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Abstract

Understanding quantum gravity has posed a significant challenge within the field of

physics. While widely accepted in the physics community, there is still no experimental

evidence to substantiate the existence of quantum gravity. Recently, there has been an

emergence of table-top proposals aimed at investigating these non-classical properties in

gravity. Most notably, by observing the gravitationally induced entanglement of two mas-

sive nanoparticles. We conduct a comprehensive examination of three such proposals and

evaluate their experimental feasibility. We assess the advantages and disadvantages of each

and, by responding to criticism directed towards these table-top experiments, we discuss

what their results would tell us about the quantum nature of gravity.
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Chapter 1

Introduction

Quantum gravity

Since the early 20th century, the foundations of our knowledge of the universe have rested

upon the pillars of two guiding fundamental theories of physics; quantum theory and

general relativity (GR). Both theories have a plethora of empirical evidence confirming

them to the highest degree of accuracy. Nevertheless, when trying to merge the two, by

promoting the classical field of gravity described by GR into a quantum field, difficulties

have arisen; with contemporary physics not providing a consensus on how these theories

should be unified [1–3]. Among these theories, the most notable examples are string

theory [4] and loop quantum gravity [5]. However, none has yet to provide a complete and

consistent quantum theory of gravity or made predictions that are experimentally testable

at the length scales currently attainable with existing technologies.

Alternative models of gravity

This lack of empirical evidence for quantum gravity (QG) has led to the emergence of a

group of classical gravity (CG) theories [6–12]. Most significantly, semi-classical gravity

models, wherein matter is treated quantum mechanically, but spacetime is described as

fundamentally classical. Here, we provide a concise description of two CG models.

Attempting to establish a direct coupling between classical gravity and quantum mat-

ter through the standard Einstein equations is not logically sound, since it involves equating

a c-number (Gµν) to an operator (T̂µν) [8]. To remedy this, an alternative approach would

be to consider coupling the Einstein tensor to the expectation value of the stress-energy

tensor, such that

Gµν =
8πG

c4
⟨Ψ|T̂µν |Ψ⟩ = 8πG

c4
⟨T̂µν⟩. (1.1)

In these mean-field models gravity is described by a potential Φ sourced from the ex-
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pectation value of the mass density. In the non-relativistic limit of these models massive

particles are governed by the Schrödinger-Newton equation [13]:

iℏ∂tΨ(t, r) =
(
− ℏ2

2m
∇2 −Gm2

∫
d3r′

|Ψ(t, r′)|2

|r − r′|

)
Ψ(t, r). (1.2)

Another such CG theory is the stochastic collapse model, introduced originally

as an endeavor to address the measurement problem1 in quantum mechanics. Here (in

the non-relativistic limit) a stochastic ‘noise’ term is added to the Schrödinger equation,

effectively transforming it into a diffusive differential equation. The primary proposition

of this model postulates that the ‘noise’ leads to decoherence in position space [14]. In

other words, it causes the suppression of space-time superpositions such that large enough

masses ‘collapse’ into localised position states.

Gravitational induced entanglement of masses

The contrasting views on the quantum nature of gravity, coupled with advances in quan-

tum technologies [15], have fueled growing interest in ascertaining empirical evidence of

quantum effects (or lack thereof) in gravity. Given the extremely weak nature of gravita-

tional interactions, detecting gravity’s quanta (gravitons) through momentum transfer in

a detector is an exceedingly challenging task, if not fundamentally impossible [16]. There-

fore, we are prompted to inquire whether there exists an alternative experiment that can

be conducted to examine the quantum characteristics of gravity in a low energy labora-

tory setting. The possibility of carrying out such an experiment was originally discussed

by Richard Feynman in 1957 [17] and recently a series of table-top experiments utilizing

quantum information (QI) theory have been proposed.

Most notably an experiment proposed by Bose et al. [18] and, separately, by Marletto

and Vedral [19] in 2017. The central claim is that by measuring the entanglement generated

between two masses, each in a quantum superposition of spacetime geometries, we can

deduce the quantum nature of gravity. This is due to the information theoretic argument

that any physical entity mediating the quantum entanglement of two objects must itself

be quantum. Ergo, if the two masses only interact through gravitational forces, we can

conclude any entanglement in the evolved state of the system is evidence of the gravitational

field being quantum.

Since the release of this seminal paper, numerous other table-top experiments in order

to witness the non-classical nature of gravity have been proposed. Here we will highlight

two such experiments. The first, as suggested by Matsumura et al. [20], utilizes a Leggett-
1The measurement problem in quantum mechanics pertains to explaining how the wave function de-

scribing a system collapses when ‘measurements’ are taken.
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Garg inequalities approach, while the second, introduced by Howl et al. [21], uses the fact

that only quantum fields, not classical ones, can generate non-Gaussianity in the quantum

field state of matter. It is important to note there have been other non-laboratory proposed

tests for quantum gravity, such as cosmological observation [22], but these have yet to

provide any conclusive empirical evidence and are not subject of discussion in this paper.

The interested reader is directed towards [23] for descriptions of such phenomenological

models.

A road map of this paper

The remainder of this paper is organised as follows.

In chapter 2, we begin by introducing the low-energy limit of linearized gravity and

the central principle that local operations and classical communications (LOCC) cannot

generate entanglement within a system. We then describe the experimental setup pro-

posed by both Bose et al. [18] and Marletto and Vedral [19] to measure quantum gravity;

showing that by assuming a quantum gravitational field that contains superpositions of

semi-classical states, entanglement is generated in this system. Following this, we outline

the techniques used to measure entanglement in a system. Next, we will derive the phase

associated with the degree of entanglement generated in the Newtonian limit of QG, high-

lighting any assumptions made. Finally, we conclude by summarizing the experimental

feasibility of detecting the results of this BMV proposal.

Since its publication, the BMV experiment has received some questions regarding its

validity as a test for quantum gravity. In Chapter 3, we address and attempt resolve

these concerns. First, we examine issues regarding the claim that the BMV experiment

is a ‘witness for quantum gravity’ and conclude that it is more accurately described as

a test for the ‘non-classical nature of gravity’, measuring whether spacetime geometries

can exist in a quantum superposition of states. Next, we derive a Lorentz covariant and

gauge invariant expression for the phase induced by linearized gravity, in an attempt to

alleviate any concerns regarding locality. Our analysis demonstrates that the Newtonian

limit, which is used in the original derivation of the BMV effect, is a valid approximation

of the true gravitational action of the system in the non-relativistic, static regime.

In chapter 4, we explore another table-top proposal to test for quantum gravity, that

being the Leggett-Garg inequalities approach suggested by Matsumura et al. [20]. First

outlining the assumptions of macrorealism that lead to the Leggett-Garg inequalities, we

then define a two-time quasi-probability. Explaining that measuring a negative quasi-

probability serves as evidence that a system adheres to the superposition principle of

quantum mechanics. We proceed by analysing the setup designed to measure this quasi-
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probability in an attempt to observe the quantum nature of gravity. Furthermore, we

provide an assessment of the experiment’s strengths and weaknesses, drawing comparisons

with the aforementioned BMV experiment.

We do the same in chapter 5, but this time for the markedly distinct proposal put

forward by Howl et al. [21]. Here we first define non-Gaussian states and explain that

a Hamiltonian that involves terms higher order than quadratic in operators induces non-

Gaussianity. We show explicitly that quantized gravity can create non-Gaussianity in a

system, but the classical picture of gravity cannot. Following this, we summarize the

authors proposal to measure non-Gaussianity in a single Bose-Einstein condensate, high-

lighting the advantages and disadvantages of this experiment. Once again, evaluating in

reference to the previously discussed table-top experiments.
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Chapter 2

Quantum Entanglement of Two

Massive Particles as a Witness for

Quantum Gravity

Here we derive the Bose-Marletto-Vedral (BMV) effect [18, 19], outlining and justifying

the assumptions necessary for this derivation and discussing the experimental feasibility of

detection.

2.1 Linearized Gravity as an Effective Field Theory

The gravitational field is a manifestation of the geometry of curved spacetime. When

deriving the BMV effect we are dealing with gravitational forces involving small masses

that induce minimal curvature of spacetime. Thus, to a very good approximation, we can

a use first order (in ℏ) perturbation around Minkowski spacetime, such that

gµν = ηµν + hµν , (2.1)

where |hµν | ≪ 1 to maintain linearity and ηµν is the Minkowski metric. We can write a

weak field approximation for static masses in terms of the Newtonian potential ϕ(x) as

ds2 = (1 +
2ϕ(x)
c2

)(c2dt2)− (1− 2ϕ(x)
c2

)dx2, (2.2)

where we are working with the (+,−,−,−) signature.

Earlier, we stated the difficulties in merging general relativity and quantum mechanics

into a single, consistent theory of everything, leading to disputes over the correct mathe-
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matical modeling of quantum gravity. However, the unification of these two fundamental

theories is only problematic at high energy scales, where divergences occur which cannot

be addressed using the usual quantum field theory (QFT) renormalization methodologies

[14]. Nevertheless, by performing linear perturbations around flat spacetime as above (but

with the small fluctuations ĥµν(x, t) now a quantized field) we can define an effective

quantum field theory (EFT), which is valid at energies below the order of the Planck scale

(Mp) ∼ 1019GeV . The quantization of linearized gravity closely follows the theoretical

framework of other QFT’s of fundamental forces. In this context, the graviton, a massless

spin-2 boson, is analogous to the photon, while the Newtonian potential corresponds to

the gravitational counterpart of the Coulomb potential in quantum electrodynamics. We

then consider the Newtonian interaction between masses to have originated from tree-level

diagrams of the exchange of these virtual gravitons [24]. Here, we refer to ‘virtual’ in the

sense that quanta are off the mass shell (off-shell), meaning they do not conform to the

Einstein energy-momentum relations of particles. According to this definition, a gravi-

ton is considered a non-classical entity. It is precisely this linearized quantum description

of gravity that these table-top experiments of quantum gravity induced entanglement of

masses (QGEM) propose to empirically validate.

It is important to note this EFT is the low energy limit for all QG theories which

contain massless spin-2 bosons. As the BMV experiment tests the quantum nature of

linearized gravity, observing such effect will not distinguish between different main QG

models such as string theory and quantum loop gravity; it is the high energy behaviour

which will give such an insight. However, if BMV effects aren’t measured it would disprove

these aforementioned quantum gravity theories and we would have to look elsewhere, such

as gravitational collapse models suggested by Roger Penrose [7].

2.2 A Classical Field Cannot Cause Entanglement

A central principle of information theory is the statement that entanglement between two

quantum states cannot occur if the states are mediated by a classical channel. In QI this is

usually framed in terms of local operations and classical communications (LOCC), where

any sensible measurement of the entanglement of a system must be non-increasing under

the action of LOCC [25]. This is shown explicitly for a system containing two matter states

(as in the BMV experiment) in Appendix A.

Throughout this experiment, we presuppose local interactions within both classical and

quantum contexts. Our primary objective is not the verification of locality itself; instead,

we aim to establish the quantum properties of the gravitational field following the assump-
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Figure 2.1: Experimental setup proposed to witness the quantum nature of gravity using two
adjacent interferometers. Here each test mass is initially in a localized state |C⟩i, where a
Stern-Gerlach interferometer splits the masses into a quantum superposition of two spacial
separated states |L, ↑⟩i and |L, ↑⟩i. Masses are then held in superposition for time τ , until
being refocused to the localized state |C⟩i. The distance between the two closest arms is d1.

tion of locality. Locality, in this context, functions as a constraint preventing entanglement

generation over a distance without communication through a quantum mediator.

2.3 Experimental Setup

We now focus our attention to the BMV experimental procedure that was proposed to

measure the quantum nature of gravity in a laboratory setting. The experimental setup is

shown in Figure 2.1 and is composed of two Stern-Gerlach (SG) interferometers situated

a short distance from one another.

The first step consists of both interferometers (labelled i = 1, 2) splitting each of the

identical (m1 = m2) test masses into a superposition of spatially separated states. In

a Stern-Gerlach setting this is usually implemented using masses which are initially in a

superposition of spin states. Such that, under the action of an inhomogeneous magnetic

field, the states unitarily evolve into

1√
2
|C⟩i ⊗ (|↑⟩+ |↓⟩) → 1√

2
(|L, ↑⟩i + |R, ↓⟩i) (2.3)

where |L⟩ and |R⟩ represent the spacial states of each arm of the interferometer. After
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Figure 2.2: Illustration showing the arrangement of the two Stern-Gerlach interferometers
such that distance between the masses in three of the spatially superposed states is equiv-
alent. Later we pick the distance between the interferometer arms such that d1 ≪ d2 for
simplicity.

such an operation the total state of the system becomes

|ψ(t = δt1)⟩ =
1√
2
(|L, ↑⟩1 + |R, ↓⟩1)⊗

1√
2
(|L, ↑⟩2 + |R, ↓⟩2) (2.4)

=
1

2
(|LL⟩+ |LR⟩+ |RL⟩+ |RR⟩), (2.5)

where we have used more compact notation of representing |L, ↑⟩1 ⊗ |L, ↑⟩2 as |LL⟩.

Assuming that the masses on different paths have different gravitational interactions

energies depending on the relative distance between them in each quantum state and that

they are only interacting through said gravitational field. After time τ the joint state will

become

|ψ(t = τ + δt1)⟩ =
1

2
(eiϕLL |LL⟩+ eiϕLR |LR⟩+ eiϕRL |RL⟩+ eiϕRR |RR⟩) (2.6)

where ϕ represents the relative phase acquired by each component. Arranging the geometry

of the two interferometers in such a way as shown in Figure 2.2, where the distances between

three of the arms is equal, we can factor out eiϕLL = eiϕLR = eiϕRR = eiϕ0 , rewriting

Eq.(2.6) as

|ψ(t = τ + δt1)⟩ =
eiϕ0

2
(|LL⟩+ |LR⟩+ ei∆ϕ |RL⟩+ |RR⟩). (2.7)

Finally the SG interferometers map the orbital entanglement back to spin entanglement
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by recombining the interferometer paths, such that

|ψ(t = δt2 + τ + δt1)⟩ =
1

2
(|↑⟩1 |↑⟩2 + |↑⟩1 |↓⟩2 + ei∆ϕ |↓⟩1 |↑⟩2 + |↓⟩1 |↓⟩2) |C⟩1 |C⟩2

=
1

2
(|↑↑⟩+ |↑↓⟩+ ei∆ϕ |↓↑⟩+ |↓↓⟩ , (2.8)

where, for simplicity, the overall phase has been dropped and we have used the more

concise notation |↑⟩1 |C⟩1 ⊗ |↑⟩2 |C⟩2 = |↑↑⟩. This last step is done because it is easier to

measure entanglement when the states are represented in a spin basis. It is important to

note that, for ease of calculation, we have made the assumption δt1, δt2 ≪ τ so that any

phase acquired by the states in these periods is negligible and can be ignored. This can be

corrected with more in-depth analysis.

2.4 Measuring Entanglement

As explained in subsection 2.2, LOCC cannot cause the increase of entanglement in a

system. Thus the claim is that detecting the BMV effect by measuring entanglement in

the evolved state of the system is direct evidence that the gravitational field mediating the

interaction of the two masses must exhibit quantum properties.

An entangled system is one that cannot be separated. Specifically, a pure bipartite

state |ψ12⟩ associated with the Hilbert space H1 ⊗H2 is said to be separable if it can be

written as a tensor product state of the form

|ψ12⟩ = |ψ1⟩ ⊗ |ψ2⟩ , (2.9)

where |ψ1⟩ ∈ H1 and |ψ2⟩ ∈ H2. It is clear to see in Eq.(2.8) that the total state is not

separable unless ∆ϕ = 2πn for some integer n, where in this particular instance the system

could be factorised to

|ψ⟩ = 1√
2
(|↑⟩+ |↓⟩)1 |C⟩1 ⊗

1√
2
(|↑⟩+ |↓⟩)2 |C⟩2 , (2.10)

this represents the extreme regime in which no entanglement occurs. We now need to

devise a methodology for quantifying the entanglement within our evolved state.

2.4.1 Von Neumann entropy

For bipartite states, such as ours, a standard way to quantify entanglement is through the

Von Neumann entropy of the density operator

Si = −Tr[ρ̂i log2(ρ̂i)], (2.11)
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with the reduced density matrix defined as

ρ̂i = Trj [ρ̂], (2.12)

where i ̸= j. Calculating ρ̂1 for our evolved state Eq.(2.8) we get

ρ̂1 =
1

4

(
2 |↑⟩ ⟨↑|+ (1 + e−i∆ϕ) |↑⟩ ⟨↓|+ (1 + ei∆ϕ) |↓⟩ ⟨↑|+ 2 |↓⟩ ⟨↓|

)
, (2.13)

which can be expressed in matrix form as

ρ̂1 =
1

4

 2 1 + e−i∆ϕ

1 + ei∆ϕ 2

 . (2.14)

Now solving using the standard eigenvalue equation we obtain

λ± =
1

2
±

√
1 + cos∆ϕ

2
√
2

. (2.15)

It is then trivial to diagonalize ρ̂1, giving the Von Neumann entropy for general ∆ϕ

S1 = −(λ+ log2 λ+ + λ− log2 λ−). (2.16)

When the state is separable, as in the case of Eq.(2.10), λ+ = 1 and λ− = 0, resulting

in zero entropy (here we have defined 0 log(0) = 0). The system is maximally entangled

when ∆ϕ = πn for odd n, for which λ± = 1
2 , giving a Von Neumann entropy of S1 = 1.

2.4.2 Spin Witness Protocol

In realistic experiments, decoherence, through entanglement with the environment, can

occur [24]. This makes it difficult to attribute entanglement in the system solely to the

gravitational field. Furthermore, assessing the entropy requires quantum state tomography

to measure a complete set of observables in order to reconstruct the density matrix ρ of

the system [26]. This measurement process demands a substantial amount of effort.

To avoid these issues, we can implement an entanglement witnesses W(ρ̂), which mea-

sures correlations between the two masses and searches for violations of Bell inequali-

ties, whilst ignoring any entanglement between the states and their environment. These

witnesses are unique to the specific entangled state being measured. For our setup the

appropriate witness is:

W = | ⟨(σ̂x)1 ⊗ (σ̂z)2|(σ̂x)1 ⊗ (σ̂z)2⟩ − ⟨(σ̂y)1 ⊗ (σ̂y)2|(σ̂y)1 ⊗ (σ̂y)2⟩ |, (2.17)
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where σ̂i are the Pauli spin matrices [24]. If W(ρ̂) > 1 then the state is proven to be

entangled. Conversely, measuring W(ρ̂) ≤ 1 gives us no information about the evolved

system. Unlike the Von-Neumann entropy, witnesses do not provide an entanglement

measure, meaning they do not quantify the amount of entanglement in the evolved state.

2.5 Gravitational Phase Induced

In deriving the BMV effect we have assumed that the gravitational field contains superpo-

sitions of semiclassical states. The unitary time evolution of each of these bipartite states

can be calculated from the proper time along the test masses world lines. Here we follow

the generally covariant calculation given in [27] to evaluate this gravitational phase.

2.5.1 Assumptions

In order to use the Newtonian limit of our weak field approximation of linearized gravity

Eq.(2.2), we first need to make a few assumptions. Later (cf. section 3.2) we will validate

these presuppositions, deriving a Lorentz covariant and gauge invariant expression for the

gravitational induced phase from first principles. Demonstrating this simple model is an

accurate approximation of the on-shell action of linearized gravity. These assumptions are

as follows:

1. General Relativity holds for mesoscopic masses ∼ 10−13kg used in the ex-

periment. These are the largest feasible masses we can use to create the spacial

superposition needed (cf. section 2.6). Which, although currently not experimen-

tally verified, is a reasonably conservative assumption.

2. We are operating in the non-relativistic regime. This means that the speeds

|v| of the test masses are a lot less than the speed of light (|v| ≪ c).

3. The velocities are equal (v1 = v2), such that the distance between the masses

is constant (ḋ12 = 0). This also encompasses the supposition that acceleration

due to their gravitational attraction is negligible, a condition valid for masses of this

magnitude.

4. The near-field approximation, in which the gravitational interactions are mod-

eled as being instantaneous. While General Relativity clearly adheres to princi-

ples of locality, if the time the masses are held in spatial superposition, denoted as

τ , is significantly longer than the time during which the system is not static d2
c , we

can approximate the field as static.
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2.5.2 Derivation

The Newtonian potential for masses of radius R is given by1

ϕ(r) =

− (3R2−r2)Gm
2R3 , if r < R

−Gm
r , otherwise.

(2.18)

Thus, using Eq.(2.2), we can calculate the proper time elapsing for each particle as

s =

∫ δt1+τ

δt1

ds =

∫ δt1+τ

δt1

dt

√
1− 3Gm

Rc2
− 2Gm

dc2

= τ

√
1− 3Gm

Rc2
− 2Gm

dc2
≈ τ(1− 3Gm

2Rc2
− Gm

dc2
),

(2.19)

where d is the distance between the two masses in each superposition state and, in the

last step we dropped the higher order terms in the binomial expansion, as Gm
dc2

≪ R ≪ d.

The first two terms are the same for all spacial states and so they only contribute to the

overall phase in Eq.(2.7), such that the only meaningful difference in proper time between

the entangled particle states is

δs = −Gmτ
dc2

. (2.20)

Now, using the fact the time evolution of the quantum state of a massive particle is

given by e−
imc2s

ℏ , we can conclude

∆ϕ = −mc
2δs̃

ℏ
=
Gm2τ

ℏd̃
, (2.21)

with d̃ = d1d2
d2−d1

. Arranging our interferometers such that d1 ≪ d2 we can further simplify

Eq.(2.21) to

∆ϕ ≈ cτ

d1

( m

mPlanck

)2
, (2.22)

where mPlanck =
√

ℏc
G is a constant ∼ 2× 10−8kg.

2.6 Experimental Feasibility

When measuring the BMV effect, if the phase shift ∆ϕ is too small then the induced

entanglement will be insignificant and not measurable, but if it is too large relative to

the resolution of the measuring equipment it also will not be detectable. The system is

first maximally entangled when ∆ϕ = π so we should aim to adjust our experimental

parameters in order to produce a phase shift of comparable magnitude ∆ϕ ∼ 1.
1Here rs ≪ R ≪ d, where rs = 2Gm

c2
is the Schwarzschild radius of the mass so we don’t have issues

using spherical coordinates.
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The distance between the two closest arms of the interferometers d1 has be large

enough so that there are no significant electromagnetic forces between the test masses. As,

in order to validate the BMV experiment, gravitational interactions must be the source

of the majority of the entanglement between the states. Since our masses are neutrally

charged the most notable source of electromagnetic noise is due to the Casimir effect, which

is the relativistic van der Waals force due to quantum fluctuations. The Casimir-Polder

potential when the masses are in state |LR⟩ is

V (d) ≈ k
R6

(d1)7

(ϵ− 1

ϵ+ 2

)2
, (2.23)

where k = 23ℏc
(4π)3ϵ20

. We assume this effect is negligible for all other spatially separated states

as d1 ≪ d2.

Using cryogenically cooled micro-diamonds ϵ ∼ 5.7, as suggested in [18], at a sepa-

ration of d1 ∼ 200µm the Casimir-Polder potential would be a tenth the strength of the

gravitational potential. However, it has been suggested that at the experimental parame-

ters proposed by Bose et al. [18], gravitationally-induced quantum state reduction (GQSR)

would occur, on average, at 0.01s, ergo disentangling the state [28].

Thus, using parameters to nullify GQSR effects τ ∼ 1ms and Casimir-Polder forces

d1 ∼ 200µm, Eq.(2.22) dictates that we would require the superposition of test masses of

the order ∼ 10−13kg. Although setting masses of this scale in spacial superpositions is

challenging to implement, advances in quantum technologies make it seem feasible in the

near future. For example, systems have been proposed using NOON states of Bose-Einstein

condensates (BEC) [28] and opto-mechanical oscillators [29, 30] as the masses in question.
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Chapter 3

Resolving Issues with the

Bose-Marletto-Vedral Experiment of

Gravity Induced Entanglement

Since being proposed [18, 19] as a witness of quantum effects in gravity, the BMV exper-

iment has been questioned in many papers, with some authors raising concerns with its

relevance. Here we highlight some of these issues and the reasons why they do not diminish

the interest in measuring this effect.

3.1 Semantics of Non-Classical Fields

3.1.1 Reginatto-Hall Argument

In [31], it is argued that it is not strictly correct to label the BMV experiment a witness

for quantum gravity, but that it is in fact more accurately described as a test for the

non-classicality, under suitable constraints, of gravity. The subtle distinction here is that

measuring the BMV effect does not preclude all other descriptions of spacetime situated

between standard classical general relativity and a fully quantum representation. Here,

our description of a classical field is one in which each point of spacetime has fixed values

depending on the probability of the field configuration, that is, the field can only be in one

state available to it at every instant [24]. Conversely a quantum field is described using

amplitudes allowing for the possibility of a field to exist in a superposition of multiple

states. It is precisely this definition of non-classicality that this experiment is testing for

in gravity.

However, by extending this definition of a classical field, one can show it is possible to
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Model Condition 1 Condition 2 Condition 3
Mean-field ✓ × ✓
Stochastic collapse × ✓ ✓
String Theory ✓ ✓ ×

Table 3.1: The classification of the two semi-classical models given in section 1 of this
paper, using Galley, Giacomini and Selby’s no-go theorem on the nature of gravitational
fields [32]. Here we have also included a quantum gravity model for comparison.

create a hybrid description, which is not fully quantum, that can create entanglement be-

tween quantum particles. This has been done by Hall and Reginatto using a configuration

ensemble model [31]. Consequently, it is imperative to make clear that this experiment

proposes not to exclude all conceivable explanations of these interference measurements

generated by entanglement. But, instead it is designed to make an observation which

is predicted by all established quantum gravity models and not by conventional classical

gravity [18]. The BMV experiment can accordingly be more accurately described as an in-

vestigation aimed at observing that spacetime geometries obey the superposition principle

of quantum mechanics.

3.1.2 No-Go Theorem on the Nature of the Gravitational Field

Recently, Galley, Giacomini and Selby developed a no-go theorem providing the structure

in which to analyze all conceivable gravitational theories [32], without presupposing any

particular gravitational description. This is done through the use of Generalised Probabilis-

tic Theories (GPTs), which utilize classical probability theory as a framework to describe

non-classical phenomena.

The derivation of their results is very mathematically rigorous; however, the conclusion

is as follows. By creating a system, such as in the BMV experiment, where two masses A

and B interact gravitationally through a field G, they assert that the following statements

are incompatible [32]:

1. G is able to generate entanglement;

2. A and B do not interact directly but only through the mediator G;

3. G is classical.

Note here that neither A, B nor G is assumed to be quantum, allowing for any number of

hybrid descriptions of this system.

These conditions can be used to systematically assess whether a gravitational theory is

consistent with the BMV effect without the need to reconcile the question of whether it is

a theory that is either conventionally classical or quantum in nature. For instance, in the
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Figure 3.1: Schematics of an experiment proposed to test the measurement postulate of
quantum mechanics for gravity [33]. Here, identical masses are subjected to Mach-Zehnder
interferometers. In setup 2, an intermediate measurement of the gravitational field sourced
by the mass is made while it is in a superposition of spacial states. If gravity is described
quantum mechanically, the particle will collapse to one spacial state altering the probabilistic
outcome, such that interference measurements differ from setup 1.

stochastic collapse model, decoherence in position space due to the gravitational ‘noise’,

results in the spontaneous localisation of the states. Consequently, the absence of state

superposition within each interferometer prevents the generation of entanglement, thereby

resulting in a violation of condition 1 (see Table 3.1). Unfortunately, this no-go theorem

does not apply to the Reginatto-Hall model proposed in [31], as in its current state it is

not a GPT (for the interested reader more on this can be found in [32]).

3.1.3 Measuring other Quantum Postulates in Gravity.

The question of what conclusions can be drawn about the quantum nature of gravity

through the BMV experiment is further explored by Hanif et al. [33]. The authors suggest

that measurements of the BMV effect imply that spacetime geometries can exist in quan-

tum superpositions. However, they emphasize that the quantum nature of an entity is not

solely defined by its adherence to the superposition principle. They propose for a com-

plimentary experiment to be conducted that tests for the measurement postulate, which

concerns the intrinsically invasive nature of quantum fields, where the act of measuring a

quantum system leads to an instantaneous update of the system.
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This is done through another multi-interferometer test (refer to Figure 3.1). In this

setup, two separate identical masses undergo Mach-Zehnder interferometry. In one of

these interfereometers a probe performs an intermediate measurement of the gravitational

potential of the test mass. It is imperative that the mass probe exclusively interacts

with the test mass through its gravitational field and not through any other means. The

measurement outcomes of these two scenarios are subsequently compared.

A quantum theory of gravity would predict the collapse of the wavefunction when the

measurement takes place in setup 2, leading to the absence of interference effects, thereby

altering the probability of the massive particle arriving at either detector. However, in a

classical theory of gravity this collapse would not occur, thus the probabilistic results of

detection wouldn’t change from setup 1 to setup 2.

For instance, in the case of the mean-field model, the detector records a gravitational

potential ϕ0(x̄), where x̄ represents the distance between the midpoint of the two possible

particle trajectories and the probe. This reading gives no information about which spatial

state the particle is in; therefore, no measurement collapse would occur.

3.2 Lorentz Covariant and Gauge Invariant Linearized Grav-

ity

When deriving the BMV effect, we employed an approximation that relies on an instanta-

neous, non-relativistic depiction of gravitational interaction between masses (see subsection

2.5.1), rather than a dynamic field-based approach. Some authors [34, 35] have argued that,

by using this Newtonian limit of gravity, we cannot conclude that gravity is non-classical.

Moreover, these approximations confuse the notion of locality of interactions, a central

point in claiming that the mediating gravitational field is non-classical. Since we have

used the information theoretic argument, local operations and classical communications

(LOCC) cannot entangle two quantum states.

Here, we follow [36], deriving a Lorentz covariant and gauge invariant expression for the

gravitational induced phases from first principles, showing that at the slow-moving near-

field limits of our experiment we recover Eq.(2.21). We, once again, employ a linearized

gravity effective field theory (EFT), which remains a valid approximation since we are

operating within a low-energy regime, given the small spacetime curvature induced by

the masses (|ĥµν | ≪ 1). For clarity we have dropped all the hats from operators in the

following derivations.
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3.2.1 Path Integral Approach to Entanglement Generation

As shown earlier, in section 2.3, the two test masses are placed in motion xsa
a (t) dependent

on their intrinsic spin sa ∈ {↑, ↓}, where a = 1, 2 denotes each mass. We can represent

each of the internal spin configuration between two states as |σ⟩ = ⊗a |sa⟩, such as in

Eq.(2.8). Furthermore, we denote the gravitational perturbation due to the masses as G,

which couples to system and mediates the entanglement.

Starting with initial states

∣∣Ψi
〉
=

∣∣ψi
〉
⊗
∑
σ

Aσ |σ⟩ , (3.1)

such that Aσ are complex amplitudes,
∣∣ψi

〉
=

∣∣Gi[xia]
〉
⊗
∣∣xi

a

〉
and xi

a is the initial position

of the masses, where the spatial states in different interferometer branches are taken to be

orthogonal. The final state can be found by the unitary time evolution operator that can

be separated as

Ui→f = Uσ
i→f ⊗

∑
σ

|σ⟩ ⟨σ| , (3.2)

since the particle spins do not change along the interferometer paths. Our objective is to

determine Uσ
i→f , which is responsible for inducing the gravitational phase and generating

entanglement.

Using path integral formalism, the partition function of our system can be written as

Z =

∫
DΨe

iS
ℏ =

∏
a

∫
DGDxa exp

( iS[xa,G[xa]]
ℏ

)
. (3.3)

Utilizing a stationary phase approximation and retaining only the field configuration G

that solves the classical gravitational field equations of masses following paths xa(t) [36],

then

Uσ
i→f ∝

∏
a

∫ f

i
Dxa exp

( iS[xa,G[xa]]
ℏ

)
|ψf ⟩⟨ψi|. (3.4)

This can be further simplified by a second stationary phase approximation. Keeping only

the contribution from the classical path xsaa we get

Uσ
i→f ∝ exp

(
i(Sσ

0 [x
sa
a ] + Sσ

G [x
sa
a ,G[xsaa ]])

ℏ

)
|ψf ⟩⟨ψi|, (3.5)

where we have split the action (S = S0 + SG) into a term S0 independent of G and an

interacting term SG coupling the masses to the mediating gravitational field [36]. For the

sake of ease, we assume S0 is the same for all states |σ⟩. Ergo, by factorising it out, it can
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be rendered a global phase that can be ignored. Giving us a final state:

|Ψf ⟩ = Ui→f |Ψi⟩ ∝ |ψf ⟩ ⊗
∑
σ

Aσe
iθσ |σ⟩, (3.6)

with

θσ =
Sσ
G [x

sa
a ,G[xsaa ]]

ℏ
(3.7)

the gravitational phase induced, entangling the spin degrees of freedom.

3.2.2 Action in de Donder Gauge

In appendix B.1, we start from the gauge and Lorentz invariant Fierz-Pauli action, which is

the Einstein-Hilbert action to quadratic order in the metric perturbation around Minkowski

spacetime hµν (see Eq.(2.1) [37]. Showing that the on-shell action of the linearized gravi-

tational field is:

SG =
1

4

∫
d4x hµνT

µν . (3.8)

In this calculation, we fixed the action in de Donder gauge

∂ν h̄µν = ∂ν(hµν −
1

2
hηµν) = 0, (3.9)

where Tµν is the energy-momentum tensor and h = ηµνhµν . The de Donder gauge is the

gravitational analogue of the Lorenz gauge in electromagnetism.

The Euler-Lagrange equations for the metric perturbation are

□hµν = −16πG

c4
T̄µν . (3.10)

This can be solved using a retarded Green function for the d’Alembertian operator □ (see

Appendix B.2) to get the wave equation

hµν(t,x) =
4G

c4

∫
d3y

T̄µν(tr,y)

|x− y|
, (3.11)

where

tr = t− |y − x|
c

, (3.12)

is the retarded time. The retarded time is significant, with Eq.(3.11) showing that dis-

turbances in the gravitational field at spacetime coordinates (t,x) are due to the sum

of all energy and momentum sources on the past light cone [38] (see Figure 3.2). The
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Figure 3.2: Perturbations in the gravitational field at (t, xi) are determined by spacetime
disturbances on the past light cone.

energy-momentum tensor for N point-like1 masses is

Tµν(t,x) =
N∑
a=1

Tµν
a (t)δ(x− xa(t)), (3.13)

such that

Tµν
a (t) = maγa(t)v

µ
a (t)v

ν
a(t), (3.14)

T̄µν = Tµν − 1

2
ηµνηαβT

αβ, (3.15)

where vµa (t) = (c,va), with va the three-velocity and γa(t) = (1− |va|2/c2)−
1
2 the Lorentz

factor [39]. Upon substituting Eq.(3.11) into Eq.(3.10), we perform some delta function

manipulation [36] and integrate over space, obtaining the on-shell action:

Sσ
G =

G

c4

a̸=b∑
a,b

∫
dt

T̄µν
a (tab)Tbµν(t)

|dab(t)| − dab(t) · va(tab)/c
(3.16)

with tab the retarded time between the two particles and dab(t) = xb(t) − xa(tab) the

retarded displacement. This is shown in more detail in Appendix B.2. Evidently a = b

terms are ignored, as they pertain to the scenario in which both particles are in the same

interferometer, resulting in a purely infinite phase contribution to the state.

This action of linearized gravity is Lorentz covariant. Thus, through Eq.(3.7), we

have shown that θσ, which the BMV experiment is designed to observe, also possesses

these properties. This addresses any locality-related concerns in the process of gravita-

tionally induced entanglement. We now show that our earlier calculation of θ is just an

approximation of this Lorentz covariant expression.
1A valid approximation as here the distance between the particles is a lot greater than the their size.

In more technical terms this means the spacial states of the particles are orthogonal.
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3.2.3 Retrieving the Newtonian Limit from our Assumptions

In deriving the BMV effect we assumed, in subsection 2.5.1, that our masses moved at

(equal |va| = |vb| = |v|) non-relativistic speeds and that gravitational field interactions

were instantaneous. Together these two approximations yield the Newtonian limit.

Slow-moving approximation

For the slow moving test masses |v| ≪ c we have

γ = (1− |v|2/c2)−
1
2 ) = 1 +O(|v|2/c2) ≈ 1, (3.17)

such that expanding Eq.(3.16) in factors of the speed of light c and cancelling terms of the

order O(|v|/c) and above we get

T̄µν
a (tab)Tbµν(t)

c4
= m2(1 +O(|v|/c)) ≈ m2, (3.18)

for the numerator and

|dab(t)| − dab(t) · va(tab)/c ≈ |dab(t)|, (3.19)

for the denominator, where we have taken the masses to be equal. Therefore, the action

for linearized gravity in this slow-moving approximation is

Sσ
G ≈ 1

2
G

a̸=b∑
a,b

∫
dt

m2

dσab(t)
. (3.20)

We observe that, in this context, the action is not entirely independent of the speed of light.

There remains a factor of c in the implicit equation for the retarded displacement, which is

dependent upon tr. Thus, the interaction, resulting from this non-relative approximation

of action, is still local.

Near-field approximation

In the near-field approximation the time taken for information to travel between the masses

is very small compared to the time the particles are held in spacial superposition dab/c≪ τ .

This amounts to the retarded time functions closely approximating to the coordinate time

tr ≈ t for the majority of time we are integrating over. This approximation leads to the
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following expression for the action:

Sσ
G ≈ G

c4

a̸=b∑
a,b

∫
dt

T̄µν
a (t)Tbµν(t)

|Dab(t)| − Dab(t) · va(t)/c
, (3.21)

where Dab(t) = xb(t) − xa(t), in which we have replaced the retarded time function with

the coordinate time.

3.2.4 Newtonian limit

Both of these approximations do not necessarily overlap; physical systems can be structured

in a way that validates one while invalidating the other. Taking both the near-field and the

slow-moving approximations amounts to replacing the retarded displacement in Eq.(3.19)

with Dab(t). In our setup, we treat Dab(t) as a constant displacement d, ignoring the tiny

acceleration effect between the particles due to the gravitational interaction. Finally, by

replacing the retarded displacement with d in Eq.(3.7), we arrive at the Newtonian limit

for the induced gravitational phase, expressed as:

ϕσ ≈ Gm2

ℏd

∫ τ

0
dt =

Gm2τ

ℏd
. (3.22)

This perfectly corresponds to Eq.(2.22). This demonstrates that our naive calculation

of the phase induced by gravity, responsible for entanglement, is merely an approximation

of an on-shell, Lorentz covariant and gauge invariant action. So although in our derivation,

we employed a simplified limit of the field, it does not imply that the BMV effect is the

result of an unphysical, non-dynamical gravitational field, as some have suggested. These

arguments are further supported in the papers presented by Belenchia et al. [40] and

separately, Danielson et al. [41].
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Chapter 4

A Leggett-Garg Inequalities

Approach for Testing the

Non-Classical Nature of Gravity

In this chapter and the subsequent one, we explore two other recent table-top proposals to

test for quantum gravity. Here, we begin by examining an approach introduced by Mat-

sumura et al. [20] that utilizes Leggett-Garg inequalities, which are known to be violated

in quantum systems. It is proposed that by measuring violations in these inequalities by a

system interacting solely through gravitational forces, we can draw conclusions about the

quantum nature of the gravitational field.

4.1 Leggett-Garg Inequalities

4.1.1 Assumptions of macrorealism

In their seminal 1985 paper, Leggett and Garg [42] introduced what are often superficially

referred to as the temporal counterparts to the well-known spacial CHSH/Bell’s inequalities

[43, 44]. Initially proposed to test for the potential presence of macroscopic1 quantum

coherence in a laboratory environment [45, 46], they were derived by outlining a set of

assumptions that you would expect a macroscopic system to adhere to. Quoting directly

from their paper [42], these assumptions are:

1. Macroscopic realism: A macroscopic system with two or more macroscopically dis-

tinct states available to it will at all times be in one or the other of these states.
1Generally, the systems explored using LG inequalities are seldom macroscopic; nevertheless, the in-

equalities remain valid.
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2. Noninvasive measurability (NIM) at the macroscopic level: It is possible, in princi-

ple, to determine the state of the system with arbitrarily small perturbation on its

subsequent dynamics.

Subsequently, a third assumption was incorporated for completeness [47, 48]:

3. Induction: future measurements cannot affect the outcome of measurements on the

present state.

Together these constitute the assumptions for macrorealism. To prevent any ambiguity,

assumption 1 is frequently referred to as ‘macroscopic realism per se’ (MRps). These

assumptions ensure the existence of an ‘underlying joint probability distribution’ [49] and

lead to a set of Leggett-Garg (LG) inequalities.

4.1.2 Two and Three Time Leggett-Garg Inequalities

We begin by defining a simple system with a single dichotomic observable Q with possible

values s = ±1. By measuring this observable at multiple times ti, we can construct a

dataset and subsequently compute single time averages ⟨Q(ti)⟩ = ⟨Qi⟩ as well as the tem-

poral correlation function between sequential measurements Cij . The correlation function

is defined as

Cij = C(ti, tj) =
∑

si,sj±1

sisjp(si, sj), (4.1)

where p(si, sj) represents the joint probability of measuring outcomes si and sj at times ti

and tj , respectively [46]. Following from the assumptions for macrorealism, one can derive

the Leggett-Garg inequalities for any arbitrary number of time measurements, denoted as

LGn’s. This won’t be displayed here, but I direct the interested reader to [42, 45, 50],

for these derivations. For the case where three time measurements are taken the LG3

inequalities are as follows:

1 + C12 + C23 + C13 ≥ 0, (4.2)

1− C12 − C23 + C13 ≥ 0, (4.3)

1 + C12 − C23 − C13 ≥ 0, (4.4)

1− C12 + C23 − C13 ≥ 0. (4.5)

When measuring a system, LG inequalities are violated if any of the three assumptions for

macrorealism fail.

For the remainder of this section we are most interested in the two-time Leggett-Garg
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inequalities (LG2) . These can be derived by defining the positive expression

(1 + s1Q1)(1 + s2Q2) ≥ 0. (4.6)

Next, assuming the existence of an ‘underlying joint probability distribution’ in a macrore-

alistic system, we can take the average of Eq.(4.6), leading to the following LG2 inequalities

[50–53]:

1 + s1 ⟨Q1⟩+ s2 ⟨Q2⟩+ s1s2C12 ≥ 0. (4.7)

4.1.3 Properties of the Quasi-Probability

To better understand how the LG2 inequalities can be used to differentiate between classical

and quantum systems, we first define the two-time quasi-probability by promoting the LHS

of Eq.(4.7) to operators:

q(s1, s2) =
1

4
(1 + s1

〈
Q̂1

〉
+ s2

〈
Q̂2

〉
+ s1s2C12), (4.8)

where the added factor of 1
4 ensures that q(s1, s2) sums to one. The term ‘quasi’ is used

because Eq.(4.8) can take negative values, analogous to the behaviour of Wigner distribu-

tions in phase space (cf. section 5.1). Lüders bound states that the minimum value for the

two-time quasi-probability is −1
8 .

The LG2 inequalities assert that the observation of a negative quasi-probability for a

system serves as an indicator for the violation of macrorealism. To see what this tells us

about the quantum nature of the system, we begin by introducing the statistical version

of the NIM requirement for macrorealism, represented as follows:

∑
s1

p(s1, s2) = p(s2). (4.9)

Here p(s2) is probability of measuring s2 at time t2 without a prior measurement having

been performed. This was originally proposed by Kofler and Brukner [54] and termed the

no signalling in time condition (NSIT). The NSIT condition holds for classical systems but

generally does not hold for quantum systems due to the measurement postulate of quantum

mechanics, described earlier in subsection 3.1.3. This is shown explicitly for our system

in Appendix C. However, the same does not hold true for the two-time quasi-probability,

27



which possesses the following properties:

∑
s1

q(s1, s2) = p(s2) (4.10)

∑
s2

q(s1, s2) = p(s1) (4.11)

for both classical and quantum systems. This implies that the quasi-probability satisfies a

condition analogous to the NSIT condition [52].

Another salient property of the quasi-probability is its equivalence to the temporal

correlation function defined by the measurement probability p(s1, s2) [52], that is

(t1, t2) = C12 =
∑

s1,s2±1

s1s2p(s1, s2) =
∑

s1,s2±1

s1s2q(s1, s2). (4.12)

It is noted that the quantum mechanical form of the correlation function is[46]:

C12 =
1

2

〈
Q̂1Q̂2 + Q̂2Q̂1

〉
. (4.13)

To measure the quasi-probability of our system, we conduct separate experiments to

measure ⟨Q1⟩, ⟨Q2⟩ and C(t1, t2). To ensure the correlation function of a quantum sys-

tem cannot be simulated using an invasive classical measurement model, it is imperative

we employ non-invasive measurement protocols. These protocols, such as ideal-negative

measurements [55], are designed to mitigate classical disturbances arising from "clumsi-

ness", thus ensuring a classical system satisfies the NIM condition of macrorealism. While

implemented them in practice can be challenging, Joarder et al. [56] have provided a

comprehensive approach to address and close various "clumsiness loopholes".

When measuring the quasi-probability using these non-invasive measurement tech-

niques and following from the property described in Eq.(4.10), we can conclude that the

quasi-probability satisfies NIM, characterizing the ‘non invaded’ aspect of the system at

two distinct point in time [52]. Consequently, if the value of the quasi-probability is neg-

ative, it indicates a violation of MRps (as induction is assumed for all realistic physical

models). A violation of MRps effectively signifies that the system exists in a superposi-

tion of states. Therefore, measuring a negative quasi-probability for a system amounts to

demonstrating it adheres to the superposition principle of quantum mechanics.
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4.2 Experimental Proposition

4.2.1 Measurement operator

In the proposed experiment, the dichotomic variable we are interested in measuring is

denoted Q̂ = n · σ, corresponding to the spin value (s = ±1) along a direction vector n.

To simplify the subsequent derivation, we will adopt the specific choice of n = (1, 0, 0),

such that Q̂ = σ̂x. Following from this, the associated projective measurement operator of

our quantum variable Q̂ is defined as follows:

P̂s =
1

2
(1+ sσ̂x), (4.14)

satisfying P̂s = P̂ †
s = P̂ 2

s and
∑

s P̂s = 1. Starting with an initial system ρ0 the single time

average of measuring s at a time t is

〈
Q̂(t)

〉
=

∑
s=±1

sps(t) =
∑
s=±1

sTr[P̂s(t)ρ0]

=
∑
s=±1

1

2

(
sTr[ρ0] + Tr[s2σ̂x(t)ρ0]

)
= Tr[σ̂x(t)ρ0], (4.15)

where we are in the Heisenberg picture, such that

σ̂x(t) = Û †(t)σ̂x(0)Û(t) = e−
iĤt
ℏ P̂s(0)e

iĤt
ℏ . (4.16)

Similarly, from Eq.(4.13), the temporal correlation function for sequential measurements

at times t1 and then t2 is given as:

C(t1, t2) =
1

2
Tr[{σ̂x(t1), σ̂x(t2)}ρ0], (4.17)

with the curly brackets representing the anti-commutator of the two operators. Therefore,

to establish the quasi-probability we must define the Hamiltonian of our system in order

to identify the unitary operators responsible for governing the temporal evolution of the

system.

4.2.2 Setup

To use the two-time quasi-probability function to test for the non-classical nature of gravity,

Matsumura et al. [20] propose an experiment consisting of a hybrid system setup, which

is based on the setup presented by Carney et al. [57]. Here, a low frequency oscillator

is coupled to a particle in a superposition of two spacial states. Depicted in Figure 4.1,
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Figure 4.1: A hybrid system composed of a particle with mass m existing in a spacial su-
perposition of states represented as |L⟩ and |R⟩ coupled to a mechanical oscillator of mass
M , position variable q and angular frequency ω. This coupling is facilitated through a
mediating gravitational field and no other interactions take place. By performing measure-
ments on the evolved state of the particle, it is proposed [20] that detecting the violation of
Leggett-Garg inequalities is evidence for the non-classical nature of gravity.

30



the equilibrium point of the mechanical oscillator, characterized by an angular frequency

ω and mass M , is situated a distance D from a particle with mass m in a superposition

state, where the separation between the two interferometer arms is d. For clarity we will

be dropping hats on operators and setting ℏ = 1 for the rest of this section.

As with the BMV experiment, we are assuming that the oscillator and the particle are

only interacting through a gravitationally mediated field, such that the Hamiltonian is:

Ĥ = ωa†a︸ ︷︷ ︸
free Hamiltonian of the oscillator

+ G︸︷︷︸
gravitational interaction term

, (4.18)

where â† and â are the creation and annihilation operators respectively. In this context,

we have deliberately omitted the Larmour procession term Ωσ̂z included in the derivation

by Matsumura et al. [20], as we are only focusing on effects of gravity.

Again implementing the valid low-energy assumption of the Newtonian limit of gravity

(see subsection 2.5.1 and 3.2.3), we have [20]

Ĝ = − GMm√
D2 + (q + dσz/2)2

. (4.19)

Under the assumption that the maximum position from equilibrium (qmax) of the oscillator

is a lot smaller than both d and D we can make the approximation

Ĝ ≈ GMmd

(D2 + d2/4)3/2
σzq =

g√
2
σz q′, (4.20)

with

g =
1√
2Mω

GMmd

(D2 + d2/4)3/2
, (4.21)

q′ =
√
Mω q. (4.22)

From the Hamiltonian of the system, an expression for the unitary time evolution operator

can be derived. Utilizing principles of quantum field theory, it can be shown that the time

evolution operator is:

U(t) = e−iHt = e−iωa†at eσ
z(α(t)a−α∗(t)a†), (4.23)

where

α(t) = λ(e−iωt − 1) = −2λi e
−iωt

2 sin (
ωt

2
), (4.24)

here λ = g/ω. This quantity is significant as it sets the scale for all observables being

measured in this experiment. For the interested reader please refer to [20] for a derivation
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of this last step.

We prepare our experiment as in Figure 4.1, such that the initial state of the hybrid

system is

|Ψ(0)⟩ = 1√
2
(|0⟩+ |1⟩)a ⊗ |0⟩b

=
1√
2
(|0⟩ |0⟩+ |1⟩ |0⟩). (4.25)

By acting the unitary operator defined in Eq.(4.23) on |Ψ(0)⟩ and ignoring overall phase,

the state evolves as[20, 57]:

|Ψ(t)⟩ = 1√
2
(|0⟩ |α(t)⟩+ |1⟩ |−α(t)⟩), (4.26)

where

|α(t)⟩ = |α⟩ = e−
|α|2
2

∞∑
n=0

αn

√
n!
|n⟩ = e−

|α|2
2 eαa

†
e−α∗a|0⟩ (4.27)

are coherent states. Unlike Fock states, two different coherent states (|α⟩ , |β⟩) are not

orthogonal and have the inner product property

⟨β|α⟩ = e−
1
2
(|β|2+|α|2−2β∗α). (4.28)

4.2.3 Calculating the two-time quasi-probability

We now calculate two-time quasi-probability for our system. To do this we need to deter-

mine the single time averages
〈
Q̂1

〉
and

〈
Q̂2

〉
, as well as the two time correlation function

C(t1, t2) and insert these values into Eq.(4.8). Please note that when calculating these

values, the interferometer measures the spin states. More technically, this implies that the

projective measurement operator only operates on the Hilbert space in which the particle

in spatial superposition lives.

Using the cyclic properties of the trace we can rewrite Eq.(4.15) as:

〈
Q̂(t)

〉
= Tr[Û †(t)σ̂x(0)Û(t)ρ0] = Tr[⟨Ψ(0)| Û †(t)σ̂x(0)Û(t) |Ψ(0)⟩]

= ⟨Ψ(t)| σ̂x |Ψ(t)⟩ . (4.29)
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Now substituting in Eq.(4.26) we have

〈
Q̂(t)

〉
=

1

2
(⟨0| ⟨α(t)|+ ⟨1| ⟨−α(t)|) σ̂x (|0⟩ |α(t)⟩+ |1⟩ |−α(t)⟩)

=
1

2
(⟨0| ⟨α(t)|+ ⟨1| ⟨−α(t)|)(|1⟩ |α(t)⟩+ |0⟩ |−α(t)⟩)

=
1

2
(⟨α(t)| − α(t)⟩+ ⟨−α(t)|α(t)⟩) = ⟨α(t)| − α(t)⟩, (4.30)

where we have used the orthogonality property of the spacial states. This can easily be

solved by utilizing the inner product of coherent states given in Eq.(4.28) and our definition

of α(t) in Eq.(4.24), such that

〈
Q̂(t)

〉
= ⟨α(t)| − α(t)⟩ = e−2|α2| = e−8λ2 sin2 (ωt

2
). (4.31)

A similar calculation for the temporal correlation function yields the slight more complex

result [20]:

C(t1, t2) = cosΘ(t1, t2) e
−8λ2 sin2 (ωτ

2
), (4.32)

where τ = t2 − t1 and

Θ(t1, t2) = 8λ2 sin
(ωτ

2

)[
(cos

(ωτ
2

)
− cos

(
ω(t1 + t2)

2

)]
. (4.33)

Substituting Eq.(4.31) and Eq.(4.32) into Eq.(4.8) we get our expression for the two-time

quasi-probability function:

q(s1, s2) =
1

4

(
1 + s1e

−8λ2 sin2 (
ωt1
2

) + s2e
−8λ2 sin2 (

ωt2
2

) + s1s2 cosΘ(t1, t2) e
−8λ2 sin2 (ωτ

2
)
)
.

(4.34)

4.3 Analysis

4.3.1 Results

After disabling the gravitational interaction between the two systems by taking λ→ 0, we

find that Eq.(4.34) simplifies to

q(s1, s2) =
1

4
(1 + s1 + s2 + s1s2)

=
1

4
(1 + s1)(1 + s2) ≥ 0. (4.35)

This observation demonstrates, that in the absence of gravitational interactions between

the two hybrid systems, the LG2 inequalities are satisfied.

By reinstating the gravitational interactions, Figure 4.2 evidences that at a pair of time
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Figure 4.2: The blue regions show the negative values of the two-time quasi-probability
defined in Eq.(4.34). We have shown this for all iterations of spin measurement outcomes
(s1, s2). Here you can see that in the case of s1 = 1 and s2 = 1 the quasi-probability is
always positive.
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correlated measurements t1, t2, the quasi-probability can take negative values. This nega-

tivity depends on both the spin measurement outcomes (s1, s2) and times of measurements,

with no negativity occurring in the case (s1, s2) = (1, 1). This demonstrates that, if nega-

tive quasi-probabilities were measured, the LG2 inequalities, and therefore macrorealism,

would be violated due to gravitational interactions mediating the two systems.

4.3.2 Feasibility

The measurability of the quasi-probability of our system is contingent upon the parameter

λ. Both Matsumura et al. [20] and Carney et al. [57] propose that, by employing highly

pragmatic experimental parameters, we would estimate λ to be on the order of approxi-

mately 10−14. To assess the impact of this estimation on feasibility, we now expand the

quasi-probability to the order of O(λ2) in λ, such that

q(s1, s2) =
1

4

(
1 + (s1(1− 8λ2 sin2 (

ωt1
2

) + s2(1− 8λ2 sin2 (
ωt2
2

)) +O(λ4))

+ s1s2(1 +O(λ4))(1− 8λ2 sin2 (
ωτ

2
) +O(λ4))

)
≈ 1

4
(1 + s1 + s2 + s1s2)

− 2λ2
(
s1 sin

2 (
ωt1
2

) + s2 sin
2 (
ωt2
2

) + s1s2 sin
2 (
ωτ

2
)
)
. (4.36)

From Eq.(4.36) the minimum value for the two-time quasi-probability of our system when

(s1, s2) = (−1,−1), (−1, 1), or (1,−1) can be calculated as [20]:

qmin(s1, s2) = −λ
2

2
. (4.37)

For instance, a qmin(−1,−1) occurs when ωt1 = π
3 + 2πn and ωt2 = 5π

3 + 2πm for any

integers n,m. In the case that λ ∼ 10−14, this quasiprobability would be minuscule,

rendering its detection practically impossible.

Thus, in order to make this proposed experiment viable, we need to make qmin more

negative. A solution to this is adopting a different initial state of the oscillator to that

of the single particle state in Eq.(4.25). For example, choosing our initial state to be a

thermal state with density operator

ρ =
1

πn̄

∫
d2α e−

|α|2
n̄ |α⟩ ⟨α| , (4.38)

where n̄ is the mean occupation of thermal phonons and |α⟩ is some arbitrary coherent
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state. It can be shown [20, 57] that the minimum value for the quasi-probability becomes

qmin(s1, s2) = −(2n̄+ 1)
λ2

2
. (4.39)

Reintroducing ℏ’s, the mean occupation number is associated to the temperature T of the

system via the expression [20]:

n̄ =
kBT

2ℏω
. (4.40)

For our system this is roughly of the order ∼ 1014.

Finally, Carney et al. [57] have suggested that linear sensitivity in λ can be achieved

through a ‘boosted’ preparation method, where the oscillator is initially prepared in an

entangled state. Alternatively, Matsumura et al. [20] argue that ‘squeezing’ the initial

state of the oscillator can significantly increase the degree to which the LG inequalities are

violated. Further details can be found in their respective papers cited above.

4.3.3 Entanglement generation

We now quantify the entanglement generated in our hybrid system to demonstrate the

direct parallels between measuring the quasi-probability and employing an entanglement

witness. Implementing the same procedure outlined in subsection 2.4.1, we calculate the

Von Neumann entropy for our hybrid system. From Eq.(4.26), the reduced density matrix

of the particle undergoing interferometry is

ρ̂a = Trb[ρ̂] =
1

2

 1 e−8λ2 sin2 (ωt
2
)

e−8λ2 sin2 (ωt
2
) 1

 , (4.41)

such that the corresponding eigenvalues are

λeig± =
1

2
± 1

2
e−8λ2 sin2 (ωt

2
). (4.42)

Using Eq.(2.16) we again observe that the entropy is zero at times t = 2nπ, as λ+ = 1

and λ− = 0, showing the state is initially separable. Additionally, it is apparent that if we

turn gravitational interactions off (by setting λ = 0), the entropy vanishes for all times.

This observation demonstrates that the presence of a gravitational field mediating the two

hybrid systems is a prerequisite for the emergence of entanglement.

By investigating the entanglement of the system at times t = nπ, where n is an odd

integer, and expanding in powers of λ, we find

λmax
± =

1

2
± 1

2
e−8λ2

=
1

2
± 1

2
(1− 8λ2 +O(λ4)) (4.43)
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leading to a Von Neumann entropy in the limit λ≪ 1:

Smax = −(4λ2 +O(λ4)) log
(
4λ2 +O(λ4)

)
− (1− 4λ2 +O(λ4)) log

(
1− 4λ2 +O(λ4)

)
= −(4λ2 + ...) log

(
4λ2 + ...

)
− (1− 4λ2 + ...)(−4λ2 + ...)

≈ −8λ2 log(2λ) + 4λ2. (4.44)

This demonstrates that the amount of entanglement generated by the hybrid system is

contingent on λ in a manner akin to the negativity of the quasi-probability (see Eq.(4.37)).

This alludes to the fact that both are a consequences of the same quantum phenomenon:

the superposition of spacetime geometries.

4.4 Closing remarks

Due to the negligible amount of entanglement generated in a system defined by our ap-

proximate parameters, obtaining a statistically significant result for the two-time quasi-

probability will require conducting numerous measurements of ⟨Q(t1)⟩, ⟨Q(t2)⟩, and the

correlation function C(t1, t2). The correlation function involves measurements at two dif-

ferent times, necessitating a significantly larger data set compared to the single-time ex-

pectation values to maintain accuracy. This demanding measurement process is one of the

disadvantages of this experiment. Additionally, there is a concern that the low strength of

these signals could pose challenges when attempting to mitigate decoherence effects and

eliminate any entanglement generated by non-gravitational quantum fields. For example,

to nullify van der Waal forces it would be necessary to increase the distance between the

oscillator and the particle; however, this would further weaken the detection of a negative

quasi-probability. However this test only requires the observation of a single subsystem,

as opposed to the multi-partite quantum system proposed in the BMV approach, which is

a potentially more manageable feat for the experimentalist.

Leggett-Garg inequalities cannot be violated in a classical system, so much like the

BMV experiment, this test would be a witness for the non-classical nature of gravity.

This proposal can be regarded as a variation on the earlier BMV experiment, in the sense

that it is just a measure of whether two systems locally interacting exclusively with the

gravitational field can generate entanglement. Therefore, it suffers from similar issues to

those raised in chapter 3. Nevertheless, this experiment offers a view on the quantumness of

gravity through the lens of the more rigorous confines of the assumptions for macrorealism.

With future advances in quantum measurement technologies, the experiment offers the

scope to extend these Leggett-Garg inequality tests to three time LG3s (as long as it

is ensured that non-invasive measurements are implemented). This would give a more
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complete picture of gravity as a quantum entity.
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Chapter 5

Non-Gaussianity as a signature of

Quantum Gravity

Now, we shift our focus to a fundamentally different approach for detecting the quantum

characteristics of gravity in a laboratory setting. In which Howl et al. [21] utilize the fact

that only quantum, not classical, fields can generate non-Gaussianity in the quantum field

state of matter.

5.1 The Wigner Function and Gaussian States

A quantum field can be viewed as a collection of quantum simple harmonic oscillators

(QSHO). Each of these oscillators is described by the Hamiltonian:

Ĥ = ℏωk(â
†
kâk +

1

2
), (5.1)

where, again, â†k and âk are the creation and annihilation operators, and ωk represents

the angular frequency of the oscillator. These QHSO collectively contribute to the field’s

dynamics [19, 21]. Momentum and position-like operators for each of these modes, referred

to as ‘quadrature operators’, are defined as follows [58]:

x̂k =
1√
2
(âk + â†k), (5.2)

p̂k =
1

i
√
2
(âk − â†k). (5.3)

Denoting |xk⟩ and |pk⟩ as eigenvectors of these quadrature operators with eigenvalues xk
and pk respectively, we can define a ‘phase-space’ parameterized by these continuous vari-

ables.
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Using this phase-space formalism it is now possible to describe our system using a

probability distribution known as the Wigner function. The Wigner function corresponding

to the the state described by the density operator ρ is

W (x, p) =
1

2πℏ

∫
⟨x+ y|ρ̂|x− y⟩e−ipy/ℏ dy. (5.4)

This function is real valued and, as it represents a probability density, it is normalized

to one. However, similar to Eq.(4.8) in subsection 4.1.3 the Wigner function is a quasi-

probability distribution. States for which Eq.(5.4) takes negative values vanish in the

classical limit (ℏ → 0) and are therefore recognized as highly non-classical states [59].

Gaussian states are described by Wigner functions that take the form of a Gaussian

function [58] and Gaussian transformations are operations that map Gaussian states to

other Gaussian states [60]. For a scalar field ϕ̂, only non-Gaussian states have a nega-

tive Wigner function [57]. Moreover, Non-gaussian states are necessary for the violation

of bell inequalities, drawing further parallels between the Wigner function and the two-

time quasiprobability defined in the previous chapter, where a negative two-time quasi-

probability indicates a violation of Leggett-Garg inequalities.

The unitary time evolution operator of a state with Hamiltonian Ĥ, which consists of

terms that are at most quadratic in the quadrature operators, is a Gaussian transformation

[57, 61]. As gravity couples to all particles that have energy and momentum, quantizing

gravity leads to mass terms in a system’s Hamiltonian that involves terms higher order than

quadratic in operators, inducing non-Gaussianity. Assuming all other non-gravitational

quantum interactions can be neglected, and thus no self-interaction terms are present in

the Hamiltonian of the free scalar field, any indication of non-Gaussianity emerging in a

quantum field state of matter that was initially Gaussian would be evidence of a quantum

theory of gravity [21]. This holds true for both the high and low curvature regimes of

quantum gravity. In the following subsection 5.2.1 we will show this explicitly for our

low-energy experimental setup where we are working with the perturbative weak-field

perspective of gravity.

5.2 Experimental Proposition

Here we demonstrate how this quantum witness for gravity can be implemented using a

table-top test on a single, localized Bose-Einstein condensate (BEC).
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5.2.1 Classical Gravity and Quantum Gravity in the Newtonian Limit

A BEC is a collection of N bosons described by the field operators Ψ̂(r) and Ψ̂(r)†, that

annihilate and create an atom at the position r, respectively [62]. For a BEC in which the

bosons have mass m the mass density (ρ̂) is given by:

ρ̂(r) = mN̂ = mΨ̂†(r)Ψ̂(r) (5.5)

In the low-energy system of a BEC, we can once again employ the non-relativistic Newto-

nian approximation of gravity. In this approximation, the classical interaction Hamiltonian

is [21]:

H int
classical =

1

2

∫
d3rρ(r)ϕ(r), (5.6)

where ρ(r) is the classical mass density and ϕ(r) the classical Newtonian potential. By

solving the Poisson equation

∇2ϕ(r) = 4πGmρ(r) (5.7)

we get the the gravitational self-potential [63]:

ϕ(r) = −Gm
∫
d3r′

Ψ∗(r)Ψ(r)

|r− r′|
. (5.8)

If gravity adheres to quantum theory, it necessitates the quantization of both the classical

mass density and the gravitational field ϕ(r). However, in a semi-classical description,

only the former is quantized. Resulting in the respective interaction Hamiltonian’s for a

semi-classical system in which gravity is classical ĤCG and a fully quantum picture of the

Newtonian limit of gravity ĤQG[21]:

Ĥ int
CG =

m

2

∫
d3r Ψ̂†(r)Ψ̂(r)ϕ(r), (5.9)

Ĥ int
QG =

m

2

∫
d3r : Ψ̂†(r)Ψ̂(r)ϕ̂(r) :

= −Gm
2

2

∫
d3rd3r′

: Ψ̂†(r)Ψ̂(r)Ψ̂†(r′)Ψ̂(r′) :

|r− r′|
. (5.10)

In Eq.(5.10) the colons represent the Wick ordering operation used in quantum field theory

(QFT) to eliminate infinite vacuum energy terms and in the last step we substituted in

the quantized version of Eq.(5.8).

As previously outlined, only a Hamiltonian that is not linear or quadratic in quantum

operators can generate non-Gaussianity. Consequently, we can see that only the interaction

Hamiltonian ĤQG, associated to the quantization of spacetime curvature, not the classical

gravity Hamiltonian ĤCG, can induce non-Gaussianity in our BEC system. It is imperative
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to emphasize that Eq.(5.10) represents the non-relativistic, low-energy, static regime for

all Quantum Gravity theories, while Eq.(5.9) serves the same role in classical gravity

theories. By observing the generation of Non-Gaussianity in the quantum state of the

Bose-Einstein condensate, we confirm a phenomenon predicted by all quantum gravity

models and unsupported by classical gravity models.

5.2.2 Measuring Non-Gaussianity

Cumulants κn are a commonly used tool in testing for non-Gaussianity in a quantum

system. Defined by the formula [64]:

κn = ⟨q̂n⟩ −
n−1∑
k=1

(
n− 1

k − 1

)
⟨q̂n−k⟩ κk, (5.11)

where
(
n−1
k−1

)
is the binomial coefficient and q̂ is some generalised quadrature [21]

q̂(θ) = âe−iθ + â†eiθ. (5.12)

With the expectation values of powers of this generalised quadrature calculated using the

Wigner function, given by Eq.(5.4), as follows:

⟨q̂n⟩ =
∫
dxdp W (x, p)qn. (5.13)

The forth-order cumulant κ4 is the lowest-order indicator of non-Gaussianity in systems de-

fined by symmetric Wigner distributions like ours [64]. From Eq.(5.11) it is straightfoward

to derive

κ4 = ⟨q̂4⟩ − 4⟨q̂⟩⟨q̂3⟩ − 3⟨q̂2⟩2 + 12⟨q̂2⟩⟨q̂⟩2 − 6⟨q̂⟩4. (5.14)

It can be shown [21] that the signal-to-noise ratio (SNR) of our calculated value of κ4

is:

SNR =
|κ4|√
V ar(κ4)

∝ |κ4|
M

, (5.15)

with M the number of independent measurements of our system. In making the initial

state, of the weakly interacting BEC we are measuring, a squeezed Gaussian state, Howl

et al. [21] demonstrate that:

SNR ∼
√

2M
π

GM2t

ℏR
, (5.16)

where M and r are the mass and effective radius of the BEC, respectively and t is the

time the BEC is left to gravitationally self-interact. We have chosen to omit the detailed

derivation of the values of the signal-to-noise ratio given above, as in reviewing this proposal
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our primary focus is on the theoretical approach rather than the practical calculations of

measurements involving Bose-Einstein condensates. For a comprehensive understanding

of how both Eq.(5.15) and Eq.(5.16) were calculated please refer to the original paper by

Howl et al. [21].

Notably, Eq.(5.16) is analogous to our expression for the phase induced in the BMV

experiment. Specifically, by performing the substitutions M → m, t → τ and R → d̃,

we recover Eq.(2.21) multiplied by a factor
√

2M
π . This highlights the significance of this

experiment, as here we can achieve more feasible experimental parameters, than proposed

in subsection 2.6 for the BMV experiment, by increasing the number of measurements M.

In the next section, we will discuss additional advantages offered by this proposal.

5.3 Advantages of the Proposal

With all table-top tests designed to measure the quantum aspects of gravity, it is essential to

be able to neglect other non-gravitational quantum interactions. Or alternatively establish

a mathematically and experimentally rigorous methodology to differentiate these non-

gravitational quantum interactions from gravitational ones.

For the BMV experiment, we proposed in section 2.6, that in order to reduce the

effects of Van der Waal forces the distance between the interacting quantum states needed

to be increased. This had the detrimental effect of reducing the amount of entanglement

generated in the state by gravitational forces, making the BMV effect harder to detect.

A similar situation arises in the Leggett-Garg case, necessitating an increased distance

between the oscillator and the particle, thus decreasing λ and rendering the detection of a

negative quasi-probability a lot more challenging (refer to Eq.(4.37)).

However, unlike these other proposals a phenomenon of Feshbach resonances in ultra

cold quantum gases allows you to control the interactions between the bosons in the BEC

[65]. It is possible these unwanted electromagnetic (EM) effects 1 may be mitigated by

applying external EM fields [57]. This could be achieved without affecting the strength

of the gravitational interactions, resulting in an increase in SNR. A distinct advantage in

comparison to the previous models.

Furthermore, the masses proposed in section 2.6 in order get a meaningful measure-

ment of the BMV effect have yet to be achieved in opto-mechanical oscillators. However,

this experiment implements squeezed state BECs that have already been created in the

laboratory. We should note that this is only true in the quantum regime and no squeezed
1As Bose-Einstein condensates have a neutral overall charge, these electromagnetic forces tend to be a

result of both van der Waal forces and magnetic dipole-dipole interactions [57].
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state BECs have been generated at the scales of the parameters proposed by Howl et al.

[21], with all indications suggesting that it will be very challenging.

Finally, much like the Leggett-Garg witness for QG, here we are only required to

conduct tests on a single system rather than the multi-partite system proposed in the

BMV experiment.
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Chapter 6

Conclusion

6.1 Summary

In this study, we delved into table-top experimental approaches designed to investigate the

quantum aspects of gravity. Our exploration revealed both the strengths and weaknesses

inherent in all the proposed experiments. We also derived the expected outcomes for a

low-energy system in which gravity can be approximated by linearized quantum gravity.

In our findings we demonstrated that employing the Newtonian limit of the quantized

gravitational field does not imply any derived effects are a result of an unphysical, non-

dynamical gravitational field.

For any such proposals, there invariably emerge the contrarian physicists capable of

devising creative, non-quantum explanations for the results. Explanations that often offer

no useful application in describing the physical world in which we live, except to pander

to the quantum skeptic. It is thus crucial to bear in mind that the role of an experimental

proposals such as these is to design experimentally achievable observations predicted by

models of quantum gravity, but not by all conventional theories of classical gravity.

While we have shown that, in their current state, these proposals push the limits of

what may seem experimentally feasible at this time. I believe that, with the continued

advances in quantum information technologies and the substantial ongoing work aimed at

improving on all the prior experimental proposals, the future holds promise for observing

quantum properties of gravity in the laboratory.

Furthermore, in my view, there is no need for the various table-top experimental

proposals to be considered in isolation. Observing the results of multiple tests can offer a

more comprehensive perspective on the quantum nature of gravity.
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6.2 Further Considerations

An area of particular interest for future work involves extending the Leggett-Garg in-

equalities test to measure the three-time LG3 equations. This is a significantly more

measurement-intensive task as it involves calculating three different correlation functions.

However, there are physical scenarios in which LG2 violations have been measured while

LG3 violations are not observed, and vice versa. Exploring these scenarios from a gravita-

tional perspective would be particularly interesting, even purely from a theoretical stand-

point. Furthermore, by exploring the different possibilities for the initial state of the

oscillator, it would be of great significance to discover an optimally prepared state that

maximizes the signal of Leggett-Garg inequality violations.

Regarding the non-Gaussian test for quantum gravity, given the challenges associated

with creating macroscopic Bose-Einstein condensates (BECs), an alternative proposal sug-

gests the use of classical coherent initial states [21]. Investigating the feasibility of detection

when using these initial states would be an significant endeavor.

These proposals have generated significant interest in relation to the Planck mass

[21, 66]. Unlike the other Planck units, the Planck mass lacks a well-defined physical

interpretation. Christodoulou and Rovelli suggest that these experiments shed light on

the significance of the Planck mass scale: the scale at which the quantum superposition

principle of curved spacetime becomes observable [27]. It would be intriguing to explore

the recurring presence of this unit in the context of quantum gravity witnesses.

Lastly, with more time, it would have been enlightening to demonstrate where the

common semi-classical descriptions of gravity break down in each of the proposals.
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Appendix A

Entanglement Generation in a

Bipartite State

Here, using an example of a system comprised of two massive states, we show explicitly

that LOCC cannot produce entanglement [67].

We can write an initial system composed of two separable matter states as

ψinitial = |0⟩A ⊗ |0⟩B , (A.1)

where |0⟩A and |0⟩b are two spacial separated ground states of a harmonic oscillator. By

introducing an interaction potential ĤAB of a field that mediates the two matter systems

we can show the perturbed state is

ψfinal =
1

N
∑
n,N

CnN |n⟩A ⊗ |N⟩B , (A.2)

where N is the normalisation factor. Here C00 = 1 and

CnN =
⟨n|A ⊗ ⟨N |B ĤAB |0⟩A ⊗ |0⟩B

2E0 − En − EN
, (A.3)

are the other state coefficients. Equation (A.2) can then be separated into the form

ψfinal = (|0⟩+
∑
n>0

Cn0 |n⟩)(|0⟩+
∑
N>0

C0N |N⟩)︸ ︷︷ ︸
separable state

+
∑

n,N>0

(CnN − Cn0C0N ) |n⟩ |N⟩︸ ︷︷ ︸
entangled state

, (A.4)

with all of the entanglement encoded into the second term of (A.4). It is easy to see that

for a classical mediating field, where ĤAB |0⟩A ⊗ |0⟩B = λ |0⟩A ⊗ |0⟩B for some complex
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number λ, only c00 ̸= 0 due to the orthogonality between the ground (|0⟩A ⊗ |0⟩B) and

the excited states (|n⟩A ⊗ |N⟩B). Hence, the entanglement term in (A.4) is equal to zero.

Likewise, the same can be said for an interaction operator acting on only one of the two

states. For example; ĤAB |0⟩A ⊗ |0⟩B = k |n⟩A ⊗ |0⟩B where only C00 and Cn0 ̸= 0. This

is the type of system used in the BMV experiment, where two separable states are used.
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Appendix B

Action for Linearized Gravity

Here we derive the on-shell action for the linearized massive gravity of N point-like masses

in de Donder gauge. We will be working in the with the (−,+,+,+) metric signature.

B.1 Deriving the Simplified Action for Linearized Gravity

Starting from the Lorentz invariant Fierz-Pauli action:

SFP =
c4

8πG

∫
d4x

(
− 1

4
∂ρhµν∂

ρhµν +
1

2
∂ρhµν∂

νhµρ +
1

4
∂µh∂

µh− 1

2
∂νh

µν∂µh
)
, (B.1)

where |hµν | ≪ 1 is the perturbation around the flat Minkowski metric ηµν . To couple to

matter we add a hµνTµν term to this action such that

SG =
c4

16πG

∫
d4x

(
−1

2
∂ρhµν∂

ρhµν+∂ρhµν∂
νhµρ+

1

2
∂µh∂

µh−∂νhµν∂µh
)
+
1

2

∫
d4xhµνTµν ,

(B.2)

here Tµν is the energy-momentum tensor for the matter. This action is invariant under

gauge transformations, where under any infinitesimal change of spacetime coordinates

xµ → xµ − ξµ(x), the metric changes by

hµν → ∇µξν +∇νξµ = ∂µξν + ∂νξµ. (B.3)

Choosing the de Donder gauge (equivalent to the Lorenz gauge in electromagnetism) de-

fined by picking the coordinate change

□ξµ = ∂ν(hµν −
1

2
hηµν) = ∂ν h̄µν = 0, (B.4)
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the action simplifies to

SG =
c4

64πG

∫
d4x

(
− ∂ρhµν∂

ρhµν +
1

2
∂µh∂

µh
)
+

1

2

∫
d4xhµνTµν . (B.5)

By varying the action with respect to hµν and integrating by parts, ignoring the boundary

terms which are taken to vanish at infinity for this on-shell action, we invoke the principle

of least action to get the wave equations:

□hµν = −16πG

c4
T̄µν . (B.6)

Substituting this back into Eq.(B.5), we get a concise form of the action

SG =
1

4

∫
d4x hµνT

µν . (B.7)

B.2 The Linearized Gravitational Action for N Point Like

Masses

To solve the wave equation we implement the use of a Green function G(xρ − yρ), which

is the solution to the wave equation sourced by a delta function:

□x G(x
ρ − yρ) = δ(4)(xρ − yρ). (B.8)

By inserting a delta function into Eq.(B.6) and replacing with the Green function we find

hµν(x
ρ) = −16πG

c4

∫
d4y G(xρ − yρ)T̄µν(y

ρ). (B.9)

As we are interested in the gravitational disturbance due to the influences of energy and

momentum sources in the past, the Green function in question is the retarded (causal)

Green function

G(xρ − yρ) =
δ
(
|x− y| − (x0 − y0)

)
4π|x− y|

θ(x0 − y0), (B.10)

where θ(x0−y0) is the Heaviside step function [38]. Plugging into Eq.(B.9) and integrating

over y0 we arrive at the wave equation:

hµν(t,x) =
4G

c4

N∑
a=1

∫
d3y δ(y − xa(tr))

T̄aµν(tr)

|x− y|
, (B.11)

here tr = t− |y−x|/c is the retarded time. We have also substituted in our expression for

the energy-momentum tensor for N point like masses Eq.(3.13). By employing integration
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techniques using dummy variables and utilizing the identity [36]

δ(f(x)) =
δ(x− x′)

|δxf(x′)|
, (B.12)

we can integrating out the Dirac delta functions [36]. We arrive at

hµν(t,x) =
4G

c4

N∑
a=1

T̄aµν(tr)

|da| − da · va(tr)/c
, (B.13)

with va = dxa/dt and da = x−xa(tr). Substituting Eq.(B.13) and Eq.(3.13) into Eq.(B.7)

and performing the spacial integration we get our final solution for the action

Sσ
G =

G

c4

a̸=b∑
a,b

∫
dt

T̄µν
a (tab)Tbµν(t)

|dab(t)| − dab(t) · va(tab)/c
, (B.14)

where the retarded displacements and times are implicitly defined [36]:

dab(t) = xb(t)− xa(tab), (B.15)

tab = t− |dab(t)|
c

. (B.16)
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Appendix C

Showing the NSIT Condition Does

Not Hold for Quantum Systems

Defining a projective measurement operator

P̂s =
1

2
(1+ sQ̂), (C.1)

such that P̂s = P̂ †
s = P̂ 2

s and
∑

s P̂s = 1. Starting with an initial system ρ0 the probability

of measuring s at a time t1 is

p(s2) = Tr[P̂s(t2)ρ0], (C.2)

where we are in the Heisenberg picture, therefore

P̂s(t) = Û †(t)P̂s(0)Û(t) = e−iĤtP̂s(0)e
iĤt. (C.3)

Similarly the probability of two sequential measurements at times t1 and t2(≥ t1) is

p(s1, s2) = Tr[P̂s2(t2)P̂s1(t1)ρ0P̂s1(t1)
†P̂s2(t2)

†]

= Tr[P̂s2(t2)P̂s1(t1)ρ0P̂s1(t1)]. (C.4)

It then easy to see that ∑
s1

p(s1, s2) ̸= p(s2) (C.5)

unless ∑
s1

P̂s1(t1)ρ0P̂s1(t1) = ρ0. (C.6)
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