electrically couples to a

1-dim object, which is the fundamental string.

Let us turn our attention to Type IIB supergravity. Again, the on-shell bosonic degrees

of freedom must sum up to 128, in which the must-have 10-dim metric accounting for

35 of these degrees. This leaves us with 93 additional degrees of freedom to account for.

Just like in Type IIA, Type IIB also features a 2-form potential (coupling to the string),

which contributes 28 degrees. Moreover, if they are present, then we also require a scalar

for consistency. Recall that Type IIB and Type IIA theories are related by a T-duality

transformation. This can swap the boundary conditions of open strings between the two

theories. As a result, Dp-branes in Type IIA transform into D(p±1)-branes in Type IIB [1].

Consequently, certain r-form potentials in Type IIA become (r ± 1)-form potentials

in Type IIB. Therefore, we can anticipate the presence of 0-form, 2-form, and 4-form

potentials. Indeed, the Type IIB supergravity action is (without fermions) [2]

SIIB = SNS + SR + SCS (2.11)

5Open strings are subject to boundary conditions at their endpoints, i.e. Dirichlet or Neumann. Specif-
ically, the Dirichlet boundary conditions lead to the definition of hypersurfaces known as Dp-branes, where
p denotes the spatial dimension of the brane.
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where

SNS =
1

2κ2

∫
R ⋆ 1− 1

2
dϕ ∧ ⋆dϕ− 1

2
e−ϕH(3) ∧ ⋆H(3)

SR = − 1

4κ2

∫
e2ϕF(1) ∧ ⋆F(1) + eϕF̃(3) ∧ ⋆F̃(3) + F̃(5) ∧ ⋆F̃(5)

SCS = − 1

4κ2

∫
A(4) ∧H(3) ∧ F(3)

(2.12)

and we have H(3) = dB(2), F(n) = dA(n−1), and 2κ2 = (2π)7l8P

F̃(3) = F(3) − A(0)H(3), F̃(5) = F(5) −
1

2
A(2) ∧H(3) +

1

2
B(2) ∧ F(3) (2.13)

So, the bosonic field content is a 10-dim metric gµν , a scalar (dilaton) ϕ, another scalar

(axion) A(0), a 2-form B(2), another 2-form A(2), and a 4-form A(4).

However, these fields result too many degrees of freedom, totaling 163, which exceeds

the requirements for supersymmetry. So, what is the issue here? From a group theory

perspective, a general 4-form field A(4) in 10 dimensions can be further constrained by

demanding that its field strength is self-dual, meaning that dA(4) = ⋆dA(4). This self-

duality condition effectively reduces its degrees of freedom from 70 to 35. Thus, if we

impose this self-duality condition

F̃(5) = ⋆F̃(5) (2.14)

the resulting bosonic fields will indeed have the correct number of degrees of freedom.

However, the challenge arises when we attempt to incorporate this condition into the

action. The kinetic term for the 4-form potential, under the self-duality condition, trivially

vanishes. As a result, it becomes impossible to construct a supersymmetric action for Type

IIB supergravity that includes the correct 4-form potential. Fortunately, the equations of

motion derived from this action plus the self-duality condition is supersymmetric. In other

words, while we cannot formulate a supersymmetric action, we can obtain correct equations

of motion for Type IIB.

Recall that to preserve SUSY, we have some Killing spinor equations to be satisfied.
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In this case, we have two gravitini ψ and two dilatini λ, which transform like [2]

δλ =
1

2
(∂µϕ− ieϕ∂µA(0))Γ

µϵ+
1

4 · 3!
(ieϕF̃µνρΓ

µνρ −HµνρΓ
µνρ)ϵ∗

δψµ = (∇µ +
i

8
eϕFσ1Γ

σ1Γµ +
i

16 · 5!
eϕF̃σ1σ2σ3σ4σ5Γ

σ1σ2σ3σ4σ5Γµ)ϵ

− 1

8
(Hµσ1σ2Γ

σ1σ2 +
i

3!
eϕF̃σ1σ2σ3Γ

σ1σ2σ3Γµ)ϵ
∗

(2.15)

where spinor indices are omitted for simplicity, and ϵ is a left Majorana-Weyl spinor (i.e.

Γ11ϵ = ϵ).

If we consider a specific scenario where only D3-branes are present, which are cou-

pled to the 4-form potential, we can set all other potentials to zero. The reduced action

becomes [17]

SIIB =
1

2κ2

∫
R ⋆ 1− 1

2
dϕ ∧ ⋆dϕ− 1

2
F(5) ∧ ⋆F(5) (2.16)

and the corresponding equations of motion are

Rµν =
1

2
∂µϕ∂νϕ+

1

4 · 4!
Fµσ1σ2σ3σ4F

σ1σ2σ3σ4
ν

□10ϕ = 0

dF(5) = 0

(2.17)

while the SUSY transformations are

δλ =
1

2
(∂µϕ)Γ

µϵ, δψµ =

(
∇µ +

i

16 · 5!
eϕFσ1σ2σ3σ4σ5Γ

σ1σ2σ3σ4σ5Γµ

)
ϵ (2.18)

which are solved by a constant ϕ and a Killing spinor ϵ that satisfies δψµ = 0.

2.3 No Flux Solutions

We can consider a scenario where no fluxes are present. In both 11-dim supergravity and

Type IIB supergravity, the equations of motion, along with the Killing spinor conditions,

simplify to

Rµν = 0, ∇µϵ = 0 (2.19)
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where µ and ν represent the spacetime indices (10-dim or 11-dim). This further implies

[∇µ,∇ν ]ϵ ≡
1

4
RµνρσΓ

ρσϵ = 0 (2.20)

which means that ϵ is a singlet of the restricted holonomy group generated by 1
4
RµνρσΓ

ρσ.

In other words, the no flux solutions to 11-dim or Type II supergravity are Ricci-flat

manifolds with covariantly constant spinors, and the number of preserved SUSY depends

on the corresponding holonomy group. As an example, the simplest solution is Minkowski

spacetime, which is Ricci-flat and preserves all 32 supersymmetries since we only require ϵ

to be a constant and impose no further restrictions.

However, for our interests, we are looking for solutions of the form R1,p×Md, whereMd

is a (simply connected) Riemannian manifold, and 1 + p+ d = 10 or 11. This assumption

allows us to utilize Berger’s classification, which lists all possible holonomy groups for the

Levi-Civita connection for simply connected, irreducible (i.e. not as a product space), and

nonsymmetric (i.e. not locally a coset space G/H for Lie groups G and H) Riemannian

manifolds [18]. From this list, we can identify all possible candidates for Md, i.e. Calabi-

Yau, G2, Spin(7), and hyperkähler manifolds.

Now, let us illustrate how to determine the amount of preserved supersymmetry. We

will begin by considering the 11-dim case for simplicity. Our spinor is in the spinorial

representation 32 of Spin(10, 1), which decomposes, under our assumption of R1,10−d×Md,

as Spin(10− d, 1)× Spin(d).

For example, consider a Spin(7)-manifold, which is an 8-dim manifold with the holon-

omy group Spin(7). The decomposition is as follows [15]

Spin(10, 1) → Spin(2, 1)× Spin(8)

32 → (2,8+) + (2,8−)

(2.21)

where 8± denotes spinorial representations with opposite chiralities.

Following that, we further decompose it under the holonomy group Spin(7) ⊂ Spin(8),
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which is

Spin(10, 1) → Spin(2, 1)× Spin(7)

32 → (2,7+ 1) + (2,8)

(2.22)

So, if our solution takes the form of R1,2 ×M8, where M8 is a Spin(7)-manifold, then our

covariantly constant spinor ϵ must be in the (2,1) representation. As a result, ϵ has two

real (on-shell) components, which implies that there are two preserved supercharges. This

can also be interpreted as preserving N = 1 SUSY in R1,2.

We can replace M8 with Calabi-Yau 4-folds, denoted as CY4, which have SU(4) holon-

omy. In this case, the decomposition of the spinor representation is

Spin(10, 1) → Spin(2, 1)× SU(4)

32 → (2,6+ 1+ 1) + (2,4+ 4̄)

(2.23)

and hence four supercharges are preserved. This can also be interpreted as N = 2 SUSY in

R1,2. Similarly, we can also replace M8 with CY2×CY2, preserving N = 4 supersymmetry

in R1,2. If M8 is a hyperkähler manifold, which has Sp(2) holonomy, then it will preserve

N = 3 SUSY in R1,2. The overall results will be shown in the table below.

In Type IIB supergravity on Spin(7)-manifold, the decomposition of the spinor repre-

sentation is

Spin(9, 1) → Spin(1, 1)× Spin(7)

16 → (1,7+ 1) + (1,8)

(2.24)

hence each ϵ in Type IIB has only one real component, resulting in the preservation of

two supercharges in total. In other words, this decomposition replaces the spinorial repre-

sentation of Spin(2, 1) in 11-dim supergravity with the trivial representation of Spin(1, 1)

in Type IIB. Therefore, in both cases, the number of preserved supersymmetries depends

solely on the choice of Md.
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d = dimMd Holonomy SUSY

10 SU(5) 2
10 SU(3)× SU(2) 4
8 Spin(7) 2
8 SU(4) 4
8 Sp(2) 6
8 SU(2)× SU(2) 8
7 G2 4
6 SU(3) 8
4 SU(2) 16

Table 2.1: This table provides a summary of the preserved SUSY for a given Md, as
presented in [15]. Specifically, the first column indicates the dimension of the respective
manifold, the second column specifies the holonomy group, and the last column indicates
the number of preserved supercharges.

2.4 Planar Brane Solutions

Consider a D-dim Minkowski spacetime, where D is either 11 or 10. In this background,

the introduction of a planar p-brane naturally results in the breaking of the original D-dim

Poincaré symmetry into the direct product ISO(1, p)×SO(D− p− 1). As a consequence,

the most general metric preserving this remaining symmetry is [19]

ds2 = e2A(r)ηµνdx
µdxν + e2B(r)δijdy

idyj (2.25)

where xµ are coordinates of the worldvolume with µ = 0, 1, . . . , p, and yi transverse coor-

dinates with i = 1, 2, . . . , D− p− 1. We have also defined the radial distance in transverse

space as r2 = yiyi. To better accommodate the SO(D − p − 1) symmetry, it is more

convenient to work in spherical polar coordinates [17]

ds2 = e2A(r)ηµνdx
µdxν + e2B(r)

[
dr2 + r2ds2(SD−p−2)

]
(2.26)

where ds2(SD−p−2) denotes the standard metric on SD−p−2.

We can use the vielbein formalism to derive all the necessary information, including

spin connections and Ricci tensors. To do so, we define the vielbeins as follows

ea = eA(r)δaµdx
µ, eR = eB(r)dr, em = reB(r)em̃ (2.27)
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where em̃ represents vielbeins on SD−p−2. The subsequent steps involve straightforward

calculations of spin connections and curvature 2-forms using Cartan structure equations

deX + ωX
Y ∧ eY = 0, RX

Y = dωX
Y + ωX

Z ∧ ωZ
Y (2.28)

where X, Y, Z represent vielbein indices for the entire spacetime.

The non-vanishing spin connections are summarized as follows

ωa
R = A′e−B(r)ea

ωm
n = ωm̃

ñ

ωm
R = e−B(r)

(
B′ +

1

r

)
em

(2.29)

where A′ = dA
dr
, and ωm̃

ñ represents the spin connection on SD−p−2. Consequently, the

non-vanishing components of the curvature 2-forms are

Ra
bac = −ηbcA′2e−2B

Ra
RRa = e−2B

(
A′′ + A′2 − A′B′)

Ra
mam = −e−2BA′

(
B′ +

1

r

)
Rm

npq = Rm̃
ñpq − e−2B

(
B′ +

1

r

)2

δ[pmδ
q]
n

Rm
RRm = e−2B

(
B′′ +

1

r
B′
)

(2.30)

where the Einstein summation convention is not applied. Then, the Ricci tensors are

Rab = −ηabe−2B

[
A′′ + dA′2 + d̃A′B′ +

d̃+ 1

r
A′

]

RRR = −e−2B

[
d(A′′ + A′2 − A′B′) + (d̃+ 1)(B′′ +

1

r
B′)

]
Rmn = −δmne

−2B

(
B′′ + dA′B′ + d̃B′2 +

2d̃+ 1

r
B′ +

d

r
A′

) (2.31)
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or in terms of spacetime indices (with M and N being coordinates on S7)

Rµν = −ηµνe2A−2B

[
A′′ + dA′2 + d̃A′B′ +

d̃+ 1

r
A′

]

Rrr = −
[
d(A′′ + A′2 − A′B′) + (d̃+ 1)(B′′ +

1

r
B′)

]
RMN = −r2gMN

(
B′′ + dA′B′ + d̃B′2 +

2d̃+ 1

r
B′ +

d

r
A′

) (2.32)

where d = p + 1, and d̃ = D − d− 2. It is important to note that one key result is based

on the fact that SD−p−2 is an Einstein manifold, i.e. its Ricci tensor is proportional to its

metric.

M2-brane

Because the M2-brane electrically sources the 3-form potential, we can make the assump-

tion [19]

Aµνρ = ϵµνρe
C(r) =⇒ Frµνρ = ϵµνρ∂re

C(r) (2.33)

we then substitute this assumption into the equations of motion, resulting in

d ⋆ F(4) = 0 =⇒ ∇2C + C ′(C ′ + 6B′ − 3A′) = 0 (2.34)

where∇2 represents the Laplacian in 8-dim Euclidean space, and the condition F(4)∧F(4) =

0 is trivial due to the ansatz.

With d = 3 and d̃ = 6, the Einstein equations take the form

A′′ + 3A′2 + 6A′B′ +
7

r
A′ =

1

3
C ′2e2C−6A

3(A′′ + A′2 − A′B′) + 7(B′′ +
1

r
B′) =

1

3
C ′2e2C−6A

B′′ + 3A′B′ + 6B′2 +
13

r
B′ +

3

r
A′ = −1

6
C ′2e2C−6A

(2.35)
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and the Killing spinor equations are

δψµ =

(
∂µ −

1

2
e−A−B∂re

Aγµ ⊗ σ2σ1 ⊗ 1− 1

6
e−3A−B∂re

Cγµ ⊗ σ2 ⊗ 1

)
ϵ

δψr =

(
∂r −

1

6
e−3A∂re

C1⊗ σ1 ⊗ 1

)
ϵ

δψm =

(
∇̃m − 1

2
1⊗ σ1 ⊗ Σ̃m − 1

2
e−2B∂re

B1⊗ σ1 ⊗ Σm +
1

12
e−3A−B∂re

C1⊗ 1⊗ Σm

)
ϵ

(2.36)

where gamma matrices are defined as

Γa = γa ⊗ σ1 ⊗ 1, ΓR = 1⊗ σ2 ⊗ 1, Γm = 1⊗ σ3 ⊗ Σm (2.37)

and (∇̃m − 1
2
1 ⊗ σ1 ⊗ Σ̃m)ϵ = 0 for covariant derivative ∇̃m and gamma matrices Σ̃m on

S7 [20].

These equations have solutions given by

3A = −6B = C, ϵ = ϵ0 ⊗ η0e
− 1

6
C (2.38)

where ϵ0 is a constant spinor in 3-dim spacetime, and η0 is a constant spinor in the 8-dim

transverse space. Notably, the spinor satisfies the chiral projection condition

(σ1 ⊗ 1) · η = −η (2.39)

which is equivalent to

Γ012ϵ = −ϵ (2.40)

since Γ012 squares to the identity and is traceless, it can be used to construct a projection

operator that reduces the number of independent components of ϵ by half. Consequently,

the number of preserved supersymmetries by this solution is 16.

By substituting these results into the equation (2.34), we obtain

∇2C − C ′2 = 0 =⇒ ∇2e−C = 0 (2.41)
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which is solved by harmonic functions

e−C(r) ≡ H(r) = 1 +
k

r6
(2.42)

where k is a constant. Consequently, the metric becomes

ds2 =

(
1 +

k

r6

)− 2
3

ηµνdx
µdxν +

(
1 +

k

r6

) 1
3 [
dr2 + r2ds2(S7)

]
(2.43)

and the 3-form potential takes the form

Aµνρ = ϵµνρ

(
1 +

k

r6

)−1

(2.44)

which concludes the M2-brane solution.

It is important to note that at r = 0, there exists a coordinate singularity, but not a

curvature singularity, indicating the presence of a horizon. Just like in the Schwarzschild

solution, it is possible to perform an analytical continuation into the horizon, as discussed

in [19].

This solution represents the complete 11-dim spacetime geometry when planar M2-

branes are introduced into 11-dim Minkowski spacetime. It is evident that the solution is

asymptotically flat, which aligns with our expectations since at a far distance, the presence

of M2-branes becomes negligible. However, as we examine the near-horizon region, i.e.

as r → 0, we observe that e−C ∼ k/r6, and by performing a coordinate transformation

ρ =
√
k/(2r2), the metric takes the form

ds2 =
1

4
k2
[
1

ρ2
(ηµνdx

µdxν + dρ2) + 4ds2(S7)

]
(2.45)

which corresponds to AdS4 × S7 in Poincaré-AdS coordinates, and this observation holds

significant relevance in the context of the AdS/CFT correspondence. Moreover, it is worth

noting that AdS4 × S7 itself is also a solution to 11-dim supergravity, preserving all 32

supersymmetries. Hence, we can think of the M2-brane solution as interpolating between

two maximally supersymmetric solutions, from Minkowski spacetime to AdS4 × S7.
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M5-brane

Now, let us consider the magnetically charged M5-brane using the ansatz [19]

Fmnpq = −ϵmnpqr∂re
C(r) (2.46)

and once again, we have F ∧ F = 0 and dF = 0, which implies

d ⋆ F = 0 =⇒ ∇2eC = 0 (2.47)

where ∇2 represents the Laplacian in 5-dim Euclidean space. This equation is solved by

eC(r) = 1 +
k

r3
(2.48)

where k is simply a constant.

With d = 6 and d̃ = 3, the Einstein equations become

A′′ + 6A′2 + 3A′B′ +
4

r
A′ =

1

6
C ′2e2C−6B

6(A′′ + A′2 − A′B′) + 4(B′′ +
1

r
B′) =

1

6
C ′2e2C−6B

B′′ + 6A′B′ + 3B′2 +
7

r
B′ +

6

r
A′ = −1

3
C ′2e2C−6B

(2.49)

and the Killing spinor equations are

δψµ =

(
∂µ −

1

2
e−A∂re

Aγµγ7 ⊗ Σr −
1

12
e−3B∂re

Cγµ ⊗ Σr

)
ϵ

δψr =

(
∂r +

1

12
e−3B∂re

Cγ7 ⊗ 1

)
ϵ

δψm =

(
∇̃m − 1

2
1⊗ ΣrΣ̃m +

1

2
e−B∂re

B1⊗ ΣmΣr −
1

6
e−3B∂re

Cγ7 ⊗ ΣmΣr

)
ϵ

(2.50)

with gamma matrices

Γa = γa ⊗ 1, ΓR = γ7 ⊗ ΣR, Γm = γ7 ⊗ Σm (2.51)

where we have defined γ7 = γ012345 and ΣR = Σ1234.

Once again, using the fact that (∇̃m − 1
2
1 ⊗ ΣRΣ̃m)ϵ = 0 for covariant derivative ∇̃m
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and gamma matrices Σ̃m on S4 [20]. These are solved by

−6A = 3B = C, ϵ = ϵ0 ⊗ e−C/12η0 (2.52)

with the projection γ7ϵ0 = ϵ0, i.e. Γ012345ϵ = ϵ for constant spinors ϵ0 (in 6-dim) and η0 (in

5-dim). This implies that the solution preserves 16 supercharges.

Hence, the solution for the planar M5-brane is

ds2 =

(
1 +

k

r3

)− 1
3

ηµνdx
µdxν +

(
1 +

k

r3

) 2
3 [
dr2 + r2ds2(S4)

]
(2.53)

with the magnetic flux

Fmnpq = 3kϵmnpqr
1

r4
(2.54)

and by taking the near-horizon limit with a coordinate transformation ρ2 = 4k/r, the

metric becomes

ds2 = 4k
2
3

[
1

ρ2
(ηµνdx

µdxν + dρ2) +
1

4
ds2(S4)

]
(2.55)

which is precisely the metric for AdS7 × S4 in Poincaré coordinates. And, similar to the

previous case, AdS7 × S4 itself is also a solution to 11-dim supergravity, preserving all 32

supercharges.

D3-brane

Let us recall that the truncated Type IIB action (2.16) is meant to describe the geometry

associated with D3-branes. Notably, the D3-brane is dyonically coupled to the potential,

meaning it is coupled both electrically and magnetically. This occurs because the flux is

self-dual. Consequently, the ansatz for the self-dual flux can be expressed as

F(5) = (1 + ⋆)G(5) (2.56)

where

Fµνρσr = Gµνρσr = ϵµνρσ∂re
C(r), Fmnijk = (⋆G)mnijk = ϵmnijkre

4(B−A)∂re
C(r) (2.57)
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which gives the Einstein equations

A′′ + 4A′2 + 4A′B′ +
5

r
A′ =

1

4
C ′2e2C−8A

4(A′′ + A′2 − A′B′) + 5(B′′ +
1

r
B′) =

1

4
C ′2e2C−8A

B′′ + 4A′B′ + 4B′2 +
9

r
B′ +

4

r
A′ = −1

4
C ′2e2C−8A

(2.58)

and the flux equation is given by

dF(5) = 0 =⇒ ∇2C + C ′(C ′ + 4B′ − 4A′) = 0 (2.59)

where ∇2 represents the Laplacian on 6-dim Euclidean space. Lastly, the Killing spinor

equations are

δψµ =

[
∂µ +

(
1

2
e−A∂re

A − 1

8
e−4A∂re

C

)
γµ ⊗ Σr

]
ϵ

δψr =

(
∂r +

1

8
e−4A∂re

C

)
ϵ

δψm =

(
∇̃m − 1

2
1⊗ Σ̃m

)
+

(
1

2
e−B∂re

B +
1

8
e−4A∂re

C

)
ΣmΣ

rϵ

(2.60)

with gamma matrices

Γa = γa ⊗ 1, ΓR = −iγ5 ⊗ ΣR, Γm = −iγ5 ⊗ Σm (2.61)

where γ5 = γ0123. They are solved by

4A = −4B = C, ϵ = ϵ0 ⊗ η0e
−C/8 (2.62)

with the chiral projections

γ5ϵ = iϵ0, Σ7η0 = −iη0 (2.63)

or, equivalently, Γ0123ϵ = ϵ. Therefore, each ϵ now has 8 independent components, and as

a result, the solution preserves 16 supercharges once again.
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As a consequence, the other equations of motion becomes

∇2e−C = 0 =⇒ e−C(r) = 1 +
k

r4
(2.64)

and hence the D3-brane solution is

ds2 =

(
1 +

k

r4

)− 1
2

ηµνdx
µdxν +

(
1 +

k

r4

) 1
2 [
dr2 + r2ds2(S5)

]
(2.65)

which interpolates between 10-dim Minkowski (far horizon) and AdS5×S5 (near horizon).

This can seen by taking the limit r → 0 followed by a coordinate transformation ρ = k
1
2/r

ds2 = k
1
2

[
1

ρ2
(ηµνdx

µdxν + dρ2) + ds2(S5)

]
(2.66)

and once again, AdS5 × S5 itself is a solution to Type IIB preserving 32 supersymmetry.

Apex Solutions

In fact, our construction for brane solutions can be extended by replacing the transverse

space to other Ricci-flat Riemannian manifolds M with special holonomy, i.e. SU(n), G2,

Spin(7), or Sp(n). In other words, we can use the following ansatz for the metric

ds2 = e2A(r)ηµνdx
µdxν + e2B(r)ds2(M) (2.67)

with the transverse space M being

ds2(M) = dr2 + r2ds2(X) (2.68)

where the manifold X depends on the specific nature of M. For instance, if M is a

Calabi-Yau manifold, then X must be Sasaki6-Einstein.

By maintaining the same flux ansatz, we can generate a wide range of solutions describ-

ing planar branes with transverse spaces represented by special holonomy manifolds. For

example, the D3-brane located at the apex of a Calabi-Yau cone (CY3) can be described

6A compact Riemannian manifold X is Sasakian if and only if dr2 + r2ds2(X) is Kähler [21].
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by the following metric

ds2 =

(
1 +

k

r4

)− 1
2

ηµνdx
µdxν +

(
1 +

k

r4

) 1
2 [
dr2 + r2ds2(SE5)

]
(2.69)

where SE5 represents a Sasaki-Einstein 5-fold. This particular solution interpolates from

R1,3 × CY3 (far horizon) to AdS5 × SE5 (near horizon). In analogy to previous cases, this

solution preserves half of the supersymmetry of R1,3×CY3. For further in-depth discussions

on this topic, we can refer to [22].

Further Discussions

In summary, we have successfully derived planar brane solutions in 11-dim and Type

IIB supergravity. Initially, we explored scenarios involving planar M2-branes, M5-branes,

and D3-branes in 10/11-dim Minkowski spacetime. These solutions smoothly transition

from Minkowski spacetime (far horizon) to AdSp+2 × S(D−p−2) (near horizon) geometries.

Furthermore, we extended our analysis to more general solutions that interpolate between

R1,p × MD−p−1 and AdSp+2 × XD−p−2 spacetimes. In both cases, we found that these

solutions preserve a portion of supersymmetry. Consequently, our findings provide a rich

variety of AdS solutions with preserved supersymmetry that can be used for investigating

the AdS/CFT correspondence.

There are a few additional aspects to consider. For instance, we haven not explicitly

specified the constant k, but it is directly related to the total number of branes stacked at

r = 0. This is evident when we calculate the conserved electric/magnetic charges, which

are essentially the number of branes

Qel ∝
∫
SD−p−2

⋆F(p+2) = Vol(SD−p−2)kd̃, Qmag ∝
∫
SD−p−2

F(p+2) = Vol(SD−p−2)kd̃

(2.70)

where d̃ is previously defined, and Vol(Sn−1) = nπ/Γ(1 + n
2
). Therefore, if there are N

branes stacked at r = 0, then k ∝ Q = N .

Moreover, it is worth noting that we can accommodate multiple branes at different

spatial locations using a multi-centric harmonic function H(r) = 1+k
∑

i |r − ri|−d̃, which

also satisfies the Laplace equation. In fact, all properties of brane solutions are similar
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to those of extremal Reissner-Nordström black holes, i.e. AdS2 × S2 and multi-centric

solutions. Actually, these brane solutions are also known as extremal black p-branes,

see [19] for details. In addition, these branes are BPS states, which means they saturate

BPS bounds. As a result, the ADM tension/mass of these branes is equivalent to their

electric/magnetic charges.
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Chapter 3

The AdS/CFT Correspondence

The AdS/CFT correspondence, proposed by Maldacena [4], establishes a duality between

conformal field theories (CFT) in d-dim and a gravitational theory in (d+ 1)-dim Anti-de

Sitter (AdS) space. The most well-known example of this correspondence is the duality

between Type IIB superstring theory on AdS5 × S5 and N = 4 SU(N) super Yang-Mills

(SYM) theory. Before we delve into this specific example, let us clarify what AdS and CFT

are, following mainly [23].

3.1 Anti-de Sitter Spacetime

Anti-de Sitter (AdS) spacetime is the maximally symmetric solution to Einstein’s equations

with a negative cosmological constant. It can be understood as a hypersurface embedded

in R2,d given by

U2 + V 2 −X iX i = L2 (3.1)

where i = 1, . . . , d and the metric is

ds2(R2,d) = −dU2 − dV 2 + dX idX i (3.2)
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and if we change the coordinates by

U =
z

τ

[
1 +

1

z2
(
L2 + xaxa − t2

)]
V =

L

z
t

Xa =
L

z
xa

Xd =
z

τ

[
1− 1

z2
(
L2 + xaxa − t2

)]
(3.3)

where a = 1, . . . , d− 1, then the induced metric will become

ds2(AdSd+1) =
L2

z2
(
−dt2 + dxadxa + dz2

)
≡ L2

z2
(
ηµνdx

µdxν + dz2
)

(3.4)

which is called Poincaré patch for AdS, and L is a constant called AdS radius. This is

exactly the form we encountered in brane solutions. Note that, this patch covers only a

portion of the whole AdS spacetime.

One crucial aspect of AdS spacetime is its boundary, defined at z = 0, which is just the

conformal compactification of d-dim Minkowski. An intriguing property of AdS spacetime

is that the spatial distance from its interior (z ̸= 0) to the boundary (z = 0) is infinite.

However, a null curve can reach the boundary in a finite amount of time, allowing it to

reflect back in a finite time as well.

Therefore, in the AdS spacetime, it is crucial to specify boundary conditions to properly

study the dynamics within the interior. In the context of the AdS/CFT correspondence,

different boundary conditions in AdSd+1 correspond to introducing sources for the operators

in d-dim CFT. This is why it is often stated that the field theory lives at the boundary

of AdS [24]. Furthermore, at the boundary (z = 0), one can observe a scaling symmetry

(xµ → λxµ and z → λz), which further suggests that the field theory is a CFT.

3.2 Conformal Field Theory

Conformal transformations are coordinate transformations xµ → x̃µ such that the metric

gµν(x) → g̃µν(x) = Ω(x)gµν(x) (3.5)
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where Ω(x) is a local positive factor. The interpretation of conformal transformations can

vary depending on whether we are dealing with a fixed background metric or a dynamic

one.

In the case of a dynamic metric, a conformal transformation corresponds to a diffeo-

morphism, i.e. a gauge symmetry. However, when dealing with a fixed background metric,

the conformal transformation should be viewed as a genuine physical symmetry. In this

case, it gives rise to global symmetries with associated conserved currents [1]. This is the

interpretation we typically adopt when discussing QFT.

A conformal field theory (CFT) is a QFT (in Minkowski) with conformal symmetry,

i.e. the theory is invariant under ηµν → Ω(x)ηµν . Consider an infinitesimal transformation

xµ → x̃µ = xµ + ϵµ(x) =⇒ Ω(x) = 1− f(x) (3.6)

where ϵµ(x) and f(x) are infinitesimal. This implies

∂µϵν + ∂νϵµ = f(x)ηµν (3.7)

known as the conformal Killing equation. After some algebra (e.g. taking the trace and

the derivative), we can show that

2∂µ∂νϵρ = ηνρ∂µf + ηµρ∂νf − ηµν∂ρf =⇒ 2∂2ϵρ = (2− d)∂ρf (3.8)

indicating that d = 2 CFT is special, which possesses an infinite number of generators.

For d ̸= 2, we can show that after taking the derivative and some algebra

∂µ∂νf(x) = 0 (3.9)

which is solved by f(x) = A+Bµx
µ. This implies

ϵµ(x) = aµ + bµνx
ν + cµνρx

νxρ (3.10)

where aµ, bµν , and cµνρ are infinitesimal constants. Each of these terms represents a
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different type of conformal transformation:

• aµ corresponds to spacetime translations.

• b[µν] corresponds to Lorentz transformations.

• b(µν) = ληµν are scaling transformations.

• cµνρ = ηµρbν + ηµνbρ − ηνρbµ are special conformal transformations.

As a result, we can show that they form the conformal algebra, which is Poincaré

algebra with non-trivial commutators

[D,Pµ] = iPµ, [D,Kµ] = −iKµ

[Mµν , Kρ] = i(ηνρKµ − ηµρKν), [Pµ, Kν ] = −2i(ηµνD +Mµν)

(3.11)

with Pµ andMµν as Poincaré generators, D as the scaling generator, and Kµ as the special

conformal generator.

It is also worth mentioning that D,Mµν , Pµ also form a closed algebra, and one might

speculate that there are theories that are not conformal but only scale and Poincaré in-

variant. However, these types of theories appear to be non-unitary and therefore not of

physical interest [25]. In our cases, we will assume that scale invariance is sufficient to

imply conformal invariance.

We can define the generators as follows

Jµν =Mµν , Jµ,d =
1

2
(Pµ −Kµ)

Jµ,d+1 =
1

2
(Pµ +Kµ), Jd,d+1 = D

(3.12)

where the comma between indices is used to emphasize two separate indices without any

special meaning. Along with the constraint Jab = −Jba for a = 0, 1, ..., d − 1, d, d + 1, we

can show that Jab generates the SO(d, 2) Lie algebra, which is also the isometry group

of AdSd+1, as easily seen from (3.1). This provides another hint about the AdS/CFT

correspondence.

Recall that a CFT is scale-invariant, which means the theory looks the same when we

zoom in or out in terms of length or energy. A simple example of a CFT is massless free
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scalar field theory since it looks the same at all scales. However, not all scale-invariant

theories are CFTs. For example, consider a massless ϕ4 theory in 4-dim, which is scaling

invariant. However, there are some subtleties when considering quantum effects. In fact,

the beta function of the coupling is non-zero, indicating that it is not scale-invariant at the

quantum level.

3.3 The Field-Operator Correspondence

Suppose we have a massive scalar field in AdS, which satisfies

∇2ϕ(x, z) = m2ϕ2(x, z) (3.13)

where ∇2 is the Laplacian in AdS with Poincaré patch. We can take a Fourier expansion

ϕ(x, z) =

∫
d4keikµx

µ

f(k, z) (3.14)

and hence each mode satisfies

f ′′ − d− 1

z
f ′ −

(
k2 +

m2L2

z2

)
f = 0 (3.15)

where k =
√
kµkµ and f ′ = df/dz. Using f(k, z) = zd/2h(kz), we get

µ2h′′ + µh′ − (µ2 + ν2)h = 0 (3.16)

where ν2 = m2L2 + d2/4 and now h′ = dh/dµ. This is just the Bessel equation, whose

general solutions are

h(µ) = a(k)Kν(µ) + b(k)Iν(µ) (3.17)

where a(k) and b(k) are constants to be determined by boundary conditions, and

Iν(µ) =
∞∑
n=0

1

n!Γ(n+ ν + 1)

(µ
2

)2n+ν

, Kν(µ) =
π

2

I−ν(µ)− Iν(µ)

sin(πν)
(3.18)
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We can analyse how ϕ(x, z) behave near the conformal boundary z = 0. In this limit

(z → 0), we have Iν ∼ µν and hence Kν ∼ µ−ν + µν , which results

f(k, z) = a(k)zd−∆(1 + . . .) + c(k)z∆(1 + . . .) (3.19)

where ∆ = d
2
+ ν and c(k) can be determined from a(k) and b(k). Note that . . . represents

an ascending power series of z2, which can be seen from Iν(µ). We only need ∆ ∈ R which

implies

m2 ≥ −
(
d

2L

)2

(3.20)

known as the Breitenlohner-Freedman (BF) bound. This allows the mass to be imaginary

(i.e. tachyonic states). Now, we want some boundary conditions to determine two arbitrary

constants, which are data at past infinity (i.e. initial condition) and at the conformal

boundary (recall that null rays can relate dynamics between the boundary and the interior).

To proceed, we can perform an inverse Fourier transform such that

ϕ(x, z) = ϕ0(x)z
d−∆(1 + . . .) + ϕd(x)z

∆(1 + . . .) (3.21)

where again . . . represents an ascending power series of z2, and ϕ0(x) ∼
∫
d4keikxa(k). So,

we can now try fixing a boundary condition. Let us start with the conformal boundary

one, i.e. z = 0. For simplicity ∆ > d/2, the leading term is given by ϕ0(x) as d−∆ < ∆,

hence the boundary condition at z = 0 is fixed by ϕ0(x). This is further justified when

∆ = d, and ϕ0 is exactly the value of ϕ(x, z) at z = 0. Note that, for ∆ > d, the leading

term is divergent.

To establish its initial condition, we consider the behavior of the fields at past infinity

(i.e. z → ∞ and t→ −∞). This implies

ϕ(x, z) ∼ az
d
2

√
kz
eikµx

µ−kz(1 + . . .) +
bz

d
2

√
kz
eikµx

µ+kz(1 + . . .) (3.22)

where k =
√
kµkµ. For spacelike k (i.e. k is real), we want the field to be regular, and

hence we set b = 0. For timelike k (i.e. k is purely imaginary), we want to set the initial

condition such that there are no waves propagating from the past infinity, hence b = 0. In
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other words, the initial conditions imply that there are no fields originating from the past

infinity, but the fields can propagate into the future due to the conformal boundary.

Therefore, from above conditions, we have

f(k, z) = az
d
2Kν(kz) = a0z

d−∆ + ...+ a1z
∆ + ... (3.23)

where one can show that

a1 ∝ k2∆−da0 (3.24)

which implies that

ϕd(x) ∝
∫
ddy

1

|x− y|2∆
ϕ0(y) (3.25)

and hence we can see that ϕ0(x) fixes the conformal boundary and ϕd(x) is the responce

to that condition.

Now, consider the scalar action, which can be expressed after by parts as

S =
1

2

∫
M
ddzdz

√
−gϕ(∇2ϕ−m2ϕ2)− 1

2

∫
∂M

dSAϕ∂Aϕ (3.26)

where A = 0, 1, ..., d−1, z. If we take the scalar field to be on-shell, then only the boundary

term remains

S = −1

2

∫
∂M

dSAϕ∂Aϕ (3.27)

and consider the integral evaluated at a fixed z boundary

S(z) =
1

2

∫
ddx

(
L

z

)d−1

ϕ∂zϕ

=
1

2

∫
ddxLd−1

[
(d−∆)ϕ2

0(x)z
d−2∆ + . . .+ dϕ0(x)ϕd(x) + . . .

] (3.28)

Therefore, the on-shell action is

S = lim
z→0

S(z) (3.29)

whereas the z → ∞ boundary gives no contributions. However, for our assumption

∆ > d/2, the on-shell action diverges, but can be regulated by introducing counter terms.
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Suppose the scalar action is

S =
1

2

∫
M
ddzdz

√
−gϕ(∇2ϕ−m2ϕ2)− 1

2

∫
∂M

dSAϕ∂Aϕ+

∫
∂M

dS(Cϕ2 + . . .) (3.30)

where C is a constant. Then, the on-shell action is

S = −1

2

∫
∂M

dSAϕ∂Aϕ+

∫
∂M

dS(Cϕ2 + . . .) (3.31)

and we can show that for a fixed z boundary

∫
∂M

dS(Cϕ2 + . . .) = C

∫
ddxLd−1

[
(d−∆)ϕ2

0(x)z
d−2∆ + . . .+ dϕ0(x)ϕd(x) + . . .

]
(3.32)

which implies that C = −d−∆
2

. Therefore, the renormalised on-shell action is

S =
2∆− d

2

∫
ddxLd−1ϕ0(x)ϕd(x) (3.33)

which implies that

S = c

∫
ddxddy

1

|x− y|2∆
ϕ0(x)ϕ0(y) (3.34)

for a constant c depending on d and L.

Now, we can state a more precised version of the AdS/CFT correspondence, which is

ZAdS[ϕ(x, z = 0) = ϕ0(x)] = ZCFT [ϕ0(x)] (3.35)

where ZCFT [ϕ0] is the typical generating function for a QFT, in this case it sources some

scalar operators Ô(x). For ZAdS[ϕ0], there are more subtleties, even if we can write down

some gravitational path integrals. However, we can take the saddle-point approximation

when the AdS radius is very large, such that

ZAdS[ϕ0] ∼ e
ic
∫
ddxddy 1

|x−y|2∆
ϕ0(x)ϕ0(y)

(3.36)
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and hence we can show from the both sides

⟨Ô(x)Ô(y)⟩ = 1

|x− y|2∆
(3.37)

In other words, the field in AdS acts like a source for the field theory living on the conformal

boundary. Moreover, this works for other fields, e.g. the bulk metric in AdS is dual to

the stress-energy tensor in CFT, and we could also discuss how the mass of bulk fields is

mapped to the scaling dimension of CFT operators.

3.4 D3-brane : Worldvolume Theory

Now, we shall discuss the duality between Type IIB theory in AdS5 × S5 and N = 4

SU(N) SYM in 4-dim. First of all, consider a general 3-dim extended object (i.e. 3-brane)

in 10-dim Minkowski, whose worldvolume action is Nambu-Goto

S = −T3
∫
d4σ
√
− dethab (3.38)

where hab ≡ ηµν∂ax
µ∂bx

ν is the induced metric. However, D3-branes are attached by open

strings, which can give some excitations on its worldvolume, and hence its effective (not

including SUSY, for simplicity) action becomes the Born-Infeld action [26]

S = −T3
∫
d4σ
√
− det (hab + 2πα′Fab) (3.39)

where Fab is a U(1) field strength, and recall α′ characterises the string length scale. We

can use the diffeomorphism to fix a static gauge, i.e. σa = xa such that hab = ηab+∂ax
i∂bx

i

where xi are the remaining 6 transverse spatial coordinates. We can now define ϕi = 2πα′xi

and expand the action in small α′, which corresponds to low energy in string theory

S = −(2πα′)2T3

∫
d4σ

(
1

4
FabF

ab +
1

2
∂aϕ

i∂aϕi + ...

)
(3.40)

where we have used the identity
√
detM = e

1
4
Tr log(MMT ) for a given matrix M . So, the

bosonic fields on the worldvolume theory are 1 massless vector and 6 massless scalars.
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In our earlier discussion, we established that the planar D3-brane solution to supergrav-

ity preserves 16 supercharges, corresponding to N = 4 supersymmetry in 4-dim. So, we

should introduce a SUSY worldvolume theory. While a rigorous approach involves adding

a Wess-Zumino term into the original action and carefully studying it, we can make a

reasonable inference based on the fact that the lowest irrep of N = 4 in 4-dim consists of

1 vector, 6 scalars, and 4 Weyl spinors. Therefore, in order to preserve SUSY, we expect

to add 4 Weyl spinors to the worldvolume theory.

Furthermore, as previously discussed, when we have N D3-branes stacked together,

the endpoints of an open string can attach to different D3-branes. This promotes the

U(1) gauge fields to SU(N) gauge fields. Therefore, we conclude that there is an N = 4

SU(N) SYM theory on the worldvolume of the D3-branes. This is a significant finding in

the context of the AdS/CFT correspondence, as it establishes a connection between the

supergravity solution in the bulk and a gauge theory living on the brane.

Given that T3 = (2πgs)
−1(2πα′)−2 [27], where gs characterises the string coupling

strength, the worldvolume action becomes

S = − 1

2πgs

∫
Tr
(
F(2) ∧ ⋆F(2) + . . .

)
(3.41)

which allows us to identify g2YM = 2πgs. Moreover, for a SU(N) gauge theory, the 1-loop

beta function is given by (when all fields are in the adjoint representation)

β(gYM) ∝ 11

3
− 2

3
NW − 1

6
Ns = 0 (3.42)

where NW is the number of Weyl spinors and Ns is the number of scalars. This indicates

that the theory is scale invariant, i.e. CFT.

3.5 D3-brane : Two Perspectives

The study of D3-branes provides us with two equivalent perspectives, highlighting the

duality inherent in the AdS/CFT correspondence [28]. In the first perspective, D3-branes

are viewed as the endpoints of open strings, and this perspective is valid only when gs ≪ 1
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since we are treating strings perturbatively. In this context, the complete action takes the

form

S = Sclosed + Sopen + Sint (3.43)

where Sclosed/open represents the effective action describing closed/open strings (including

massive ones), which can, in principle, be derived from string scattering amplitudes. The

term Sint describes the interaction between open and closed strings. Sopen and Sint can

be derived from the Born-Infeld action (with a general metric field), along with its Wess-

Zumino terms.

However, we are interested in the low-energy limit α′ → 0, which leads to

Sclosed → SIIB, Sopen → SSYM , Sint → 0 (3.44)

which implies that we have two decoupled theories (i.e. Type IIB supergravity and N = 4

SU(N) SYM theory) Moreover, the gravitational coupling κ is proportional to α′2gs, which

also approaches zero in this limit. Therefore, SIIB effectively describes a free gravity theory,

i.e. Type IIB in 10-dim Minkowski.

In another perspective, D3-branes are regarded as non-perturbative solutions to Type

IIB supergravity. This viewpoint is valid only when Ngs ≫ 1, since we require the length

scale of curvature (e.g. the AdS radius L) to be much larger than the string length scale,

i.e. α′. This ensures that supergravity is a valid approximation of superstring theory, as

L4/α′2 ∝ Ngs. In this scenario, we also have two decoupled theories, in which one is Type

IIB supergravity in 10-dim Minkowski (far horizon), and the other is Type IIB supergravity

in AdS5 × S5 (near horizon).

In both perspectives, we have two decoupled theories, with one being Type IIB super-

gravity in 10-dim Minkowski. This leads to the conjecture that Type IIB supergravity in

AdS5×S5 is dual to N = 4 SU(N) SYM theory. Importantly, we have taken the following

limits to establish this correspondence

gs ≪ 1, α′ → 0, Ngs ≫ 1 (3.45)
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which also corresponds to the ’t Hooft limit, where N → ∞ while keeping the ’t Hooft

coupling λ = Ng2YM ∼ Ngs fixed. This is worth mentioning because SU(N) gauge theories

can be formulated in terms of the ’t Hooft coupling as follows

L = − 1

g2YM

TrF 2 = −N
λ
TrF 2 (3.46)

and one can perform an expansion of the amplitudes in powers of N in the ’t Hooft limit,

which turns out to be related to string theory given by gs ∼ 1/N . This further justifies

the AdS/CFT correspondence, as discussed in [ooguri, 29].

To assess the duality between the two theories, it is essential to align the fields in

AdS with operators in the CFT. Nevertheless, for simplicity, let us undertake a simple

consistency examination by matching the symmetries on both sides. On the AdS side, we

have an isometry group SO(2, 4)×SO(6) arising from AdS5×S5, and this background also

preserves all 32 supercharges in Type IIB. On the CFT side, we are dealing with N = 4

SU(N) SYM theory in 4-dim. This SCFT has an R-symmetry group SU(4) ∼= SO(6), in

addition to the conformal group SO(2, 4). However, N = 4 only gives 16 supercharges.

In fact, we also require an extra 16 fermionic generators to close out the superconformal

algebra [24]. This totals 32 supercharges on both sides. Such consistency strongly suggests

that the AdS/CFT correspondence indeed establishes a valid duality.
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Chapter 4

Wrapped Brane Solutions

In the previous discussion, we introduced the AdS/CFT correspondence and identified

supergravity solutions that include an AdS factor. When studying CFT, we can deform

it by introducing certain operators. These operators can trigger a renormalization group

(RG) flow, leading to a different CFT in the IR. Consequently, we anticipate observing a

similar behavior in the corresponding gravity description.

Indeed, wrapped brane solutions provide a valuable perspective on the renormalization

group (RG) flow from planar brane solutions. As an example, M2-branes can be wrapped

on a 2-sphere S2, transforming their worldvolume into R× S2. This configuration yields a

supergravity solution with a near-horizon geometry of AdS2 ×M9. When we zoom in on

the worldvolume, according to the definition of a Riemannian manifold, we eventually reach

a Euclidean space. Consequently, the worldvolume effectively returns to 3-dim Minkowski

space. Therefore, we classify wrapped brane solutions as representing the IR regime, while

planar brane solutions are associated with the UV regime. This highlights how different

brane configurations can correspond to different phases of the dual field theory, and it plays

a crucial role in understanding the AdS/CFT correspondence in various contexts.

When considering brane solutions that preserve SUSY, we must carefully choose the

surfaces that can be wrapped on. Our discussion will mainly follow [15, 17]. To begin, we

will consider a probe-brane scenario, where the brane is effectively massless and neutral,

having no significant influence on the background. This implies that our backgrounds must

be Ricci-flat manifolds with covariantly constant spinors, such as the solutions discussed

in section 2.3.
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Let us examine the worldvolume of M2-branes for simplicity. The worldvolume action

is given by

S = −T2
∫
d3σ
√
− dethab +

1

3!
ϵabc∂ax

µ∂bx
ν∂cx

ρAµνρ (4.1)

where hab represents the induced metric on the brane worldvolume, and we have set the

fermionic fields to zero since we are primarily interested in the bosonic configurations that

preserve SUSY, similar to our approach in studying supergravity solutions.

To proceed further, let us consider a background metric of the form

ds2 = −dt2 + gijdx
idxj (4.2)

and we choose a gauge where σ0 = t. In addition, since we are dealing with a probe-brane

scenario (with negligible mass and charges), we set A(3) = 0. Consequently, the action is

determined by the energy functional

E = −T2
∫
d2σ
√

detmpq, mpq = gij∂px
i∂qx

j (4.3)

where p and q represent the spatial worldvolume coordinates.

Indeed, in the probe-brane scenario, M2-branes minimise their spatial area on-shell.

This aligns with our earlier discussion regarding planar M2-branes, which is a minimal

surface in Minkowski. This principle holds true for various branes within this probe-brane

framework.

Recall that we set the fermionic fields to zero, which means we need to impose con-

straints to preserve SUSY. By considering the explicit SUSY transformations, we can find

the constraint is [17]

(1− Γ)ϵ = 0 (4.4)

where ϵ represents the Killing spinor of the background, and

Γ =
1√

detm
Γ0γ, γ =

1

2
ϵpq∂px

i∂qx
jΓij (4.5)
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where {Γi,Γj} = 2gij. We can also show that Γ is Hermitian and Γ2 = 1, which implies

ϵ†
1− Γ

2
ϵ = ϵ†

1− Γ

2

1− Γ

2
ϵ =

∣∣∣∣1− Γ

2
ϵ

∣∣∣∣2 ≥ 0 =⇒ ϵ†ϵ ≥ ϵ†Γϵ (4.6)

since we can always normalise ϵ†ϵ = 1, hence

ϵ†Γϵ ≤ 1 =⇒ −ϵ̄γϵ ≤
√
detm (4.7)

So, if we define a 2-form

φ = −1

2
ϵ̄Γijϵdx

i ∧ dxj (4.8)

then we get a 2-form that satisfies (in terms of the components)
√
detm ≥ φ. Moreover,

it can be shown that the form is closed [15].

In fact, this is known as a calibration, which is a p-form ϕ on a Riemannian manifold

M that satisfies

dϕ = 0,

∫
Σ

ϕ ≤ Vol(Σ) (4.9)

for all p-cycles Σ ⊆ M. Consequently, we say that a p-cycle Σ is a calibrated cycle if

φ|Σ = Vol|Σ. We can now show that if Σ is a calibrated cycle, then it has the minimal

surface in its homology class. Consider another cycle Σ̃ such that Σ̃ − Σ is a boundary,

then

Vol(Σ) =

∫
Σ

ϕ

=

∫
∂R

φ+

∫
Σ̃

ϕ

=

∫
R

dϕ+

∫
Σ̃

ϕ

=

∫
Σ̃

ϕ

≤ Vol(Σ̃)

(4.10)

which proves that V ol(Σ) is the minimum area.

Consider backgrounds in section 2.3, in which a calibration can be constructed using

bispinors. This is because covariantly constant spinors contain a lot of information about

the background geometry. For our interests, we will consider Calabi-Yau manifolds, in
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which there are two kinds of calibrations. One is constructed from the Kähler 2-form J

and the other from the real part of the holomorphic n-form Ω, which are given by

Jmn = iρ†γmnρ, Ωm1...m2n = ρTγm1...m2nρ (4.11)

where ρ and its conjugation are both covariantly constant spinors. Therefore, we can

construct calibrated cycles, i.e. Kähler 2n-cycles from Jn and special Lagrangian (SLAG)

n-cycles from Re(Ω).

Back to our M2-brane example, where we have constructed a 2-form calibration φ.

So, the M2-brane can only wrap on 2-cycles. If we take the background as R × CY5,

which preserves 2 supercharges, i.e. the covariantly constant spinor ϵ is subject to chiral

projections (in an appropriate vielbein basis)

Γ1234ϵ = Γ3456ϵ = Γ5678ϵ = −Γ78910ϵ = −ϵ (4.12)

which also implies that Γ012ϵ = ϵ. Using these spinors, one can show that the Kähler form

is

J = e12 + e34 + e56 + e78 − e910 (4.13)

where ea are vielbeins on CY5. Thus, we can define a Kähler 2-cycle Σ, and consider the

M2-brane being wrapped on Σ, i.e. its worldvolume is R × Σ. For example, we can take

Σ such that Vol(Σ) = e12|Σ, and the constraint (4.4) implies that Γ012ϵ = ϵ. Thus, in

this case, there are no further restrictions, and an M2-brane can be wrapped on a Kähler

2-cycle in R× CY5 without breaking any SUSY.

If we consider the background to be R1,2 × CY4 (preserves 4 supercharges), then an

M2-brane satisfies

Γ1234ϵ = Γ3456ϵ = Γ5678ϵ = ∓Γ78910ϵ = −ϵ (4.14)

which is equivalent to Γ012ϵ = ±ϵ. One can show that two supercharges satisfy Γ012ϵ = ϵ

and the other two satisfy Γ012ϵ = −ϵ. So, after substitution, we arrive at two Kähler

2-forms

J = e12 + e34 + e56 + e78 ∓ e910 (4.15)

42



and hence we can choose to wrap the cycle with Vol(Σ) = e12|Σ, which implies Γ012ϵ = ϵ by

computing (4.4). Thus, only two out of four supersymmetries are preserved. The overall

results are summarised in the table below. For other branes, they can be wrapped in higher-

dim calibrated cycles, allowing for different types of calibration, e.g. Caylay calibrations.

A comprehensive table summarizing D3 and M5-branes wrapping on calibrated cycles can

be found in [15].

Worldvolume Supersymmetry

R× (Σ2 ⊂ CY2) 8
R× (Σ2 ⊂ CY3) 4
R× (Σ2 ⊂ CY4) 2
R× (Σ2 ⊂ CY5) 2

Table 4.1: Summary of M2-branes wrapped on Kähler 2-cycles [15].

Recall our discussion on the AdS/CFT correspondence in Chapter 3, where we delved

into the realization of a QFT (i.e. SYM theory) on the D3-brane worldvolume. Similarly,

we also have QFT on the worldvolumes of M2 and M5-branes. To make them supersym-

metric, we need to establish the presence of a constant spinor on the worldvolume. This

is straightforward in the Minkowski case. However, on calibrated cycles, spinors are gen-

erally not constant. Fortunately, we can resolve this issue through a technique known as

topological twist.

To illustrate, let us consider the worldvolume of a planar M5-brane, which corresponds

to R1,5. By fixing a static gauge, we can see that the worldvolume theory consists of 5

scalars (plus extra fermions) representing the 5 transverse coordinates. This introduces an

internal SO(5) R-symmetry, under which fermions will transform. Consequently, we can

introduce a SO(5) gauge field, and the covariant derivative acting on the spinor can be

schematically written as

Dϵ ∼ (∂ + ω − A)ϵ (4.16)

where ω (although = 0 in Minkowski) represents the SO(5) spin connection, and A is the

SO(5) gauge field.

Now, let us consider the scenario where the M5-brane worldvolume is wrapped, e.g

R1,2 × Σ3 where Σ3 is a SLAG 3-cycle. In this case, ω corresponds to the SO(3) spin

connection on Σ3. We can decompose SO(5) → SO(2) × SO(3), and choose to turn on
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only the SO(3) gauge field. Specifically, we can set A = ω to ensure that we have some

notion of constant spinors. This is how supersymmetry is realized for wrapped branes, and

it is referred to as the topological twist [30].

4.1 D3-brane Wrapped on Kähler 2-Cycles

Up to this point, we have mainly considered the scenario of probe-branes and investigated

the types of backgrounds they can be wrapped on. Now, we can delve into understanding

how these wrapped branes affect the spacetime itself. In other words, we aim to find Type

IIB supergravity solutions that account for the presence of wrapped branes. While one

might initially think this can be achieved in a manner similar to the one used previously,

which involved writing an ansatz like (2.25), there is an alternative approach to finding

these solutions.

It is possible to obtain lower-dim truncated theories through Kaluza-Klein reduction

(see Appendix A). In our cases, these are typically consistent truncations, meaning that

any solutions to the truncated theory are also solutions to the original theory. For instance,

reducing Type IIB supergravity on S5 leads to N = 8 SO(6) gauged supergravity in 5 dim.

This can be further truncated by considering its Cartan subgroups, resulting in N = 2

U(1)3 supergravity in 5-dim. Even further truncations can yield N = 2 U(1) supergravity

in 5-dim (which is the minimal gauged supergravity in 5-dim), whose equations of motion

are [17]

Rµν = −4gµν +
2

3
F 2
µν −

1

9
F 2gµν , d ⋆ F(2) = −2

3
F(2) ∧ F(2) (4.17)

with appropriate Killing spinor equations

[
∇µ −

i

12
(γ αβ

µ − 4δαµγ
β)Fαβ −

1

2
γµ − iAµ

]
ϵ = 0 (4.18)

Suppose we have a D3-brane wrapped on H2 (which is a Kähler 2-cycle), then we can

assume that the metric takes the form

ds25 = Pds2(AdS3) +Qds2(H2) (4.19)

44



where P and Q are to be determined

ds2(H2) =
1

y2
(dy2 + dz2) (4.20)

which is just 2-dim hyperbolic space. In fact, this is just the Euclidean AdS2 using the

Poincaré patch.

By substituting into equations of motion, we have

ds25 =
4

9
ds2(AdS3) +

1

3
ds2(H2) (4.21)

and Killing spinor equations are solved by the chiral projection

γZY ϵ = −iϵ (4.22)

and

∂yϵ = ∂zϵ = 0 (4.23)

which means there are constant spinors on the calibrated cycle. This is exactly how SUSY

is preserved as discussed before (i.e. topological twist).

Therefore, we can uplift this solution to Type IIB solution by

ds2IIB =
4

9
ds2(AdS3) +

[
1

3
ds2(H2) +

(
1

3
dψ + σ +

1

3y
dz

)2

+ ds2(KE4)

]
(4.24)

which is AdS3 × Y7 with Y7 being SE5 fibered over H2. In the context of the AdS/CFT

correspondence, we expect to see a dual CFT in 2-dim, which should be the IR regime of

the RG flow where AdS5 is in the UV regime.

In fact, we can also wrap D3-brane on S2 (which is also a Kähler 2-cycle). This means

that we can try the ansatz

ds25 = Pds2(AdS3) +Qds2(H2) (4.25)
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where P and Q are, once again, to be determined by equations of motion, and

ds2(S2) =
4

(1 + y2 + z2)2
(dy2 + dz2) (4.26)

which is the metric on S2 in stereographic projection. After substitution, we get

ds25 =
1

6
ds2(AdS3) +

1

3
ds2(H2) (4.27)

but we can show that it fails the Killing spinor conditions. So, this will not be a SUSY

solution. However, this does not mean that D3-brane on S2 is not a SUSY solution in Type

IIB. We have just shown that it is not a SUSY solution to the minimal gauged supergravity

in 5-dim. In fact, it is a SUSY solution of Type IIB, but uplifted from the STU model (i.e.

N = 2 U(1)3 gauged supergravity in 5-dim).

4.2 D3-branes on a Spindle

In the previous section, we discussed how D3-branes can be wrapped on calibrated cycles,

with supersymmetry realised through the topological twist. Recently [31], it has been

discovered that branes can wrap on spindles Σ = WCP1
[n−,n+], which are topologically S2

with conical deficit angles 2π(1− 1
n∓

) at the poles.

In this case, supersymmetry is not realised via topological twists, introducing new

ways to study wrapped brane solutions. In fact, these are also solutions to minimal gauged

supergravity in 5-dim (4.17), which are given by

ds25 =
4y

9
ds2(AdS3) + ds2(Σ), A =

1

4

(
1− a

y

)
dz (4.28)

where the metric of the spindle Σ

ds2(Σ) =
y

q(y)
dy2 +

q(y)

36y2
dz2 (4.29)
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which is characterised by a cubic function

q(y) = 4y3 − 9y2 + 6ay − a2 (4.30)

where a is a constant, which is assumed to be ∈ (0, 1) such that all three roots yi are real

and positive. For y1 < y2 < y3, we will take y ∈ [y1, y2] such that the metric on Σ is

positive definite. To study its conical deficit, consider y = y1+ ỹ for small ỹ, which implies

ds2(Σ) ≈ y1
q′(y1)ỹ

dỹ2 +
q′(y1)ỹ

36(y1 + ỹ)2
dz2 (4.31)

where q′(y) = 12y2 − 18y + 6ay. By taking ỹ = 1
4
ρ2, we get

ds2(Σ) ≈ y1
q′(y1)

(dρ2 +
q′2(y1)

144y31
ρ2dz2) (4.32)

Similarly, for y = y2 + ỹ perturbation, we can show that

ds2(Σ) ≈ y1
q′(yi)

(dρ2i + c2i ρ
2
i dz

2), ci =
|q′(yi)|
12y

3/2
i

(4.33)

for i = 1, 2. So, we can read off the period as

∆z =
2π

c1n+

=
2π

c1n−
(4.34)

where n− > n+ since y2 > y1.

Using another function

g(y) =
a− y

2(y2 − 2y + a)
(4.35)

which has some algebraic relations with q(y), see [32], gives the following

y1 =
(n+ − n−)

2(2n+ + n−)
2

4(n2
+ + n−n+ + n2

−)
2
, y2 =

(n+ − n−)
2(n+ + 2n−)

2

4(n2
+ + n−n+ + n2

−)
2

(4.36)

which implies

∆z =
2(n2

− + n−n+ + n2
+)

3n−n+(n− + n+)
2π (4.37)

47



Therefore, we can compute

1

2π

∫
Σ

F =
a

8π

y2 − y1
y1y2

∆z =
n− − n+

2n−n+

(4.38)

where we have also used the fact that

a =
(n− − n+)

2(2n− + n+)
2(n− + 2n+)

2

4(n2
− + n−n+ + n2

+)
3

(4.39)

This is different to

χ(Σ) =
1

4π

∫
Σ

RΣvolΣ =
n− + n+

n−n+

(4.40)

which implies that this is not a topological twist (recall A ∼ ω to cancel each other).

Indeed, to solve Killing spinor equations, we write Γa = γa ⊗ σ3 for a = 0, 1, 2 with

γ0 = −iσ2, γ1 = σ1, γ2 = σ3 and Γ3 = 1 ⊗ σ2, Γ4 = 1 ⊗ σ1, where σi are Pauli matrices.

We also write ϵ = ϑ⊗χ with ϑ being the Killing spinor for AdS3 that satisfies ∇aϑ = 1
2
γaϑ.

Therefore, the remaining spinor is solved by

χ =

(√
q1(y)√
y

, i

√
q2(y)√
y

)
(4.41)

where

q1(y) = −a+ 2y3/2 + 3y, q2(y) = a+ 2y3/2 − 3y (4.42)

which satisfies q(y) = q1(y)q2(y).

Now, we can uplift to Type IIB solution just like (4.24) by replacing H2 → Σ. A truly

remarkable feature is that even if Σ is singular at poles, but SE5 fibered over Σ is regular.

Making this to AdS3 ×M7. Therefore, this suggests new interesting AdS/CFT examples,

in which CFT are now taken on a worldvolume with singularities (i.e. R1,1 × Σ). Indeed,

one can compute the central charge of both sides to check the duality, which has been done

in [31].
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Chapter 5

Conclusion

In this dissertation, we have introduced 11-dim supergravity and Type IIB supergravity.

Then, we found the solutions with no fluxes, which are Ricci-flat manifolds with covariantly

constant spinors. In fact, these can also be interpreted as probe-brane solutions (since we

assume branes are negligible). Following that, we considered planar (i.e. flat worldvolume)

brane solutions to supergravity, which describe the geometry when M2, M5, or D3-branes

are present. In particular, these solutions have near horizon geometry as AdSp+2×SD−p−2.

Therefore, we introduced the AdS/CFT correspondence to implicitly see how the well-

known example (i.e. Type IIB in AdS5 × S5 is dual to N = 4 SYM theory) arises. This

can be generalised to other branes. Finally, we recalled that CFT can have RG flows, which

motivates us to consider wrapped brane solutions. In particular, we first discovered that

the brane configuration minimises its surface area, which are calibrated cycles. Then, we

argued that we would like there to be some notion of constant spinors on the worldvolume

theory, which is realised by the topological twist. We can also explicitly find the solutions

and their corresponding supergravity solutions, i.e. those describing the near horizon

geometry of a wrapped brane, by using lower-dim supergravities, which are derived from

higher-dim ones after Kaluza-Klein reductions. Recently, there has been a new way to

realise SUSY on wrapped D3-branes without the topological twist. In particular, we have

D3-branes wrapped on a spindle, which is topologically equivalent to S2 but with conical

singularities at the poles. However, one remarkable feature is that the singularity vanishes

as we uplift the solution to the whole Type IIB solution. Therefore, this provides new

interesting questions that can be studied, e.g. how CFT is defined when the background
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has conical singularities.

To reflect on this dissertation, my initial plan was to provide more details for each

interesting topic that we encountered. For example, we could say more about SUSY and

supergravity, like their representations and how supergravities are built (i.e. to derive their

SUSY transformations from the first principle). Or, we would like to say in details about

the Clifford algebra across any dimensions and in both signatures. Also, we could say

more about their geometries (e.g. complex geometry and fibre bundles), which provides

another perspective that is very interesting to learn. However, these were not done due

to my bad time organisation, as we can probably see that the later this dissertation goes,

the less detailed it is. For example, we only talked about D3-branes on spindles, but there

are definitely M2 or M5-branes on spindles, which provide different properties compared

to the D3-brane case. In particular, there is a whole spacetime solution that describes

M2-branes on a spindle, whereas all our wrapped brane solutions only describe their near

horizon geometry. Nevertheless, this dissertation should be enough as an introduction to

this field (i.e. AdS/CFT and wrapped branes).
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Appendix A

Kaluza-Klein Reduction on S1

The original idea of Kaluza-Klein theory was to unify gravity and electromagnetism by

formulating GR in 5-dim, with the fifth one being compact and periodic, i.e. S1. When

the radius of this circle is small, it can be effectively assumed that fields in 4-dim have no

dependence on this extra dimension. Consequently, a metric in 5-dim GMN(x, y) can be

decomposed into a metric in 4-dim gµν ∼ Gµν , a vector field Aµ ∼ Gµ4, and a scalar field

ϕ ∼ G44. This decomposition results in the Einstein equations in 5-dim breaking down into

equations of motion in 4-dim, which resemble the 4-dim Einstein-Maxwell equations but

have the addition of a scalar field. While it might seem ideal to set ϕ = 0 this approach leads

to certain inconsistencies. As a result, the Kaluza-Klein idea was temporarily abandoned.

In recent times, the Kaluza-Klein idea has been revisited, primarily due to developments

in string theory, which is formulated with extra dimensions. So, for phenomenological

purposes, understanding how to extract lower-dim information from a higher-dim theory

has become crucial. Moreover, Kaluza-Klein reductions can sometimes lead to consistent

truncations, which mean that any solution to the truncated theory remains a valid solution

to the original theory. This provides a powerful mathematical framework for simplifying

theories, making it a valuable tool in theoretical physics.

As an example, consider two scalar fields in 4-dim Minkowski, described by the La-

grangian

L = −1

2
ϕ□ϕ− 1

2
χ□χ− 1

2
gϕχ2 (A.1)
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which gives the following equations of motion

□ϕ =
1

2
gχ2, □χ = gϕχ (A.2)

where g is a coupling constant. There are two possibilities for truncation: ϕ = 0 or χ = 0.

If ϕ = 0, the truncated theory is inconsistent because

□0 =
1

2
gχ2, □χ = 0 (A.3)

i.e. χ sources ϕ, hence ϕ = 0 truncation is inconsistent. If χ = 0, then

□ϕ = 0, 0 = 0 (A.4)

which is consistent. So, why is this the case? The group theory is responsible for this.

In the Lagrangian, there is a Z2 symmetry in which ϕ transforms like a Z2 “scalar”, i.e.

ϕ → ϕ, whereas χ → −χ transforms like a Z2 “vector”. Therefore, if we only keep the

group scalars, i.e. ϕ in this case, then the truncation will be guaranteed to be consistent,

since scalars can only generate scalars.

In this appendix, we will mainly follow the lecture note given by Christopher Pope [33].

In particular, we will show how to perform a Kaluza-Klein reduction on S1 for tensors, and

showing that Type IIA is just 11-dim supergravity Kaluza-Klein reduced on S1.

A.1 Scalar

To begin, consider a scalar field ϕ(x, y) in R1,3 × S1 for simplicity, with xµ being the

coordinates on R1,3 and y being the coordinate on S1, which satisfies

□5ϕ = 0 (A.5)
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where □5 ≡ □4+∂
2
y is the d’Alembertian in 5-dim. The periodicity of the extra dimension

enables us to perform a Fourier expansion

ϕ(x, y) =
∞∑

n=−∞

ϕ(n)(x)einy/L (A.6)

where L denotes the radius of S1. Each Fourier mode ϕ(n)(x) can be interpreted as scalar

fields living in 4-dim Minkowski, and their equations of motion are

(
□4 −

n2

L2

)
ϕ(n) = 0 (A.7)

which is derived by Fourier expanding (A.5).

So, a massless scalar field in 5-dim can be thought of as equivalent to an infinite set

of scalar fields in 4-dim, each with a mass |n|/L. From a physical standpoint, when the

radius L of the extra dimension approaches zero (i.e. L→ 0), the massive fields become too

heavy to be excited. Consequently, only the massless mode (i.e. n = 0) remains observable

in 4-dim. In this sense, the truncation provides an approximation of the 5-dim theory or

describes its low-energy dynamics.

This, in fact, is not just an approximation; it is a consistent truncation. In other words,

any solution satisfying the following

□4ϕ
(0) = 0, ϕ(n̸=0) = 0 (A.8)

is a valid solution to (A.5). Again, this is understandable in terms of group theory. Consider

a translation along S1, which is a U(1) transformation on Fourier modes, only ϕ(0) does

not transform, i.e. a U(1) scalar. So, if we just keep the massless modes, we can be sure

of a consistent truncation.
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A.2 Metric

Consider Einstein gravity in (D+1)-dim, where the spacetime is assumed to be MD ×S1

for some D-dim Lorentzian manifold MD. This is described by the following Lagrangian

L =
√

−ĝR̂ (A.9)

where we use hats to emphasise objects in (D + 1)-dim, ĝ represents the determinant of

the metric ĝMN , and R̂ is the Ricci scalar defined with the Levi-Civita connection (i.e.

Christoffel).

First, we shall clarify our index conventions. Uppercase Latin letters like M,N, . . . ∈

0, 1, . . . , D − 1, z denote (D+ 1)-dim spacetime indices, where z represents the coordinate

on S1. Lowercase Greek letters like µ, ν, . . . ∈ 0, 1, . . . , D − 1 denote D-dim spacetime

indices.

Similar to scalar fields, we can Fourier expand the metric ĝMN as follows

ĝMN(x, z) =
∞∑

n=−∞

ĝ
(n)
MN(x)e

inz/L (A.10)

where, again, L denotes the radius of S1. By keeping the U(1) singlet, we ensure a con-

sistent truncation. Henceforth, we will omit the superscript for simplicity, i.e. ĝMN(x) ≡

ĝ
(0)
MN(x).

Unlike scalars, we must also pay attention to spacetime indices. The metric ĝMN

decomposes into ĝµν , ĝµz, and ĝzz. These components can be used to define fields living

in D-dim, such as a metric gµν = ĝµν , a vector Aµ = ĝµz, and a scalar ϕ = ĝzz. However,

these seemingly straightforward choices result in cumbersome equations of motion in D-

dim, which are highly inconvenient. The underlying reason is that this parameterisation

does not take into account the inherent symmetries of the theory.

Nevertheless, this decomposition still provides the lower-dimensional field contents: a

D-dimensional metric gµν , a vector Aµ, and a scalar ϕ. A more suitable parameterization

is given by

dŝ2 = e2αϕgµνdx
µdxν + e2βϕ(dz +Aµdx

µ)2 (A.11)
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where α and β are some constants to be determined. In other words, we have

ĝµν = e2αϕgµν + e2βϕAµAν , ĝµz = e2βϕAµ, ĝzz = e2βϕ (A.12)

Now, the rest of the story is just a tedious computation using vielbeins, i.e.

êa = eαϕea, êz = eβϕ(dz +A) (A.13)

where êa and êz are vielbeins in 5-dim and ea are vielbeins on MD (i.e. gµν). We begin by

calculating the spin connections using the Cartan structure equations, resulting

ω̂ab = ωab + αe−αϕ(∂bϕêa − ∂aϕêb)− 1

2
Fabe(β−2α)ϕêz

ω̂az = −βeαϕ∂aϕêz − 1

2
Fa

be
(β−2α)ϕêb

(A.14)

where ∂a ≡ eµa∂µ represents the dual basis of vielbeins, and Fab are the vielbein components

of F = dA.

Next, we will move on to curvature 2-forms. If α and β remain unfixed, the expressions

can become very complicated. So, we will not present the full expression without con-

straining α and β. However, for a first-time calculation, it is worth attempting to compute

them. Here, we will outline a few key steps during the calculation. As before, we will use

the Cartan structure equation to obtain curvature 2-forms, then carefully read off their

components, paying attention to antisymmetric indices. Once the curvature 2-forms are

computed, determining the Ricci scalar will be straightforward.

Additionally, do not forget
√
−ĝ = det êAM and

√
−g = det eaµ, where A represents the

vielbein indices in (D + 1)-dim. This implies
√
−ĝ = e(Dα+β)ϕ

√
−g, and therefore

L =
√

−ĝR̂ ∼ e(β+(D−2)α)ϕ
√
−gR + . . . (A.15)

hence, a natural choice is to set β = −(D − 2)α such that the lower-dim Einstein-Hilbert

term is in its canonical form. Similarly, the scalar field sector looks like (after fixing β)

L =
√

−ĝR̂ ∼ −
√
−g α2(D − 1)(D − 2) ∂µϕ∂

µϕ+ . . . (A.16)
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hence, for conventional normalization, we have α2 = 1
2(D−1)(D−2)

. With these choices, we

can write down the Lagrangian

L =
√
−g(R− 1

2
(∂ϕ)2 − 1

4
e−2(D−1)αϕF2) (A.17)

which gives the following equations of motion

Rµν =
1

2
∂µϕ∂νϕ+

1

2
e−2(D−1)αϕ(F2

µν −
1

2(D − 2)
F2gµν)

∇µ(e−2(D−1)αϕFµν) = 0

□ϕ = −1

2
(D − 1)αe−2(D−1)αϕF2

(A.18)

where F2
µν = FµρF ρ

ν and F2 = FµνFµν , and one can immediately see setting ϕ = 0 is

inconsistent since it is sourced by F2.

A.3 Vector

Now, we begin considering gauge fields. We assume that the reduction of the potential is

Â(n−1)(x, z) = A(n−1)(x) + A(n−2)(x) ∧ dz (A.19)

which implies

F̂(n) = dA(n−1) + dA(n−2) ∧ dz (A.20)

Just like in the metric case, the simple-looking choice

F(n) = dA(n−1), F(n−1) = dA(n−2) (A.21)
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is not convenient. This is because the basis in our metric convention is dz+A(1), but only

dz is used here. So, we consider

F̂(n) = dA(n−1) + dA(n−2) ∧ (dz +A(1) −A(1))

= dA(n−1) − dA(n−2) ∧ A(1) + dA(n−2) ∧ (dz +A(1))

= F(n) + F(n−1) ∧ (dz +A(1))

(A.22)

in other words, we have

F(n) = dA(n−1) − dA(n−2) ∧ A(1), F(n−1) = dA(n−2) (A.23)

Indeed, we can observe this convenience by looking at their components

F̂(n) =
1

n!
F̂A1...An ê

A1...An

=
1

n!
enαϕ F̂a1...an e

a1...an +
1

(n− 1)!
e((n−1)α+β)ϕ F̂a1...an−1z e

a1...an−1 ∧ (dz +A(1))

=
1

n!
Fa1...an e

a1...an +
1

(n− 1)!
Fa1...an−1 e

a1...an−1 ∧ (dz +A(1))

(A.24)

where ea...b = ea ∧ . . . ∧ eb and we can read off

F̂a1...an = e−nαϕFa1...an , F̂a1...an−1z = e(D−n−1)αϕFa1...an−1 (A.25)

Therefore, the Lagrangian

L = − 1

2n!

√
−ĝF̂ 2

(n) =
√
−g
(
− 1

2n!
e−2(n−1)αϕF 2

(n) −
1

2(n− 1)!
e2(D−n)αϕF 2

(n−1)

)
(A.26)

which can be also expressed as

L = −1

2
e−2(n−1)αϕF(n) ∧ ⋆F(n) −

1

2
e2(D−n)αϕF(n−1) ∧ ⋆F(n−1) (A.27)
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A.4 Type IIA Supergravity

Recall the Lagrangian of 11-dim supergravity is

L11 = R̂ ⋆̂ 1− 1

2
F̂(4) ∧ ⋆̂F̂(4) −

1

6
F̂(4) ∧ F̂(4) ∧ Â(3) (A.28)

which becomes (after Kaluza-Klein reduced on S1)

LIIA = R ⋆ 1− 1

2
dϕ ∧ ⋆dϕ− 1

2
e

3
2
ϕF(2) ∧ ⋆F(2)

− 1

2
e

1
2
ϕF(4) ∧ ⋆F(4) −

1

2
e−ϕF(3) ∧ ⋆F(3) −

1

2
dA(3) ∧ dA(3) ∧ A(3)

(A.29)

which is exactly the bosonic sector of Type IIA supergravity. We can also obtain the SUSY

variations in Type IIA from 11-dim supergravity (see [2] for the details).
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3. Blumenhagen, R., Lüst, D. & Theisen, S. Basic concepts of string theory (Springer,

Heidelberg, Germany, 2013).

4. Maldacena, J. M. The Large N limit of superconformal field theories and supergravity.

Adv. Theor. Math. Phys. 2, 231–252. arXiv: hep-th/9711200 (1998).

5. D’Hoker, E. & Freedman, D. Z. Supersymmetric Gauge Theories and the AdS/CFT

Correspondence 2002. arXiv: hep-th/0201253 [hep-th].

6. Nastase, H. Introduction to the ADS/CFT Correspondence (Cambridge University

Press, Sept. 2015).

7. Trigiante, M. Gauged supergravities. Physics Reports 680, 1–175 (Mar. 2017).

8. De Wit, B. Supergravity 2002. arXiv: hep-th/0212245 [hep-th].

9. Tong, D. Supersymmetric Field Theory 2023.

10. Closset, C. Lecture notes on supersymmetry and supergravity 2020.

11. Müller-Kirsten, H. J. W. & Wiedemann, A. Introduction to Supersymmetry 2nd.

eprint: https://www.worldscientific.com/doi/pdf/10.1142/7594 (WORLD

SCIENTIFIC, 2010).

12. Freedman, D. Z. & Van Proeyen, A. Supergravity (Cambridge Univ. Press, Cambridge,

UK, May 2012).

59

https://arxiv.org/abs/0908.0333
https://arxiv.org/abs/hep-th/9711200
https://arxiv.org/abs/hep-th/0201253
https://arxiv.org/abs/hep-th/0212245
https://www.worldscientific.com/doi/pdf/10.1142/7594


13. Weinberg, S. Photons and Gravitons in S-Matrix Theory: Derivation of Charge Con-

servation and Equality of Gravitational and Inertial Mass. Physical Review 135, 338–

345 (1964).

14. Cremmer, E., Julia, B. & Scherk, J. Supergravity Theory in Eleven-Dimensions. Phys.

Lett. B 76, 409–412 (1978).

15. Gauntlett, J. P. Branes, Calibrations and Supergravity 2003. arXiv: hep-th/0305074

[hep-th].

16. Gauntlett, J. P. & Pakis, S. The geometry of D = 11 Killing spinors. Journal of High

Energy Physics 2003, 039–039 (Apr. 2003).

17. Jiao, Y. Supergravity and Branes on Curved Manifolds MA thesis (Imperial Coll.,

London, 2022).

18. Hull, C. M. Lecture notes on Differential Geometry 2022.

19. Stelle, K. S. BPS Branes in Supergravity 2009. arXiv: hep-th/9803116 [hep-th].
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