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Abstract

In this thesis, we investigate the complex interplay between topological hydrodynamics and

topological field theory within the framework of theoretical physics. Our research establishes that

the generalization of helicity in fluids is equivalent to the Hopf invariant, while in quantum field

theory, it corresponds to the Abelian dual Chern-Simons 3-form. This equivalence serves as the

foundation for an original theory that implements a topological clock in the context of Henneaux

and Teitelboim’s Unimodular gravity. This innovation introduces the concept of ‘physical time’,

which is sensitive to the topological evolution of the magnetic field. The implications of this work

extend beyond a novel understanding of coordinate time, offering fresh perspectives in cosmology

and quantum field theories, and providing new tools for our approach to gravitational theories.

Future research could explore the extension of this framework to non-Abelian gauge groups and its

applicability in the study of black hole physics.
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1 Introduction

The study of topological properties in physical systems has long been a cornerstone in the quest to

understand the fundamental nature of our universe. From the intricate patterns of fluid flows to the

enigmatic properties of quantum fields, topology offers a unique lens through which to view and un-

derstand the cosmos. Yet, one of the most elusive and intriguing aspects of physical systems is the

concept of time. Traditional approaches often treat time as a mere coordinate, a backdrop against

which the drama of physical interactions unfolds. This thesis challenges that paradigm by introducing

the concept of ‘physical time’, a dynamic entity that is intrinsically linked to the topological evolution

of the magnetic field. Building on the foundational theories of topological hydrodynamics and topo-

logical field theory, we establish a novel framework that unifies these seemingly disparate fields. Our

work serves as a stepping stone for implementing a topological clock within the context of Henneaux

and Teitelboim’s Unimodular gravity.

This thesis prioritizes a physical approach over a purely mathematical one, striving for self-containment

to provide a comprehensive introduction to the concepts at hand. Nothing is extraneous or omitted,

and updated versions will be available on the cited website [1]. The primary objective is to offer a

fundamental physical framework for understanding the original contributions of this work, specifically

in building connections between topological hydrodynamics and topological field theory.

We will begin with the fundamentals of knot theory and establish its intriguing connection to electro-

magnetism through the Gauss linking number. This theme will recur throughout the thesis, demon-

strating its re-derivation in hydrodynamics and, ultimately, in three-dimensional Quantum Field The-

ory. This serves as compelling evidence of the topological physics underpinning our study and raises

the possibility that we are dealing with consistent quantities across different contexts.

This thesis is primarily divided into three parts. After a brief introduction to knot theory, the sections

are as follows: Helicity in the context of fluids, topological physics and field theory (primarily within

the realm of Quantum Field Theory), and finally, the topological evolution of time within a framework

of General Relativity. The first two sections are crucial for establishing the vital link between topolog-

ical hydrodynamics and topological quantum field theory. We introduce helicity as defined by Moffatt

in fluid dynamics and demonstrate its invariance in ideal fluids and ideal magnetohydrodynamics.

Subsequently, we generalize this concept of helicity, which turns out to be the scalar component of

a more extensive four-vector helicity in viscous fluids. Here, we employ the machinery of differential

geometry and introduce the Hopf invariant.

We then transition to topological physics, elucidating the topological implications of the Dirac monopole
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and the Aharonov-Bohm effect. These topics serve as a discursive introduction to de Rham cohomology

and homology theory, leading to the definition of the Wilson loop. We then focus on the topological

theta term in four dimensions, connecting it to the divergence of the generalized four-vector helicity.

This introduces the Chern-Simons term in three dimensions, which corresponds to the scalar helicity

as defined by Woltjer and Moffatt. Armed with these arguments, we will showcase the Gauss linking

number in a 2 + 1 dimensional quantum field theory.

Finally, the third part focuses on a Unimodular formulation of General Relativity, introducing the Hen-

neaux and Teitelboim formulation. Utilizing this framework, we incorporate the Chern-Pontryagin

term into the four-dimensional action, which crystallizes into the three-dimensional Chern-Simons

term in cosmological time, representing scalar helicity. This establishes that the evolution of time is

governed by the topological evolution of scalar helicity. We conclude by discussing the implications of

this theory, emphasizing that without any topological evolution, both the 4-Volume and time would

cease to exist.

1.1 Mathematical Helicity/Hopf Invariant

There is no doubt that topological solutions in various fields such as Hydrodynamics [2], Electro-

magnetism [3], the Skyrme-Faddeev model [4], Chern-Simons theory [5], and many more are deeply

interconnected in a topological manner. The Hopf invariant, which goes by various names in the

literature such as Helicity or the Abelian 3-form Chern-Simons term, serves as a common thread

linking these diverse topics. To gain a comprehensive understanding of these interconnected topics in

Theoretical Physics and Mathematical Physics, we will follow the mathematical description provided

in an established book on Topological Hydrodynamics [6].

Definition 1.1. The Hopf invariant (or Helicity) is defined for a divergence-free vector field ξ in the

domain M ⊂ R3 as

H(ξ) = ⟨ξ, curl−1 ξ⟩ =
∫

M
(ξ, curl−1 ξ)dV, (1.1)

where (·, ·) is the usual pairing in Euclidean space. Here, curl−1 ξ = A is the divergence-free vector

potential, i.e., ∇ × A = ξ and div A = 0. This quantity measures the degree of linking of the field

lines in a given volume [2].

Remark 1. The operator curl−1 is non-local and symmetric. In a connected manifold, it maps the

space of divergence-free vector fields onto itself.

Hence these should serve as an excellent cross-reference for us looking to delve deeper into these

complex topics.

6



2 Theory of Knots in a Knotshell

Knot theory is a fascinating subfield of topology that studies the properties of simple closed curves

embedded in three-dimensional space. The subject has profound implications in various disciplines,

including physics, chemistry, and biology.

Here, we are not aiming to provide an extensive introduction to knot theory; rather, our goal is to

establish and clarify the essential terminology used in the field. We will primarily adopt the standard

terminology and definitions from well-regarded textbooks [7] [8].

UnknotNot a knot Trefoil knot

Figure 1: In this set of figures, the first one is not considered a knot because it is not a closed path.

Next, we have the simplest knot, known as the unknot. Lastly, we have an example of a more complex

knot: the trefoil knot.

Therefore, a knot is a closed curve embedded in three-dimensional Euclidean space R3. It is a

loop that does not intersect itself, and its properties remain invariant under continuous deformations,

known as isotopies. Two knots are considered the same if one can be deformed into the other. The

simplest knot is known as the unknot or trivial knot, as shown in Figure 1.

In knot theory, a projection is a two-dimensional representation of a knot obtained by projecting it

onto a plane. Every knot can have multiple projections, but they all encode the properties of the same

knot. This projection captures the over-under crossing information essential for knot classification.

Mathematically, it can be viewed as a mapping f : R3 → R2 that preserves the knot’s essential

features. The resulting diagram is often used to calculate knot invariants like the Jones polynomial,

which we will discuss later.

From the projections, we can observe that the knot crosses itself a number of times; this is an important

quantity called the crossing number. It is a fundamental knot invariant that counts the number of

crossings in a given knot projection. The crossing number is the minimum number of crossings over

all possible projections of the knot onto a plane. It serves as a measure of the knot’s complexity and

is denoted, for a knot K, as c(K). Any non-trivial knot (apart from the unknot) must have a crossing

number of at least 3.
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To distinguish different types of knot projections, we have two important tools: namely, tricolorability

and the famous Reidemeister moves, which are neatly represented in Figure 2. Tricolorability is a knot

invariant that examines whether the segments between crossings in a knot projection can be colored

using three colors such that, at each crossing, either all segments have the same color or they have

three distinct colors. Reidemeister moves are local transformations consisting of three types: Type I

(Twist) involves twisting or untwisting a loop; Type II (Poke) moves one loop over another; and Type

III (Slide) slides one strand between two others.

TwistPoke Slide

Figure 2: In this illustration, we demonstrate the feature of tricolorability, where each crossing should

allow us to identify three different colors. We also show the Reidemeister moves: Type I (Twist), Type

II (Poke), and Type III (Slide). It’s important to note that these figures represent portions of a knot

near a crossing; we assume that the lines will close to form a complete knot K.

Now that we have covered the basics, we can define the linking between different knots; for some

examples, refer to Figure 3. Each individual closed curve within a link is itself a knot, and these

knots may or may not be entangled with each other. Links extend the study of individual knots to

multiple intertwined loops, allowing for a richer set of topological properties and invariants. The study

of links employs similar mathematical tools to those used in knot theory, such as link polynomials and

Reidemeister moves, to classify and analyze their properties.

Unlink Hopf link Borromean rings

Figure 3: Here, we have depicted various unknots, showing two of them that are not linked. Next,

we present the Hopf link, which has two crossings. Finally, we illustrate the Borromean rings, which

consist of three links and six crossings.
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If you orient all the loops in the link, you can assign either +1 or −1 to each crossing, as shown in

Figure 4. The sum of all these crossing numbers, divided by 2, yields the linking number of the link,

given by:

Linking number = 1
2

∑
ij

sgn(cij) (2.1)

where cij represents the crossings and sgn denotes the sign of each crossing. The linking number is an

integer that remains invariant under isotopies and Reidemeister moves, serving as a fundamental tool

for classifying and understanding links. It is important to note that this is the same linking number

that Gauss discovered in electromagnetism, a connection we will explore in the next section.

-1 +1

Figure 4: Here, the illustration shows how to distinguish the two sign assignments for a crossing in a

given knot.

Finally, the last relevant topic to touch upon is the Jones polynomial [9]. We will see in Section

4.3.1 that it is linked to Quantum Field Theory. To discuss this, we need to introduce the concept of

a skein triple.

In knot theory, a skein triple refers to a set of three oriented links or knots, denoted as K+,K−, and

K0, that differ only at a single crossing. Specifically, these three links are identical except in a small

neighborhood where:

• K+ has a positive crossing.

• K− has a negative crossing.

• K0 has the crossing replaced by two parallel strands, effectively “smoothing” the crossing.

The skein triple is crucial for defining skein relations, which are recursive relations used to com-

pute knot invariants like the Jones polynomial. The skein relation for the Jones polynomial is often

expressed as:

tV (K+) − t−1V (K−) = (t1/2 − t−1/2)V (K0) (2.2)

Here, V (K+), V (K−), and V (K0) are the Jones polynomials of the knotsK+,K−, andK0, respectively,

and t is the variable of the Jones polynomial. The two important properties of the Jones polynomial
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are its invariance under Reidemeister moves and its normalization, namely V (unknot) = 1.

Hence, now armed with these definitions and terms, we can continue our journey through topological

invariants and the topological evolution of knots. Our first encounter will be with the Gauss Linking

Number in electromagnetism.

2.1 Knots in Electromagnetic theory

Here, we will provide an explicit demonstration of how knot theory naturally arises in the classical

formulation of electromagnetism. In the 19th century, a seminal intersection between physics and

topology was observed, specifically in the realm of electromagnetic theory. In this context, we will

discuss how Gauss discovered the linking number in 1833 [10], a discovery later revisited by Maxwell

[11]. For a more in-depth look into the historical aspects, please refer to [12]. The topological construct

under examination is the linking number, a topological invariant, between two loops (forming a Hopf

link) in three-dimensional space.

In the framework of electromagnetic theory, the magnetic field vector B generated by an electric

current I flowing through a conductor is described by Maxwell’s curl and divergence equations:

∇ × B = µ0J, (2.3)

∇ · B = 0. (2.4)

To derive Ampère’s circuital law, one evaluates the line integral of B around a closed curve C that

encloses a surface S: ∮
C

B · dl = µ0

∫
S

J · ds

= µ0I, (2.5)

where here we have used Stokes’ theorem. It is fundamental to note that in the last step I represent

the exact amount of current J passing trough the surface S, this can be generalised summing n amount

of contribution of ±µ0I, the sign depend if the current is parallel or antiparallel to the surface unit

vector. Hence the generalized form of Ampère’s law becomes:∮
C

B · dl = µ0mI, m ∈ Z, (2.6)

here m is a integer, this is familiar throughout standard textbooks as it is related to the magnetic field

due to a solenoid [13]. To see how Gauss [10] wrote and found this property we need an alternative

approach involving the introduction of the vector potential A, defined as:

B = ∇ × A. (2.7)
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The governing equation for A becomes:

∇2A = −µ0J. (2.8)

Integrating B around a second loop C gives:∮
C

B · dl = −µ0I

4π

∮
C

∮
C′

(r − r′) × dl′ · dl
|r − r′|3 . (2.9)

This leads to the topological invariant m, the linking number of C and C ′, explicitly we can see from

equation (2.5):

− 1
4π

∮
C

∮
C′

(r − r′) × dl′ · dl
|r − r′|3 = m. (2.10)

Now we can open this equation and writing out explicitly using:

r = (x, y, z), and r′ =
(
x′, y′, z′) (2.11)

then this will lead the form that Gauss written on his notes

− 1
4π

∫∫ (x′ − x) (dydz′ − dzdy′) + (y′ − y) (dzdx′ − dxdz′) + (z − z′) (dxdy′ − dydx′)[
(x′ − x)2 + (y′ − y)2 + (z′ − z)2

] 3
2

= m (2.12)

This result originated from his investigations into electromagnetism in 1833 and serves as an early

contribution to knot theory and shows how the two subjects are fundamentally interlinked.

3 Helicity

Helicity is a pseudoscalar quantity that serves as an indicator of the “degree of knottedness” within a

contractible space filled by a fluid. This measure provides insights into the topological structure of a

fluid in a given space, with particular focus on the vorticity field and its self-entanglement. The study

of the topological structure of vorticity fields traces its origins to Kelvin’s seminal paper “On Vortex

Motion” [14] published in 1868. In this work, Kelvin posited that vortex rings should remain stable

over time in ideal fluids. He also expressed skepticism about the concept of point particles, proposing

instead that vortices in the ether could offer a more satisfactory explanation for the fundamental

constituents of matter. By the time of Maxwell’s death in 1879, most of the foundational laws

concerning vortices in fluid mechanics had been established. This subject is intrinsically linked with

knot theory.

We begin by presenting Moffatt’s definition of helicity [2] and subsequently explore its relationship

with knots via the Gauss linking number. We then examine the conditions under which these vorticity

fields are conserved, before delving into the topological features of helicity in viscous fluids. In this
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context, we introduce a framework that generalizes 4-vector helicity and redefines Moffatt’s helicity

as scalar helicity. This section serves as the foundation for the subsequent discussions and is crucial

for the new interpretation of time presented at the end.

3.1 Mathematical definition by Moffatt for Helicity

The term “Helicity” was coined by Moffat in 1969 [2] and has since been extensively used in astrophysics

for computations in magnetohydrodynamics (MHD) and dynamo theory. It is also used in the context

of hydrodynamics, often paired with the term Hopf invariant, which will be discussed further in the

section on non-invariants. Here, we will follow Moffat’s derivation of helicity in the context of fluid

dynamics, although the derivation is applicable to any vector field with a non-vanishing vorticity field

in the same setup. We start by considering an inviscid fluid with a velocity vector u(x, t). For a closed

loop C moving with the fluid, its circulation is given by:

K =
∮

C
u · dl (3.1)

where K is constant. Now, consider a setup where this vector field has vanishing vorticity ω = ∇ × u

everywhere except along two curves C1 and C2 with strengths κ1 and κ2, as shown in Figure 5. Then,

by Stoke’s theorem, we have:

K1 =
∮

C1
u · dl =

∫
S1

ω · dS, (3.2)

where S1 is the surface enclosed by the curve C1. Therefore, K1 is sensitive to C2 crossing or touching

the area inside of C1. Nevertheless, we can summarize K1 as:

K1 = α12κ2, (3.3)

where α12 is a symmetric positive or negative integer and represents the “winding number” for the

curves C1 and C2. For example, for the curves that are either not linked or singly linked, we can

summarize K1 as:

K1 =

 0 if C1 and C2 are not linked,

±κ2 if C1 and C2 are singly linked.
(3.4)
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S1

κ2

κ1

C1

C2

Figure 5: Here, we represent two interlinked circular flux tubes where κ1 and κ2 denote the fluxes

of vorticity. C1 and C2 represent the central curves of the flux tubes. Additionally, the surface S1

enclosed by the loop C1 is also depicted.

It is possible to generalize K1 for n unknotted closed curves C1, C2, . . . , Cn as:

Ki =
∮

Cj

u · dl =
∑

j

αijκj , (3.5)

where, as before, αij is the winding number for curves Ci and Cj . These κi can be interpreted as the

fluxes carried by the ω lines that run parallel to the closed curve C. Therefore, since dl is parallel to

ω, we can substitute κidl with ωdV . Now, we can consider the following quantity:

κiKi =
∮

Ci

κidl · u =
∫

Vi

u · ωdV, (3.6)

where Vi denotes the volume of the flux tube of κi around C1. The last part of this equation can

already be defined as the Helicity. We can generalize this quantity to the sum of all the closed ω lines

in a contractible three-dimensional space as:

H =
∑

i

κiKi =
∑
i,j

αijκiκj =
∫

V
u · ωdV, (3.7)

where V is the volume occupied by all vortices or, equivalently, the volume that the fluid occupies in

the manifold. This is the Helicity, and it is now easier to see why this pseudo-scalar quantity gives the

“degree of knottedness” for a given vorticity field ω, which is fundamentally linked with the winding

number for different closed paths traced by ω. It is also useful to note that this quantity is invariant

under gauge transformations of u, again following Moffatt [2]:

u′ = u + ∇ϕ, (3.8)
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We can see that the Helicity is invariant under this transformation:∫
V

∇ϕ · ωdV =
∫

V
∇ · (ωϕ)dV =

∫
S

n · ωϕdS = 0, (3.9)

where we assume the important condition that the vorticity field does not cross the boundary of the

manifold and consists only of closed lines within the space.

3.1.1 Knots in fluids

Although we have already shown in the previous section how helicity in fluids is related to knots, here

we will emphasize how the Gauss linking number again arises naturally in this formulation, further

demonstrating how these subjects are interlinked. Hence, following Moffat [2] and [15], we can define

the velocity vector u by the inverse of the curl:

u(x) = − 1
4π

∫ (x − x′) × ω (x′)
|x − x′|3

dV ′, (3.10)

Now, if we substitute this back into the Helicity Equation (3.7), we find:

H = 1
4π

∫∫ (x − x′) · [ω(x) × ω (x′)]
|x − x′|3

dV dV ′, (3.11)

Then, we can re-express this quantity in terms of line elements. Therefore, for two curves Ci and Cj

with respective xi ∈ Ci and xj ∈ Cj , we have:

αij = 1
4π

∮
Ci

∮
Cj

(x − x′) · dli × dlj
|x − x′|3

= − 1
4π

∮
Ci

∮
Cj

(x − x′) × dlj · dli
|x − x′|3

, (3.12)

where in the last step we have used ϵkij (x − x′)k dlidlj = −ϵikj (x − x′)k dljdli to match the Gauss

linking number found in Equation (2.10). Hence, we see that from the formulation of helicity in fluids

due to Moffat, the Gauss linking number is present and provides a bridge between apparently different

areas of physics.

3.1.2 Conservation and invariance

Here we will follow Moffat [16] to show the important property of Helicity that is conserved in ideal

fluids. This result will clarify the setup needed to achieve this and elucidate its topological properties.

The vorticity field ω has associated vortex lines, which are lines that “follow” closely this vorticity

field in the sense that they are tangent and parallel to it at every point. In ideal fluids, these lines

are thought to be “frozen” in the fluid under Euler evolution. We consider here an inviscid barotropic

fluid, meaning that the pressure is solely dependent on the fluid density: p = p(ρ).

Starting by considering the momentum equation for an incompressible fluid with no viscosity:

Du
Dt

= −1
ρ

∇p− ∇ϕ, (3.13)
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where ∇ϕ is the body force distribution and D
Dt ≡ ∂

∂t + u · ∇ is the Lagrangian derivative (or Material

derivative). This keeps track of both the local and the convective changes of the velocity field as you

follow a fluid particle. We can easily apply this to the vorticity field in this manner:

D

Dt

(
ω

ρ

)
=

(
ω

ρ

)
· ∇u. (3.14)

Hence, we can compute their dot product:

D

Dt

(u · ω

ρ

)
= u · D

Dt

(
ω

ρ

)
+ Du
Dt

·
(

ω

ρ

)
(3.15)

= u ·
(

ω

ρ
· ∇u

)
− ω

ρ
·
(

−1
ρ

∇p+ ∇ϕ
)

(3.16)

= ω

ρ
· ∇

(1
2u2 −

∫
dp

ρ
− ϕ

)
(3.17)

= ω

ρ
· ∇Q, (3.18)

where
∫
dp/ρ is the enthalpy per unit mass. Now, we can calculate the time derivative of Helicity,

keeping in mind that D
Dt(ρdV ) = 0 from the properties of perfect fluids:

dH
dt

=
∫

V

D

Dt

(u · ω

ρ

)
ρdV (3.19)

=
∫

V
(ω · ∇)QdV (3.20)

=
∫

S
(n · ω)QdS (3.21)

= 0, (3.22)

where we used the divergence theorem for the vorticity field. This is true and sufficient only if n ·ω = 0

at the boundary S. Hence, this ensures that Helicity is constant, consistent with our derivation of the

Helicity formula considering only closed vortex filaments in their volume. Each of the vortex filaments

would have its invariant Helicity.

3.1.3 Ideal Magnetohydrodynamics invariance

Magnetohydrodynamics (MHD) is the study of electrically conducting fluids interacting with mag-

netic and electric fields. It combines the Navier-Stokes equations for fluid dynamics with Maxwell’s

equations for electromagnetism. MHD is pivotal in understanding phenomena like solar flares and

magnetic confinement in fusion reactors. The field is governed by conservation laws and key invariants

such as helicity.

By introducing how Helicity arises in an MHD setup, we can introduce fundamental concepts such

as cross-Helicity and new properties. In this example, we will be able to prove that Helicity here is
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conserved, which was first proved by Woltjer in 1958 [17]. Starting by considering the usual magnetic

field and electric field:

B = ∇ × A and E = −∂A
∂t

− ∇ϕ, (3.23)

it is already possible to see the similarity between standard electromagnetic fields A and B with Euler

perfect fluids velocity field u and vorticity field ω. Hence, we could already write the integral for

magnetic Helicity as follows:

HM =
∫

V
A · BdV. (3.24)

Here again, as in the example in ideal fluids, we are going to use the same setup for ideal MHD.

This theory describes the behavior of a plasma, combining the properties of a fluid and a magnetic

field. Therefore, in an MHD setup, we have the induction equation with vanishing resistivity and

orthogonality condition as:

E + u × B = 0 and E · B = 0. (3.25)

Hence, we can combine these equations to find:

∂A
∂t

= u × (∇ × A) − ∇ϕ, (3.26)
∂B
∂t

= −∇ × E = ∇ × (u × B). (3.27)

Now, starting from the magnetic Helicity equation, we can take the time derivative:

dHM

dt
=

∫
V

dA
dt

· BdV +
∫

V
A · dB

dt
dV, (3.28)

= −2
∫

V
E · BdV +

∫
V

∇ · (A × E − ϕB)dV, (3.29)

= −
∫

S
(A × u × B + ϕB) · ndS = 0, (3.30)

where we used the condition that ∇ · B = 0 and the identity in Equation A.5. The last step is again

assuming that B · n = 0 on the closed surface of the volume. This condition on the B field imposes

that the magnetic Helicity is conserved and describes the knottedness of the magnetic lines that are

invariant through time. It’s important to note that this quantity in Equation 3.24 is solely dependent

only on the magnetic field and volume as it is gauge invariant in A as shown earlier with u. Now

we can derive the conservation for cross Helicity, which appears in theories of MHD turbulence and

explicitly involves both the flow velocity and the magnetic field:

HC =
∫

V
u · BdV. (3.31)

We can begin by stating the equation of motion for u:

Du
Dt

= −1
ρ

∇p+ 1
ρ

j × B, (3.32)
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where j = ∇ × B, and it follows:

D

Dt

(B
ρ

)
= 1
ρ

∇ × (u × B) + u
ρ

∇B, (3.33)

= B
ρ

· ∇u. (3.34)

Now we can see that the Lagrangian derivative for the cross Helicity density is:

D

Dt

(B · u
ρ

)
= D

Dt

(B
ρ

)
· u + B

ρ
· Du
Dt

, (3.35)

= B
ρ

· ∇
(

−
∫
dp

ρ
+ 1

2u2
)
. (3.36)

This is the same case as in fluid dynamics, as shown in Equation 3.18. Here, we are considering that

B · n = 0 at the surface of V , as in the previous cases integrating this will vanish for the dot product

of the magnetic field and the surface measure. Hence, the time derivative of the cross Helicity is

vanishing, meaning that this cross Helicity for an ideal MHD with no dissipation is constant.

3.2 Topological evolution of Helicity

Although the study of topological properties of the vorticity field are invariant for an inviscid flow,

this is usually not the case in nature. In this section, we will explore how Helicity behaves in viscous

fluids. This will help to generalize the notion of Helicity from the previous sections and introduce the

concept of topological evolution. The generalization consists of discovering a vector part of the usual

magnetic helicity, which was first understood by Carter in 1979 [18]. However, here we will follow a

fluid setup to show how these subjects are interlinked. To do this, we will need a different formulation

of the Navier-Stokes equations (NSEs). Hence, we will introduce geometrofluid dynamics (GFD) in

the context of viscous fluids. Using this new formulation of the stress-energy tensor will help to detach

from the classical vision of electromagnetism and explore new solutions.

We will use this formulation as a tool to generalize the concept of Helicity and its evolution, making

important statements about the results of the previous sections. We will mainly follow Berger and

Field [19] and Sconfield and Huq [20].

3.2.1 Geometrofluid Dynamics

Here we will give a short introduction on GFD this will give a solid base to explore Helicity evolution

in a viscid fluid. Here we will be dealing with a homogeneous isotropic fluid and we will follow the

description of Sconfield and Huq in [21] and [22]. The main quantities that we are going to use in

GFD are the vortex field F where its components are composed by the vorticity vector ω and the

swirl vector field ζ, altogether with its vector potential A and current J = ρu.
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Its important to emphasise the difference with the classical NSEs for viscid fluids, where instead one

have the vorticity defined as ω = ∇×u and the swirl vector as ζ = ω×u. Although the quantities like

swirl and vorticity are comparable with the ones found in Euler or NSE the potential A that allows

to the computation of the vortex field F (ω, ζ) is not the vorticity field as in the previous sections, we

will continue to remark these differences being fundamental for understanding the generalization of

Helicity for fluids flows.

We need to invoke a different formulation of the Navier Stokes stress balance as we want a scenario

with turbulent flows having a vortex field. We will use three different stress energy tensors for the

stress balance, respectively: inertial τκν
e , Newtonian viscous τκν

n and the vortex field τκν
m . Starting

from the stress-energy of the mass distribution is defined as:

τµν
e = ρuµuν + p

(
gµν + c−2

m uµuν
)
, (3.37)

here the cm stands for maximum transverse wave speed, p and ρ are the usual pressure and density.

Then the Newtonian fluid stress energy with viscosity η is given by:

τn
µν = 2η (σ̃µν + δθPµν) , (3.38)

where σ̃µν = 1
2

(
Pϵ

νuµ;ϵ + Pϵ
µuν;ϵ

)
− 1

3θPµν and the projector operator defined as Pµν = gµν + ûµûν ,

here ûµ is the normalized velocity vector. It is important to note that in this context the 4 velocity uµ

satisfies the normalization condition uµuµ = −1 with cm = 1. Lastly the stress energy for the vortex

field is defined as:

4πτ̊µν
m = gµαF̊αβF̊

βν − 1
4g

µν ⋆ F̊αβF̊
αβ, (3.39)

where the star ⋆ is the Hodge operator [23] (refer to B.5).

Therefore we can now state the equation that governs the vorticity, velocity, swirl fields and energies.

Hence by following [22] we can state:

(τκν
e − τκν

n − τκν
m );ν = 0, (3.40a)

(τe − τn)µν
;ν = −F̊µνjν , (3.40b)

H̊κλ = Cµν
κλ F̊µν , (3.40c)

F̊µν = 1
2

(
∂Aν

∂xµ
− ∂Aµ

∂xν

)
, (3.40d)

−□Aµ = −
(
∂2

t − ∇2
)
Aµ = 4π

η̄
jµ. (3.40e)
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Here the last 3 equation are vortex field equations. The parameter Cµν
κλ for the vortex field can be

expressed in term of four quantity (λ̄, λ, κ, κ̄) therefore we can explicitly state H̊ and F̊ in this manner:

− ⋆ H̊κλ =



0 −λ̄ξ1 −λ̄ξ2 −λ̄ξ3

λ̄ξ1 0 κ̄ϖ3 −κ̄ϖ2

λ̄ξ2 −κ̄ϖ3 0 κ̄ϖ1

λ̄ξ3 κ̄ϖ2 −κ̄ϖ1 0


, F̊κν =



0 −λζ1 −λζ2 −λζ3

λζ1 0 κω3 −κω2

λζ2 −κω3 0 κω1

λζ3 κω2 −κω1 0


. (3.41)

It is easy to see that the components of the vortex field τ̊µν
m can be computed to be:

4πτ̊00
m = 1

2
(
κ2ω2 + λ2ζ2

)
, (3.42a)

4πτ̊0j
m = 4πτ̊ j0

m = −(κω × λζ)j , (3.42b)

4πτ̊ jk
m = −

(
κ2ωjωk + λ2ζjζk

)
+ 1

2
(
κ2ω2 + λ2ζ2

)
δjk, (3.42c)

where the parameters κ and λ are chosen to yield a stress energy density, we will assume throughout

the next section that κ = 1 as we are mostly interested to the viscous property that depends on λ.

We can also define the stress energy dissipation tensor as

τ̇κλ
m ≡ ητ̊κλ

m . (3.43)

Here we can see that this configuration of vortex field is indeed a function of ω and ζ (defined before

as F (ω, ζ)), it is important to note that these equation differ from the classical NSEs.

Now we can turn up our attention to the fundamental vortex field equations, in exterior calculus

notation we have H̊ = ⋆F̊ then by considering the equation above we can rewrite those as:

dH̊ = 4πJ and dF̊ = 0. (3.44)

It is important to note that although there is a obvious similarity with the electromagnetism of Maxwell

equations [23] these are not sufficient here to give the whole dynamics and must be supplied with the

continuity equation for a incompressible fluid or either with an equation of state for the pressure.

We conclude by stating the main difference with the classical Euler set up. Here in this formulation in

Equations (3.40) the special acoustic relativistic Euler equation for a perfect fluid would correspond

to have τµν
e;ν = 0. Nevertheless for special acoustic space-time (SAST) theory for the NSEs we would

have (τκν
e − τκν

n );ν = 0. Furthermore the equations in (3.40) are not the equation for the vorticity

field as previous noted, this is in contrast to the standard NSEs. However the GFD equations up to

approximation can be assumed as NSEs.

19



3.2.2 Evolution and generalization of Helicity

After defining a general framework to work with viscid flows we can apply and focus on the evolution

of helicity, this is essentially the manifestation of topological evolution in a flow. Helicity in electro-

magnetism by Woltjer [17] is defined as
∫

A · ∇ × A contained in a given volume, here in the context

of GFD we will use the Helicity density ht = A · ω which is a scalar and the choice of writing it with

the subscript t will be apparent later one. From Equation (3.43) (dF = 0) is possible to deduce that

we have a similar set of equation to electromagnetism for the vorticity field:

∇ · ω = 0 and − ∂ω

∂t
+ λ∇ × ζ = 0, (3.45)

where we are setting cm = 1. Therefore we can choose the vorticity to be ω = ∇ × A. It is important

to punctualise that this is not the same vorticity and vector potential of the previous sections in fact

for classical NSE or for perfect fluids one defines ω = ∇ × u. Therefore the rate of change for ht is

given by:
∂A · ω

∂t
= ∂A

∂t
· ω + A · ∂ω

∂t
. (3.46)

Now we can define from Equation (3.45) this quantity:

∇ ×
(
∂A
∂t

+ λζ + ∇ϕ
)

= 0, (3.47)

where we associate the scalar field ϕ with the time component of the four vector Aµ. From the last

equation we can compute that ∂ω/∂t = ∂(∇ × A)/∂t = −∇ × (λζ + ∇ϕ), then we obtain:

∂A · ω

∂t
= −(λζ + ∇ϕ) · ω − A · ∇ × (λζ + ∇ϕ) (3.48)

= −(λζ + ∇ϕ) · ω − A · ∇ × (λζ) (3.49)

= ∇ · (A × λζ) − (2λζ + ∇ϕ) · ω (3.50)

= ∇ · (A × λζ) − 2λζ · ω − ∇ · (ϕω) (3.51)

= ∇ · (A × λζ − ϕω) − 2λζ · ω, (3.52)

where we used the identities (A.5) and (A.7). Hence we can summarize the helicity evolution equation

as:

−∂A · ω

∂t
+ ∇ · (A × λζ − ϕω) = 2λζ · ω, (3.53)

it is important to note that if the viscosity parameter λ vanishes there is no production of helicity, this

make perfectly sense as if there is no viscosity helicity does not evolve in time, in other words with non

viscous fluids Helicity is a topological invariant of the system. Also is worth mentioning that if we take

λ = 0 we have a similar scenario comparable to the MHD case in Equation (3.25). We can already see
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that the topological change must be related to the quantity λζ · ω, this relates the phenomenological

viscosity parameter λ to the topological change which is sensitive of how the vorticity ω and swirl

ζ are aligned. Furthermore the equation in (3.53) it is a hint for the four vector helicity where the

spatial components are (A × λζ − ϕω), to further delve and understand these concepts we will use

differential geometry to show that the full 4 helicity density vector is equivalent to the Hopf invariant

and this connection rises naturally in this context.

Hence now we will continue by deriving explicitly the equation (3.53) using differential form. We can

introduce the 2-form vortex field F in 4 dimensions in terms of the 2-form vorticity ω = 1
2ωijdx

idxj and

the 1-form swirl ζ = ζidx
i both in the spatial 3 dimensions, where here the vorticity is a pseudovector

and swirl is a vector. Therefore F is defined as:

F = ωxdy ∧ dz + ωydz ∧ dx+ ωzdx ∧ dy + λ (ζxdx+ ζydy + ζzdz) ∧ cmdt, (3.54)

here we have that this 2-form is defined in terms of the 1-form vector potential A as:

A = ϕdt+Axdx+Aydy +Azdz, (3.55)

from (3.43) we can see that this is true F = dA, this is the analog of the electromagnetism field tensor.

Hence now we can define the 3-form helicity density as:

h = A ∧ dA = A ∧ F. (3.56)

In literature the integral of this helicity density is called the Hopf Invariant or the abelian Chern

Simon 3 form [5] and is defined as:

HG = 1
16π2

∫
M3

A ∧ dA, (3.57)

we will embark in a quick detour that would give context and be relevant later on. You can look to this

integral over a three dimensional boundary of a four dimensional manifold, say ∂M4, then applying

Stokes theorem we have
∫

∂M4 A ∧ dA =
∫

M4 dA ∧ dA. Therefore the integral vanishes for h = A ∧ dA
being close or exact, however this is a indicator of topology of the boundary as if h is closed but not

exact (for example when the manifold have holes) then this integral do not vanish and is equal to a

integer this is deeply linked with homotopy and the presence of invariant knots, we will embark in

these discussions in the next section. Following the discussion we can open the 3 form helicity density

explicitly

h = 1
3!hµνρdx

µdxνdxρ (3.58)

= htdx ∧ dy ∧ dz − hxdy ∧ dz ∧ cmdt+ hydz ∧ dx ∧ cmdt− hzdx ∧ dy ∧ cmdt (3.59)
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here we have associated the components that are 1
3!hxyz = ht and the other follows in the same manner.

We will use the Hodge star in 4 dimensions as follows

⋆(dxµ) = ηµλελνρσ
1
3!dx

ν ∧ dxρ ∧ dxσ (3.60)

⋆(dxν ∧ dxρ ∧ dxσ) = εµρσ
λdx

λ. (3.61)

In equation (3.53) we have found a 4 vector this is actually the Hodge star of the 3 form helicity

density as:

⋆h = −htdt+ hidx
i = (A · ω, λA× ζ − ϕω), (3.62)

therefore from now on we will call the helicity defined by Moffat in [2] as the scalar helicity and the

spacial component as the helicity current. We can check this equation by considering A ∧ F and take

its Hodge star, therefore we can see

A ∧ F = (ϕdt+Aidx
i) ∧ (ωijdx

idxj + λ(ζidx
i) ∧ cmdt) (3.63)

= ωijϕdx
idxjdt+Akλζicmdx

kdxidt+Akωijdx
kdxidxj , (3.64)

here the term with repeated indices are vanishing due to the antisymmetry of the wedge operator.

Now by taking its hodge star we can see

⋆(A ∧ F ) = ωijϕε
ijt

kdx
k +Akλζicmε

kit
jdx

j +Akωijε
kij

tdx
t (3.65)

here up to a symmetry factor this is exactly the equation (3.62). Therefore we can see that the scalar

part of the helicity density is ht ≡ A ·ω that we where investigating in (3.46), this is the equivalent of

what Woltjer found A · B [17]. To compute fully the equation (3.53) in terms of the 3 form Helicity

density we need

dh = d(A ∧ dA) = dA ∧ dA = F ∧ F, (3.66)

where we use the fact that the operator exterior derivative is nilpotent d2A = 0. Then we can see

explicitly that

F ∧ F = (ωijdx
idxj + λ(ζidx

i) ∧ cmdt) ∧ (ωkldx
kdxl + λ(ζkdx

k) ∧ cmdt) (3.67)

= ωijλζkcmdx
i ∧ dxj ∧ dxk ∧ dt+ ωklλζicmdx

i ∧ dxk ∧ dxl ∧ dt (3.68)

= 2ωijλζicmdx
i ∧ dxj ∧ dxk ∧ dt (3.69)

= −2ωijλζiε
ijkcmdt ∧ dx ∧ dy ∧ dz (3.70)

= −2(λω · ζ)Ω4, (3.71)

where Ω4 = cmdt∧ dx∧ dy∧ dz is the four space volume. Hence we can see that the quantity −2λω · ζ
serve as contracting or expanding the differential four volume Ω4. It is important to note that the

22



quantity ω · ζ is the analog of E · B in electromagnetism, this quantity is related to dissipation when

is not equal to zero and greater than one. In the situation of perfect fluid it is easy to see that this

quantity is actually equal to zero: ζ = u × ω and therefore ω · ζ = ω · u × ω = 0, here there is no

dissipation and this results having the vorticity and the swirl fields to be perpendicular. However

for this case in viscous fluids there are not perpendicular hence we have a topological evolution of

knottedness for the field ω. Hence we can summarise the equation for the evolution of the 4 vector

helicity as:
∂ht

∂t
+ ∇ · h = −2λω · ζ. (3.72)

where ht is the scalar helicity and h is the current helicity. This quantity as showed is equal to the

component of F ∧F = dh have different values for different region of the manifold which is describing

the topology or the singularities of the vector potential. This is due that the vortex field is closed

(dF = 0) but only exact locally (F = dA).

In conclusion, the non-vanishing term in equation (3.72) is characteristic of viscous flow and determines

the evolution of helicity. This results in a change of topology, rather than maintaining an invariant as

presented in previous sections.

4 Topological physics and field theory

In this section, we delve into the fascinating realm of topological physics and field theory. We aim to

provide a heuristic introduction to topological physics, focusing on giving the best physical interpre-

tation to key concepts, particularly those needed in the original section on the helicity of time. We

will not be bogged down by signs and conventions but will concentrate on those that are topologically

relevant. Algebraic calculations will be deferred to the novel part of this thesis to avoid redundancy.

We will introduce the Dirac monopole to elucidate the Chern class of a closed curve, showcasing a

prime example of transitioning from 3 + 1 dimensions to 3 spatial dimensions and its implications.

With a practical example in electromagnetism, we will describe homology and cohomology classes,

demonstrating that parallel transport is the dual pairing between cohomology and homology. This

will introduce an important observable in Quantum Field Theory: the Wilson Loop.

Shifting our perspective to field theories, we will introduce the Chern-Pontryagin term and its action,

known as the theta term. We will draw important connections to the helicity discussed in previous

sections. We will also explore how the Abelian Chern-Simons term arises in 3 dimensions, its topo-

logical meaning, and its connection to scalar helicity. This will pave the way for a discussion on knots
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in Quantum Field Theory, where we will employ the previously introduced Wilson Loop to find the

Gauss linking number.

4.1 The Dirac monopole

The upshot of the Dirac Paper [24] is that he demonstrated that the existence of magnetic monopoles

would naturally quantize electric charge. He introduced a singular string-like configuration in the

vector potential to describe the monopole field. This led to a topological argument that reconciled

the monopole with Maxwell’s equations. The paper laid the groundwork for the theoretical study of

magnetic monopoles in quantum field theory. However here we will embark on a topological expla-

nation of the Dirac monopole, we will use some mathematics that was being developed around the

publication of Dirac [24].

By Poincaré’s lemma in standard Electromagnetism theory we have that the F is globally exact

(F = dA) and usually one embark using a standard manifold without any discontinuity, however the

Dirac monopole arises actually in a less trivial manifold. In mathematical terms we say for a base

space R4 that is trivial will make the Abelian group U(1) bundle (Electromagnetism) trivial. A bun-

dle over a base manifold is like a “layered” structure where each point on the base manifold has an

associated “fiber”, which is itself a mathematical space.

Hence we will take the standard construction of our base manifold to be three dimensional euclidean

without the origin R3 − {0}, it is important to note that this is equivalent to take S2 ×R+, where S2

is the standard 3d sphere and R+ is the positive real axis. These two spaces have the same homotopy

type, two spaces having the same homotopy type means they can be “stretched” or “deformed” into

each other without tearing or gluing. In essence, they share the same topological “skeleton”.

Here for simplicity we are working without time and using only the three spacial dimensions as done

by Dirac’s paper. Therefore we can define the one form electric field E = Eidx
i and the 2-form mag-

netic field B = 1
2Fijdx

i ∧ dxj both in three dimension. However the connection F is defined in four

dimensions as a 2-form F = 1
2Fµνdx

µ ∧ dxν and in therms of the electric and magnetic fields takes

this form:

F = dx0 ∧ E + B. (4.1)

Hence we can see heuristically that by ignoring the time dimension we would have F |R3 = B, or more

formally that F pulls back to a 2-form which is the magnetic field on R3. Moreover the magnetic field

here in static Electromagnetism actually represents a curvature on R3 with associated connection one

form Aidx
i, here it easy to see that the magnetic field is fundamentally geometrically different from

the one form electric field.
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To capture and find the magnetic monopole we need to embark in the first Chern class c1(P ) in this

case of a U(1) bundle P that is defined as a integral. Therefore in mathematics the first Chern class

is a topological invariant that captures the “twistiness” of a complex line bundle over a base manifold.

It quantifies how much the bundle deviates from being trivial, this is defined for the connection F as:

c1(P ) = 1
2π

∫
S2
F, c1(P ) ∈ Z. (4.2)

Where for this integral expression we have showed that the connection F is the magnetic field B

and represents the magnetic field of the monopole. When you integrate this curvature over a closed

surface surrounding the monopole, you get an integer multiple of 2π, confirming the quantization

of magnetic charge that Dirac’s found. So, the first Chern class provides a rigorous, topological

framework for understanding why and how magnetic charge would be quantized in the presence of a

magnetic monopole, linking abstract mathematical concepts directly to physical observables.

Hence we showed actually that the vector potential and the Electromagnetism construction is sensible

to the topology of the manifold, we will continue this abstraction with a practical experimental example

to show the concreteness of topological physics while still introducing new concepts.

4.1.1 The Aharonov and Bohm effect and Wilson loop

Three decades after Dirac’s paper on monopoles, another intersection between physics and topology

emerged with the Aharonov-Bohm (AB) effect in 1959 [25]. This quantum phenomenon alters an

electron’s phase through the connection potential or gauge field A, even in regions where the field

strength is zero. In the magnetic AB effect, a solenoid with magnetic flux influences electrons circling

it, despite the absence of a magnetic field outside the solenoid; for the experimental setup, please

refer to Figure 6. The effect underscores the non-locality of quantum mechanics and elevates the

importance of vector potentials over the electromagnetic field or curvature F . It was experimentally

verified in 1960 by Brill and Werner [26] and has significant implications for both quantum interference

and topology.
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Slits Screen

B = 0

B

Figure 6: This figure depicts the experimental setup for the Aharonov-Bohm effect. Here, a source

emits electrons that pass through a double slit before striking a screen. Positioned behind the double

slit is a shielded solenoid where B ̸= 0; elsewhere, B = 0. When the solenoid is turned on, the behavior

of the electrons changes compared to when it is turned off. We define the curve C as the union of the

paths of electrons emitted through slits p1 and p2.

To understand the topological implications of the experiment, consider a space manifold Ω where

the curvature F is zero everywhere except near the solenoid, as shown in Figure 6. Similar to the

situation with the Dirac monopole, we have a non-contractible loop C in Ω. We aim to compute the

“circulation” of the potential A for the two emitted electrons, represented as paths p1 and p2 in the

figure. To accomplish this, we invoke the notion of parallel transport for closed curves. This moves

a vector along a curve in a manifold such that the vector remains parallel to itself according to the

connection. It is defined as:

Pt(C) = exp
[∮

C
A

]
(4.3)

This is also known as the holonomy operator [23]. This operator is fundamental and turns out to be

non-trivial in this context. We will continue by describing what exactly it computes. In this setup

we have the curvature F = dA = 0 vanishes everywhere except in the solenoid, where dA ̸= 0. This

implies that, except in the solenoid, one must have:

A = df, (4.4)

where f is a function on Ω. Therefore, A determines a de Rham cohomology class [A], representing the

equivalence class (refer to Appendix B.1) of differential forms that are closed but not exact, modulo

exact forms. This captures topological invariants of a manifold, such as holes or non-contractible

loops. In physics, de Rham cohomology is often used to classify field configurations and topological
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defects. This equivalence class is represented in this notation:

[A] ∈ H1(Ω;R). (4.5)

From the parallel transport operator in equation (4.3) we see that there is a clearly dependence on loop

C this is in fact the homology class [C] of this curve. The homology class captures essential topological

and geometric features of the space, such as loops that encircle holes or other non-contractible features.

We can represent this by:

[C] ∈ H1(Ω;R). (4.6)

Hence this means that the integral in equation (4.3) is actually the dual paring between cohomology

and homology :

([A], [C]) =
∮

C
A (4.7)

The dual pairing between cohomology and homology is a mathematical framework that allows one

to evaluate cohomology classes on homology classes, yielding a scalar. In physical terms, this dual

pairing can be thought of as a way to “measure” the flux of a field (captured by the cohomology class)

through a cycle (captured by the homology class). This is particularly relevant in gauge theories and

topological field theories, where such pairings can correspond to physically measurable quantities like

magnetic flux through a loop.

Hence this experiment is similar to the Dirac monopole argument, here we can take the space to be

Ω = R3 − L where L is the cylinder represented by the solenoid. Hence we see that the cohomology

here becomes H1(Ω;R) = H1(Ω−L;R) = Z and therefore is not trivial contributing to the experiment.

After discussing the Aharonov-Bohm effect, it is pertinent to introduce the concept of the Wilson

loop [27], defined for this case as:

WR(C) = exp
[∮

C
A

]
(4.8)

where R stands for the irreducible representation of the group G that we are working, in our case is

always the Abelian U(1). This is exactly our parallel transport that we have discussed until now but in

a Quantum Field Theory (QFT) perspective, It captures the net effect of parallel transporting a state

along a closed loop in the presence of a gauge field, serving as a bridge to the dual pairing between

cohomology and homology. It is important to note that in Quantum Field Theory, observables must

be gauge-invariant to have physical meaning, as they should not depend on the choice of gauge. The

Wilson loop satisfies this criterion by being constructed as a path-ordered exponential of the gauge

field along a closed loop. This gauge invariance ensures that the Wilson loop is a legitimate observable
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in QFT, capable of providing physically meaningful information about the system, such as confinement

in QCD or topological phases in condensed matter systems.

We will use this concept to find the Gauss linking number in a QFT set up in the last subsection of

this section.

4.2 Chern-Pontryagin density and the theta term

Here we will introduce the Chern-Pontryagin density and theta term, It is important to say that these

quantities they goes for many names in the literature but we will follow the nomenclature given by

Jackiw [5] and the Tasi lecture on Charge conjugation and Parity (CP) symmetry violation [28]. Here

we are working special relativistic electromagnetism in four dimensions with the usual field strength

tensor (curvature) defined as Fµν = 2∂[µAν] = ∂µAν − ∂νAµ, this namely are the components of the

two form F . Therefore we will define the Chern-Pontryagin density is formulated as follows:

A4 = −F ∧ F = 1
2 ⋆ F

µνFµν = 1
4ϵ

µναβFµνFαβ. (4.9)

It is important to state that this is a covariant density and upon integration over a manifold gives

a pseudo scalar, and most important part is that they do not need the metric upon integration this

makes it independent from local properties of the manifold and makes them a topological object as

are sensible of the “boundary information” of the manifold. We will return and explain what we mean

with densities when we will introduce a General Relativity framework in section 5.1. Therefore the

integration of the Chern-Pontryagin density is called or is known as the theta term [28]:

Sθ = θe

4π2ℏ

∫
d4x

1
2 ⋆ FµνF

µν (4.10)

= − θe

4π2ℏ

∫
F ∧ F = θe

4π2ℏ

∫
2E · B. (4.11)

Here the θ is a parameter and is dimensionless. To show that the theta term is equal to a constant

and effectively that is a Chern number of the U(1) bundle we will follow David Tong in [29] for a

simple effective proof. We will embark to use fully euclidean four dimensional torus space T4, to make

computation easier we will be restricting to the special case that the magnetic and electric field are

constant and that E = (0, 0, E) following as well B = (0, 0, B). Therefore we can see that the relevant

part of the theta term becomes:∫
T4
d4xEB =

∫
T2
dx0dx3E

∫
T2
dx1dx2B. (4.12)

To compute the two integrals, we need to consider the gauge field Aµ as it is the fundamental field,

as demonstrated in the Aharonov-Bohm effect. Assuming periodicity in the x1 direction with radius
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R, one of the constant components of the gauge field is given as follows:

A1 ≡ A1 + ℏ
eR

. (4.13)

This comes from the notion of gauge transformation on a circle A1 → A1 + ∂1ω. Now taking in

consideration that the magnetic field is:

B = ∂1A2 − ∂2A1, (4.14)

where we can gauge fix A1 = 0 resulting B = ∂1A2, as B here is a constant we find that A2 = Bx1.

Therefore we have that at any rotation of 2πR the magnetic field must be equal to

B 2πR = ℏ
eR

⇒ B = ℏn
2πeR2 with n ∈ Z, (4.15)

where in the last equation we added the integer n that stands for the number of revolution around

the torus. Therefore it is easy to see that we can now solve the second part of the equation (4.12) as:∫
T2
dx1dx2B = 2πℏn

e
, (4.16)

this is expected, in fact this is the same condition that we derived in the section on Dirac monopoles

in equation (4.2).

The same argument applies for the electric field,

E = ∂0A3 − ∂3A0, (4.17)

as previous we can gauge fix A0 = 0 making E = ∂0A3 and working with constant electromagnetic

field, this leads to have A3 = Ex0. To be compatible with the periodicity of A3 we have E = ℏn′/2πeR2

where n′ ∈ Z, hence we find that the integral is equal to∫
T2
dx0dx3E = 2πcℏn′

e
. (4.18)

Hence now we can see that using equation (4.18) and (4.16) we have∫
T4
d4xE · B = 4π2ℏ2cN

e2 ⇒ Sθ = ℏθN with N = nn′ ∈ Z, (4.19)

as promised this is a scalar and actually now becomes clear that this is actually a result of the product

of two Chern numbers on the U(1) bundle, where have exploited the fact the base manifold is made

up of circles then used the fact c1(P ) ∈ Z introduced in the Dirac monopole section. It is possible

to generalize this for non-constant electric and magnetic fields. However, the primary focus was to

demonstrate concretely how the θ-term reacts to the boundary of the manifold, in this case T4.
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We end this section by explaining why this action is called theta term also known as axion Electrody-

namics [30] which is relevant in topological insulators. The theta here in a classical theory can take

any value however in a quantum theory it becomes periodic namely:

θ ∈ [0, 2π), (4.20)

this is because the theta term Sθ contributes to the partition function in the following manner:

exp
(
iSθ

ℏ

)
= eiNθ. (4.21)

Hence as N is a integer as shown before, θ in the partition function is relevant only if takes value

modulo 2π. This is also the reason why it is accompanied by other constants, to ensure that the

periodicity is natural and physical.

However the Chern-Pontryagin therm can be shown to be written as a total derivative of what is called

the Chern-Simons term, we will introduce it in the next section.

4.3 Abelian Chern Simon term

As discussed in the previous section, the Chern-Pontryagin entity is topological in nature, providing

insights into the behavior at the boundary of the given manifold. Given that these are scalar densities,

it should be possible to represent them as the divergence of vector densities. This reformulation allows

us to shift our focus from the manifold to its boundary surface, particularly at infinity, thanks to the

application of Gauss’s theorem.

Here we will start by noting that the Chern-Pontryagin density in equation (4.9) it can be expressed

as a total derivative [5]:

A4 = 1
2 ⋆ F

µνFµν = ∂µC
µ
4

Cµ
4 = ϵµαβγAα∂βAγ , (4.22)

where the subscript “4” indicates the dimensions of the space in which we are working. Here, Cµ
4

represents the Chern-Simons current. This is in the context of the anomaly current jµ, which is a

quantum deviation from classical symmetry, we have the following: Classically, ∂µj
µ = 0, but quantum

mechanically, ∂µj
µ = A. In this equation, A is the anomaly term and is often field-dependent. For

those Cµ that produce an anomaly term, the corresponding anomaly currents ∂µC
µ
4 are referred to

as Chern-Simons currents. These are essential for capturing topological properties of gauge fields and

are central to theories like topological quantum field theory in four dimension. They play a crucial

role for example in condensed matter systems, not only in physics but as well in biology in the context
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of DNA mutation [31].

We will continue by stating that the Chern-Simon current in four dimensions it is indeed a three form

and upon exterior derivative we end up with the Chern-Pontryagin four form (F ∧ F ) as mention in

the last section, explicitly

Chern-Pontryagin = d(Chern-Simons) (4.23)

F ∧ F = d(A ∧ dA), (4.24)

hence we can see this is exactly what we where discussing for viscid fluids in section 3.2.2 in equation

(3.66) where the helicity 3 form was defined as h and in fact it is a Chern-Simons form. This means

up to a definition of the curvature and vector potential connection we where dealing with the same

topological quantities and hence the arguments that we have exposed here are valid and enrich our

discussion on a generalised helicity and its evolution.

Furthermore although this quantities are defined now in four dimensional context we can in a natural

way lower down to odd dimensional manifolds. One just need to note that in equation (4.22) the

fully antisymmetric Levi-Civita symbol carries an extra free index and if we fix one of this indexes we

can see that it will restrict the others in 3 dimension, for example fixing the time component of the

Chern-Simons current we have

C0
4 = ϵ0αβγAα∂βAγ

= ϵ0ijkAi∂jAk

= ∓ϵijk(Ai∂jAk), (4.25)

where the sign in the last equation is due up to convention and if we are in a Riemannian or Lorentzian

geometry. This is known as the Abelian Chern-Simons term [32] and this can be integrated in 3

dimension and give a gauge invariant term suitable for an action for a three dimensional theory, it is

important to note the Chern-Simons current in four dimension (Cµ
4 ) can not be standalone term in a

action as is not gauge invariant. Therefore just to make it explicit we can see that the Chern-Simons

term can be rewritten using vector calculus as

Abelian 3d: C3 = ϵijk(Ai∂jAk) (4.26)

= A · (∇ × A) . (4.27)

Now should be easier to see that this is exacly the same topology what we where dealing in the past

fluid theory sections, hence this is the helicity for Moffatt and Woltjer in section 3.1 and it is actually

the 3d Chern-Simons term.
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In the context of Woltjer’s theory of closed magnetic lines, the situation is analogous to the Aharonov-

Bohm (AB) effect, where the region with a non-zero magnetic field is considered to be a closed line,

which could either be a knot or a link between knots. Furthermore, the evolution of the 3-form Chern-

Simons term is governed by the four-dimensional Chern-Pontryagin term, which is equal to E · B.

For a U(1) bundle P , this term represents the product of two first-class Chern numbers for a base

manifold T4. We will explore these connections further in the section on the topology of time in the

context of general relativity.

Before concluding this section, we will delve into another connection between knots and Quantum

Field Theory (QFT) in the next subsection, where we will employ the Wilson loop to rediscover the

Gauss linking number.

4.3.1 Knots in Quantum Field Theory

Here we will follow Witten [33] and Polyakov [34] on their work of incorporating knots in QFT, here

they are considering the Chern-Simons action in 2 + 1 dimensions and we will restrict ourself to the

Abelian U(1) group. This is a quick way to see that indeed the Chern-Simons action really leads to

topological invariants in the context of QFT, here the action is given as

S = ik

4π

∫
M
d3x ϵijkAi∂jAk, (4.28)

where k is a integer, here M is a closed compact manifold and in Witten [33] is taken to be S3 the

four dimensional sphere. Hence the partition function for this QFT is given as

Z(M) =
∫

DA exp
[
− ik

4π

∫
M
d3x ϵijkAi∂jAk

]
(4.29)

where the partition function is a functional integral over all field configurations, weighted by e−S ,

where S is our action functional. It serves as a generating functional for correlation functions and

encodes the vacuum-to-vacuum amplitude. The partition function encapsulates the quantum and

statistical behavior of the field theory. This partition itself actually is an invariant and is called the

Witten invariant.

Therefore we want to incorporate a knot K on the manifold which is an embedded closed curve C

on M. Here we will be using the Wilson loop introduced in equation (4.8) which parallel transport

the vector potential around the curve C and we can formulate the expectation value of this operator

which is

< WR(C) >= 1
Z(M)

∫
DA WR(C) exp

[
− ik

4π

∫
M
d3x ϵijkAi∂jAk

]
. (4.30)

This quantity is shown by Witten to be the Jones Polynomial for the knot Vk(t) for a function t,

discussed in section 2.
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We can also generalised this expectation value for number Cp knots rising p Wilson loops we have:

< WR1 (C1) · · ·WRp (Cp) >=
1

Z(M)

∫
DA WR1 (C1) · · ·WRp (Cp) exp

[
− ik

4π

∫
M
d3x ϵijkAi∂jAk

]
. (4.31)

As this action is quadratic with the exponential dependence on A of a Wilson loop it is possible to

write the integrand as a Gaussian by completing the square, following the computation of the Green’s

function is elementary on S3 then is possible to see that the expectation value is equivalent as

〈
Wn1 (C1) · · ·Wnp (Cp)

〉
= exp

 i

4k ϵijk

p∑
l,m=1

nlnm

∫
Cl

dxi
∫

Cm

dyj (x− y)k

|x− y|3

 (4.32)

= exp

− i

4k

p∑
l,m=1

∫
Cl

∫
Cm

(x − y) × dy · dx
|x − y|3 .

 , (4.33)

where xi and yj are the euclidean coordinates for a patch say U on the three sphere evaluated along

the respective curves. Hence we can see that this is the same Gauss linking number found in previous

sections for Cp curves, this is another context where the this quantity is present. It is important to

note that the work done by Witten it is relevant for three dimensional theories and not dependent

on the two spatial dimensions for its validation. Also here we can see the knots as a closed paths of

charged particles that form the curve C in the manifold.

In conclusion, one may naturally question why Witten’s paper [33] does not discuss the Hopf invariant

in three dimensions or the potential interpretations related to fluid dynamics that are now apparent

to us. In correspondence with Witten, he indicated that he was not aware of the advancements

in topological fluid dynamics at that time. Interestingly, Polyakov’s paper does mention the Hopf

invariant as a Chern-Simons term. This raises the question of how these two fields could mutually

benefit from each other’s contributions.

5 Topological evolution of Time

In this section, we will first introduce the concept of Unimodular Gravity in the context of General

Relativity, followed by a discussion of its variation as proposed by Henneaux and Teitelboim. This

will lead to the introduction of a physical or cosmological time that is dependent on the coordinate

time. Building upon the knowledge and important connections between topological hydrodynamics

and topological field theory established in previous sections, we will then present an original framework

that incorporates the concept of topological time. Subsequently, we will offer some remarks on this

novel theory, contrasting it with existing topological theories and highlighting the key differences.
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5.1 Unimodular Gravity

Unimodular gravity is a modification of General Relativity that has gained attention for its unique

approach to the cosmological constant problem, among other issues in gravitational physics. In General

Relativity, the metric tensor gµν is a dynamical variable, and its determinant g = det(gµν) is not fixed.

In contrast, unimodular gravity imposes a constraint on the determinant of the metric, fixing it to

a constant value, usually √−g = 1 [35] [36]. This seemingly minor modification leads to a profound

alteration in the structure of the gravitational field equations and has far-reaching implications for

cosmology, particularly in the context of the cosmological constant problem.

The cosmological constant problem is one of the most puzzling conundrums in theoretical physics.

It arises from the discrepancy between the observed value of the cosmological constant Λ and its

theoretically predicted value, which can differ by many orders of magnitude. Unimodular gravity

provides a novel perspective on this problem by treating the cosmological constant not as a fundamental

constant but as a dynamical variable that emerges from the theory itself. Here we will explain how

the unimodular gravity as a concept arises, in this calculation we will not consider the matter terms

as are not the main focus in the novel part presented later one.

In standard general relativity, the Einstein Hilbert action [37] is defined as:

SEH = 1
2k

∫
M
d4x

√−g(R− 2Λ), (5.1)

where k = 8πG is a constant, then varying respect to the metric we get the Einstein equations:
δSEH
δgµν

= Gµν + Λgµν = 0. (5.2)

It is also possible see that the Ricci scalar is related to the cosmological constant as such:

Rµν − 1
2Rgµν + Λgµν = 0 (5.3)

−R+ 4Λ = 0 (5.4)

R = 4Λ. (5.5)

Therefore, the cosmological constant Λ appears as a constant term when solving Einstein’s equations.

It is usually treated as a fixed parameter of the theory, and its value must be fine-tuned to match

observations. This fine-tuning is considered unnatural, leading researchers to explore alternative

approaches. We will continue by exploring the unimodular condition.

The symmetry group for general relativity is defined as the diffeomorphism group Diff(M) for a

manifold M that is second-countable and Hausdorff. A diffeomorphism is a map x : M → M that

maps M onto itself. For example, an action of this map is given by

gµν → ḡµ̄ν̄ = ∂xµ

∂x̄µ̄

∂xν

∂x̄ν̄
gµν . (5.6)
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Now, consider the top form that is invariant under coordinate transformations and volume-preserving

diffeomorphisms. We define the top form as:

Ωg ≡ √−gd4x. (5.7)

This form is coordinate-invariant, as each part transforms as follows:

√−g 7→
√

−ḡ =
∣∣∣∣∂xµ

∂x̄µ̄

∣∣∣∣ √−g, with w = −1, (5.8)

d4x 7→ d4x̄ =
∣∣∣∣∣∂x̄µ̄

∂xµ

∣∣∣∣∣ d4x, with w = 1. (5.9)

Here, we define the Jacobian as J =
∣∣∣∂x̄µ̄

∂xµ

∣∣∣w and w is the weight. It is easy to see that the top form

is indeed invariant, Ωg 7→ Ω̄g = Ωg, where the Jacobian terms cancel perfectly in the top form due to

the transformation properties. The unimodular condition imposes that J = 1, which means that the

measure is invariant under transformations:

d4x 7→ d4x̄ = d4x. (5.10)

This implies that we can consider this as a top form, as it is invariant under coordinate transformations

and therefore suitable for integration. Note that one could in the original formulation take an arbitrary

Jacobian in the top form, and it would still be invariant. The unimodular restriction imposes that
√−g = 1 in the top form, making the top form perfectly volume-preserving under diffeomorphisms.

This was originally expressed by Einstein in [36] as a partial gauge-fixing condition used to simplify

some calculations in general relativity. We can then try to impose the unimodular condition in the

Einstein-Hilbert action and propose to write this action as:

SU? = 1
2k

∫
M
d4x(R− 2Λ), (5.11)

which yields the equation of motion for the metric as:

δSU?
δgµν

= Rµν = 0, (5.12)

= Rµν − 1
4Rgµν = 0, (5.13)

where in the last equation we added the Ricci scalar. This is possible because R = 0 from the equation

of motion, implying gµνRµν = 0, and therefore we can include it in the last equation. This equation

is called the trace-free equation as it is traceless:

gµνRµν − 1
4Rg

µνgµν = 0, (5.14)

R− 1
4 × 4R = 0. (5.15)
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Here, we observe that Equation (5.13) does not contain any information regarding the cosmological

constant, whereas the original Einstein-Hilbert action (5.2) does. This is advantageous as we are

seeking a theory without a fixed cosmological constant.

However, taking the covariant derivative of the trace-free equation, we find:

∂µR = 0, (5.16)

This equation can easily be solved by integration, yielding R = constant, where we can set the constant

to be 4Λ to match the Einstein equation case.

However, by introducing a cosmological constant, we end up in a recursive argument and essentially

do not obtain a dynamical constant in the end. This adds an inconsistency to these equations. Setting

R = 4Λ does not agree with the equation of motion for this action, creating a clear inconsistency

between Equation (5.13) and the original equation of motion in (5.12).

Nevertheless, there is a clever way to formulate an action suitable for the unimodular condition:

SUG = 1
2k

∫
M
d4x

(√−gR− 2Λ
(√−g − 1

))
, (5.17)

= 1
2k

∫
M
d4x

√−g (R− 2Λ) + 1
k

∫
M
d4xΛ, (5.18)

Here, the cosmological constant becomes a scalar field, serving as a Lagrange multiplier. The equation

of motion for the cosmological constant imposes the unimodular condition on-shell:

δSUG
δΛ = 0 ⇒ √−g = 1, (5.19)

so it is not imposed at the level of the action. Moreover, this action yields the same Einstein equations

as the standard Einstein-Hilbert action, but with the crucial difference that the cosmological constant

is not a fixed constant but a scalar field in the action. Taking the covariant derivative of this equation

of motion, we find:

∂µΛ = 0, (5.20)

indicating that Λ is a constant on-shell, which can locally be seen as a mere gauge choice [38].

In this theory, following [38] and [39], the action is invariant under a specific subset of diffeomorphisms,

known as transverse diffeomorphisms.

These diffeomorphisms are generated by a vector field ξµ that satisfies the condition

∇µξ
µ = 0. (5.21)

This equation stipulates that the divergence of ξµ must vanish for the diffeomorphism to be considered

transverse. Transverse diffeomorphisms preserve the metric density √−g, as demonstrated by

δξ
√−g = Lξ

√−g = 1
2

√−g∇µξ
µ = 0. (5.22)
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Here, δξ
√−g and Lξ

√−g represent the change in the metric density √−g under the diffeomorphism

generated by ξµ. This equation confirms that the metric density remains invariant under such diffeo-

morphisms. This restricted invariance distinguishes the symmetry group of this theory significantly

from that of General Relativity.

The promotion of the cosmological constant to a dynamical variable has several implications. First,

it alleviates the fine-tuning problem associated with Λ, as it is no longer a fixed parameter that must

be adjusted to match observations. Instead, its value is determined dynamically, providing a natural

explanation for its observed smallness.

Second, the dynamical nature of Λ opens up new avenues for cosmological models. For instance, in

the early universe, the value of Λ could differ, leading to distinct expansion dynamics. This could

have implications for inflationary models and the formation of cosmic structures.

Unimodular gravity presents a compelling alternative to General Relativity, offering novel solutions

to longstanding problems in gravitational physics and cosmology. By constraining the determinant

of the metric tensor and promoting the cosmological constant to a dynamical variable, unimodular

gravity provides a fresh perspective on the nature of spacetime and the evolution of the universe.

Next, we will consider an alternative formulation of unimodular gravity that will extend the invariance

to match exactly those of General Relativity, while retaining the core properties of unimodular gravity.

5.1.1 Henneaux-Teitelboim formulation

The Henneaux-Teitelboim formulation provides an alternative perspective on unimodular gravity by

the inclusion of an auxiliary vector density Vµ. Initially conceived by Henneaux and Teitelboim [40],

the action in this framework is articulated as follows:

SHT = 1
2k

∫
M
d4x

(√−gR− 2Λ
(√−g − ∂µVµ))

(5.23)

where Λ as before acts as a Lagrange multiplier that eventually crystallizes into a constant, thereby

manifesting as an effective cosmological constant in the Einstein equations. The resultant field equa-

tions are:

Rµν − 1
2Rgµν + Λgµν = 0, (5.24)

where Λ is a constant cosmological term, here also as before on shell we have ∇µΛ = 0.

This formulation introduces an additional gauge symmetry, defined by transformations that preserve

gµν and Λ while altering Vµ as:

Vµ → Vµ + ϵµ, where ∇µϵ
µ = 0. (5.25)
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Of the Vµ components, only V0 possesses physical relevance [40], serving as the zero mode canonically

conjugate to the cosmological constant.

Furthermore we can see that we can rewrite the action as the Einstein Hilbert action plus a term as:

SHT = SEH[gµν ,Λ] +
∫

M
d4x Λ∂µVµ (5.26)

= SEH[gµν ,Λ] −
∫

M
d4x Vµ∂µΛ. (5.27)

In the last equation we have integrated by parts, it is clear that now V µ acts now as a Lagrange

multiplier this ensures that the cosmological constant is zero in every direction hence constant on

shell. Here we can note as well that Vµ as weight of 1, this is cancelling the weight of d4x that is -1 as

showed in equation (5.9). We will define the added term as SHT-EH for simplicity to use in the next

sections.

Considering the equation of motion for Λ we have:

√−g = ∂µVµ, (5.28)

then by integrate this equation over full d4x we can see this leads to the concept of unimodular

time [38]:

4-Volume ≡
∫

M
d4x

√−g =
∫

M
d4x∂µVµ

=
∫

M
d4x∇µVµ

=
∫

∂M
dΣµVµ (5.29)

=
∫

Σ(tf )
dΣµVµ −

∫
Σ(ti)

dΣµVµ

=
∫

Σ(tf )
dΣ0V0 −

∫
Σ(ti)

dΣ0V0 (5.30)

= TΛ(tf ) − TΛ(ti) ≡ ∆T, (5.31)

here we have considered that for a vector density we have ∇µVµ = ∂µVµ + Γµ
µα −wΓβ

βµVµ and in our

case for w = 1 this leads to ∇µVµ = ∂µVµ. In equation (5.29) we used stokes theorem and as there is

only time like fluxes the space like ones are taken to be zero in equation (5.30). Furthermore we take

the boundary of the manifold as ∂M = Σ(tf ) ∪ Σ(ti) where Σ(t) is an hypersurface at an instance t.

We have defined throughout the last equation the time function TΛ(t) as:

TΛ(t) :=
∫

Σ(t)
dΣ0V0 =

∫
Σ(t)

d3xn0V0. (5.32)

Here we are following the classical Arnowitt-Deser-Misner (ADM) formalism [41] in which one foliate

the Lorentzian manifold in spacelike hypersurfaces, see for example figure 7. In this formalism hence
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hij is the metric induced on the hypersurface and nµ is the normalised vector perpendicular to the

hypersurface. Here also we have that √−g = N
√

−h where N is the lapse function and h is the

determinant of the induced metric on the hypersurface.

4-Volume

Σ(tf )

Σ(ti)
Σ(t)

Σ(t + dt)
nµ

Figure 7: Here is presented the foliation of the 3 + 1 dimension manifold M, each three dimensional

hypersurface is represented here as a surface that is spacelike with nµ being orthogonal and timelike.

Next to this is depicted the 4-Volume swiped between the two hypersurfaces with ti < t < tf .

It is important to note that this time is defined in respect of the constant Λ and could be applied

the same mechanism for other constant that would get different times, we will keep the subscript with

the cosmological constant to keep remind ourself.

TΛ(t) thus acts as a time function conjugate to the cosmological constant and modulates the spacetime

volume, serving as a fixed volume form in this formalism. This is very important as it gives a

physical interpretation of time based on coordinate time, we will come back in the next section. For

completeness it is important to note that we could use another derivation taking directly the 3 space

integral and then integrating again in time for the interval that we are interested as:

TΛ (tf ) − TΛ (ti) =
∫ tf

ti

dx0
∫
d3x∂µVµ =

∫ tf

ti

dx0
∫
d3x

√−g. (5.33)

The framework can also be equivalently articulated using a fully antisymmetric dual 3-dimensional

form, which serve as duals to the tensorial entities in this formulation. This is exactly what we will

implement in the next section.

5.2 Helicity of Time

In this section, we discuss a novel interpretation of time within the framework of unimodular grav-

ity [42], as proposed by Henneaux and Teitelboim. This interpretation arises from considering ∂µVµ

as the Chern-Pontryagin density, which we introduced in Section 4.2. Before proceeding with this
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formulation, it is essential to establish the conventions and provide a formal description of the elec-

tromagnetic tensor.

We work in a local coordinate system where the Minkowski metric tensor is given by ηµν = diag(−1,+1,+1,+1).

The Levi-Civita symbol is defined such that ϵ0123 = −ϵ123 = −1. We employ the standard field strength

tensor, denoted as Fµν = 2∂[µAν], which is equivalent to the components of F = dA, where A is a

one-form. Therefore we define the electric vector as follows:

F0i = −Ei = 2∂[0Ai]. (5.34)

Subsequently, we introduce the magnetic pseudo-vector as:

Bi = ϵijk∂jAk, (5.35)

= −ϵ0ijk∂jAk, (5.36)

−Bi = ϵ0ijk∂jAk = 1
2ϵ

0ijkFjk. (5.37)

Thus, the electromagnetic field tensor takes the form:

Fµν =



0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0


, (5.38)

where we set c = 1 for subsequent computations. It is important to note that this convention aligns

closely with the one used in Section 3.2.1 for the non-conserved helicity section.

We can reformulate the Chern-Pontryagin density as:

P = F̃µνFµν , (5.39)

where F̃µν is the dual tensor of Fµν , defined as:

F̃µν = 1
2ϵ

µναβFαβ, (5.40)

Here, we introduce the Levi-Civita tensor as ϵ̂µναβ = √−gϵµναβ and ϵ̂µναβ = 1√
−g
ϵµναβ , where ϵµναβ

is the standard Levi-Civita symbol. Incorporating the Chern-Pontryagin term into the Unimodular
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Henneaux-Teitelboim action yields:

SHT-EH =
∫
d4x

Λ
2 F̃

µνFµν (5.41)

=
∫
d4x

Λ
2 ϵ

αβµνFαβ∂µAν

=
∫
d4x

Λ
2 ϵ

αβµν [∂µ (FαβAν) − (∂µFαβ)Aν ] (5.42)

=
∫
d4xΛ∂µ

(1
2ϵ

αβµνFαβAν

)
=

∫
d4xΛ∂µ

(
F̃µνAν

)
(5.43)

In Eq. (5.42), the last term vanishes due to the commutativity of the partial derivatives when multi-

plied by the fully antisymmetric Levi-Civita symbol. Consequently, the vector density can be expressed

as the dual of the field strength tensor contracted with the vector potential, Vµ = F̃µνAν , where both

quantities have weight −1, which cancels under integration over d4x, as previously discussed. The

divergence of this term corresponds to the theta term described in Section 4.2, given by:

∂µVµd4x = ∂µ(F̃µνAν)d4x

= −F ∧ F = −dA ∧ dA = −d(A ∧ dA), (5.44)

where we utilized the nilpotency of the exterior derivative (d2 = 0). This can be explicitly demon-

strated as follows:

SHT-EH = −
∫

Λd(A ∧ dA)

= −
∫

Λ∂γ(Aµ∂αAβ)dxγ ∧ dxµ ∧ dxα ∧ dxβ

= −
∫

Λ∂γ(Aµ∂αAβ)(−ϵγµαβ)d4x (5.45)

=
∫
d4xΛ∂γ

(
ϵγµαβAµ

1
22∂αAβ

)
(5.46)

=
∫
d4xΛ∂µ

(1
2ϵ

µναβFαβAν

)
(5.47)

=
∫
d4xΛ∂µ

(
F̃µνAν

)
, (5.48)

As expected, this theory is fully compatible with the unimodular gravity formulation by Henneaux-

Teitelboim.

We can now begin to investigate the properties of this formulation by examining the unimodular time,
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denoted as TΛ(t), which we described in Eq. (5.32). In this context, it takes the form:

TΛ(t) =
∫

Σ(t)
dΣ0 V0, (5.49)

=
∫

Σ(t)
dΣ0

1
2ϵ

αβ0µFαβAµ, (5.50)

=
∫

Σ(t)
dΣ0

1
2Aiϵ

0ijkFjk, (5.51)

= −
∫

Σ(t)
dΣ0 Aiϵ

ijk∂jAk, (5.52)

= −
∫

Σ(t)
dΣ0 A · (∇ × A) . (5.53)

It becomes evident that the unimodular time is the negative of the scalar magnetic helicity, which

aligns precisely with Woltjer’s findings [17]. Importantly, this helicity resides in a Euclidean three-

dimensional hypersurface. This is a significant development, as it links the unimodular time to the

topological evolution of the scalar helicity. Specifically, at each coordinate time step, this quantity

measures the degree of knottedness in the hypersurface and is an integer.

We can now proceed to the next logical step, which is to explore the implications of equation (5.31).

This equation relates the 4-volume spanned between two hypersurfaces at two distinct times to the

difference in unimodular time over the same interval of coordinate time. As previously demonstrated,

this unimodular time also has another interpretation, namely, as the scalar helicity. Therefore, we can

combine these equations to analyze their interrelationship further:∫ tf

ti

∫
d3x

√−g = −
∫

Σ(tf )
dΣ0A · (∇ × A) +

∫
Σ(ti)

dΣ0A · (∇ × A) =
∫

Σ(tf )
dΣ0 V0 −

∫
Σ(ti)

dΣ0 V0

4-Volume(ti → tf ) = −∆H = ∆T. (5.54)

The 4-volume swept between the two hypersurfaces, as depicted in Figure 8, is equal to the negative

difference in scalar magnetic helicity. This, in turn, corresponds to the difference in unimodular time

between the coordinate times ti and tf .
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Σ(ti)

Σ(tf )

Figure 8: Spacetime volume depiction between two hypersurfaces at final and initial time where there

is an evident difference in the configuration of knots made of B field. This is a pictorial depiction of

topological evolution of the scalar helicity.

This finding is remarkable. If there is no evolution of magnetic helicity, then no 4-volume is gener-

ated between ti and tf . In other words, if the topological degree of knottedness of the magnetic field

B remains constant between the two hypersurfaces, then there is no creation of 4-volume or time.

This could be interpreted as a manifestation of physical time from the perspective of the gauge field

A. This insight raises several questions; we will attempt to address the most pressing ones and offer

some reflections.

An important question arises: Is the three-dimensional scalar helicity formally invariant in this con-

text? Given equation (5.54), it should not be invariant at different times; otherwise, there would

be neither unimodular time nor 4-volume. To investigate this, we consider the time derivative of

unimodular time and examine its evolution using equation (5.28). We start by focusing on the time

component of ∂µVµ, which is given by:

∂0V0 = −∂0 (A · (∇ × A)) , (5.55)

= E · B + A · (∇ × E) , (5.56)

= 2E · B − ∇ · (A × E) , (5.57)

where we used the identity (A.5). This equation is structurally similar to the discussion on helicity

invariance in equation (3.52) from the section on viscid fluids. Substituting equation (5.55) into the

time derivative of unimodular time from equation (5.32), we obtain:

ṪΛ =
∫

Σ(t)
dΣ0 2E · B −

∫
∂Σ(t)

dS A × E, (5.58)

=
∫

Σ(t)
dΣ0 2E · B, (5.59)
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where we assume that the boundary term vanishes because A approaches zero at infinity. This is a

standard derivation in the literature for the evolution of scalar helicity in electromagnetism [3].

However, we must also consider the other side of the equation of motion, as given by equation (5.33),

which satisfies:

ṪΛ = ∂0

∫
dx0

∫
Σ(t)

d3x
√−g =

∫
Σ(t)

d3xN
√

−h. (5.60)

Combining these two equations, we obtain:∫
Σ(t)

d3xN
√

−h =
∫

Σ(t)
dΣ0 2E · B. (5.61)

From this, it is evident that helicity is not conserved, as 2E · B ̸= 0. Hence, we observe a topological

evolution in different instances of the scalar helicity.

Next, we turn our attention to the equation of motion for the cosmological constant, which further

elucidates the relationship between the metric and the scalar helicity. We find:
√−g d4x = −F ∧ F (5.62)

= −1
2Fµν

1
2Fαβdx

µ ∧ dxν ∧ dxα ∧ dxβ (5.63)

= −1
4FµνFαβ(−ϵµναβ)d4x (5.64)

= F0iFαβϵ
0iαβd4x (5.65)

= F0i2∂jAkϵ
0ijkd4x (5.66)

= −2Ei(−Bi)d4x (5.67)

= 2E · B d4x, (5.68)

This situation bears resemblance to the generalization of helicity in viscid fluids discussed in Section

3.2.2. The key difference here is that we are not dealing with an extra equation for a fluid but rather

the standard electromagnetic field tensor. Nevertheless, this framework can be adapted for more

general cases, such as fluid dynamics.

We can associate the action with the helicity 3-form dh = d(A∧dA) up to a sign, which corresponds

to the theta term containing the Abelian Chern-Simons current in four dimensions. Thus, we have:

∂µ(⋆h)µ = ∂µVµ = ∂µ(F̃µνAν). (5.69)

As previously discussed, ⋆h will yield the four-vector in Section 4.3, where the 0th component gives the

Abelian Chern-Simons term in three dimensions and the three-vector helicity. Therefore, the Hodge

dual of h is:

(⋆h)0 = −A · B, (5.70)

(⋆h)i = E × A + Bϕ. (5.71)
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An important observation is that the quantity E ·B serves as the square root of the determinant of the

field strength tensor. From equation (5.44), we deduce that, on-shell, the following condition holds:

√−g = 1
2 F̃

µνFµν = 2E · B = 2
√
F = ∂µ(⋆h)µ, (5.72)

where we define F = det(Fµν). The interpretation of this result is still a subject of ongoing inves-

tigation. However, it is intriguing to note that reintroducing the speed of light constant c yields
√−g = 2

c2

√
F , suggesting the possibility of a variable speed of light in this framework.

Although we have not delved into the quantization of this theory, the integer-valued scalar helicity,

which describes unimodular time, could be indicative of a quantization of time or a ladder process

involving changes in the linking number of the magnetic field.

We conclude this section by noting that this formulation arises quite naturally and could be considered

more of a discovery than a mere formulation. In the subsequent section, we will provide a general

overview of this discovery and discuss potential frameworks.

5.2.1 2+1 versus 3+1 dimensions and a theory of many helicities

In this concluding section, we aim to highlight some key distinctions between the standard Chern-

Simons theory in 2+1 dimensions, as employed by Polyakov [34] and Witten [33], and the novel theory

presented in the previous section in 3 + 1 dimensions [42].

The scalar helicity that appears in unimodular time is actually the 3-dimensional Chern-Simons

term discussed in Witten’s paper [33]. However, there is a peculiar difference that is physical in

nature. In standard Chern-Simons theory employed in Witten and Polyakov, which is described in

2+1 dimensions, because knots in 4 dimensions become trivial. To enforce a physical interpretation

there, time is included as one of the three dimensions. This is depicted in Figure 9, where the knot is

represented by a close motion of a charged particle in 2 + 1 spacetime, thereby focusing on topological

invariants of this knots.

In contrast, our case is fundamentally different. Although it is true that each 3-dimensional

hypersurface in our framework has topological invariants in the form of closed magnetic field lines,

these are merely trivial invariants because by the definition of the spacial hypersurface these are

constant in time coordinate. For a more detailed illustration, please refer to the second part of Figure

9.
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M2+1

M3+1

Figure 9: In this figure we present two contrasting scenarios. On the left, we depict the classical

picture of 2 + 1-dimensional Chern-Simons theory, featuring a closed path traversed by a charged

particle in space. Adjacent to it, we illustrate the 3+1-dimensional manifold, where the hypersurfaces

are represented in shades of gray and host closed magnetic field lines. It is crucial to emphasize that

these spaces extend infinitely in their respective dimensions.

Upon fixing the fourth dimension, as elaborated in Section 4.1, the magnetic field emerges as the

curvature (F = B) on the hypersurfaces, rendering the electric field perpendicular to these surfaces.

While the Wilson loop could serve as an observable, it would be more appropriate to employ the ’t

Hooft loop operator [43], the magnetic analogue of the Wilson loop. This is akin to parallel transport

in Equation (4.3), differing mainly in the application of Stokes’ theorem over the magnetic flux.

Investigating the expectation values of this operator could yield fruitful insights into knot polynomials.

Another noteworthy point is that this theory could serve as a mechanism to implement the 3D

Chern-Simons term from a 4D action with a theta term via ADM foliation. One could generalize

unimodular time by choosing a different constant, extending from a single variable to multi-variable

constants α. This introduces a multitude of magnetic fields Bi
α within the new helicity framework.

For each gauge field Aα
µ , the action is given by

SHT-EH =
∫
d4x α · ∂µVµ

α, (5.73)

where Vµ
α = 1

2 F̃
µν
α Aα

ν . This leads to α-dependent magnetic helicities, and similar results to Equation

(5.54) are expected in terms of physical time differences.

A more elegant perspective involves considering a diagonal matrix KIJ , with I, J = 1, ..., d, where

d is the dimension of the vector space formed by each variable α. The matrix is defined as KIJ =

diag(α1, α2, ..., αd). A Chern-Pontryagin term with gauge group d-torus is then introduced, with action

SHT-EH = −
∫
KIJF

I ∧ F J . (5.74)
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The action has a symmetry group U(1)d, the torus group, and each unimodular-like time is associated

with its gauge field AI and corresponding magnetic helicity.

In conclusion, this theory could be compellingly applied to turbulent hydrodynamics, offering an

effective way to incorporate a fluid in 3 + 1 dimensions while accounting for effective topological

evolution.

6 Conclusion

In conclusion, we have successfully demonstrated a significant link between topological hydrodynamics

and topological field theory. This connection manifests in the form of scalar helicity as defined by

Moffatt [2], which aligns with that of Abelian Chern-Simons theory. Both of these theories are essential

for exploring topological invariance. Here, we have successfully generalized helicity and identified its

additional components, as anticipated by Carter [18]. This generalization provides us with the tools

to examine the properties that govern the evolution of this generalized helicity, particularly in viscous

fluids. We have also presented an original application of this concept in the context of Henneaux-

Teitelboim’s unimodular gravity [40], thereby emphasizing the benefits of bridging the gap between

fluid dynamics and field theory.

Our innovative formulation offers an alternative perspective on invariants in three dimensions.

While the original Chern-Simons theory is formulated in a 3D space with one temporal dimension,

we have shown that an alternative setup is feasible. By starting with a 3+1-dimensional theory that

includes a theta term, we were able to recover cosmological time as an Abelian Chern-Simons term.

The advantage of using ADM foliation [41] is that it allows us to examine the evolution of helicity at

any given time coordinate. This would crystalise in a topological physical time, where if there is no

change in the scalar helicity between two hypersurfaces then there would not be physical time and the

4-Volume swept between the hypersurfaces.

One of the most significant contributions of this work is the introduction of a concept of ‘physical

time,’ which is sensitive to the topological evolution of the magnetic field. This stands in contrast

to the traditional notion of ‘coordinate time’, which serves as a mere parameter in the equations of

motion. Our formulation of physical time offers a dynamic framework that is intrinsically tied to

the underlying physics, specifically the topology of the magnetic field. This not only enriches our

understanding of time itself but also has potential implications for various domains, from cosmological

models to quantum field theories.

We have also proposed a theory involving multiple variable constants and multiple helicities, open-

ing new avenues for future research. This includes the potential involvement of cross helicity, as
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discussed in Section 3.1.3.

Although our work lays a solid foundation for this novel formulation, it is limited to the Abelian

gauge group U(1). This has significant implications, as the curvature on the hypersurface corresponds

to the magnetic field. A natural next step would be to explore how the theory behaves with non-

Abelian gauge groups. We have also not addressed the quantization of this theory, which could have

intriguing implications for black holes, as recent advancements suggest [44].

Our framework also implies a phase transition from laminar to turbulent flows, which could be rel-

evant for cosmology and planetary formation, as discussed by Sconfield [45]. Future work could benefit

from computational simulations, potentially using FireDrake [46] for fluid dynamics or GRChombo

for general relativity simulations [47].

While our framework raises more questions than it answers, it provides a strong foundation for

future research. One open question is the implication of the equation of motion √−g = 2
√
F , where

F is the determinant of the curvature field strength tensor. Nevertheless, the connections and gener-

alizations we have introduced offer promising avenues for various applications in both fluid dynamics

and theoretical physics.

Appendix A Vector Calculus

Here we give some basic definitions of vector calculus employed in the thesis.

∇f = grad f = ∂f

∂x
î + ∂f

∂y
ĵ + ∂f

∂z
k̂ (A.1)

div F = ∇ · F =
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
· (Fx, Fy, Fz) = ∂Fx

∂x
+ ∂Fy

∂y
+ ∂Fz

∂z
. (A.2)

∇ × F =
(
∂Fz

∂y
− ∂Fy

∂z

)
ı̂ +

(
∂Fx

∂z
− ∂Fz

∂x

)
ȷ̂ +

(
∂Fy

∂x
− ∂Fx

∂y

)
k̂ =


∂Fz
∂y − ∂Fy

∂z

∂Fx
∂z − ∂Fz

∂x

∂Fy

∂x − ∂Fx
∂y

 (A.3)

∆f = ∂2f

∂x2 + ∂2f

∂y2 + ∂2f

∂z2 . (A.4)

A.1 Identities

Here we give all the identities used in the thesis.

∇ · (A × B) = (∇×A) · B − A · (∇×B) (A.5)

∇ × (A × B) = A (∇ · B) − B (∇ · A) + (B · ∇) A − (A · ∇) B (A.6)

∇ · (ψA) = ψ∇·A + (∇ψ) ·A (A.7)
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Appendix B Differential Geometry

In this appendix, we provide the essential concepts of differential geometry required to understand

the key ideas presented in this thesis. For those unfamiliar with exterior calculus and differential

geometry, a comprehensive reference is Nakahara [23].

B.1 Equivalence Classes

An equivalence class is a fundamental concept in set theory and abstract algebra that partitions a set

into disjoint subsets. Given a set S and an equivalence relation ∼ on S, an equivalence class [a] is

defined as the set of all elements in S that are equivalent to a particular element a ∈ S.

Mathematically, the equivalence class [a] containing a is defined as:

[a] = {x ∈ S | x ∼ a}.

The set of all equivalence classes for S under ∼ is denoted by S/ ∼, and it forms a partition of S.

That is, S/ ∼ satisfies the following properties:

1. ⋃
[a]∈S/∼[a] = S

2. [a] ∩ [b] = ∅ for [a] ̸= [b]

3. [a] ̸= ∅ for all [a] ∈ S/ ∼

This partitioning is crucial in various areas of mathematics, including the construction of quotient

spaces in topology and the factorization of algebraic structures.

B.2 Differential Forms

A differential k-form ω on a smooth manifold M is a smooth section of the k-th exterior power of the

cotangent bundle, denoted as ω ∈ Ωk(M). Mathematically, it can be expressed locally as:

ω = f(x1, . . . , xn) dxi1 ∧ . . . ∧ dxik ,

where f(x1, . . . , xn) = ωx1...xn is a smooth function and dxi are the basis 1-forms.

B.3 Wedge Product

The wedge product ∧ is an associative and anticommutative operation on differential forms. Given

two forms α ∈ Ωp(M) and β ∈ Ωq(M), their wedge product α ∧ β ∈ Ωp+q(M) is defined as:

α ∧ β = (p+ q)!
p! q! Alt(α⊗ β),

49



where Alt denotes the antisymmetrization of the tensor product α⊗ β.

Properties:

• Associativity: (α ∧ β) ∧ γ = α ∧ (β ∧ γ)

• Anticommutativity: α ∧ β = (−1)pqβ ∧ α

• Linearity: α ∧ (β + γ) = α ∧ β + α ∧ γ

B.4 Exterior Derivative

The exterior derivative is a linear operator d : Ωk(M) → Ωk+1(M) that acts on differential k-forms to

produce (k + 1)-forms. For a k-form ω, the exterior derivative dω is defined as:

dω = d(ωi1...ik
dxi1 ∧ . . . ∧ dxik) = ∂ijωi1...ik

dxij ∧ dxi1 ∧ . . . ∧ dxik ,

where ωi1...ik
are the components of the form and dxi are the basis 1-forms.

Properties:

• Linearity: d(α+ β) = dα+ dβ

• Leibniz Rule: d(α ∧ β) = dα ∧ β + (−1)|α|α ∧ dβ

• Nilpotency: d2 = 0

B.5 Hodge Star Operator

The Hodge star operator, denoted by ⋆, is a map ⋆ : Ωk(M) → Ωn−k(M), where n is the dimension of

the manifold M . Given a k-form ω, the Hodge star of ω is defined as:

⋆ω =
√

|det(g)|ωi1...ik
ϵi1...ik

j1...jn−k
dxj1 ∧ . . . ∧ dxjn−k ,

where g is the metric tensor, ϵ is the Levi-Civita symbol, and ωi1...ik
are the components of ω.

Properties:

• Involution: ⋆(⋆ω) = (−1)k(n−k)ω

• Orthogonality: ⟨ω, ⋆ϕ⟩ = ⟨⋆ω, ϕ⟩
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