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Abstract

This thesis reviews the background of massive gravity and its new extension theory, projected mas-

sive gravity (PMG). The first part of this thesis consists of addressing some outstanding problems

and their solutions in the historical development of massive gravity, such as the van Dam–Velt-

man–Zakharov discontinuity, Boulware-Deser (BD) ghost, and Vainshtein screening. In particular,

starting with massless and massive spin-1 and spin-2 fields, we show how gauge invariance can be

restored through Stückelberg fields, and finally arrive at a ghost-free massive theory. In the second

part, the new BD ghost-free theory PMG is introduced by abandoning a global translation invari-

ance, which has 5 dynamical degrees of freedom. PMG has attracted attention because of it allows

for stable cosmological solutions without infinite strong coupling. We thus provide complete details

of the derivation of cosmological background equations. The last section comprises the original

work. An investigation into black hole solutions in PMG is conducted and the static spherically

symmetric solutions are obtained in a concrete model. We also discuss the time-dependent metrics

in the end.
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Notation

Throughout this thesis, d represents the number of space-time dimensions and we will work in units

where the reduced Planck constant h̄ and the speed of light c are equal to 1. The gravitational

Newton constant GN is related to the reduced 4d Planck mass MPl = 1√
8πGN

. We also adopt

the ‘space-like convention’ for the metric, i.e., mainly + convention (−+ · · ·+). Space indices are

denoted by i, j, · · · = 1, · · · , d− 1 while time-like direction represented by 0, x0 = t. ηµν represent

the flat Minkowski metric.

We use the symmetric convention: (a, b) = 1
2 (ab+ ba) and [a, b] = 1

2 (ab− ba). For the tensors:

T(µν) =
1
2 (Tµν + Tνµ), T[µν] = 1

2 (Tµν − Tνµ). The squares of vectors and tensors often represent

contractions, for instance, A 2
µ = AµA

µ, F 2
µν = FµνF

µν , etc· · · . Moreover, square brackets of a

tensor indicate the trace of tensor, for instance [X] = Xµ
µ,
[
X2
]
= Xµ

νXν
µ, etc· · · . We also use the

notation Πµν = ∂µ∂νπ, and I = δµν .

For the Riemann and Einstein curvature tensors, we will use the conventions:

Rµ
ναβ = ∂αΓ

µ
νβ − ∂βΓ

µ
να + Γµ

σαΓ
σ
νβ − Γµ

σβΓ
σ
να,

Gµν = Rµν − 1

2
gµνR,

(1)

where Γν
µρ = 1

2g
να (∂ρgαµ + ∂µgαρ − ∂αgµρ) is the Christoffel symbol. We also obtain the Ricci

tensor Rµν and Ricci scalar R, via contraction: Rµν = Rα
µαν and R = gαβR

αβ = Rα
α

In 4d space-time we denote ∇µ as covariant derivatives. The d’Alembertian will then be defined

as � ≡ gµν∇µ∇ν . We will use the dot operators to refer to time derivatives ˙ ≡ d
dt , and use the

prime operators to refer to radial derivatives ′ ≡ d
dr .
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1

1
Introduction

General relativity (GR) is widely considered to be the correct theory to describe the force of gravity

at low energies or large distances developed by Albert Einstein [1]. The correctness of GR has

been verified with high precision, ranging from laboratory scale to the solar system scale [2]–[7].

However, on galactic and cosmological scales, current experimental observations are not accurate

enough to confirm or disprove GR. The correctness of GR thus remains hypothetical. In fact,

within the realm of gravity and cosmology, several questions remain unsolved such as the old

cosmological constant problem [8]. In addition, in 1998, astronomers were astonished to find that

the expansion of the Universe is accelerating [9], [10]. This discovery of the late-time acceleration

of the Universe has presented one of the most challenging problems in theoretical physics [11],

leading physicists to explore alternatives to GR on large scales.

Modifications to gravity offer an intriguing approach to addressing the cosmological constant

problem. One approach involves modifying the way gravity responds to the cosmological con-

stant [12]. There is a braneworld theory that postulates that we are living in a 4d membrane

embedded in a higher dimensional spacetime. Based on the braneworld theory, Georgi Dvali, Gre-

gory Gabadadze, and Massimo Porrati proposed a beautiful self-accelerating solution to explain

the accelerating expansion of the universe, known as the DGP model [13]. In the DGP model,

a 3-brane is embedded in a 5d spacetime, where gravity in the 5d bulk is described by 5d GR,

which induced the 4d gravity on the 3-brane. This solution wherein the Universe’s expansion is

determined by the ratio between the 4d and 5d Newton constants, without the need for a cosmo-

logical constant [14]. Unfortunately, there is no viable model that effectively embodies these novel

concepts in a consistent way.
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We are confronted with a significant question: why is it challenging to modify GR? David

Lovelock proved that Einstein’s equations are the only possible equations of motion derived from

a 4d action which is a function of the 4d spacetime metric up to second order. It is also known as

Lovelock’s theorem [15], [16]. From a more modern perspective, Refs. [17]–[19] point out that GR is

the unique theory of massless spin-2 particle (graviton) with Lorentz invariance build in. Therefore,

if we want to modify GR, we need to introduce one or more of the following conditions [11]: extra

degrees of freedom, higher derivatives, higher dimensional spacetime and non-locality. In this

thesis, our focus will be on the concept that gravity is still mediated by a spin-2 graviton while

respecting Lorentz invariance, but with the consideration that this graviton to be massive.

The construction of a graviton’s mass can be traced back to the work of Markus Fierz and

Wolfgang Pauli in 1939 [20]. The straightforward approach to constructing a theory of massive

gravity is to simply add a mass term to the linearized Einstein-Hilbert (EH) action, known as

the Fierz-Pauli (FP) action. This is the theoretical study of massive gravity from a field theory

perspective. However, the massive spin-2 field, i.e. FP action, in the linear theory has 5 physical

degrees of freedom (dofs) and does not recover to GR as the graviton mass m goes to zero. This

discontinuity was recognized as an artificial outcome arising from the linear theory. Moreover, the

real challenge arises when we are attempting to extend this theory to a massive gravity theory

with interaction. As we know, GR is a fully non-linear and diffeomorphism invariant (general

covariant) theory. For massive gravity, the diffeomorphism is broken by the mass term while the

full non-linearity is still present. It is the non-linearity that makes the construction complicated.

Nearly seven decades after the inception of the massive gravity theory, Claudia de Rham, Gregory

Gabadadze and Andrew Tolley (dRGT) first proposed a theoretically consistent theory with a

non-linear mass term [21], [22]. Furthermore, the dRGT theory has simultaneously avoided two

elements that make the massive gravity theory problematic for many years.

The first element is van Dam–Veltman–Zakharov (vDVZ) discontinuity [23], [24]. As mentioned

earlier, a massive spin-2 field propagates 5 dofs even in the limit as m → 0, whereas GR only

propagates 2 dofs as a theory of massless spin-2 fields. This subtlety violates the principle of

continuity in physics. This vDVZ discontinuity was soon attributed to the fact that not all of the

extra dofs introduced by the graviton mass decouple as m → 0. In fact, in the massless limit, a

massive graviton becomes a massless graviton coupled with a longitudinal graviton, rather than a

massless graviton in GR. Consequently, some phenomenological predictions given by the massive

gravity in the massless limit deviate from those of GR. Arkady Vainshtein provided a resolution to

this puzzle in 1972 [25]. As the graviton mass decreases, non-linearities of the theory strengthen due
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to the scalar mode undergoing non-linear fluctuations. This leads to higher-order derivative terms

surpassing the magnitude of the conventional kinetic term, a phenomenon known as Vainshtein

screening.

However, the story of dofs is still not over. In 1972, David Boulware and Stanley Deser found

that the fully non-linear massive gravity theories exhibit a ghost-like instability, resulting in the

presence of the sixth dof in these theories [26]. This is the second element of concern in dealing

with massive gravity theories, now known as the Boulware–Deser (BD) ghost. Fortunately, new

theories born later, such as DGP model and dRGT theory mentioned earlier, have cleverly avoided

BD ghost.

Moreover, the dRGT theory even admits an open Friedmann–Lemaître–Robertson–Walker

(FLRW) solution, where its mass terms mimic the behavior of a cosmological constant [27]. Thus,

the dRGT theory should be an important theory promising to solve the late-time acceleration prob-

lem. However, this theory was subsequently shown to potentially have strong coupling problem [28]

and a non-linear ghost instability [29]. Hence, it is necessary to explore additional extensions of

non-linear massive gravity in order to obtain a stable cosmological solution.

In this thesis, we shall focus on an extension of generalized dRGT theory, which abandons

translation invariance. This extension results in a theory that is different from dRGT-type con-

structions by directly projecting out one dof, now known as projected massive gravity (PMG)[30].

PMG was proposed in 2020 and has been demonstrated to possess a self-accelerating solution with-

out theoretical instabilities. In addition to the solutions in cosmology, black hole (BH) solutions

also deserve further investigation, as they serve as a crucial phenomenological basis for testing the

correctness of the gravity theory.

This thesis is organized as follows: In Chapter 2, we establish the formalism for massive and

massless spin-1 and spin-2 fields, with a particular emphasis on the Stückelberg language for both

the Proca and Fierz–Pauli fields. A Brief introduction to the vDVZ discontinuity and its resolution

Vainshtein screening are shown in Section 2.3 and Section 2.4. The BD ghost and ghost-free theory

are finally discussed at the end of this chapter. In Chapter 3, we start with the massive gravity

with non-minimal coupling and generalize the dRGT mass terms by using disformal transformation

acted on the reference metric. The necessary conditions to eliminate the would-be BD ghost are

summarized in Section 3.1.3. In Section 3.3, we investigate the cosmology solutions based on the

equations of motion of PMG and derive the corresponding background equations. Section 3.4

consists of original work, we investigate the BH solutions in PMG and discuss the possibility of
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the time-dependent metrics. We then devoted to summary and provide perspective on future

developments. As this thesis is intended to review the background of massive gravity and its

extension PMG, we provide in the main body and appendix numerous non-trivial computational

details that may are not presented in the existing literature.
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Massive gravity in a nutshell

This chapter mainly follows with Ref. [31] and Ref. [32], offering a brief introduction to massive

gravity within the context of historical development, showing how some important results are

inspired by the spin-1 field theory, and finally arriving at the ghost-free massive gravity that we

really care about.
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2.1 Spin-1 field

In order to get a more intuitive understanding of massive spin-2 fields, we could start with a review

of the spin-1 field.

2.1.1 Maxwell kinetic term

Consider a vector field Aµ in 4d Minkowski manifold, indices are raised and lowered with respect to

the flat Minkowski metric. From Lorentz invariance and locality, the kinetic term can be generally

given by

Lspin-1
kin = a1∂µA

ν∂µAν + a2∂µA
µ∂νA

ν + a3∂µA
ν∂νA

µ, (2.1)

where a1, a2 and a3 are undetermined constants. Up to a boundary term, we notice that the

contribution of the first and third terms is equal. Thus we can set a3 = 0 from now on.

Helicity-0 and Helicity-1 mode

Before going on to discuss how to decompose the vector field Aµ to continue simplifying the kinetic

term, let’s introduce an important concept. The Lorentz transformation rule for bosons can be

characterized by an integer h ≥ 0, i.e., helicity. When h = 0, these massless particles can be

effectively described by a scalar field that possible to introduce any sort of interaction terms that

maintain Lorentz invariance. Consequently, there exists a lot of potential self-consistent interacting

theories concerning spin-0 particles. When h = 1, such massless particles can be carried by a vector

field Aµ, which is fixed to be the Maxwell action. Moreover, for the case h ≥ 1, if we consider

the interactions that exhibit manifest Lorentz symmetry and locality, the field must carry a gauge

symmetry. When h = 2, the required gauge symmetry is linearized diffeomorphism invariance.

Refs. [18], [19], [33] show that asking for self-consistent interactions essentially leads to a unique

outcome, namely GR with full general coordinate invariance. In the end, Ref. [34] shows that there

are no self-interactions that can be written for the case h ≥ 3.

Now, let us back to discussing the behavior of the different dofs in this theory. In principle,

the Lorentz vector field Aµ can have up to 4 dofs in 4d spacetime. A priori, Aµ can be split as

Aµ = A⊥
µ + ∂µχ. (2.2)
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where χ is a longitudinal (or helicity-0) mode which has 1 dof, A⊥
µ is a transverse (or helicity-1)

mode, i.e. ∂µA⊥
µ ≡ 0, which has 3 dofs. Therefore, Lspin-1

kin becomes,

Lspin-1
kin = a1∂µ

(
A⊥ν + ∂νχ

)
∂µ
(
A⊥

ν + ∂νχ
)
+ a2∂

µ
(
A⊥

µ + ∂µχ
)
∂ν
(
A⊥

ν + ∂νχ
)

= a1∂µ
(
A⊥ν + ∂νχ

)
∂µ
(
A⊥

ν + ∂νχ
)
+ a2∂

µ∂µχ∂
ν∂νχ

= a1
(
∂µA

⊥ν∂µA⊥
ν + ∂µ∂

νχ∂µ∂νχ
)
+ a2∂

µ∂µχ∂
ν∂νχ.

(2.3)

where we have removed the mixing terms ∂µA⊥ν∂µ∂νχ and ∂µ∂
νχ∂µA⊥

ν by integrating by parts.

Now the kinetic term is separated into the part of longitudinal (helicity-0) mode and the part of

transverse (helicity-1) mode. For the longitudinal mode χ, we have

Lχ
kin = a1∂µ∂

νχ∂µ∂νχ+ a2∂
µ∂µχ∂

ν∂νχ

= a1∂
µ∂µχ∂

ν∂νχ+ a2(�χ)
2

= (a1 + a2) (�χ)
2,

(2.4)

here the d’Alembertian in flat Minkowski is � = ηµν∂µ∂ν and the first term of the second equality

holds after integrations by parts. It is easy to see that this kinetic term for the field of longitudinal

mode involves higher spacetime derivatives unless a1 = −a2. We now demonstrate the Ostrograd-

sky instability1 by introducing Lagrange multiplier χ̃(x). Thus, the Lagrangian for the field χ is

equivalent to

Lχ
kin = (a1 + a2)

(
χ̃�χ− 1

4
χ̃2

)
, (2.5)

Here, we should notice about that the constraint equation for χ̃(x):

χ̃ = 2�χ, (2.6)

can be obtained by deriving the equation of motion with respect to χ̃(x). After changing the

variables χ = φ1 + φ2 and χ̃ = φ1 − φ2, the kinetic term of χ with two scalar fields φ1 and φ2 take

the form

Lχ
kin = (a1 + a2)

(
φ1�φ1 − φ2�φ2 −

1

4
(φ1 − φ2)

2

)
. (2.7)

We directly see that two scalar fields φ1 and φ2 consistently associated with opposite kinetic

terms, indicating that one of them is a ghost and we should choose a1 = −a2 to avoid this generic

pathology at the classical level.
1Ref. [35] pointed out that there are 2 dofs hidden in the field χ with an opposing sign kinetic term, also known

as Ostrogradsky’s theorem.
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We now proceed to discus the remaining helicity-1 mode A⊥
µ , the kinetic term takes the form

Lhelicity-1
kin = a1

(
∂µA

⊥
ν

) (
∂µA⊥ν

)
. (2.8)

If we choose a1 = −1/2, this local kinetic term of the spin-1 field is Maxwell field

LMaxwell = −1

4
FµνF

µν

= −1

4
(∂µAν − ∂νAµ)(∂

µAν − ∂νAµ)

= −1

2
∂µA

ν∂µAν

= Lhelicity-1
kin ,

(2.9)

where we fixed the Lorenz gauge. Here, there exist U(1) gauge symmetry in this massless free

spin-1 Maxwell field,

Aµ → Aµ + ∂µξ, (2.10)

which can be used to fix the gauge of our choice.

We can perform a spacetime split so-called (3+1)-split for convenience. There are 3 dofs in Ai,

and the Coulomb gauge ∂iAi = 0 can eliminate one of them. Thus, Ai contains no longitudinal

mode,

Ai = Atransverse
i + ∂iA

longitudinal , (2.11)

where the the Coulomb gauge sets the longitudinal mode Alongitudinal = 0. The Maxwell action

(2.9) under this splitting becomes,

Lspin-1
kin = −1

4
FµνF

µν = −1

2
Fµν∂

µAν

= −1

2
(∂tAi − ∂iAt)∂

tAi − 1

2
(∂iAt − ∂tAi)∂

iAt − 1

2
(∂iAj − ∂jAi)∂

iAj

= −1

2
(∂tAi)

2 − 1

2
(∂iAt)

2 − 1

2
(∂iAj)

2

(2.12)

where we have removed the terms ∂iAt∂
tAi, ∂tAi∂

iAt and ∂jAi∂
iAj by integrating by parts and

by Coulomb gauge fixing. The time component At does not exhibit a kinetic term and appears

instead as a Lagrange multiplier. Thus we can impose the constraint

∂i∂
iAt ≡ 0. (2.13)
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Then Maxwell action becomes,

Lspin-1
kin = −1

2
(∂tAi)

2 − 1

2
(∂iAj)

2 = −1

2

(
∂µA

transverse
i

)2
, (2.14)

which only propagating 2 dofs in Atransverse
i .

In conclusion, to prevent any ghosts producing along with the helicity-0 mode, the form of

the Maxwell kinetic term of the vector field and the fact that the 4d massless vector field only

propagates 2 dofs are not artificial choices.

2.1.2 Proca mass term

We now move on to discuss this theory in the massive vector field. We now add a covariant mass

term to Maxwell action, i.e., Proca action

LProca = −1

4
FµνF

µν − 1

2
m2AµA

µ. (2.15)

Notice that even with the addition of the Proca mass term, the kinetic term has been uniquely

fixed in order to avoid the ghost. However, this mass term breaks the gauge symmetry (2.10), and

then the Coulomb gauge can no longer be chosen. Similarly, we decompose the vector field Aµ as

before

Aµ = A⊥
µ + ∂µχ̂, (2.16)

but now we have χ = mχ̂, so the Proca action becomes,

LProca = −1

2

(
∂µA

⊥
ν

) (
∂µA⊥ν

)
− 1

2
m2
(
A⊥

µ + ∂µχ̂
)2

= −1

2

(
∂µA

⊥
ν

)2 − 1

2
m2
(
A⊥

µ

)2 − 1

2
(∂µχ)

2
,

(2.17)

where we have dropped the term m2A⊥
µ ∂µχ̂ by integrating by parts. We immediately see the

massive vector field has 3 dofs. The transverse mode A⊥
µ propagates 2 dofs and longitudinal mode

χ propagates 1 dof. For the first time, we encounter discontinuity in the number of dofs between

the case of massive and massless fields. Moreover, it is obvious that the Proca action (2.17) does

not recover to Maxwell action (2.9) as m→ 0.

In order to distinguish the physical difference between a massless vector field and a massive
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vector field but with tiny mass, we can consider coupling the field to external sources

Lsources = AµJ
µ. (2.18)

Here, the source should be conserved ∂µJ
µ = 0 since the U(1) symmetry is preserved in massless

case. The transverse modes of the massless vector field A⊥
µ produced by the source should satisfied

�A⊥
µ = Jµ. Therefore, the exchange amplitude A can be expressed as follows:

Amassless
JJ ′ =

∫
d4xA⊥

µ J
′µ =

∫
d4xJ ′µ 1

�
Jµ, (2.19)

where Jµ and J ′
µ are two conserved sources mediated by a massless vector field. Moving on to the

massive case, the source produces a massive vector field that should satisfy

(
�−m2

)
A⊥

µ = Jµ, (2.20)

and

�χ = 0. (2.21)

The transverse mode A⊥
µ and the longitudinal mode χ of the massive vector field should be con-

sidered in the exchange amplitude

Amassive
JJ ′ =

∫
d4x

(
A⊥

µ + ∂µχ
)
J ′µ

=

∫
d4xA⊥

µ J
′µ

=

∫
d4xJ ′µ 1

�−m2
Jµ.

(2.22)

Remember �χ = 0, the longitudinal mode χ should not be excited by a conserved source. Conse-

quently, even though the massive vector field propagates 3 dofs, the massless one only propagates

2 dofs, we cannot distinguish Amassive
JJ ′ and Amassless

JJ ′ between two conserved sources as m→ 0.

2.1.3 Stückelberg trick for spin-1 field

We will see more explicitly that there is a discontinuity in linear massless gravity and the linear

massive gravity in massless limit in Section 2.3 later. In fact, the correct massless limit of linear

massive gravity should be a massless gravity plus extra dofs which are a massless vector and a

massless scalar coupling to the trace of the energy-momentum tensor. This extra scalar coupling
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leads to the well-known vDVZ discontinuity. As mentioned in Section 2.1.2, we encounter discon-

tinuity in the number of dofs between the case of massive and massless fields. Stückelberg’s trick

can be used to find the correct limit so that there are no dofs gained or lost. This trick works by

introducing extra new fields and gauge symmetries into the massive theory [36].

To introduce the idea, we consider the theory of a massive spin-1 field coupled to an external

source, i.e., the action we just discussed

L = −1

4
FµνF

µν − 1

2
m2AµA

µ +AµJ
µ, (2.23)

where the mass term breaks the gauge invariance, δAµ = ∂µξ. As it stands, the massless limit

of the (2.23) is not smooth due to the discontinuity in the number of dofs. To reconcile this, we

introduce a Stückelberg field φ, by making the replacement

Aµ → Aµ + ∂µφ, (2.24)

which is not a gauge transformation and not a decomposition of Aµ. So we created a new action

from the original one, by the addition of a Stückelberg field φ. But Fµν is still invariant under this

replacement and this replacement only changes the mass term and coupling term for the action.

Thus, the action (2.23) becomes,

L = −1

4
FµνF

µν − 1

2
m2 (Aµ + ∂µφ)

2
+AµJ

µ − φ∂µJ
µ, (2.25)

where we have integrated the last term by parts and this new action now is invariant under the

gauge transformation
Aµ → Aµ + ∂µξ,

φ→ φ− ξ.

(2.26)

If we set φ = 0, i.e., fixing the unitary gauge, the action (2.25) can reduce to the original one

(2.23). This implies that (2.25) and (2.23) are equivalent theories but the former uses more fields

and gauge symmetry.

On the other hand, the Stückelberg trick is an excellent example of the fact that gauge symmetry

is not a true symmetry of our theory, rather than a redundancy of description. Actually, any theory

can become a gauge theory by introducing redundant variables. Or, the gauge symmetry can be

eliminated by removing the redundant dofs in any gauge theory. From this case, we know that

eliminating the redundancy may lead to the loss of something important. For instance, if we
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remove the gauge redundancy in electromagnetism, the Lorentz invariance is not manifest.

Coming back to the discussion that how the Stückelberg trick can preserve the number of dofs

in massless limit. We first rescale the Stückelberg field φ → 1
mφ to normalize the φ kinetic term,

then the action (2.25) becomes

L = −1

4
FµνF

µν − 1

2
m2AµA

µ −mAµ∂
µφ− 1

2
∂µφ∂

µφ+AµJ
µ − 1

m
φ∂µJ

µ, (2.27)

with the gauge symmetry

δAµ = ∂µξ, δφ = −mξ. (2.28)

Notice that, we should consider the conserved source now, since the last term of (2.27) diverges as

m→ 0 [37]. So (2.27) with conserved source in massless limit becomes

L = −1

4
FµνF

µν − 1

2
∂µφ∂

µφ+AµJ
µ, (2.29)

with the new gauge symmetry

δAµ = ∂µξ, δφ = 0. (2.30)

Now we can clearly recognize that of the 3 dofs of massive field, two into the massless vector and

one into the scalar. In the massless limit, we are left with a completely decoupled free scalar and

a massless vector interacting with the source.

2.2 Spin-2 field

For a spin-2 field, the kinetic term is also uniquely fixed by the requirement that free of any

ghost-like instability. This is the well-known Einstein–Hilbert (EH) action.

2.2.1 Einstein–Hilbert kinetic term

Similar to the case in spin-1 field, we first consider a symmetric Lorentz rank-2 field but now is

tensor hµν (and its trace h) in 4d Minkowski manifold. From Lorentz invariance and locality, the

kinetic term can be generally given by

Lspin−2
kin =

1

2
∂αhµν

(
b1∂αhµν + 2b2∂(µhν)α + b3∂αhηµν + 2b4∂(µhην)α

)
, (2.31)
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where b1, b2, b3, and b4 are undetermined constants and would be determined by preventing the

occurrence of higher derivative terms similar to the spin-1 field. This symmetric tensor field hµν

has 10 components, which can be split as a transverse tensor hTµν and a vector field χµ,

hµν = hTµν + 2∂(µχν), (2.32)

where hTµν is also symmetric tensor which carries 6 components and χµ carries 4 components. As

we analyzed in the spin-1 field, the terms that contain higher derivatives for longitudinal modes

χµ would imply a ghost. Similarly, we can avoid the ghosts by tuning the undetermined coefficient

b1,2,3,4. The potentially dangerous parts of the kinetic term are

Lspin−2
kin ⊃ (b1 + b2)χ

µ�2χµ + (b1 + 3b2 + 2b3 + 4b4)χ
µ�∂µ∂νχ

ν

− 2hTµν ((b2 + b4) ∂µ∂ν∂αχ
α + (b1 + b2) ∂µ�χµ

+(b3 + b4)�∂αχ
αηµν) .

(2.33)

All of these terms should disappear and we thus obtain the relationship between these 4 undeter-

mined coefficients

b4 = −b3 = −b2 = b1. (2.34)

In order to follow the standard conventions, we set b1 = −1/4 from now on. Then, the only possible

local and Lorentz invariant kinetic term for a spin-2 field is the Einstein–Hilbert one�

Lspin−2
kin = −1

4
hµν Êαβ

µν hαβ = −1

4
hTµν Êαβ

µν h
T
αβ (2.35)

where we defined the Lichnerowicz operator Ê acting on hµν

Êαβ
µν hαβ = −1

2

(
�hµν − 2∂(µ∂αh

α
ν) + ∂µ∂νh− ηµν

(
�h− ∂α∂βh

αβ
))
. (2.36)

Moreover, there also exists gauge symmetry in this massless tensor field and is invariant under

hµν → hµν + ∂(µξν). (2.37)

Notice that, whether the tensor field has mass or not does not affect the form and gauge invariance

of the kinetic term, as long as the kinetic term is restricted to a local and Lorentz invariant.

However, the mass term and/or any other self-interacting potential in the vector field do break the

gauge invariance.
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2.2.2 Fierz–Pauli mass term

Moving to the spin-2 tensor field with mass. A priori, there are two possible contributions of the

mass terms. The more general mass term can be written as

Lmass = −1

8
m2
(
h2µν −Ah2

)
, (2.38)

where A is a dimensionless parameter and we will show that the theory is only stable for A = 1,

which is also called the Fierz-Pauli tuning.

In order to restore the diffeomorphism invariance that was broken by adding the mass term, we

now again introduce the Stückelberg fields but have four components χµ to make the mass term

invariant under linear diffeomorphisms. This is a trick similar to the Abelian-Higgs mechanism of

electromagnetism. Then the mass term becomes

Lmass = −1

8
m2
((
hµν + 2∂(µχν)

)2 −A (h+ 2∂αχ
α)

2
)
, (2.39)

which is invariant under the following gauge transformations

hµν → hµν + ∂(µξν), (2.40)

χµ → χµ − 1

2
ξµ. (2.41)

The kinetic term for Stückelberg fields is

Lχ
kin = −1

2
m2
(
(∂µχν)

2 −A (∂αχ
α)

2
)
. (2.42)

The terms in parentheses in Eq. 2.42 precisely have the same form as the longitudinal mode χ kinetic

term for spin-1 field (2.4) with a1 = 1 and a2 = A. As analyzed in the spin-1 field, it is necessary

to choose a1 = a2 in order to avoid higher derivatives. In other words, the only combination for

the longitudinal component of these Stückelberg fields is A = 1. As a result, the unique mass term

is the well-known FP mass term which is free from an Ostrogradsky instability [20], [35]

LFP mass = −1

8
m2
((
hµν + 2∂(µχν)

)2 − (h+ 2∂αχ
α)

2
)
. (2.43)

Besides, if Stückelberg fields χµ are set to zero, i.e., choosing the unitary gauge, the FP mass term
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becomes

LFP mass = −1

8
m2
(
h2µν − h2

)
. (2.44)

Consequently, we obtain the linearized FP action

LFP = Lspin−2
kin + LFP mass = −1

4
hµν Êαβ

µν hαβ − 1

8
m2
(
h2µν − h2

)
. (2.45)

Propagating degrees of freedom and helicity decomposition

The Stückelberg fields χa can be split further into a transverse mode Aa and a longitudinal mode

π,

χa =
1

m
Aa +

1

m2
ηab∂bπ, (2.46)

where m is the normalization factor. After substitution of χa in terms of Aa and π. The linearized

FP action becomes

LFP =− 1

4
hµν Êαβ

µν hαβ − 1

2
hµν (Πµν − [Π]ηµν)−

1

8
F 2
µν

− 1

8
m2
(
h2µν − h2

)
− 1

2
m (hµν − hηµν) ∂(µAν)

(2.47)

where we defined Πµν = ∂µ∂νπ for convenience and [Π] is its trace with respect to the background

Minkowski metric ηµν . We can see that the terms on the first line represent the kinetic terms of

the Aa and π fields, respectively. The second line represents the mass terms and mixing term.

However, the field π is mixing with the field hµν . But we can diagonalize this mixing by shifting

hµν = h̃µν + πηµν and the LFP can arrive at

LFP =− 1

4
h̃µν Êαβ

µν h̃αβ − 3

4
(∂π)2 − 1

8
F 2
µν

− 1

8
m2
(
h̃2µν − h̃2

)
+

3

2
m2π2 +

3

2
m2πh̃

− 1

2
m
(
h̃µν − h̃ηµν

)
∂(µAν) + 3mπ∂αA

α.

(2.48)

We now can identify the different dofs and helicity decomposition present in FP action: hµν

represents the helicity-2 mode and has 2 dofs, Aµ represents the helicity-1 mode and has 2 dofs,

and π represents the helicity-0 mode and has 1 dof. To sum up, the massive spin-2 field propagates

5 dofs in 4d spacetime.
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Moreover, for massive spin-2 field, the coupling to matter now occurs by

hµνT
µν = h̃µνT

µν + πT, (2.49)

where Tµν is external stress-energy tensor and T is its trace. Unlike in the case of massive spin-1

field, now the helicity-0 mode couples to conserved sources but the helicity-1 mode does not. So the

generic sources will excite the two helicity-2 polarization of a third helicity-0 polarization, which

could potentially lead to significant outcomes (the origin of the vDVZ discontinuity).

2.3 van Dam–Veltman–Zakharov discontinuity

Similar to the spin-1 field case, the massive spin-2 field also propagates more dofs than the massless

one. In Section 2.1.2, we show that there are no observational signatures for the spin-1 field due to

the exchange amplitude Amassive
JJ ′ is the same as Amassless

JJ ′ with m→ 0. This is because no external

source excites the helicity-0 mode in massive spin-1 field. However, as discussed in Section 2.2.2,

the external sources will excite both helicity-2 polarization and helicity-0 polarization. In order to

see the dramatic consequences more explicitly, we will show the discrepancy between the massless

limit of massive spin-2 field and massless spin-2 field by computing the gravitational exchange

amplitude, which is also known as vDVZ discontinuity [23], [24].

2.3.1 Massless spin-2 field

Let us start with the massless spin-2 field, the theory in this case is diffeomorphism invariant. So

in order to ensure that the symmetry is preserved when considering coupling to external sources

(with the form hµνT
µν). This requires the stress-energy tensor Tµν should be conserved

∂µT
µν = 0. (2.50)

Thus, the massless spin-2 field response to a conserved external source

L = −1

4
hµν Êαβ

µν hαβ +
1

2MPl
hµνT

µν (2.51)
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Then the linearized Einstein equation can be obtained by solving its equation of motion:

Êαβ
µν hαβ =

1

MPl
Tµν . (2.52)

Since the tensor field hµν is invariant under the gauge transformation (2.40), we can impose a

gauge fixing condition in linearized gravity. In this spin-2 field, the analog of the Lorenz gauge is

called the de Donder (or harmonic) gauge

∂µhµν − 1

2
∂νh = 0. (2.53)

Under the de Donder gauge, the linearized Einstein equation (2.52) then reduces to

�hµν − 1

2
�hηµν =

−2

MPl
Tµν , (2.54)

and taking the trace of this equation, we have

�h =
−2

MPl
T. (2.55)

Substituting it back into the linearized Einstein equation (2.52),

�hµν = − 2

MPl

(
Tµν − 1

2
Tηµν

)
. (2.56)

Thus, we can define the propagator for a massless spin-2 field

Gmassless
µναβ =

fmassless
µναβ

�
, (2.57)

where fmassless
µναβ is the polarization tensor,

fmassless
µναβ = ηµ(αηνβ) −

1

2
ηµνηαβ . (2.58)

As a result, the gravitational exchange amplitude between two sources Tµν and T ′
µν via a massless

spin-2 field is given by

Amassless
TT ′ =

∫
d4xhµνT

′µν = − 2

MPl

∫
d4xT ′µν 1

�

(
Tµν − 1

2
Tηµν

)
. (2.59)
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2.3.2 Massive spin-2 field

Moving on to the massive case, and consider the linearized FP action response to a conserved

external source

L = −1

4
hµν Êαβ

µν hαβ − m2

8

(
h2µν − h2

)
+

1

2MPl
hµνT

µν , (2.60)

then we can obtain the modified linearized Einstein equation

Êαβ
µν hαβ +

1

2
m2 (hµν − hηµν) =

1

MPl
Tµν . (2.61)

Here, we need to solve this modified linearized Einstein equation for hµν and the calculations are

similar to the massless case but more complicated. We consider the trace and the divergence of

the Lichnerowicz operator acting on hµν , we obtain

Êαβ
µν hαβη

µν = �h− ∂α∂βh
αβ , (2.62)

∂µÊαβ
µν hαβ = 0. (2.63)

Then, taking double derivatives of the modified linearized Einstein equation (2.61) and combining

with the Eq. 2.62 and Eq. 2.63 one can find that

∂µ∂ν
(
Êαβ
µν hαβ +

1

2
m2 (hµν − hηµν)

)
=

1

MPl
∂µ∂νTµν

=⇒ �h− ∂µ∂νhµν =
−2

m2MPl
∂µ∂νTµν = Êαβ

µν hαβη
µν .

(2.64)

Then, we consider the trace of the modified linearized Einstein equation (2.61)

Êαβ
µν hαβη

µν − 3

2
m2h =

1

MPl
T

=⇒ −2

MPl
∂µ∂νTµν − 3

2
m2h =

1

MPl
T

=⇒ h =
−2

3m2MPl

(
T +

2

m2
∂µ∂νTµν

)
.

(2.65)

Taking the derivative of the Eq. 2.61 and combining the above results,

∂µÊαβ
µν hαβ + ∂µ

(
1

2
m2 (hµν − hηµν)

)
=

1

MPl
∂µTµν

=⇒ 1

2
m2∂µhµν − ∂ν

[
−2

3m2MPl

(
T +

2

m2
∂µ∂νTµν

)]
=

1

MPl
∂µTµν

=⇒ ∂µh
µ
ν =

2

m2MPl

(
∂µT

µ
ν +

1

3
∂νT +

2

3m2
∂ν∂α∂βT

αβ

)
.

(2.66)
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From Eq. 2.64 we can see that for a conserved source ∂µTµν , the linearized Ricci scalar vanishes

∂µ∂νh
µν −�h = 0, which can be considered to be the origin of vDVZ discontinuity [23], [24].

Consequently, when combined with the results provided by Eq. 2.65 and Eq. 2.66, the modified

linearized Einstein equation becomes

(
�−m2

)
hµν =− 2

MPl

[
Tµν − 1

3
Tηµν − 2

m2
∂(µ∂αT

α
ν) +

1

3m2
∂µ∂νT

+
1

3m2
∂α∂βT

αβηµν +
2

3m4
∂µ∂ν∂α∂βT

αβ

]
=− 2

MPl

[
η̃µ(αη̃νβ) −

1

3
η̃µν η̃αβ

]
Tαβ ,

(2.67)

where we have defined

η̃µν = ηµν − 1

m2
∂µ∂ν . (2.68)

Thus, we can define the propagator for a massive spin-2 field

Gmassive
µναβ =

fmassive
µναβ

�−m2
, (2.69)

where fmassive
µναβ is the polarization tensor,

fmassive
µναβ = η̃µ(αη̃νβ) −

1

3
η̃µν η̃αβ . (2.70)

As a result, the gravitational exchange amplitude between two sources Tµν and T ′
µν via a massive

spin-2 field is given by

Amassive
TT ′ =

∫
d4xhµνT

′µν = − 2

MPl

∫
d4xT ′µν f

massive
µναβ

�−m2
Tαβ . (2.71)

Notice that, there is no a priori reason to restrict ourselves to conserved sources in massive case.

But in order to compare this result with the massless case, the two sources should be conserved as

m→ 0. Therefore, the amplitude exchanged via a massive spin-2 field but in the massless limit is

Am→0
TT ′ = − 2

MPl

∫
d4xT ′µν 1

�

(
Tµν − 1

3
Tηµν

)
, (2.72)

which is not consistent with the result (2.59) of the massless field.

The difference between the exchange amplitudes of massless graviton and massive graviton in

massless limit is the well-known vDVZ discontinuity. Arkady Vainshtein gave the resolution to

this discontinuity problem in 1972 [25]. He argued that there is no reliable non-linear behavior of
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massive gravity in the limit of small mass since massive gravity theory becomes strongly coupled

with a low energy scale. We shall do a simple calculation to show how this happens in the next

section (see Ref [32] for more details).

2.4 Vainshtein radius

We start looking at static spherical solutions for the FP massive gravity and follow the steps of

the perturbation method in GR in the Appendix C.2.2. The spherically symmetric static metric

(off-diagonal metrics would be more general but we limit ourselves to the diagonal ansatz) can be

written as

ds2 = gµνdx
µdxν = −B(r)dt2 +A(r)dr2 + C(r)r2dΩ2. (2.73)

The vacuum solution satisfies the equations Tµν = 0, combing this ansatz and the equations of

motion from the full non-linear GR action, i.e.

√
−g
(
Rµν − 1

2
Rgµν

)
+
√
−g(0)m

2

2

(
g(0)µαg(0)νβhαβ − g(0)αβhαβg

(0)µν
)
= 0, (2.74)

with hµν = gµν − g
(0)
µν , where g

(0)
µν is the absolute metric which is flat Minkowski in spherical

coordinates,

g(0)µν dx
µdxν = −dt2 + dr2 + r2dΩ2, (2.75)

we can obtain tt, rr and θθ (φφ equation gives the same result) components equations respectively,

4BC2m2r2A3 +
(
2B(C − 3)C2m2r2 − 4

√
A2BC (C − rC ′)

)
A2

+ 2
√
A2BC

(
2C2 − 2r (3A′ + rA′′)C + r2A′C ′)A+ C

√
A2BCr2 (A′)

2
= 0,

4 (B + rB′)A2 +
(
2r2A′B′ − 4B (C − rA′)

)
A+Br2 (A′)

2

A2BC2r2
− 2(2A+B − 3)m2

√
A2BC

= 0,

− 2B2C2m2rA4 − 2B2C2(B + C − 3)m2rA3

−
√
A2BC

(
2C ′B2 + (rB′C ′ − 2C (B′ + rB′′))B + Cr (B′)

2
)
A2

+B
√
A2BC (CrA′B′ +B (4CA′ − rC ′A′ + 2CrA′′))A−B2C

√
A2BCr (A′)

2
= 0.

(2.76)

We demand the solution to be asymptotically flat (or rather expand the above equations around

the flat space solution), which also leads to

B0(r) = 1, C0(r) = 1, A0(r) = 1. (2.77)
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The expansion can be defined as

B(r) = B0(r) + εB1(r) + ε2B2(r) + · · · ,

C(r) = C0(r) + εC1(r) + ε2C2(r) + · · · ,

A(r) = A0(r) + εA1(r) + ε2A2(r) + · · · .

(2.78)

where ε is a parameter that counts the order of non-linearity. Plugging the expansion expression

of A(r), B(r) and C(r), we can obtain the differential equations for the expansion of each power

of ε. At O(0) order, we have 0 = 0, i.e., A0 = B0 = C0 = 1 are solutions to the full non-linear

equations. At O(ε) order we have

2
(
m2r2 − 1

)
A1 +

(
m2r2 + 2

)
C1 + 2r (−3A′

1 + C ′
1 − rA′′

1) = 0,

− 1

2
B1m

2 +

(
1

r2
−m2

)
A1 +

r (A′
1 +B′

1)− C1

r2
= 0,

rA1m
2 + rB1m

2 + rC1m
2 − 2A′

1 −B′
1 + C ′

1 − rA′′
1 − rB′′

1 = 0,

(2.79)

which could lead to

−3rB1m
2 + 6B′

1 + 3rB′′
1 = 0. (2.80)

Combing these equations with the boundary condition, we obtain the solution

B1(r) = −8GM

3

e−mr

r
,

C1(r) = −8GM

3

e−mr

r

1 +mr

m2r2
,

A1(r) =
4GM

3

e−mr

r

1 +mr +m2r2

m2r2
,

(2.81)

where we have selected the integration constant that corresponds to other physical results. We can

continue in this way to any order of ε, and obtain the expansion in mr � 1 limit,

B(r) = 1− 8

3

GM

r

(
1− 1

6

GM

m4r5
+ · · ·

)
,

C(r) = 1− 8

3

GM

m2r3

(
1− 14

GM

m4r5
+ · · ·

)
,

A(r) = 1 +
4

3

GM

4πm2r3

(
1− 4

GM

m4r5
+ · · ·

)
.

(2.82)

The dots represent higher order in the non-linearity expansion in the parameter ε. Moreover, the

non-linear expansion is an expansion of parameters rV /r, where

rV ≡
(
GM

m4

)1/5

(2.83)
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is the Vainshtein radius. We can see that rV grows to infinity as m→ 0. Analogy to the GR, the

Schwarzschild radius can be considered as the cut-off scale for the linear theory of linearised GR,

the solution of linear perturbation theory cannot be trusted within Vainshtein radius. Thus we

have reason to believe that the vDVZ discontinuity is the true non-linear solution shows a smooth

limit [38], [39].

2.5 Non-linear Stückelberg decomposition

There are only two ways to non-linearly complete linear diffeomorphism in spin-2 field, one is linear

diffeomorphism in the full theory and the other is full non-linear diffeomorphism. It is possible to

write self-interactions which preserve linear diffeomorphism, but there are no interactions between

matter and spin-2 field which preserve linear diffeomorphism. So any theory of gravity must exhibit

full non-linear diffeomorphism which leads to GR.

2.5.1 Reference metric

Now we would like to extend the theory non-linearly, so we may need for extending the theory

about different reference (or rather fiducial) metric fµν . Interestingly, Ref. [26] also discussed

whether it was possible to construct a massive gravity theory without using a reference metric

at all. It was shown that the only consistent alternative is to consider a function of the metric

determinant which is equivalent to the cosmological constant. Strictly speaking, the notion of spin

is only meaningful when representing a Lorentz group, thus the theory of massive spin-2 field is

only meaningful when Lorentz invariance is preserved, i.e., fµν = ηµν .

2.5.2 Non-linear Stückelberg field

At the linearized level, the mass for gravity was not built by the full metric gµν , but by the

fluctuation of the reference metric hµν . Notice that this reference metric does not transform as a

tensor under general coordinate transformations. This result is already known at the linear level

because the FP mass term (2.38) breaks linearized diffeomorphism invariance. Nevertheless, we

have discussed previously that the gauge symmetry can always be restored by Stückelberg fields,
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which amounts to replacing the reference metric to

ηµν −→ ηµν − 2

MPl
∂(µχν), (2.84)

(where we worked with the flat Minkowski metric as the reference metric,) and transforming χµ

under linearized diffeomorphism. Thus the combination hµν − 2∂(µχν) remains invariant.

Now the Stückelberg trick should be promoted to a fully covariant realization and non-linearly

since the symmetry is replaced by general covariance and non-linearly realized. We can ’formally’

restore covariance by including four Stückelberg fields φa, and promoting the reference metric fµν

to tensor f̃µν [40],

fµν −→ f̃µν = ∂µφ
a∂νφ

bfab, (2.85)

where the Stückelberg fields φa transform as scalars, thus f̃µν transforms as a tensor under coor-

dinate transformations. Besides, the Stückelberg fields can reduce to φa = xa and the reference

metric can recover f̃µν = fµν in unitary gauge. As a result, a theory of massive gravity can be

constructed by a scalar Lagrangian of the tensors f̃µν and gµν .

In general, it is useful to construct the following tensor quantity in massive gravity,

Xµ
ν = gµαf̃αν = ∂µφa∂νφ

bfab. (2.86)

In unitary gauge, we have

X = g−1f = gµαfαν . (2.87)

Ref. [41] also provided an alternative way to Stückelberize the reference metric fµν . The new

tensor quantity is

gacfcb → Ya
b = gµν∂µφ

a∂νφ
cfcb. (2.88)

But both matrices Xµ
ν and Ya

b have the same eigenvalues and there is no difference between them

when they are used to define the massive gravity Lagrangian [42].

2.5.3 Non-linear Fierz–Pauli mass term

Ref. [40] provides a straightforward example of a non-linear extension of the FP mass term,

L(non−lin1)
FP = −m2M2

Pl
√
−g
([
(I− X)2

]
− [I− X]2

)
, (2.89)
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which is invariant under non-linear coordinate transformations. Ref. [26] also gives another way

to generalize the FP mass non-linearly as follows

L(non−lin2)
FP = −m2M2

Pl
√
−g

√
detX

([(
I− X−1

)2]− [I− X−1
]2)

. (2.90)

Prior to this, the linear FP action for massive gravity can be extended non-linearly in various ways.

However, most of these generalizations unavoidably introduce the BD ghost non-linearly. In fact,

a theory of non-linear extension of the FP mass term which free of the BD ghost is unique (with

up to two constant parameters) [31].

2.6 Boulware-Deser ghost

BD ghost is generally considered to be the sixth dof that appears at the non-linear level, which leads

to instability in non-linear massive gravity [43]. In order to observe the emergence of the BD ghost

at the non-linear level, we choose the easiest way: following the Stückelberg trick non-linearly [43],

[44].

We will do the further helicity decomposition of the Stückelberg field first. Focusing on the

flat (Minkowski) reference metric, fµν = ηµν , the Stückelberg field can be further split in φa =

xa − 1
MPl

χa (where a is a Lorentz index). Combing with Eq. 2.46, we obtain the non-linear

generalization of the Stückelberg trick

f̃µν = ∂µφ
a∂νφ

bηab

= ηµν − 2

MPl
∂(µχν) +

1

M2
Pl
∂µχ

a∂νχ
bηab

= ηµν − 2

MPlm
∂(µAν) −

2

MPlm2
Πµν

+
1

M2
Plm

2
∂µA

α∂νAα +
2

M2
Plm

3
∂µA

αΠνα +
1

M2
Plm

4
Π2

µν .

(2.91)

We now only keep the helicity-0 mode π, the tensor Xµ
ν defined in (2.86) becomes

Xµ
ν = δµν − 2

MPlm2
Πµ

ν +
1

M2
Plm

4
Πµ

αΠ
α
ν , (2.92)

and plugging this into the non-linear extension of the FP (2.89), then the mass term reads,

L(non−lin1)
FP,π = − 4

m2

([
Π2
]
− [Π]2

)
+

4

MPlm4

([
Π3
]
− [Π]

[
Π2
])

+
1

M2
Plm

6

([
Π4
]
−
[
Π2
]2)

. (2.93)
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According to Ostrogradsky’s theorem, the higher-order operators
([
Π3
]
− [Π]

[
Π2
])

and
([

Π4
]
−
[
Π2
]2)

propagate an additional dof, which always enters as a ghost. These operators might be irrelevant

at the linear level, but the ghost always can be manifest by finding an appropriate background

configuration π = π0 + δπ. Thus,

L(non−lin1)
FP,π ⊃ 4

MPlm4
Zµναβ∂µ∂νδπ∂α∂βδπ, (2.94)

where Zµναβ = 3∂µ∂απ0η
νβ − �π0ηµαηνβ − 2∂µ∂νπ0η

αβ + · · · . This implies that around a non-

trivial background, the FP mass term propagates an additional dof which is a ghost, as known as

the BD ghost. Besides, The mass of the BD ghost depends on the background configuration π0,

m2
ghost ∼ MPlm

4

∂2π0
. (2.95)

According to the Vainshtein mechanism, the field takes a large vacuum expectation value ∂2π0 �

MPlm
2, thus leads to the ghost with a tiny mass, m2

ghost � m2.

2.6.1 Function of the Fierz–Pauli mass term

The fluctuations about flat spacetime

hµν =MPl (gµν − ηµν) , (2.96)

now can be promoted to the tensor Hµν

Hµν =MPl

(
gµν − f̃µν

)
. (2.97)

Combing with Eq. 2.91, we obtain

Hµν = hµν + 2∂(µχν) −
1

MPl
ηab∂µχ

a∂νχ
b

= hµν +
2

m
∂(µAν) +

2

m2
Πµν

− 1

MPlm2
∂µA

α∂νAα − 2

MPlm3
∂µA

αΠνα − 1

MPlm4
Π2

µν .

(2.98)

Thus, we can write a more general function of FP mass term as an extension [26]

Lfunction
FP = −m2√−gF

(
gµνgαβ (HµαHνβ −HµνHαβ)

)
. (2.99)
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However, if F ′ 6= 0, there is no analytic function of F can avoid the non-linear propagation of the

BD ghost. If F ′(0) = 0, we can prevent the cubic higher-derivative interactions in π, but remove

the mass term at the same time. Moreover, if we choose F (0) 6= 0 and F ′(0) = 0, the theory

is massless with respect to a specific reference metric and infinitely strong coupling with other

backgrounds.

If we would like to construct a ghost-free massive gravity theory, all higher derivative operators

involving the helicity-0 mode
(
∂2π

)n should be in the form of total derivatives in mass (potential)

term.

2.7 Ghost-free massive gravity

A theory of massive gravity with coefficients tuned to avoid the BD ghost by incorporating all

higher derivative operators as total derivatives was put forward by Cluadia de Rhan, Gregory

Gabadadze and Andrew Tolley (dRGT) in 2010 [21], [22]. It was subsequently proved that the BD

ghost for all orders and beyond the decoupling limit was completely absent [45], [46].

The action for the theory of ghost-free dRGT massive gravity is given by

SdRGT =

∫
d4x

√
−gM

2
Pl
2

[
R− 2m2

4∑
n=0

βnen (X)

]
+ Sm[g, ψ], (2.100)

where βn are constant parameters, Sm is the matter action. The dRGT mass potential terms are

built out of the n-th elementary symmetric polynomials en, which is constructed carefully to avoid

the BD ghost and unnecessary to compute the eigenvalues of X to obtain,

e0(X) = 1,

e1(X) = [X],

e2(X) =
1

2!

(
[X]2 −

[
X2
])
,

e3(X) =
1

3!

(
[X]3 − 3[X]

[
X2
]
+ 2

[
X3
]))

,

e4(X) =
1

4!

(
[X]4 − 6[X]2

[
X2
]
+ 3

[
X2
]2

+ 8[X]
[
X3
]
− 6

[
X4
])
.

(2.101)

The specific anti-symmetric combination of terms in each en is designed to prevents the BD ghost

from becoming dynamical. Besides, according to the definition of X (2.86), we have introduced

a reference metric fµν to construct the interaction term since we cannot construct a nontrivial

interaction only consider gµν [47]. The reference metric transforms as a metric tensor under
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diffeomorphism, thus we have

(X2)µν = Xµ
αXα

ν . (2.102)

The matrix X is a tensor function of the tensor Hµν which represents the covariantized metric

perturbation. As discussed in Section 2.6.1, Hµν was promoted from hµν , and can be reduced to

hµν in unitary gauge. Thus, relating X to Hµν , we have

Xµν = ηµν + 2Kµν − ηαβKµαKβν , (2.103)

where we defined the extrinsic curvature

Kµν = ηµν −
(√

∂µφa∂νφbηab

)
= ηµν −

(√
X
)
µν

= ηµν −
√
ηµν −Hµν . (2.104)

Same as the Fierz-Pauli case we analyzed previously, the massive field of dRGT also can be split into

helicity-2 hµν , helicity-1 Aµ and helicity-0 π fields. However, the covariantization and decoupling

limit can ensure that the symmetry of dRGT is reduced to the symmetry of linearized GR plus

U(1) massive theory. Ref. [48] shows that the dRGT gives the known linearized gravity in the

decoupling limit if ∂µ∂νπ. We shall take a quick look how this happens. After some operations,

we can replaced the fields hµν , Aµ and π as

h̃µν =MP1hµν , ĥµν = h̃µν − ηµν π̃,

Ãµ =MP1mAµ, π̃ =MP1m
2π.

(2.105)

In decoupling limit, i.e. when both MPl → ∞, m→ 0,m2MPl = constant. The action of dRGT is

invariant under

δhµν = ∂µξν + ∂νξµ, (2.106)

δAµ = ∂µπ, (2.107)

δπ = 0. (2.108)

Consequently, Eq. 2.106 gives the result that same as Linearized GR. Eq. 2.107 gives the result

that same as Maxwell.

There is another convention that using

K = I− X. (2.109)
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Then the action of the dRGT theory becomes,

SdRGT =

∫
d4x

√
−g

M2
p

2

[
R− 2m2

4∑
n=0

αnen (K)

]
+ Sm[g, ψ], (2.110)

where αn are dimensionless coupling constants which satisfy the relationship [49],

βn = (4− n)!

4∑
i=n

(−1)i+n

(4− i)!(i− n)!
αi. (2.111)

2.8 Summary

In this chapter, we have reviewed the massive gravity theory within the context of historical devel-

opment. Starting with the spin-1 field theory, we found that the Proca mass term breaks the gauge

invariance, and causes the discontinuity in the number of dofs which could be reconciled by the

Stückelberg trick. We then performed a similar analysis for the spin-2 field, the Stückelberg fields

with 4 components were introduced to restore the diffeomorphism invariance which was broken by

adding the FP mass term. Subsequently, the vDVZ discontinuity was shown by computing the

gravitational exchange amplitude for the case of the massless limit of the massive spin-2 field and

massless spin-2 field. We also gave a simple calculation of the Vainshtein radius to be a resolution

to this discontinuity problem. We then extended the theory non-linearly, but most generalizations

unavoidably introduce the BD ghost which is the sixth dof that appears at the non-linear level. A

healthy theory should avoid such instability. Thus, a theory of massive gravity with coefficients

tuned to avoid the BD ghost by incorporating all higher derivative operators as total derivative

was discussed at the end.
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Projected massive gravity

This chapter mainly follows with Refs. [30], [50]. Starting with new massive gravity theories with

non-minimal coupling which have 5 dynamical dofs and break the global translation invariance.

We will focus on such a theory with a field space metric that is the same as the projected tensor

on the space perpendicular to the Stückelberg field, known as projected massive gravity. After

obtaining the equations of motion of PMG, we shall further investigate the cosmology and black

hole solutions. It’s worth noting that the investigation of black hole solutions in PMG, presented

in the final section, constitutes original research.

Contents
3.1 Massive gravity with non-minimal coupling . . . . . . . . . . . . . . . . 36

3.1.1 Non-minimal coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.2 Disformal deformations of the reference metric . . . . . . . . . . . . . . . 38
3.1.3 Evading BD ghost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Equations of motion of PMG . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3 Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4 Black hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.1 Non-diagonal metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.2 Time-dependent metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1 Massive gravity with non-minimal coupling

The dRGT massive gravity theory we introduced in Section 2.7 admits an open-FLRW solution in

which the dRGT mass terms behave as the cosmological constant [27]. However, Ref. [28] pointed

out that the scalar and vector kinetic terms of perturbations around the open-FLRW background
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will vanishes, which may lead to a strong coupling problem and a non-linear ghost instability [29].

Therefore, in order for the non-linear mass gravity to have a stable cosmological solution, it is

necessary to extend the theory further. In fact, many theories have been proposed to extend

the dRGT by introducing other fields, such as Hassan-Rosen bimetric gravity [51], quasi-dilaton

theory [52], and mass-varying massive gravity [53]. But now we would like to focus on the more

interesting case that the massive gravity can be further extended without invoking additional dof.

Refs. [54]–[58] have given different methods to investigate this extension intensively, which are based

on theories invariant under the Poincaré symmetry in the internal field space, but none of them have

been successful. The internal field space consisted of the Stückelberg fields φa which are introduced

to restore the general covariance as discussed in the last Chapter 2. Nevertheless, there exists a

natural extension of the dRGT theory (i.e., the total number of dofs remains the same and free of

BD ghost) that abandons translation invariance while retaining global Lorentz invariance [59]. This

extension is also known as the generalized massive theory, the constant parameters of this theory

in the graviton mass potential are now promoted to be arbitrary functions of four Stückelberg

fields φa. More importantly, there is no instability for all perturbations around the open-FLRW

background [60]. An important reason why we chose the massive gravity theory with 5 dofs is

that such theories exist in the Hamiltonian constraint in unitary gauge and thus are guaranteed

to avoid the BD ghost [47]. In this section, we present two distinct extensions of the ghost-free

massive gravity theory that preserve global Lorentz symmetry, primarily following Ref. [30].

3.1.1 Non-minimal coupling

Let us start with the action of dRGT (2.100 and 2.101) and the reference metric of this theory we

now define as

fµν ≡ ηab∂µφ
a∂νφ

b. (3.1)

The action (2.100) is manifestly invariant under the Poincaré transformation in the internal field

space. We now define a scalar function

X = ηabφ
aφb = φaφa, (3.2)

which can promote the constant parameters βn to be functions of X if we abandon the global

translation invariance φa → φa + c. Such an extended massive gravity theory preserves global

Lorentz invariance [59] and we would like to seek further extensions to this generalized massive

gravity. Let us consider the conformal transformation of physical metric gµν utilizing the scalar
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X,

g̃µν = G(X)gµν . (3.3)

Then performing this transformation to the action (2.100) that becomes,

Sdeform
dRGT =

∫
d4x
√
−g̃

[
M2

Pl
2
R[g̃]−M2

Plm
2

4∑
n=0

βnen

(√
g̃−1f

)]

=

∫
d4x

√
−gG2

[
M2

Pl
2
G−1gµνR̃µν −M2

Plm
2

4∑
n=0

βnG
−n

2 en

(√
g−1f

)]

=

∫
d4x

√
−g

[
M2

Pl
2
G

(
R+

3

2
∇µ logG∇µ logG

)
−M2

Plm
2

4∑
n=0

βnG(X)
4−n
2 en

(√
g−1f

)]

=

∫
d4x

√
−g

[
M2

Pl
2
G

(
R+

6G2
X

G2
φaφbg

µν∂µφ
a∂νφ

b

)
−M2

Plm
2

4∑
n=0

β̃n(X)en

(√
g−1f

)]
(3.4)

where we defined the rescaled parameters as

β̃n(X) ≡ βnG(X)
4−n
2 . (3.5)

Thus, once the translation invariance is broken, the Einstein-Hilbert term can be non-minimally

coupled with Stückelberg fields φa and the parameters β̃n now are the arbitrary functions of X.

Moreover, the conformal scaling in the graviton mass terms can be interpreted as a redefinition of

the reference metric,

g̃−1f → g−1
(
G−1f

)
, (3.6)

which implies that the reference metric can be deformed by appropriately contracting the Lorentz

indices by ηab and Stückelberg fields φa and introducing arbitrary functions of X.

3.1.2 Disformal deformations of the reference metric

Moving to the most general deformation of the reference metric,

f̃µν,I = CI(X)ηab +DI(X)φaφb∂µφ
a∂νφ

b, (3.7)

where I is a label that will be assigned to each mass term and all CI = 1 and DI = 0 can be

reduced to the case of dRGT massive gravity. Thus we can also define the square-root matrix in

mass terms

Qµ
ν,I ≡

(√
g−1f̃I

)µ

ν

, (3.8)
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Then for the action with general mass terms,

S =

∫
d4x

√
−gM

2
Pl
2

[
R[g]− 2m2Lmass

]
, (3.9)

with

Lmass =β(X) [Qβ ] + γ1(X) [Qγ1
]
2
+ γ2(X)

[
Q2

γ2

]
+ δ1(X) [Qδ1 ]

3
+ δ2(X) [Qδ2 ]

[
Q2

δ2

]
+ δ3(X)

[
Q3

δ3

]
+ σ1(X) [Qσ1

]
4
+ σ2(X) [Qσ2

]
2 [
Q2

σ2

]
+ σ3(X)

[
Q2

σ3

]2
+ σ4(X) [Qσ4

]
[
Q3

σ4

]
+ σ5(X)

[
Q4

σ5

]
.

(3.10)

Generally speaking, the BD ghost would be brought by the Stückelberg fields but we can

avoid this if the action can be arranged one of the components of the Stückelberg fields has no

dynamics. Ref. [59] introduced a new approach to derive BD ghost-free conditions, which is based

on the degeneracy of the kinetic matrix of the Stückelberg fields and then generating primary and

subsequent constraints to eliminate the BD ghost. However, it is not easy to derive the degeneracy

conditions exactly due to the square-root form of the building block tensor (3.8). The action of

the mass term can finally arrive at (see Ref. [30] for more details),

Lmass = β1(X)e1(Q) + β2(X)e2(Q) + β3(X)e3(Q) + β4(X)e4(Q), (3.11)

which is the dRGT tuning. Here, we defined

Q ≡ ηab +D(X)φaφb, (3.12)

and

β1 ≡ Cββ, β2 ≡ 2Cγ1γ1, β3 ≡ 3!C
3/2
δ1

δ1, β4 ≡ 4!C3/2
σ1

σ1, D ≡ Dγ1

Cγ1

. (3.13)

So there can only be one field space metric which explicitly depends on the φa is ghost-free [61],

disformally related to the original Minkowski metric. Therefore, we can obtain the generalized

massive gravity from dRGT theory with constant mass parameters, in which consider deformations

of the field space metric with different conformal coefficients at different orders.

On the other hand, we can fix the disformal term in the field space metric that leaves all of the

functions of mass terms unconstrained,

Dγ1

Cγ1

= − 1

X
, (3.14)
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which is equivalent to having a field space metric proportional to a projection tensor (operator)

Pab ≡
(
ηab −

φaφb
X

)
. (3.15)

This tensor projects onto surfaces in the field space defined by normal vector φa and the conformal

factors can be absorbed in the individual functions of the mass term. This clever combination

ensures that the derivative in one of the directions does not exist in f̃µν . Similar to some features

of other Lorentz violating massive gravity theories [62], [63], the projected mass terms we are

discussing now naturally lack the BD mode. But the difference is that the time direction in this

theory remains unspecified due to the explicit dependence on φa.

3.1.3 Evading BD ghost

We now promote the previous analysis to include a non-minimal couplingG(X)R, and see its kinetic

structure. We should consider a new action that contains terms responsible for the degeneracy of

the kinetic matrix with the non-minimal coupling,

S =

∫
d4x

√
−gM

2
Pl
2

(G(X)R[g] + F (X)[Y ] +A(X)[Z]) , (3.16)

where we defined
Wµ

ν ≡
(
g−1f

)µ
ν
≡ gµν∂µφ

a∂νφ
bηab,

Y µ
ν ≡

(
g−1f̃

)µ
ν
≡ gµνφaφb∂µφ

a∂νφ
b.

(3.17)

where we set CI = 0 and DI = 1 in this case. Following similar steps to finding degenerate

higher-order scalar tensor theories [64]–[66], we shall use the (3 + 1) decomposition to investigate

the degeneracy between metric variables and scalar fields φa in this theory. The partial derivative

of four scalar fields can be decomposed by using the normal vector nµ and the induced metric γµν

(see Ref. [30] for more details),

∂µφ
a = −nµφ̇a +Dµφ

a, (3.18)

with

φ̇a ≡ nµ∂µφ
a, Dµφ

a ≡ γνµ∂νφ
a. (3.19)

The kinetic term of the action (3.16) can be written as

Lkin = Aabφ̇aφ̇b + Caµν φ̇aKµν + FµνρσKµνKρσ, (3.20)
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where Kµν ≡ γµ
ργν

σ∇ρnσ is the extrinsic curvature and we defined

Aab = −Aηab − Fφaφb,

Caµν = −4ηabGXφbγ
µν ,

Fµνρσ = G
(
γµ(ργσ)ν − γµνγρσ

)
.

(3.21)

Combing the canonical momenta δL
δφ̇a

and δL
δKµν

with the existence of a primary constraint, we can

obtain the degeneracy condition,

G(X)A(X) +G(X)F (X)X − 6G2
XX = 0. (3.22)

Therefore, the BD ghost does not exist as long as this condition is satisfied. Next, we shall include

the mass terms obtained in the Section. 3.1.2. We first start with the option

γ1 = −γ2, δ1 = −δ2
3

=
δ3
2
, σ1 = −σ2

6
=
σ3
3

=
σ4
8

= −σ5
6
. (3.23)

Plugging it into the degeneracy condition (3.22). Then kinetic term now becomes,

Lkin = Fµνρσ

(
Kµν +

GX

G
φaφ̇

aγµν

)(
Kρσ +

GX

G
φbφ̇

bγρσ

)
−Aφ̇aφ̇

a. (3.24)

Notice that, under the condition γ1 = −γ2, A = 0 should be required to ensure the absence of the

BD ghost. As a result, we obtain a new theory which is the extension of the generalized massive

gravity. This ghost-free massive gravity requires a non-minimal coupling with curvature given by

S =

∫
d4x

√
−gM

2
Pl
2

[
G(X)R+

6G2
X

G
[Y ]− 2m2

4∑
n=0

βn(X)en

(√
g−1f̃

)]
+ Sm [gµν , ψ] . (3.25)

In this thesis, we are more interested in the option (3.14) which is nothing but the projection

onto the φa direction. According to the projection operator (3.15), we can construct a new reference

metric f̄µν and the building block tensor Zµ
ν

f̄µν =

(
ηab −

φaφb
X

)
∂µφ

a∂νφ
b = Pab∂µφ

a∂νφ
b, Zµ

ν =
(
g−1f̄

)µ
ν
. (3.26)

Thus, under the degeneracy condition (3.22) the general non-minimal coupling action (3.16) can

be transformed to

GR+ F [Y ] +A[W ] = GR+
6G2

X

G
[Y ] +A[Z], (3.27)
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where we have used the relation Z =W −Y /X. We thus arrive at another new ghost-free massive

gravity we call projected massive gravity (PMG). This theory can also have non-minimal coupling,

which is given by

S =

∫
d4x

√
−gM

2
Pl
2

[
G(X)R+

6G2
X

G
[Y ] +m2U

(
X, [Z],

[
Z2
]
,
[
Z3
])]

+ Sm [gµν , ψ] , (3.28)

where U is an arbitrary function of the mass potential terms that no longer of the form of the

dRGT. The potential term [Z] can be further generalized and higher order terms [Zn] denotes

the trace of matrices (Zn)
µ
ν = Zµ

α1
Zα1

α2
· · ·Zαn−1

ν , which with n ≥ 4 can be always reduced to

lower order terms by Cayley-Hamilton theorem. Furthermore, the potential U including higher

order remains consistent with the condition derived from the linear combination of the canonical

momenta. Therefore, the projected massive gravity is the absence of the BD ghost. Ref. [30] show

an explicit derivation of action (3.28) starting with the most general mass terms up to quadratic

order composed of W and Y . Besides, the theory we presented was not the most general. Ref. [62]

includes the term Gµν f̄µν which also can be considered in our case without generating the BD

ghost.

3.2 Equations of motion of PMG

If we want to do more phenomenological research on this new theory, it is very important to obtain

the equation of motion of PMG. We start with summarizing this theory. The action given by PMG

is

SPMG =

∫
d4x

√
−gM

2
Pl
2

[
G(X)R− 6G2

X

G
[Y ] +m2U

(
X, [Z],

[
Z2
]
,
[
Z3
])]

+ Sm [gµν , ψ] , (3.29)

where Sm is the matter Lagrangian and

X ≡ φaφa = ηabφ
aφb,

Zµ
ν ≡

(
g−1f̄

)µ
ν , Y µ

ν ≡
(
g−1f̃

)µ
ν

f̄µν ≡ Pab∂µφ
a∂νφ

b =

(
ηab −

φaφb
X

)
∂µφ

a∂νφ
b,

f̃µν ≡ −φaφb∂µφa∂νφb,

(3.30)

here we adopt new convention (the definition of Y µ
ν differs by a minus sign from the Section. 3.1.3)

for convenience, which is consistent with Ref. [50].
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In Appendix. A.2, we give a detailed derivation of how to obtain the modified Einstein equation

from varying the action (3.29) with respect to gµν . The equations of motion is,

M2
Pl

[
G(X)Gµν −∇µ∇νG(X) + gµν∇α∇αG(X)− 6 (GX(X))

2

G(X)

(
f̃µν − 1

2
[Y ]gµν

)]
= T (mass)

µν +T (m)
µν

(3.31)

where T (m)
µν is the energy-momentum tensor for matter content, and T (mass)

µν is the effective energy-

momentum tensor of the mass term defined as

T (mass)
µν =M2

Plm
2

(
1

2
gµνU − U[Z]f̄µν − 2U[Z2]Z

ρ
(µf̄ν)ρ − 3U[Z3]Z

ρ
σZ

σ
(µf̄ν)ρ

)
, (3.32)

where we defined

U[Zn] ≡
∂U

∂ [Zn]
. (3.33)

We assume that the matter field obeys the standard conservation law,

∇µT (m)
µν = 0, (3.34)

For matter content, we focus on the perfect fluid with no pressure (p = 0), Eq. 3.34 can give the

background matter equation (more on Appendix. B.1),

ρ̇+ 3Hρ = 0. (3.35)

In massive gravity, we would have the Stückelberg equation come from the contracted Bianchi

identity but is not independent with Eq. 3.31 and Eq. 3.34,

∇µ

(
2√
−g

δS

δgµν

)
=

1√
−g

δS

δφa
∂νφ

a. (3.36)

3.3 Cosmology

In this section, we shall derive the background equations with an ansatz in the FLRW Universe.

FLRW solution is one of the most crucial solutions in cosmology derived from GR, which assumes

the universe satisfies the cosmological principle, i.e., homogeneous and isotropic.
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The line element for the physical metric gµν in FLRW Universe is given by

ds2g = −dt2 + a(t)2
(
δij −

κxixj

1 + κxkxk

)
dxidxj = −dt2 + a(t)2Ωijdx

idxj , (3.37)

where κ is a curvature parameter that we adopt the convention κ > 0 represent the open universe,

and Ωij is an induced metric on the constant time hypersurface defined as

Ωij = δij −
κxixj

1 + κxkxk
. (3.38)

In PMG, we should require FLRW symmetries for reference metrics as well as the homogeneity of

the Lorentz-invariant scalar X. Thus, the requirement of homogeneity and isotropy constrains the

configuration of the Stückelberg fields uniquely [27], which is given by

φ0 = f(t)
√
1 + κ (x2 + y2 + z2), φi = f(t)

√
κxi, (3.39)

where f(t) is an arbitrary function of time. Therefore, the reference metrics corresponding to f̄

and f̃ are
ds2f̄ = f̄µνdx

µdxν = κf2Ωijdx
idxj ,

ds2
f̃
= f̃µνdx

µdxν = −f2ḟ2dt2.
(3.40)

In this configuration, we can obtain the following results

X = −f2(t), [Y ] = (fḟ)2, [Z] = gijf2κΩij . (3.41)

In the Appendix B.2, we follow with the derivation of Friedmann equations in GR (more on Ap-

pendix. B.1), show an explicit derivation of background equations in PMG starting with the mod-

ified Einstein equation (3.31) and combing the background matter equation (3.35) (or Stückelberg

equation (3.36)). The results are summarized as follows:

3G

(H +
Ġ

2G

)2

− κ

a2

 =
ρ

M2
Pl

+
ρg
M2

Pl
, (3.42)

−2G

[
∂t

(
H +

Ġ

2G

)
+

κ

a2

]
+ Ġ

(
H +

Ġ

2G

)
=

ρ

M2
Pl

+
ρg + pg
M2

Pl
, (3.43)

ρ̇g + 3H (ρg + pg)−
Ġ

2G
(ρg − 3pg + ρ) = 0, (3.44)

where we defined the effective energy density ρg and effective pressure pg with the graviton’s mass
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m

ρg = −1

2
m2M2

PlU, (3.45)

pg =
1

2
m2M2

Pl
(
U − 2ξ2U[Z] − 4ξ4U[Z2] − 6ξ6U[Z3]

)
, (3.46)

with ξ =
√
κf/a.

According to the studies in Ref. [30], the extended theory of PMG has a self-accelerating so-

lution in open FLRW Universe and all perturbations are free of ghost and gradient instabilities,

unlike the dRGT. In Ref. [50], the PMG was re-investigated in concrete models (minimal and non-

minimal coupling model) without assuming the weak X-dependence, which is more meaningful

due to the X-independence mass potential will lead to the strong coupling of the scalar perturba-

tion [30]. Ref. [50] further puts observational constraints on the model parameter and cosmological

parameters from the red-shift space distortion dataset and type Ia supernova, which shows that

the model of PMG is consistent with these observations. The study of phenomenology makes PMG

more potential. Moreover, these results demonstrate that the background evolution and the linear

growth of structure at sub-horizon scales of PMG can be regarded as the dark energy model with

the equation of state. One of the key motivations for exploring massive gravity is it provides a

novel perspective on the cosmic acceleration issue.

3.4 Black hole

The existence and properties of black hole (BH) solutions are crucial for exploring the non-

perturbative aspects of various theories of gravity. In addition, with the increasing understanding

of astrophysical BHs and the development of more and more astronomical observation experiments,

BH phenomenology has become increasingly important because it provides the possibility to verify

the modified gravity. Massive gravity and its extensions like PMG in our case should certainly

exhibit BH solutions. We would expect the solutions from massive gravity that closely resemble

the Schwarzschild solution of GR if the Vainshtein mechanism is indeed correct. In fact, the BH

solutions in massive gravity have been extensively investigated [67]–[74], but we should notice that

the most physically relevant solutions are likely to be found in generic cases may not yield exact

analytical solutions [31].

In this section, we shall first try to follow the classical method in Appendix C to find the BH

solution in PMG. If we would like to find a Schwarzschild solution, which can assume the metric is
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static and spherically symmetric. Focusing on (t, r, θ, φ) coordinates, the metric can be written as

ds2 = A(r)dt2 +B(r)dr2 + r2dθ2 + r2 sin2 θdφ2. (3.47)

The vacuum solution satisfies the equations T (m)
µν = 0. The non-zero Einstein tensor are

Gtt = −A ((−1 +B)B + rB′)

r2B2
,

Grr =
A−AB + rA′

r2A
,

Gθθ =
r
(
−rBA′2 − 2A2B′ +A (−rA′B′ + 2B (A′ + rA′′))

)
4A2B2

,

Gφφ = sin2 θGθθ.

(3.48)

We now consider a configuration of the Stückelberg fields similar to that of cosmology but time-

independent, i.e. φ0 =
√
1 + r2, φr = r and φθ = φφ = 0. Under this ansatz, we can obtain the

corresponding reference metrics

ds2f̄ = f̄µνdx
µdxν =

1

1 + r2
dr2,

ds2
f̃
= f̃µνdx

µdxν = 0.

(3.49)

In this configuration, we can obtain the following results

[Y ] = 0, [Z] =
grr

1 + r2
. (3.50)

The Lorentz-invariant scalar X = −1 implies that G(X) is constant. For convenience, we consider

the minimal coupling model, i.e. G(X) = 1. We now fix the configuration of the mass potential as

U
(
X, [Z],

[
Z2
]
,
[
Z3
])

= λX + [Z]2 −
[
Z2
]
, (3.51)

where λ 6= 0 is a non-zero constant parameter since Refs. [30], [50] point out that the mass potential

of PMG without X-dependence leads to the strong coupling problem. Consequently, the modified

Einstein equation becomes,

M2
PlGµν = T (mass)

µν , (3.52)

with

T (mass)
µν =M2

Plm
2

[
1

2
gµν

(
λX + [Z]2 −

[
Z2
])

− 2[Z]f̄µν + 2Zρ
(µf̄ν)ρ

]
. (3.53)

Plugging (3.49) and (3.50) in the modified Einstein equation, the combinations ([Z]2 −
[
Z2
]
) and
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(−2[Z]f̄µν + 2Zρ
(µf̄ν)ρ) will vanish, which leads to the following non-trivial equations

Gtt = −1

2
gttm

2λ, (3.54)

Grr = −1

2
grrm

2λ, (3.55)

Gθθ = −1

2
gθθm

2λ. (3.56)

These differential equations can yield an exact analytical solution, i.e.,

A(r) = c1B
−1(r) = c1

(
1− c2

r
− λm2r2

6

)
, (3.57)

where c1 and c2 are undetermined constants. One can arrive at the metric

ds2 = −
(
1− 2GNM

r
− λm2r2

6

)
dt2 +

(
1− 2GNM

r
− λm2r2

6

)−1

dr2 + r2dΩ2. (3.58)

When we compare it with the Schwarzschild-de Sitter metric provided in Appendix C.3.1, we can

observe that
Λr2

3
∼ λm2r2

6
.

The new term we obtained from this modified Einstein equation can mimic the cosmological con-

stant term in GR. Moreover, as presented in the Appendix C.3.2, we can easily extend this solution

to the case of coupling charge q,

ds2 = −
(
1− 2GNM

r
− λm2r2

6
+

q2

4r2

)
dt2 +

(
1− 2GNM

r
− λm2r2

6
+

q2

4r2

)−1

dr2 + r2dΩ2.

(3.59)

However, in the theories with two static, bi-diagonal metrics, Ref. [75] demonstrated that

requiring both metrics to be simultaneously diagonal generically leads to coordinate-invariant sin-

gularities at the BH horizon. In specific solutions, introducing Stückelberg fields may allow us to

render both metrics in diagonal form by having these fields absorb the off-diagonal terms. However,

for generic solutions, it is expected that at least one metric will remain non-diagonal despite the

presence of Stückelberg fields [31]. More particularly, in GR, we can use Schwarzschild coordinates

which have a coordinate singularity at the horizon, we can always recognize that this is simply

a coordinate artifact. But in massive gravity, if we choose Schwarzschild coordinate and make a

choice for the Stückelberg fields which are regular at the horizon then we can able to compute

some invariants (generally Iab = gµν∂µφ
a∂νφ

b) which diverge at the horizon, leading to the emer-
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gence of a physical singularity in that region. In other words, we have already used up the gauge

of freedoms, so we cannot fix the gauge again to remove the singularity. For a metric to serve

as a valid description of a BH configuration, it must ensure the absence of physical singularities

at the horizon. Hence, it is more promising to use a coordinate system that is manifestly regu-

lar at the horizon to ensure the resulting solution lacks any physical singularities at the horizon.

Ref. [67] explains why choosing Schwarzschild-like coordinates is not a good idea and goes on

to demonstrate the advantages of using alternative coordinate systems such as Kruskal-Szekeres,

Eddington-Finkelstein, or Gullstrand-Painlevé coordinates.

3.4.1 Non-diagonal metrics

The more general (but not the most general) class of non-diagonal spherically-symmetric metrics

in (t, r, θ, φ) coordinates could be written as follows

ds2 = −A(r)dt2 + 2B(r)dtdr + C(r)dr2 + r2dΩ2, (3.60)

where A(r), B(r) and C(r) are arbitrary functions. The non-zero Einstein tensor components are

Gtt =
A
(
B4 − rB2A′ +AB (B(−1 + 2C) + 2rB′) +A2 ((−1 + C)C + rC ′)

)
r2 (B2 +AC)

2 ,

Grr =
−A2(−1 + C)C2 +B2

(
−B2C + 2rCA′ + 2rBB′)+A

(
rC2A′ +B2

(
C − 2C2 + rC ′))

r2 (B2 +AC)
2 ,

Gtr = −
B
(
B4 − rB2A′ +AB (B(−1 + 2C) + 2rB′) +A2 ((−1 + C)C + rC ′)

)
r2 (B2 +AC)

2 ,

Gθθ =
r
(
4B2A′ + CA′ (2A− rA′)− 2B (2A+ rA′)B′ −A (2A+ rA′)C ′ + 2r

(
B22 +AC2

)
A′′)

4 (B2 +AA)
2 ,

Gφφ = sin2 θGθθ.

(3.61)

The vacuum solution satisfies the equations T (m)
µν = 0 and thus the modified Einstein equation

gives,

Gµν =
1

2
gµνm

2
(
λX + [Z]2 −

[
Z2
])
, (3.62)

here X should be a constant. Notice that (t,t) and (t,r) components in the modified Einstein

equation give the same result. If we continue to adopt the same ansatz for Stückelberg fields, i.e.

φ0 =
√
1 + r2, φr = r and φθ = φφ = 0, we can still obtain the exact solution. From (t,t) and (r,r)
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components of the modified Einstein equations, we can obtain

A(r) =

(
−12r + 2λm2r3 + 3c1

)
c2

r
,

B(r) = ±
√
c2
r

√
−12r + 12rC(r)− 2λm2r3C(r)− 3c1C(r).

(3.63)

where c1 and c2 are undetermined constants. One can arrive at the Eddington–Finkelstein-like

metrics

ds2 = −
(
1− 2GM

r
− λm2r2

6

)
dt2 ± 2dtdr + r2dΩ2, (3.64)

where ± represents ingoing and outgoing coordinates respectively.

In fact, it is a general observation that two diagonal metrics have a common horizon, which is

valid for any theory with more than one metric regardless of the field equations [75]. Equivalently,

this implies that if reference metrics are the diagonal metrics without horizons, then the metric for

a BH must be non-diagonal when working in unitary gauge [31].

3.4.2 Time-dependent metrics

We now consider with the more common choice for the Stückelberg fields, i.e. the unitary gauge

φa = xµδaµ, meaning φ0 = t, φr = r and φθ = φφ = 0. The choice of unitary gauge is usually

done so that the reference metric takes the standard Minkowski form where Lorentz invariance is

manifest. Under this gauge fixed, we can obtain the corresponding reference metrics

ds2f̄ = f̄µνdx
µdxν =

−r2

−t2 + r2
dt2 + 2

tr

−t2 + r2
dtdr +

−t2

−t2 + r2
dr2,

ds2
f̃
= f̃µνdx

µdxν = t2dt2 − 2trdtdr + r2dr2
(3.65)

In the configuration of the unitary gauge, we can obtain the following results

X = −t2 + r2 ⇒ G(X) = G(t, r),

[Y ] = gttf̃tt + 2gtrf̃tr + grrf̃rr = gttt2 − 2gtrtr + grrr2,

[Z] = gttf̄tt + 2gtrf̄tr + grrf̄rr =
−gttr2 + 2gtrtr − grrt2

−t2 + r2
.

(3.66)

Again, we consider the minimal coupling model (G(X) = 1), and thus we no longer need to concern

with f̃µν and [Y ] in modified Einstein equation. Interestingly, we found that the combinations

([Z]2 −
[
Z2
]
) and (−2[Z]f̄µν + 2Zρ

(µf̄ν)ρ) will also vanish under the unitary gauge. Moreover, we

can observe that t and r will always appear symmetric in this case, which means that we cannot
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construct a mass potential U that contains either t or r alone. Indeed, we can construct a mass

potential for U = 0 under some choice of Stückelberg fields, but this will lead to the trivial case.

Since we have to consider the more meaningful X-dependent mass potential, which means that U

generally depend explicitly on t and r, i.e. modified Einstein equation now is time-dependent,

M2
PlGµν = T (mass)

µν (r, t). (3.67)

The most general non-diagonal spherically-symmetric metrics should be rewritten as

ds2 = −A(r, t)dt2 + 2B(r, t)dtdr + C(r, t)dr2 +D(r, t)r2dΩ2, (3.68)

thus the non-zero components of the Einstein tensor become more complex, potentially necessitat-

ing the use of numerical or perturbation methods to solve the vacuum modified Einstein equations

since we have not discovered any analytical solutions in time-dependent metrics.

Let us now take a particular case as an example and discuss the feasibility of the perturbation

method in the case of time-dependent metrics. We continue consider the mass potential configu-

ration (3.51) for convenience, the vacuum modified Einstein equations thus become,

Gµν =
1

2
gµνm

2λ(r2 − t2). (3.69)

Obviously, we can think of the graviton mass term as a perturbation term and treat λ as a small

quantity. Thus the expansion can be defined as

A(r, t) = A0(r, t) + λA1(r, t) + λ2A2(r, t) + · · · ,

B(r, t) = B0(r, t) + λB1(r, t) + λ2B2(r, t) + · · · ,

C(r, t) = C0(r, t) + λC1(r, t) + λ2C2(r, t) + · · · ,

D(r, t) = D0(r, t) + λD1(r, t) + λ2D2(r, t) + · · · .

(3.70)

We demand the solution should expand around the flat space, which leads to

A0(r, t) = 1, B0(r, t) = 0, C0(r, t) = 1, D0(r, t) = 1. (3.71)

Or rather, (3.71) is a solution at O(0) order. At O(λ) order, the non-trivial components of the
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Einstein tensor are

G
O(λ)
tt =

−D1 + C1 + r (−3D′
1 + C ′

1 − rD′′
1 )

r2
λ,

GO(λ)
rr =

D1 − C1 + r
(
2Ḃ1 − rD̈1 +A′

1 +D′
1

)
r2

λ,

G
O(λ)
tr = −Ḋ1 − Ċ1 + rḊ′

1

r
λ,

G
O(λ)
θθ =

1

2
r
(
2Ċ1 +A′

1 −B′
1 + 2D′

1 + r
(
−B̈1 − D̈1 + 2Ċ ′

1 +A′′
1 +D′′

1

))
λ,

G
O(λ)
φφ = sin2 θG

O(λ)
θθ .

(3.72)

Combing Eq. 3.69 and (3.71), the cross term for Einstein tensor GO(λ)
tr should have

−Ḋ1 − Ċ1 + rḊ′
1

r
λ =

1

2
B0m

2λ(r2 − t2) = 0, (3.73)

which gives C1(r, t) = D1(r, t) + rD′
1(r, t) + f1(r). Plugging the expression for C1(r, t) in G

O(λ)
tt ,

we have

G
O(λ)
tt =

f1(r) + rf ′1(r)

r2
λ, (3.74)

which is a function of r, i.e., time-independent. However, according to Eq. 3.69, we have

G
O(λ)
tt = −1

2
A0m

2λ(r2 − t2), (3.75)

which is contradicted with Eq. 3.74. More generally, as long as the mass potential term is a first

order small quantity and time-dependent, this perturbation method fails if we expand around the

flat space (Eq. 3.71). From a more intuitive and rigorous point of view, we may expand the solution

around the Schwarzschild spacetime, i.e.,

A0 = 1− 2GNM

r
, B0 = 0, C0 =

(
1− 2GNM

r

)−1

, D0 = 1. (3.76)

which is also a solution at O(0) order. However, at O(λ) order, we shall come to a similar conclusion

that GO(λ)
tt is still independent of time. Furthermore, we could follow the same steps to prove that

G
O(λ)
tt is always just a function of r as long as the O(0) order solution is of the following form,

A0(r, t) = A0(r), B0(r, t) = 0, C0(r, t) = C0(r), D0(r, t) = d, (3.77)

where d is a constant. Hence, if we intend to use the perturbation method to study that the

correction term is first order small quantities and time-dependent, it is advisable to begin with
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non-diagonal metrics.

Indeed, while we demonstrate the challenges of studying time-dependent metrics using per-

turbation methods, the exploration of time-dependent matrices remains a valuable endeavor in

the context of massive gravity. Rachel Rosen investigated the possibility of black hole solutions

in massive gravity that can accommodate both a non-singular horizon and Yukawa asymptotics

by adopting a time-dependent ansatz Ref. [70]. This work has shown that time-dependent BH

solutions in massive gravity may offer a way to circumvent the problem of coordinate-invariant

singularities at the horizon and smoothly recover the BH solutions of GR in the massless limit.

Therefore, this also serves as inspiration for us to explore the time-dependent BH solutions in

PMG, which may have even greater potential physical significance.



Conclusion and outlook

Through this thesis, we have undertaken a review of the background of massive gravity. We

began by establishing the formalism for both massive and massless spin-1 and spin-2 fields, with

a particular emphasis on the Stückelberg language for both the Proca and Fierz–Pauli fields.

After introducing vDVZ discontinuity, Vainshtein radius and BD ghost in the order of historical

development, we ended the first part with the dRGT theory which serves as the foundation for the

investigation of its extended theory in the second part.

We then studied a novel massive gravity theory with non-minimal coupling, which is a general-

ization of massive gravity with the broken translation invariance. Starting with arbitrary mass func-

tions, we found that the theory can be constructed using the reference metric f̄µν = Pab∂µφ
a∂νφ

b,

where the projection tensor Pab = ηab − φaφb/X manifestly eliminates one of the Stückelberg

fields. This projected massive gravity has a different mass term from the dRGT theory, and we

have proved the absence of the BD ghost. We then investigated the equations of motion for PMG

and derived the cosmological background equations. Additionally, we provided comprehensive

derivation details that were not present in the original references.

Finally, BH solutions within the framework of PMG were studied for the first time. We ob-

tained the static spherically symmetric solutions in both Schwarzschild-de Sitter-like and Edding-

ton–Finkelstein-like metrics, under the ansatz of φ0 =
√
1 + r2, φr = r and φθ = φφ = 0. We

inevitably need to address time-dependent metrics when adhering to the unitary gauge in PMG.

Unfortunately, assuming spherical symmetry does not yield successful results when attempting

to use perturbation theory to study time-dependent matrices. It is worth further discussion of

whether perturbation theory fails in this case or if there is simply no time-dependent spherically

symmetric solution. Besides, as a translation-breaking theory, PMG exhibits time variation in

coupling constants. Furthermore, this theory needs confirmation regarding the existence and/or

necessity of a screening mechanism, as it is disconnected from the dRGT construction. The inves-

tigation of local gravity tests, including the need for a screening mechanism in the PMG model,

would be necessary.



AA A
Einstein-Hilbert

A.1 Varying the Einstein-Hilbert action

The EH action in GR is the action that yields the Einstein field equations through the stationary-

action principle. The general EH action can be considered as the gravitational part plus the matter

content part

SEH = Sg + Sm =

∫
d4x

√
−g
(
M2

Pl
2
R+ Lmatter

)
, (A.1)

where we defined g = det (gµν) is the determinant of the metric tensor matrix and scalar volume

element d4x
√
−g as integration measure. A physical law (equations of motion) can be recovered

by demanding that the variation of the action with respect to the inverse metric gµν be zero. By

Leibniz rule, the variation yielding,

0 = δSEH

=

∫ [
M2

Pl
2

δ(
√
−gR)
δgµν

+
δ (

√
−gLmatter)

δgµν

]
δgµνd4x

=

∫ [
M2

Pl
2

(
δR

δgµν
+

R√
−g

δ
√
−g

δgµν

)
+

1√
−g

δ (
√
−gLmatter)

δgµν

]
δgµν

√
−g d4x.

(A.2)

We shall calculate it term by term.
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For the variation of the determinant δ
√
−g, we start with

δg = δ det (gµν) = ggµνδgµν , (A.3)

where we used the corollary of Jacobi’s formula: det eB = etr(B). Thus,

δ
√
−g = − 1

2
√
−g

δg =
1

2

√
−g (gµνδgµν) = −1

2

√
−g (gµνδgµν) , (A.4)

where we used the fact that

gµνδg
µν = −gµνδgµν . (A.5)

For the variation of the Ricci scalar δR, we have

δR = δ(gµνRµν) = Rµνδg
µν + gµνδRµν . (A.6)

Therefore, varying the EH action (A.2) now becomes

δSEH =

∫ [
M2

Pl
2

(
Rµν − 1

2
Rgµν +

gµνδRµν

δgµν

)
+

1√
−g

δ (
√
−gLmatter)

δgµν

]
δgµν

√
−g d4x

=

∫ [
M2

Pl
2

(
Rµν − 1

2
Rgµν

)
+

1√
−g

δ (
√
−gLmatter)

δgµν

]
δgµν

√
−g d4x+ boundary term,

(A.7)

where for the boundary term we have

boundary term ∼
∫

d4x
√
−ggµνδRµν

=

∫
d4x

√
−g
[
gµν

(
∇αδΓ

α
µν −∇νδΓ

α
αµ

)]
=

∫
d4x

√
−g
[
∇α

(
gµνδΓα

µν

)
−∇ν

(
gµνδΓα

αµ

)]
=

∫
d4x

√
−g∇α

(
gµνδΓα

µν − gµαδΓβ
βµ

)
=

∫
d4x

√
−g∇αV

α.

(A.8)

where we have used the Palatini identity δRσν ≡ δRρ
σρν = ∇ρ (δΓ

ρ
νσ) −∇ν

(
δΓρ

ρσ

)
in the second

line and ∇αg
µν = 0 in the third line. Hence, by virtue of Stokes’ theorem

∫
M
d4x

√
−g∇αV

α =

∫
Σ=∂M

dΣαV
α, (A.9)

which proves that the boundary term does not contribute to the equations of motion and can be

dropped out. Notice that the boundary term is in general non-zero since it also depends on its
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partial derivatives ∂λδgµν ≡ δ∂λg
µν , so-called Gibbons–Hawking–York boundary term.

Moving the discussion on varying the EH action. In order for δSEH = 0 to lead to the Einstein

equations

Gµν = Rµν − 1

2
gµνR =

1

M2
Pl
Tµν , (A.10)

we therefore combing with Eq. A.7

M2
PI
2

(
Rµν − 1

2
Rgµν

)
+

1√
−g

δ (
√
−gLmatter )

δgµν
= 0, (A.11)

then define the stress-energy tensor for matter content,

Tµν ≡ −2√
−g

δ (
√
−gLmatter )

δgµν
. (A.12)

A.2 Varying the action of PMG

The PMG action can take the form of,

SPMG =

∫
d4x

√
−g
[
M2

Pl
2

(
G(X)R− 6G2

X

G
[Y ] +m2U

(
X, [Z],

[
Z2
]
,
[
Z3
]))

+ Lmatter

]
. (A.13)

Similarly, the variation yielding

0 = δSPMG

=

∫ [
M2

Pl
2

(
Gδ(

√
−gR)

δgµν
− 6G2

X

G

δ(
√
−g[Y ])

δgµν
+
δ
(√

−gm2U
)

δgµν

)
+
δ (

√
−gLmatter)

δgµν

]
δgµνd4x

=

∫ [
M2

Pl
2
G

(
Rµν − 1

2
Rgµν +

gµνδRµν

δgµν

)
− M2

Pl
2

6G2
X

G

δ(
√
−g[Y ])√

−gδgµν
+
M2

Pl
2

δ
(√

−gm2U
)

√
−gδgµν

− T
(m)
µν

2

]
δgµν

√
−g d4x

=

∫ [
M2

PlG

(
Gµν +

gµνδRµν

δgµν

)
−M2

Pl
6G2

X

G

δ(
√
−g[Y ])√

−gδgµν
+M2

Pl
δ
(√

−gm2U
)

√
−gδgµν

− T (m)
µν

]
δgµν d4x

=

∫
d4x

[
M2

PlG(X)Gµν −M2
Pl
6G2

X

G

δ(
√
−g[Y ])√

−gδgµν
+M2

Pl
δ
(√

−gm2U
)

√
−gδgµν

− T (m)
µν

]
δgµν

+

∫
d4x M2

PlG(X)gµνδRµν .

(A.14)
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Unlike the boundary term in the EH case, we should be very careful with the treatment of the

boundary term now since G(X) is coordinate-dependent. Thus

∫
d4x M2

PlG(X)gµνδRµν

=

∫
d4x M2

PlG(X)∇α

(
gµνδΓα

µν − gµαδΓβ
βµ

)
=

∫
d4x M2

PlG(X)∇αV
α

=

∫
d4x M2

Pl (∇α (V αG)− V α∇αG)

=−
∫

d4x M2
PlV

α∇αG

=−
∫

d4x M2
Pl

[
gµν

(
1

2
gαλ (∇νδgµλ +∇µδgνλ −∇λδgµν)

)
− gµα

(
1

2
gβλ (∇µδgβλ +∇βδgµλ −∇λδgµβ)

)]
∇αG

=−
∫

d4x M2
Pl [gµν (∇αδgµν)∇αG− (∇µδg

µν)∇νG]

=

∫
d4x M2

Pl (gµν∇α∇αG−∇µ∇νG) δg
µν ,

(A.15)

where we have used the integration by parts many times. Then, for the term,

∫
d4x

[
−M2

Pl
6G2

X

G

δ(
√
−g[Y ])√

−gδgµν

]
δgµν

=−
∫

d4x M2
Pl
6G2

X

G

[
− 1

2

√
−g (gµνδgµν) [Y ] +

√
−gδ(gµν f̃µν)√

−g

]

=−
∫

d4x M2
Pl
6G2

X

G

(
f̃µν − 1

2
[Y ]gµν

)
δgµν .

(A.16)

For the term

∫
d4x

[
M2

Pl
δ
(√

−gm2U
)

√
−gδgµν

]
δgµν

=

∫
d4x M2

Pl

[− 1
2

√
−g (gµνδgµν)m2U +

√
−gm2δ(U)

√
−g

]
=

∫
d4x M2

Plm
2

[
−1

2
gµνUδg

µν + δ
(
U
(
X, [Z],

[
Z2
]
,
[
Z3
]))]

=

∫
d4x M2

Plm
2

[
−1

2
gµνU + U[Z]f̄µν + 2U[Z2]Z

ρ
(µf̄ν)ρ + 3U[Z3]Z

ρ
σZ

σ
(µf̄ν)ρ

]
δgµν

=−
∫

d4x Tmass
µν δgµν ,

(A.17)

where we defined Tmass
µν as the effective energy-momentum tensor for massive graviton

Tmass
µν =M2

Plm
2

(
1

2
gµνU − U[Z]f̄µν − 2U[Z2]Z

ρ
(µf̄ν)ρ − 3U[Z3]Z

ρ
σZ

σ
(µf̄ν)ρ

)
, (A.18)
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with U[Zn] ≡ ∂U
∂[Zn] .

As a result, Eq. A.14 is reduced to

δSPMG

δgµν
=

∫
M2

Pl

[
G(X)Gµν −

(
f̃µν − 1

2
[Y ]gµν

)
+ gµν�G−∇µ∇νG− T

(mass)
µν + T

(m)
µν

M2
Pl

]
δgµν d4x.

(A.19)

Thus, δSPMG/δg
µν = 0 leads to the modified Einstein equations in PMG,

M2
Pl

[
G(X)Gµν −∇µ∇νG(X) + gµν�G(X)− 6 (GX(X))

2

G(X)

(
f̃µν − 1

2
[Y ]gµν

)]
= T (mass)

µν + T (m)
µν .

(A.20)



BBB
Cosmology background equations

B.1 The Friedmann equations

The Friedmann equations are a set of equations in physical cosmology that govern the expansion

of space in homogeneous and isotropic models of the universe within the context of GR. We shall

derive these from Einstein’s field equations for the FLRW metric and a perfect fluid with a given

mass density ρ and pressure p. The stress-energy tensor for the matter is defined as

Tµν = (ρ+ p)uµuν + pgµν , (B.1)

which obeys the standard conservation law ∇µT
µν = 0. The 4-velocity of cosmological observers

is given by,

uµ = (1, 0, 0, 0), (B.2)

satisfying uµuµ = −1. Then the energy-momentum tensor can take the form

Tµ
ν = gµαT

αν = diag(−ρ, p, p, p). (B.3)

The FLRW metric in polar coordinates (t, r, θ, φ) takes the form

ds2 = gµνdx
µdxν = −dt2 + a2(t)

[
dr2

1 + κr2
+ r2

(
dθ2 + sin2 θdφ2

)]
, (B.4)
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where κ is the curvature parameter that κ > 0 corresponding to an open universe. We now can

calculate the non-zero Ricci tensor in this metric,

Rtt = −3
ä

a
= 3gtt

ä

a
,

Rrr =
a2

1 + κr2

(
ä

a
+ 2

(
ȧ

a

)2

− 2
κ

a2

)
= grr

(
ä

a
+ 2

(
ȧ

a

)2

− 2
κ

a2

)
,

Rθθ = a2r2

(
ä

a
+ 2

(
ȧ

a

)2

− 2
κ

a2

)
= gθθ

(
ä

a
+ 2

(
ȧ

a

)2

− 2
κ

a2

)
,

Rφφ = a2r2 sin2 θ

(
ä

a
+ 2

(
ȧ

a

)2

− 2
κ

a2

)
= gφφ

(
ä

a
+ 2

(
ȧ

a

)2

− 2
κ

a2

)
.

(B.5)

Thus the Ricci scalar

R = gµµRµν = 3
ä

a
+ 3

(
ä

a
+ 2

(
ȧ

a

)2

− 2
κ

a2

)
= 6

(
ä

a
+

(
ȧ

a

)2

− κ

a2

)
. (B.6)

From Einstein’s field equations,

Gµν = Rµν − 1

2
gµνR =

1

M2
Pl
Tµν , (B.7)

we can obtain

Rtt −
1

2
gttR =

1

M2
Pl
Ttt, (B.8)

from time components, which leads to the first Friedmann equation

H2 =

(
ȧ

a

)2

=
1

3M2
Pl
ρ+

κ

a2
, (B.9)

where we defined the Hubble parameter H ≡ ȧ/a. In a similar way, the spatial component of the

Einstein equations leads to

2
ä

a
+

(
ȧ

a

)2

− κ

a2
= − p

M2
Pl
. (B.10)

we can rewrite this equation using the Hubble parameter time derivative

Ḣ =
d

dt

(
ȧ

a

)
=
ä

a
−
(
ȧ

a

)2

. (B.11)

Thus, Eq. B.10 becomes,

Ḣ = −ρ+ p

2M2
Pl

− κ

a2
, (B.12)
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which so-called second Friedmann equation. Combing the first and second Friedmann equations,

one can obtain the acceleration equation,

ä

a
= − 1

6M2
Pl
(ρ+ 3p), (B.13)

since it contains the expansion rate of the universe. We now further combine the Friedmann

equation in another way by taking the partial time derivative of Eq. B.10, which gives

2HḢ − 1

3M2
Pl
ρ̇ = −2κ

ȧ

a3
, (B.14)

and then plugging the κ from the Eq. B.12, i.e.,

−κ = a2Ḣ +
a2(ρ+ p)

2M2
Pl

, (B.15)

which gives the continuity equation,

ρ̇+ 3H(ρ+ p) = 0. (B.16)

We can also derive this from the conservation of the energy-momentum tensor,

∇µT
µ
ν = ∂µT

µ
ν + Γµ

µαT
α
ν − Γα

µνT
µ
α = 0. (B.17)

Consider the ν = t component of this equation and remember everything depends only on t and

not on the spatial coordinates:

∇µT
µ
t =∂µT

µ
t + Γµ

µαT
α
t − Γα

µtT
µ
α

=∂tT
t
t + Γµ

µtT
t
t − Γt

ttT
t
t − Γj

itT
i
j

=−
[
ρ̇+ 3

ȧ

a
(ρ+ p)

]
=0.

(B.18)

The remaining components,

∇µT
µ
i = ∂µT

µ
i + Γµ

µαT
α
i − Γα

µiT
µ
α = 0. (B.19)

Hence, we again obtain the continuity equation.
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B.2 Background equations in PMG

The time-like components (0, 0) of the modified Einstein equation gives

G(X)G00 −∇0∇0G(X) + g00∇α∇αG(X)− 6 (GX(X))
2

G(X)

(
f̃00 −

1

2
[Y ]g00

)
=
T

(mass)
00

M2
Pl

+
T

(m)
00

M2
Pl
.

(B.20)

For the first term of LHS

G(X)G00 = 3G(X)
(
H2 − κ

a2

)
. (B.21)

For the term
−∇0∇0G(X) + g00∇α∇αG(X)

=− ∂0∂0G+ Γα
00∂αG− ∂α∂

αG− Γα
βα∂

βG

=− ∂0∂0G+ ∂0∂0G− Γα
0α∂

0G = Γα
0αĠ = 3HĠ.

(B.22)

For the term

− 6 (GX(X))
2

G(X)

(
f̃00 −

1

2
[Y ]g00

)
=− 6

G

(
∂G

∂t

∂t

∂X

)2(
−1

2
(fḟ)2

)

=− 3

2G

(
Ġ

f ḟ

)2(
−1

2
(fḟ)2

)
=

3Ġ2

4G
.

(B.23)

For the RHS of the Eq. B.20

T
(mass)
00

M2
Pl

+
T

(m)
00

M2
Pl

=
− 1

2m
2M2

PlU

M2
Pl

+
ρ

M2
Pl

=
ρg
M2

Pl
+

ρ

M2
Pl
, (B.24)

where we defined the effective energy density ρg = − 1
2m

2M2
PlU . Therefore Eq. B.20 can be

simplified to

3G

(H +
Ġ

2G

)2

− κ

a2

 =
ρ

M2
Pl

+
ρg
M2

Pl
. (B.25)

Similarly, if we consider the space-like components (i, i) of the modified Einstein equation

G(X)Gii−∇i∇iG(X)+gii∇α∇αG(X)− 6 (GX(X))
2

G(X)

(
f̃ii −

1

2
[Y ]gii

)
=
T

(mass)
ii

M2
Pl

+
T

(m)
ii

M2
Pl
. (B.26)

For the first term

G(X)Gii = giiG(X)

(
−2

ä

a
−H2 +

κ

a2

)
. (B.27)
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For the term
−∇i∇iG(X) + gii∇α∇αG(X)

=− ∂i∂iG+ Γα
ii∂αG+ gii

(
∂α∂

αG+ Γα
βα∂

βG
)

= Γ0
ii∂

0G+ gii
(
∂0∂

0G+ Γα
0α∂

0G
)

= giiHĠ+ gii

(
−G̈− 3HĠ

)
(B.28)

For the term

− 6 (GX(X))
2

G(X)

(
f̃ii −

1

2
[Y ]gii

)
=− 6

G

(
∂G

∂t

∂t

∂X

)2(
−1

2
(fḟ)2gii

)

=− 3

2G

(
Ġ

f ḟ

)2(
−1

2
(fḟ)2gii

)
= gii

3Ġ2

4G
.

(B.29)

For the RHS of the Eq. B.26

T
(mass)
ii

M2
Pl

+
T

(m)
ii

M2
Pl

=
1

M2
Pl

[
1

2
M2

Plm
2
(
giiU − 2U[Z]f̄ii − 4U[Z2]Z

ρ
(if̄i)ρ − 6U[Z3]Z

ρ
σZ

σ
(if̄i)ρ

)]
=gii

1

M2
Pl

[
1

2
M2

Plm
2

(
U − 2U[Z]

f2κ

a2
− 4U[Z2]

(
f2κ

a2

)2

− 6U[Z3]

(
f2κ

a2

)3
)]

=gii
1

M2
Pl

[
1

2
m2M2

Pl
(
U − 2ξ2U[Z] − 4ξ4U[Z2] − 6ξ6U[Z3]

)]
(B.30)

where we defined ξ =
√
κf
a . Therefore Eq. B.26 can be simplified to

G(X)

(
−2

ä

a
−H2 +

κ

a2

)
− 2HĠ− G̈+

3Ġ2

4G
=

pg
M2

Pl
, (B.31)

where we also defined effective energy pressure pg

pg =
1

2
m2M2

Pl
(
U − 2ξ2U[Z] − 4ξ4U[Z2] − 6ξ6U[Z3]

)
. (B.32)

Eq. B.25 plus Eq. B.31, one can obtain

−2G

[
∂t

(
H +

Ġ

2G

)
+

κ

a2

]
+ Ġ

(
H +

Ġ

2G

)
=

ρ

M2
Pl

+
ρg + pg
M2

Pl
. (B.33)

Following the classical way to obtain the continuity equation, we can obtain the expression for κ
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directly from Eq. B.31

κ = −a
2

G

(
pg
M2

Pl
+ 2GḢ + 3GH2 + 2HĠ+ G̈− 3Ġ2

4G

)
. (B.34)

Secondly, we can use Eq. B.25 and Eq. B.31 to eliminate the κ to obtain the expression for Ḣ

Ḣ = − 1

6G

3pg + ρ+ ρg
M2

Pl
− HĠ+ G̈

2G
+

Ġ2

2G2
−H2. (B.35)

Finally, we can take the time derivative of the Eq. B.25 and combine it with Eq. B.34 and back-

ground matter equation (3.35), one can obtain

ρ̇g + 3H (ρg + pg)−
Ġ

2G
(ρg − 3pg + ρ) = 0. (B.36)

Alternatively, we can obtain this modified continuity equation from the Stückelberg equation 3.36.

From the LHS of the Stückelberg equation, we have

∇µ

(
2√
−g

δS

δgµν

)
=∇µ

[
M2

Pl

[
G(X)Gµν −∇µ∇νG(X) + gµν∇α∇αG(X)− 6 (GX(X))

2

G(X)

(
f̃µν − 1

2
[Y ]gµν

)]
− T (mass)

µν − T (m)
µν

]

=M2
Pl

[
Gµν∇µG(X)−Rµν∇µG(X)−∇µ

((
3

2G

Ġ2

(fḟ)2

)(
f̃µν − 1

2
(fḟ)2gµν

))]
−∇µT (mass)

µν

=M2
Pl

[
Gµν∇µG(X)−Rµν∇µG(X)−∇µ

(
3

2G

Ġ2

(fḟ)2
f̃µν

)
+

3

4
∇ν

(
Ġ2

G

)]
−∇µT (mass)

µν

=0.

(B.37)
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Here, we only consider the time-like components, i.e. ν = 0,

M2
Pl

[
G00∇0G(X)−R00∇0G(X)−∇µ

(
3

2G

Ġ2

(fḟ)2
f̃µ0

)
+

3

4
∇0

(
Ġ2

G

)]
−∇µT

(mass)
µ0

=M2
Pl

[
−3
(
H2 − κ

a

)
Ġ− 3

ä

a
Ġ− 9HĠ2

2G
− 3

4
∂0

(
Ġ2

G

)]
+ ∂0T

(mass)
00 − Γµ

µαT
α (mass)
0 + Γα

µ0T
µ (mass)
α

=M2
Pl

[
−3

(
ä

a
+H2 − κ

a

)
Ġ− 3

4

(
2ĠG̈

G
− Ġ3

G2

)
− 1

2
m2U̇ − 9HĠ2

2G

]
− Γµ

µ0T
0 (mass)
0 + Γi

j0T
j (mass)
i

=M2
Pl

[
−3

(
ä

a
+H2 − κ

a

)
Ġ− 3

4

(
2ĠG̈

G
− Ġ3

G2

)
− 1

2
m2U̇ − 9HĠ2

2G

]
− 3HT

0 (mass)
0 +HT

i (mass)
i

=M2
Pl

[
−3

(
ä

a
+H2 − κ

a

)
Ġ− 3

4

(
2ĠG̈

G
− Ġ3

G2

)
− 1

2
m2U̇ − 9HĠ2

2G

]
+ 3H(ρg + pg)

=M2
Pl

[
−3

(
ä

a
+H2 − κ

a

)
Ġ− 3

4

(
2ĠG̈

G
− Ġ3

G2

)
− 9HĠ2

2G

]
+ ρ̇g + 3H(ρg + pg)

=ρ̇g + 3H (ρg + pg)−
Ġ

2G
(ρg − 3pg + ρ) ,

(B.38)

where we combined Eq. B.25 and Eq. B.31 in the last equality. Again, we obtain the continuity

equation as presented in (B.36).
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C
Black hole solutions

C.1 The Coulomb solution

Before discussing the spherically symmetric metric, we start with the Coulomb solution as a warm-

up. In electrodynamics, the electromagnetic four-potential Aµ (x
ν) only depends on r2 = xixi and

t. Note that other components Ai in polar coordinates would transform non-trivially under spatial

rotations, so spherical symmetry SO(3) requires Aφ and Aθ set to zero. Thus,

Ai = Ar(r, t)r̂, A0 = A0(r, t).

The components of the electromagnetic field Fµν in spherically symmetric ansatz have the structure

Ai =
xi

r Ar = ∂irAr, so ∂[iAj] = 0 → Fij = 0. Thus, we have the following results

Bi =
1

2
εijkF

jk = 0,

F 0i = Ei,

Er = (∂rA0 − ∂0Ar) =
(
A′

0 − Ȧr

)
,

Ei = Er r̂.

Here we are restricting to a situation without a spherically symmetric magnetic field Br. Substi-

tuting the spherically symmetric ansatz into the Maxwell action, we have

IMaxwell = −1

4

∫
d4xFµνF

µν =
1

2

∫
d4x

(
E2 − B2

)
, (C.1)



CC

C.1. THE COULOMB SOLUTION 67

the reduced action
Ired

Maxwell =
1

2

∫
sinθdθdφ

∫
r2drdtE2

r

= 2π

∫ (
Ȧr −A′

0

)2
r2drdt.

(C.2)

where 2π comes from
∫
S2 d

2Ω. Now we can vary the reduced action Ired
Maxwell to obtain a contentful

field equation. Notice that here we choose to vary the Ar and A0 before imposing the Coulomb

gauge, in order to obtain the constancy in time of the charge.

For the Eq. C.2, we have

L = 2π
(
Ȧr −A′

0

)2
r2

and from Euler-Lagrange equations, we have

δL
δAr

=
∂L
∂Ar

− ∂µ
∂L

∂ (∂µAr)
= 0. (C.3)

where ∂µ ∂L
∂(∂µAr)

can be considered as ∂t ∂L
∂
(
Ȧr

) + ∂r
∂L
∂A′

r
. Since ∂L

∂Ar
= 0 and ∂L

∂A′
r
= 0. Eq. C.3

becomes

0 =
δL
δAr

= −∂t
∂L

∂
(
Ȧr

) = −4πr2∂t

(
Ȧr −A′

0

)
Therefore, δAr variation yields

δIred
Maxwell
δAr

= 4πr2
∂

∂t

(
A′

0 − Ȧr

)
= 0. (C.4)

Similarly, δA0 variation yields

δIred
Maxwell
δA0

= 4π
∂

∂r

[
r2
(
A′

0 − Ȧr

)]
= 0. (C.5)

We impose Coulomb gauge Ar = 0. Eq. C.5 can be simplified as

Ired
Maxwell
δA0

∣∣∣∣
Ar=0

= 4π
∂

∂r

(
r2A′

0

)
= 0. (C.6)

According to the boundary condition A0 → 0 as r → ∞, we can obtain the solution of this equation

A0 = −q(t)
r
. (C.7)

Now, Eq. C.4 becomes
Ired

Maxwell
δAr

∣∣∣∣
Ar=0

= 4πr2Ȧ′
0 = 4πq̇ = 0, (C.8)
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i.e. q̇ = 0, which indicates that charge is time-independent.

C.2 Spherically symmetric metric ansatz

We move on to the analogous problem in GR. A spherically symmetric metric in Cartesian coor-

dinates takes the form

ds2 = A(r, t)dxidxi +B(r, t)xixjdxidxj ,

where r2 = xkxk. Then transform to the polar coordinates using

dxidxi = dr2 + r2(dθ2 + sin θ2dφ2) = dr2 + r2dΩ2, xidxi = rdr,

where dΩ2 is the usual SO(3) unit 2-sphere invariant element. Including the time coordinate, the

corresponding spherically symmetric spacetime metric is

ds2 = −D(r, t)dt2 + Ã(r, t)dr2 + E(r, t)r2dΩ2 + 2C(r, t)rdrdt,

where Ã(r, t) = A(r, t) + B(r, t)r2 and note that A and B only occur in combination. Moreover,

the residual coordinate transformation can modify these metric functions without changing any

physical content. This is a type of gauge change also known as ”proper” gauge change. The

r → r̃(r, t) coordinate change can be used to set

E = 1

and further redefining other metric functions as

D = ab2, Ã = A+Br2 = a−1, C = bf/r,

where a, b and f are undetermined functions of r and t. The spherically symmetric spacetime

metric then becomes

ds2 = −ab2dt2 + a−1dr2 + r2dΩ2 + 2bfdrdt.

Similar to the analysis in the Coulomb solution case, we can not set f(r, t) = 0 before variation,

which can lead to Birkhoff’s theorem (see Ref. [76]) for more details). However, we will use the

gauge freedom to set f = 0 and begin with the more instructive choice that dropping the off-

diagonal elements of the metric. Substituting this ansatz into the Einstein-Hilbert (EH) action
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IEH =
∫
d4x

√
−gR (here we set 1

2κ = 1 for convenience and so
√
−g = br2 sin θ), we can obtain

the reduced action

Ired
EH =

∫
sinθdθdφ

∫
br2drdtR

= 4π

∫
drdt

[
−b
(
−2 + 2a+ 4ra′ + r2a′′

)
+ r (− (4a+ 3ra′) b′ − 2rab′′)

]
+
r2
(
aȧḃ+ b

(
2ȧ2 − aä

))
a3b2

= 8π

∫
drdt (b+ rab′)

= 8π

∫
drdt b(r − ar)′,

(C.9)

where we have already used integrals by parts and omitted the boundary term. The respective

variations then yield
δIred

EH
δa

= rb′ = 0 ⇒ b = b0;

δIred
EH
δb

= (r − ar)′ = 0 ⇒ a = 1− 2GNM

r
.

(C.10)

In fact, b0 and M could be time-dependence but we won’t consider that here. b0(t) can be set to

1 by fixing the remaining t→ t′(t) gauge freedom. Finally, we arrive at the Schwarzschild metric

ds2 = −
(
1− 2GNM

r

)
dt2 +

(
1− 2GNM

r

)−1

dr2 + r2dΩ2, (C.11)

where M can be considered as the mass of Schwarzschild BH.

C.2.1 From Einstein to Schwarzschild

Now, we would like to present another approach to arrive at the Schwarzschild solution, which

might be more straightforward. Let’s continue with (t, r, θ, φ) coordinates. The Schwarzschild

solution is assumed to be static and spherically symmetric, describing the vacuum spacetime. The

term ”static” denotes a state where all metric components are time-independent, i.e. ∂
∂tgµν = 0.

Moreover, all metric components should be unchanged under a time-reversal, i.e. g0µ = gµ0 = 0

for µ 6= 0. Spherically symmetric means that the geometry of the spacetime is unchanged under

(t, r, θ, φ) → (t, r, θ,−φ) and (t, r, θ, φ) → (t, r,−θ, φ), i.e., g2µ = gµ2 = 0 for µ 6= 2 and g3µ =

gµ3 = 0 for µ 6= 3. To sum up, the metric can be written as

ds2 = g00dt
2 + g11dr

2 + g22dθ
2 + g33dφ

2. (C.12)
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Across the hypersurfaces defined by constant values of t and r, a prerequisite is established, required

that the metric should be a 2-sphere. Thus,

g22 = r2, g33 = r2 sin2 θ. (C.13)

According to the spherical symmetry, g00 and g11 should only depend on r on each radial line. We

can define

g00 = A(r), g11 = B(r). (C.14)

hence, the metric takes the form

ds2 = A(r)dt2 +B(r)dr2 + r2dθ2 + r2 sin2 θdφ2. (C.15)

In order to determine the functions A(r) and B(r), we need to use the last but the most important

condition, ’vacuum’. We first look at the Einstein field equations

Gµν + Λgµν = κTµν , (C.16)

where Tµν is the stress-energy tensor and Gµν is the Einstein tensor, is defined as

Gµν = Rµν − 1

2
Rgµν . (C.17)

The cosmological constant Λ here is set to 0 for the Schwarzschild case. The vacuum solution

satisfies the equations Tµν = 0, i.e.,

Rµν − 1

2
Rgµν = 0. (C.18)

Taking trace for the Eq. C.18, one can obtain

Rαβ = 0 ⇒ ∂ρΓ
ρ
βα − ∂βΓ

ρ
ρα + Γρ

ρλΓ
λ
βα − Γρ

βλΓ
λ
ρα = 0. (C.19)

The non-zero Ricci tensor gives the following equations

Rtt =
rBA′2 +A (rA′B′ − 2B (2A′ + rA′′))

4rAB2
, (C.20)

Rrr =
A (4A+ rA′)B′ + rB

(
A′2 − 2AA′′)

4rA2B
, (C.21)
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Rθθ =
1

2

(
2−

2 + rA′

A

B
+
rB′

B2

)
, (C.22)

Rφφ = sin2(θ)Rθθ. (C.23)

Combining Eq. C.20 and Eq. C.21 eliminates A′′ and obtains

AB′ +BA′ = 0. (C.24)

Substituting this result in Eq. C.22, one can obtain the general solutions

A = c2

(
1 +

c1
r

)
, B =

(
1 +

c1
r

)−1

, (C.25)

where c1 and c2 are yet undetermined constants. Now we would like to obtain c1 and c2 by using

the Newton limit. Recalled the Newtonian frame in GR, in which the line element of spacetime

takes the form
ds2 =− (1 + 2Φ)dt2 + (1− 2Φ)

(
dx2 + dy2 + dz2

)
+ . . .

=− (1 + 2Φ)dt2 + (1− 2Φ)
(
dr̃2 + r̃2dΩ2

2

)
+ . . .

=− (1 + 2Φ)dt2 + (1− 2Φ)dr2 + r2dΩ2
2 + . . .

≈− (1 + 2Φ)dt2 + (1 + 2Φ)−1dr2 + r2dΩ2
2.

(C.26)

where Φ = −GNM
r � 1 is the gravitational potential. Notice that, we have introduced a new radial

coordinate defined by r̃ = r(1 + Φ) = r −GNM . So, dr̃ = dr and r2 ≈ r̃2(1− 2Φ). Compare C.15

and C.26, one can obtain

c1 = −2GNM, c2 = −1. (C.27)

Therefore, we arrive at the Schwarzschild metric

ds2 = −
(
1− 2GNM

r

)
dt2 +

(
1− 2GNM

r

)−1

dr2 + r2dΩ2. (C.28)

C.2.2 Perturbation method

This time, we would like to find the spherically symmetric static solutions by using an expansion in

powers of non-linearity. Continue focusing on (t, r, θ, φ) coordinates and Λ = 0. the most general

spherically symmetric static metric can be written as

ds2 = −B(r)dt2 +A(r)dr2 + C(r)r2dΩ2. (C.29)
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For convenience, we can set A(r) = C(r) by gauge fixing, thus the metric becomes,

ds2 = −B(r)dt2 +A(r)
[
dr2 + r2dΩ2

]
. (C.30)

The vacuum solution satisfies the equations Tµν = 0. From Eq. C.18, we can obtain

3r (A′)
2 − 4A (2A′ + rA′′) = 0,

4B′A2 + 2 (2B + rB′)A′A+Br (A′)
2
= 0,

(C.31)

from the tt and rr components equations. Similarly to the previous case, θθ and φφ components

equations turn out to be redundant. The linear expansion of Eq. C.31 around the flat space solution

is

B0(r) = 1, A0(r) = 1. (C.32)

(If we demand the BH solution to be asymptotically flat, which also leads to A0 = B0 = 1).

We now use the method of linearizing a non-linear differential equation about a solution. The

expansion can be defined as

B(r) = B0(r) + εB1(r) + ε2B2(r) + · · · ,

A(r) = A0(r) + εA1(r) + ε2A2(r) + · · · ,
(C.33)

where ε is a parameter that counts the order of non-linearity. Plugging the expansion expression of

A(r) and B(r), we can obtain the differential equations for the expansion of each power of ε. Thus,

we can obtain the solutions of the undetermined function at each order of ε, which can be used to

solve for the next differential equations for higher order in ε. In the present case, A0 = B0 = 1 is

a solution at O(0) order, which gives 0 = 0. At O(ε) order we have

A′′
1 +

2A′
1

r
= 0, B′

1 +A′
1 = 0. (C.34)

Combing the boundary condition of asymptotically flat, i.e., B1 = A1 = 0 as r → ∞, the general

solution of the Eq. C.34 is left with an unfixed constant. We can choose it to reproduce the

Schwarzschild solution. Thus, we obtain

B1 = −2GNM

r
, A1 =

2GNM

r
. (C.35)
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Plugging this results in the differential equations given by O(ε2) order, we have

3G2M2

r4
− 2A′

2

r
−A′′

2 = 0,

7G2M2

r3
+B′

2 +A′
2 = 0.

(C.36)

The boundary condition again requires that B2 = A2 = 0 as r → ∞. The solution of Eq. C.36 left

with an arbitrary constant which appears as the coefficient of a 1
r term. So, we can absorb it into

the first order (i.e., set to zero) if we set ε = 1 in the end. Thus, we obtain

B2 =
2G2

NM
2

r2
, A2 =

3G2
NM

2

2r2
. (C.37)

We can continue in this way to any order of ε, and obtain the expansion

B(r) = 1− 2GNM

r

(
1− GNM

r
+ · · ·

)
,

A(r) = 1 +
2GNM

r

(
1 +

3GNM

4r
+ · · ·

)
.

(C.38)

The dots represent higher order in the non-linear expansion in the parameter ε. Moreover, the

non-linearity expansion is an expansion of parameters rS/r, where

rS ≡ 2GNM, (C.39)

is the Schwarzschild radius.

C.3 Extend Schwarzschild solutions

To facilitate a more straightforward elucidation, we shall proceed with the subsequent extension

within the confines of the Birkhoff Theorem. Then the spherically symmetric ansatz takes the

form

ds2 = −a(r)b(r)2dt2 + a(r)−1dr2 + r2dΩ2, (C.40)

where a and b are functions only depend on r.
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C.3.1 Schwarzschild-de Sitter

The EH action including the cosmological constant term becomes

ISdS =

∫
d4x

√
−g(R− 2Λ), (C.41)

and the reduced action becomes

Ired
SdS = 8π

∫
dr
(
b+ rab′ − Λbr2

)
(C.42)

The respective variations then yield

δIred
SdS
δa

= rb′ = 0 ⇒ b = constant;

δIred
SdS
δb

= (r − ar)′ − Λr2 = 0 ⇒ a = 1− 2GNM

r
− Λr2

3
.

(C.43)

Thus, the Schwarzschild-de Sitter metric is

ds2 = −
(
1− 2GNM

r
− Λr2

3

)
dt2 +

(
1− 2GNM

r
− Λr2

3

)−1

dr2 + r2dΩ2. (C.44)

C.3.2 Reissner-Nordström solution on de Sitter

Now extend the above discussion to include the gravitationally coupled Maxwell action, i.e. Einstein-

Maxwell theory. This extend action becomes

IRNdS =

∫
d4x

√
−g(R− 2Λ)− 1

4

∫
d4x

√
−gFµνF

µν . (C.45)

where
√
−g = br2 sin θ. For the term

− 1

4

∫
d4x

√
−gFµνF

µν

=
1

2

∫
d4x

√
−g (A′

0)
2 1

b2

= 2π

∫
dr (A′

0)
2 r2

b

(C.46)
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Notice that, we have imposed the same ansatz for the gauge field Aµ and adopted the Coulomb

gauge, the reduced action becomes

Ired
RNdS = 8π

∫
dr

[
−b(ar − r)′ − Λbr2 +

1

4b
r2 (A′

0)
2
]
. (C.47)

Following the steps of the previous analysis in the Coulomb case, one can obtain

A0 = −q
r
. (C.48)

Similarly, δa variation gives the result that b is constant and then δb variation yields

δIred
RNdS
δb

= (r − ar)′ − Λr2 − q2

4b2r2
= 0 ⇒ a = 1− 2GNM

r
− Λr2

3
+

q2

4b2r2
. (C.49)

Once again, b can be absorbed into dt by changing the coordinate t → t′(t) and set b = 1. Thus,

the metric of Reissner-Nordström solution with cosmological constant is

ds2 = −
(
1− 2GNM

r
− Λr2

3
+

q2

4r2

)
dt2 +

(
1− 2GNM

r
− Λr2

3
+

q2

4r2

)−1

dr2 + r2dΩ2. (C.50)
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