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Abstract

This dissertation discusses lower-dimensional effective gravitational theories with

non-compact transverse space. We start with the introduction of some classic super-

gravity theories and general brane solutions on a flat background. Following that,

we discuss the Kaluza-Klein dimensional reduction with compact transverse space.

We then consider two types of effective gravity constructions, type I and type III.

In type I construction, we discuss its characteristics and provide some examples in-

cluding embedding general relativity and supergravity on the worldvolume. In type

III construction, we focus on the effective theory based on the uplifted Salam-Sezgin

vacuum solution in 10 dimensions. We investigate the effective gravity on aspects like

Newton constant, Newtonian potential, and gravity spectrum. Finally, we do a similar

investigation of the Randall-Sundrum model.
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Chapter 1

Introduction

Supergravity is a gravitational theory compatible with supersymmetry. It was

first proposed [1, 2] to address the difficulties in the quantization of gravity. Even

though supergravity was found not sufficient to tame the notorious ultraviolent diver-

gences arising from the perturbation theory, its various physical contents and beautiful

mathematical structure win the favor of physicists. The abundant field content of su-

pergravity, ranging from spin-0 to spin-2, set up a big stage. On the other hand,

the stringent constraints of supersymmetry restrict the combination of fields, making

supergravity practical. Furthermore, it was realized that string theory and M-theory

might instead be the promising foundation for quantum gravity while supergravity

theories are their low-energy effective field theories.

In supergravity, there are extended dynamic objects called branes. Specifically, p-

branes in D-dimensional spacetime are objects with (p+1)- dimensional worldvolume

(including p spatial directions and 1 temporal direction) whose transverse space is

(D− p− 1)-dimensional. For example, strings are 1-branes and particles are 0-branes.

Brane solutions are non-linear supergravity solutions like Schwarzschild black holes in

general relativity. By studying brane solutions, we can understand supergravity better

and hence string theory and M-theory.

The higher-dimensional nature of string theory and M-theory seem nonsensical

because all the experimental observations convince us that our world is (3+1)- dimen-

sional. Standard model matter cannot propagate a long distance in extra dimensions

without conflict with observations. Besides, Newton’s 1/r2 law and general relativity

suggest a 4-dimensional spacetime. The first problem can be avoided if the standard
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model is confined to a (3 + 1)-dimensional subspace in the higher dimensions [3–5].

However, this solution does not work for gravity as gravity is the dynamics of space-

time. Hence, the idea of gravity localization on a 4-dimensional Minkowski-signature

subspace appears. It has been of interest to cosmology [6].

A standard method to generate a 4-dimensional effective theory is Kaluza-Klein

dimensional reduction with compact transverse space [7]. Compactness guarantees dis-

crete Fourier modes, on which transverse-space functions expand. Then the transverse-

space part of higher-dimensional equations of motion is replaced with eigenvalues of

Fourier modes, serving as mass terms for the residual space. Due to the infinite number

of Fourier modes, the existence of extra compact dimensions will generate an infinite

tower of massive particles on the residual space. Their mass is inversely proportional

to the length scale of the compact direction, which is assumed to be Planck length.

Hence, these massive modes are too heavy to generate in colliders. To describe 4-

dimensional gravity with massless graviton, the transverse-space problem must admit

a zero eigenvalue. A mathematically attractive case is when the interactions of the

massless modes decouple from the massive sector, allowing us to consistently truncate

out the massive modes. However, consistent truncations are not available in many

physically interesting constructions.1 Thus, to construct a low-energy effective grav-

ity, the existence of a mass gap is more essential.

Another way to obtain a lower-dimensional effective theory is dimensional re-

ductions on non-compact transverse space. It was first proposed in ref. [9] to con-

struct non-compact gauge symmetries through dimensional reduction, as the higher-

dimensional diffeomorphism on the transverse space transforms into the gauge sym-

metries on the reduced subspace. Based on [10], ref.[11] provided a taxonomy of

braneworld gravities derived from dimension reduction with non-compact transverse

space. Instead of the types of gravitational sources2, the categorization depends on the

boundary condition of the transverse problem. Type I constructions equip a sort of

Dirichlet boundary condition, which fixes the way perturbations depend on transverse

space. It involves a consistent truncation of the higher-dimensional supergravity to a

lower-dimensional theory on the worldvolume and gives rise to fully non-linear lower-

dimensional theories. The gravitational theories on the worldvolume can be Einstein’s

theory [12, 13] or even supergravities [14, 15]. On the other hand, Type II and Type

1One notable instance is reductions on compact Calabi-Yau spaces without Killing symmetries,

in which we integrate out the massive modes producing higher-derivative terms suppressed by

compactification-space volume.[8]
2NS5-brane generates lower-dimensional gravity near the brane in [10].
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III localizations equip a Dirichlet condition on the asymptotically away requiring fields

to vanish and Neuman and Robin conditions, respectively, near the source. With dif-

ferent boundary conditions, they admit different sets of eigenfunctions. Since there is

no zero eigenfunction in Type II localization, we will focus on Type III constructions.

They are not based on a consistent truncation and give only a perturbative realization

of lower-dimensional gravitational theories.

We begin Chapter 2 by introducing some classic supergravity theories. Following

this, we discuss brane solutions of single-charge action, which is the building block of

general brane solutions, based on the ref. [16]. To tell a full story of brane solutions,

we will briefly discuss super p-brane actions, which play the roles of sources in brane

solutions. We end this chapter with Kaluza-Klein dimensional reduction, a classic

method to generate lower-dimensional physics.

In the remaining chapters, we will start to discuss constructing effective gravity

with non-compact transverse space, which is our main interest. In Chapter 3, we will

illustrate the Type I constructions in ref. [11]. We begin this chapter by introducing

key characteristics of type I effective theories. Then we start with the simplest case

with general relativity on branes. In this case, we replace the worldvolume with Ricci-

flat metric, e.g. Schwarzschild metric, and achieve the black strings model constructed

in ref. [13]. Moreover, we discuss embedding supergravity on branes following ref. [14,

15]. Different from the general relativity on branes, the theories admit the existence of

gauge fields, i.e. charges of branes, on worldvolume, and hence more possible sources

on the lower-dimensional space. For example, Reissner–Nordström black holes and a

class of stationary black holes constructed with the non-linear sigma model.

In Chapter 4, we will discuss the Type III construction. We focus on the effec-

tive gravity based on the Salam-Sezgin-CGP background [10]. The transverse space

geometry determines a special transverse problem, which can be transformed into a

Schrodinger equation with a Posher-Teller type of potential. After carefully choosing

the Robin boundary condition, the transverse spectrum comprises a zero eigenvalue

bound state and continuum scattering states separated by a mass gap. The mass

gap allows a lower-dimensional effective theory with only small massive-mode-induced

correction. Then, we discuss the Randall-Sundram model ref. [17], in which no mass

gap exists. Because of the transverse space geometry, it can still produce a lower-

dimensional effective gravity in a different way.
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Chapter 2

Supergravity and Branes

Let’s briefly recall supersymmetry before discussing supergravity, which merges

supersymmetry into general relativity. As an exception to the no-go theorem of Cole-

man and Mandula, supersymmetry unifies the spacetime symmetries of the Poincare

group with internal symmetries by introducing the anticommutation relations and al-

lowing the transformation between the bosonic and fermionic generators [18]. The

simplest 4D N = 1 supersymmetry extends the Poincare algebra with

{Qα, Qβ} = 2(CΓµ)αβPµ, [Qα, Pµ] = 0, [Qα,M
µν ] =

1

2
(Γµν) β

α Qβ, (2.1)

where Qα are supercharges, the generator of supersymmetry transformation. It is

available to generalize the algebra with the generators of internal symmetry called

R-symmetry and central charges that commute with all the generators. Since su-

persymmetry is the symmetry between bosonic and fermionic fields, the number of

bosonic and fermionic degrees of freedom should be equal. A practical way to con-

struct a supersymmetry theory is using supermultiplets which are composed of equal

bosonic and fermionic degrees of freedom.

In supergravity, since gravity theory admits diffeomorphism generated by Pµ, the

supersymmetry should be local. Besides, supersymmetry extends the massless graviton

in general relativity to the gravity multiple including graviton, gauge fields, scalars,

gravitini and spinors. Supergravity admits non-perturbative solutions known as brane

solutions, analog to black hole solutions in general relativity. Branes are extended

objects playing the roles of sources for both gauge field and gravity. The dimension

of branes can range from 0, particles, to D − 2, domain walls, in a D-dimensional

spacetime. The super p-brane action is obtained by generalizing the Nambu-Goto

4
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action with supersymmetry. We can deepen our understanding of supergravity by

exploring brane solutions.

In this chapter, we will present some classic supergravity theories. Then we derive

single-charge brane solutions in arbitrary dimensions, which is the foundation of more

general brane solutions. To provide a full story of brane solutions, we briefly discuss the

super p-brane action to make a complete story. Finally, we discuss the Kaluza-Klein

dimensional reduction, which allows us to connect theories and solutions in different

dimensions.

2.1 Supergravity

Let’s begin with the D = 11 supergravity which is the lower-dimensional effective

theory of the M-theory. For a supergravity theory, it must contain gravity supermulti-

ple composed of one graviton gMN and one gravitino ΨM . In 11 dimensions, they have

44 and 128 (on-shell) degrees of freedom respectively. As the supersymmetry requires

equality between the degrees of freedom of bosonic and fermionic sectors, we need a

3-form gauge field AMNP with 84 (on-shell) degree of freedom to compensate for the

difference between graviton and gravitino.

Before writing down the action, we can investigate the supersymmetry algebra

first. In 11 dimensions, each Majorana spinor has 32 degrees of freedom. There is

another fact that, for any dimension, 32 is the maximum number of supercharges we

can have without getting into fields with spin higher than 2. Hence, we can only have

one set of supercharges, i.e. N = 1, in 11 dimensions. The simplest supersymmetry

algebra is

{Qα, Qβ} = (CΓA)αβPA, α, β = 1, · · · , 32. A = 0, · · · , 10, (2.2)

which can be generalized with central charges. Considering the symmetry of between

α, β, the central charges can be rank n = 1, 2, 5, 6, 9, 10 due to the symmetry property

of CΓ(n) in 11-dimensional. The rank n Gamma matrices are defined by antisym-

metrizing n Gamma matrices with weight 1. Further, in (2m + 1)-dimension, rank

n Gamma matrices are dual to the rank-(2m + 1 − n) with the epsilon symbol [19].

Thus, the generalized supersymmetry algebra

{Q,Q} = C
(
ΓAPA + ΓABUAB + ΓABCDEVABCDE

)
, (2.3)
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where we drop the spinor indices for simplicity. And we can check that the left-

hand-side has 32 × 33/2 = 528 degrees of freedom, while the right-hand-side has

11 + 11!/(10! · 2!) + 11!/(5! · 6!) = 528 degrees of freedom. This means that the

supersymmetry algebra is maximally extended. Actually, UAB and VABCDE are related

to the electric and magnetic charges coupled to M2- and M5-branes in 11D supergravity

[16].

We can construct the action of 11D N = 1 supergravity through the Noether

method, starting with the kinetic terms of these field contents with rigid supersym-

metry. Then, we gauge the supersymmetry by adding more interaction terms and

correcting the local supersymmetry transformation step by step [19]. Here, we write

the final result

S11 =
1

2κ2

∫
d11xe

[
e E
M eFNRMNEF (ω)− ψ̄MΓMNPDN

(
1

2
(ω + ω̂)

)
ψP − 1

48
F 2
[4]

− 1

192
ψ̄E

(
ΓABCDEF + 12ΓABgCEgDF

)
ψF

(
FABCD + F̂ABCD

)
− 1

(144)2
ϵA

′B′C′D′ABCDEFGFA′B′C′D′FABCDAEFG

]
,

(2.4)

where F[4] = dA[3] is field strength of the 3-form field and ΓM ···N are rank-n Gamma

matrices in 11 dimensions with weight-1. The “hatted” connection and field strength

are the supercovariant counterparts given by

ωMEF = ωMEF (e) +KMEF ,

ω̂MEF = ωMEF (e)− 1

4

(
ψ̄MΓFψE − ψ̄EΓMψF + ψ̄FΓEψM

)
,

KMEF = −1

4

(
ψ̄MΓFψE − ψ̄EΓMψF + ψ̄FΓEψM

)
+

1

8
ψ̄NΓ

NP
MEFψP ,

F̂MNPQ = 4∂[MANPQ] +
3

2
ψ̄[MΓNPψQ].

(2.5)

In the expression, we use capital letters {A,B, · · · ,M,N, · · · } to indicate the space-

time indices and the letters with underline to indicate the tangent space. The tetra

inside the bracket ωMEF (e) means that the spin connection is the unique one deter-

mined by the metric compatibility and torsion-free conditions,

ω EF
M (e) = 2eN [E∂[Me

F ]
N ] − eN [EeF ]P eMG∂Ne

G
P . (2.6)

The covariant derivative DM with respect to the spin connection ω is defined as

DM(ω)ψN = ∂MψN +
1

4
ωMEFΓ

EFψN . (2.7)

6
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The action is invariant under the local supersymmetry transformations

δe E
M =

1

2
ϵ̄ΓEψM ,

δψM = DM (ω̂) ϵ+
1

288

(
ΓABCD

M − 8ΓBCDδAM
)
F̂ABCDϵ ≡ D̃Mϵ,

δAMNP = −3

2
ϵ̄Γ[MNψP ],

(2.8)

where the supersymmetry transformation parameter ϵ = ϵ (x) depends on the space-

time position.

When studying classical brane solutions, physicists will concentrate on the bosonic

sector and set zero for the fermionic sector consistently. The reduced action written

in differential form is

S11 =
1

2κ211

∫
R ∗ 1− 1

2
F[4] ∧ ∗F[4] −

1

6
F[4] ∧ F[4] ∧ A[3], (2.9)

with equations of motion and Bianchi identity

RMN =
1

12

(
F 2
MN − 1

12
gMNF

2

)
,

d ∗ F[4] = −1

2
F[4] ∧ F[4],

dF[4] = 0.

(2.10)

Correspondingly, to preserve supersymmetry transformation in Eq.(2.8), we need

δψM = DM (ω) ϵ+
1

288

(
ΓABCD

M − 8ΓBCDδAM
)
FABCDϵ = 0. (2.11)

The spinor satisfying the condition is called Killing spinor. The number of killing

spinors in a solution is exactly the amount of preserved supersymmetry. For killing

spinors ϵi, ϵj, the vector KijM ≡ ϵ̄iΓMϵj are Killing vectors. And the diagonal Killing

vectors Kii are either time-like or null [20, 21].

We can obtain the type IIA supergravity fromD = 11 supergravity by dimensional

reduction on S1. The bosonic sector of the type IIA supergravity is composed of metric

gµν , a dilaton ϕ, anti-symmetric 2-from Bµν , 1-form R-R vector A[1], and 3-form R-R

field A[3]. The action of the bosonic sector is

SIIA =
1

2κ210

∫
R ∗ 1− 1

2
dϕ ∧ ∗dϕ− 1

2
e

3
2
ϕF[2] ∧ ∗F[2]

− 1

2
e

1
2
ϕF[4] ∧ ∗F[4] −

1

2
eϕF[3] ∧ ∗F[3] +

1

2
dA[3] ∧ dA[3] ∧ A[3],

(2.12)

7
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where the field strength are defined as F[2] = dA[1], F[3] = dA[2] and F[4] = dA[3]−dA[2]∧
A[1]. We can obtain the supersymmetry conditions for type IIA supergravity with the

fermions truncated by substituting the gravitino decomposition into Eq.(2.11). The

11-dimensional gravitino ψM decomposes into two gravitini Ψµ and two dilatini λ

defined as

λ = e−ϕ/6ψ11, Ψµ = e−ϕ/6
(
ψµ +

1

2
ΓµΓ11ψ11

)
. (2.13)

The two gravitini and dilatini are each having opposite chiralities. Then, we can derive

the Killing spinor equations as

δΨµ =
(
∇µ −

1

4
FµνρΓ

νρ11 − 1

8
eϕFαβΓ

αβ11
µ +

1

8
eϕFαβρσΓ

αβρσΓµ

)
ϵ̃ = 0

δλ =
(
− 1

3
∂µϕΓ

µ11 +
1

6
FµνρΓ

µνρ − 1

4
eϕFµνΓ

µν +
1

12
eϕFαβρσΓ

αβρσ11
)
ϵ̃ = 0.

(2.14)

where we have redefined the Killing spinos as ϵ̃ = eϕ/6ϵ. We will discuss the dimensional

reduction soon in sec.2.4.

2.2 Single-charge Action and Brane Solutions

Even though consider only the bosonic sector of a supergravity theory, we must

confront a Lagrangian with complicated field contents composed of the graviton,

antisymmetric-tensor field strengths, and various scalars. For example, the 4D N = 8

supergravity has 1 graviton, 28 gauge fields and 70 scalars. To obtain a more tractable

system, we shall make a consistent truncation of the action down to, in most cases,

a simple system in D dimensions comprising the metric gMN , a scalar field ϕ and

a single (n − 1)-form gauge potential A[n−1] with field strength F[n]. The truncated

single-charge action is

I =

∫
R ∗ 1− 1

2
dϕ ∧ ∗dϕ− 1

2
eaϕF[n] ∧ ∗F[n]. (2.15)

The parameter a controls the interaction of the scalar field ϕ with the field strength

F[n]. Varying the action, we obtain the equations of motion

RMN =
1

2
∂Mϕ∂

Mϕ+
1

2(n− 1)!
eaϕ
(
FM ···F

···
N − n− 1

n(D − 2)
F 2gMN

)
,

0 = ∇M1

(
eaϕFM1···Mn

)
,

2ϕ =
a

2n!
eaϕF 2.

(2.16)

8
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A consistent truncation of field variables is a restriction on the variables that com-

mutes with the variation of the action to produce the field equations. Equivalently, a

restriction that solutions to the equations for the restricted variables are also solutions

to the equations for the unrestricted variables. Since setting zero for the fermionic

sector is also a consistent truncation, the solutions we get from single-charge action

are still solutions for the supergravity theory itself.

The single-charge action admits p-brane solutions written as MD = Md × BD−d

with d = p + 1. Just like the strategy of solving the black hole solutions in general

relativity, we need some ansatz and try our luck. We shall be looking for solutions

preserving certain unbroken supersymmetries, which require unbroken translational

symmetries according to Eq.(2.2). Similar to the spherical symmetry imposed in deriv-

ing Schwarzschild metric, we consider p-brane solutions with (Poincaré)d×SO (D − d)

symmetry and write the manifold as MD = R1,d−1×RD−d. The metric can be written

in the form

ds2 = e2A(r)dxµdxνηµν + e2B(r)dymdynδmn, (2.17)

where r =
√
ymym, xM = (xµ, ym) with xµ (µ = 0, 1, · · · , p = d− 1) being the co-

ordinates adapted to the (Poincaré)d isometries on the worldvolume and ym (m =

d, · · · , D − 1) being the coordinates transverse to the worldvolume. The correspond-

ing ansatz for the scalar field ϕ(x) is simply

ϕ = ϕ (r) (2.18)

For the (n− 1)-form gauge potential A[n−1], we have three possibilities for the ansatz,

electric, magnetic, and dyonic.

Before providing the specific expression for the gauge potential in different ansatz.

We can first solve the Ricci tensor given the metric in Eq.(2.17). Introduce vielbeins{
êE
}
= {êµ, êm} of the metric

êµ = eA(r)dxµ, a = 0, 1, · · · , p = d− 1,

êm = eB(r)dym, m = d, · · · , D − 1
(2.19)

so that ds2 = ηEF ê
E ⊗ êF . Here, we donate p-brane tangent coordinates with êµ and

transverse tangent coordinates with êm.

The metric compatibility requires that the connection 1-forms are antisymmetric

ωEF = −ωFE where we raise or lower the indexes by ηEF or ηEF with ηmn = δmn. The

torsion-free condition written in Cartan’s structure equation is

TE = dêE + ωE
F ∧ êF = 0 (2.20)

9
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Because of the antisymmetry, the connection 1-form should take the form

ωµν = (Aν êµ −Aµêν) , ωmn = (Bnêm − Bmên) . (2.21)

After calculation, we can get connection 1-forms

ωµν = 0,

ωµm = ∂mAe
A(r)−B(r)dxµ = ∂mAe

−B(r)êµ,

ωnm = ∂mBdy
n − ∂nBdy

m = e−B(r) (∂mBê
n − ∂nBê

m) .

(2.22)

It is easy to check the antisymmetry.

To calculate the curvature 2-form, we use the second Cartan’s structure equation

REF = dωEF + ηIJω
EI ∧ ωJF , (2.23)

where we have raised the index with ηEF . The calculation is straightforward, and we

summarize the result here

Rµν = −∂mA∂mAe−2B(r)êµ ∧ êν ,

Rµm = [∂n∂mA+ ∂mA∂nA− ∂mA∂nB − ∂nA∂mB] e−2B(r)ên ∧ êµ

− ∂nA∂nBe
−2B(r)êµ ∧ êm,

Rnm = e−2B(r)
(
(∂k∂mB − ∂kB∂mB) êk ∧ ên

− (∂k∂nB − ∂nB∂kB) dêk ∧ êm − ∂kB∂kBê
n ∧ êm

)
.

(2.24)

We can use the definition of the curvature 2-form REF = 1
2
REF

IJ ê
I ∧ êJ , to find the

Riemann curvature tensor. After transforming back into the original coordinate with

the component of tetra, ê
µ
ν = δµνe

A(r), êmn = δmne
B(r), we achieve the non-vanished

components of the Ricci tensor

Rµν = −ηµνe2(A−B)

(
A′′ + dA′2 + d̃A′B′ +

d̃+ 1

r
A′

)
,

Rmn = −δmn

(
B′′ + dA′B′ + d̃B′2 +

2d̃+ 1

r
B′ +

d

r
A′

)

− ymyn

r2

(
d̃B′′ + dA′′ − 2dA′B′ + dA′2 − d̃B′2 − d̃

r
B′ − d

r
A′

)
.

(2.25)

using ∂mA = A′r−1ym, ∂n∂mA = A′′r−2ymyn − A′r−3ymyn + A′r−1δmn, and similar

for B (r) and d̃ = D − d− 2.

We now discuss different gauge-field ansatz and their corresponding solutions.

10
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2.2.1 Electric p-brane solutions

In elementary ansatz (or electric ansatz), we take the gauge field to be

A[n−1] = eC(r)vol(Mn−1), (2.26)

with non-vanishing components

Aµ1···µn−1 = εµ1···µn−1e
C(r) (2.27)

as Mn−1 = R1,n−2 in our ansatz. In this case, the gauge potential needs to couple

to a (n− 2)-brane. Hence, the elementary ansatz will provide us a flat (n− 2)-brane

solution with del = n− 1.

Substituting Eq.(2.18), (2.25), and (2.27) into the equations of motion Eq.(2.16),

we have the

A′′ + delA
′2 + d̃elA

′B′ +
d̃el + 1

r
A′ =

d̃el
2(D − 2)

S2,

B′′ + delA
′B′ + d̃elB

′2 +
2d̃el + 1

r
B′ +

d

r
A′ = − del

2(D − 2)
S2,

d̃elB
′′ + delA

′′ − 2delA
′B′ + delA

′2 − d̃elB
′2

− d̃el
r
B′ − del

r
A′ +

1

2
ϕ′2 =

1

2
S2,

ϕ′′ + delA
′ϕ′ + d̃elB

′ϕ′ +
d̃el + 1

r
ϕ′ = −1

2
aS2,

(2.28)

with

S = exp

(
1

2
aϕ− dA+ C

)
C ′. (2.29)

The differential equations are still daunting. Fortunately, since we want a solution

preserving a portion of supersymmetry, we can impose further restrictions

delA+ d̃elB = 0, A = − d̃el
a(D − 2)

ϕ, (2.30)

and introduce a new notation 1

a2 = ∆− 2dd̃

D − 2
. (2.31)

Then, Eq.(2.28) are reduced to

∇2ϕ+
∆

2a
ϕ′2 = 0, S2 =

∆ϕ′2

a2
(2.32)

1We drop the subscripts here because the definition of the new notation ∆ is suited for all ansatz.

11



2.2. SINGLE-CHARGE ACTION AND BRANE SOLUTIONS CONTENTS

or simply

∇2e
∆
2a

ϕ = 0 (2.33)

The Laplacian operator is defined on the transverse space. Acting on angular inde-

pendence variables, the Laplacian operator has the form ∇2ϕ(r) = ϕ′′+(d̃el+1)r−1ϕ′.

Defining the harmonic function on the transverse space

e
∆
2a

ϕ ≡ H(y), (2.34)

we get the solution

ds2D = H− 4d̃el
∆(D−2)ηµνdx

µdxν +H
4del

∆(D−2)dymdym,

A[n−1] =
2√
∆
H−1vol(Mn−1), eϕ = H

2a
∆ , ∇2H = 0,

(2.35)

with the worldvolume manifold Mn−1 = R1,n−2. The simplest non-trivial solution for

the harmonic function is

H(y) = 1 +
k

rd̃el
, k > 0, (2.36)

describing a brane sitting at r = 0 electrically coupled to the gauge-field A[n−1]. Here,

k is determined by the tension of the brane, i.e. source, which is taken to be positive

to prevent the naked singularities. We can compare our results with the charged black

hole in general relativity.

The harmonic function H(y) admits multi-center solutions

H(y) = 1 +
∑
i

k

(y − yi)d̃el
, (2.37)

corresponding to the solutions with parallel and similarly oriented p-branes. Physically,

it is the result of cancellation between attractive gravitational and scalar-field forces

against repulsive antisymmetric-tensor forces. In charged black hole solutions, we have

a similar result for the extremal case with M = Q. Indeed, the solutions in Eq.(2.35)

satisfy the Bogomol’ny bounds E = U preserving half supersymmetries called BPS-

brane solutions [16]. The energy density E can be calculated with the ADM formula.

The electric charge density is defined by

U =

∫
∂B

eaϕ ∗ F[n], (2.38)

as the equation of motion for the antisymmetric-field strength d(eaϕ ∗ F[n]) = 0.

Finally, we provide the M2-brane in 11D supergravity Eq.(2.9) as an instance for

the electric brane solution. With the electric ansatz Eq.(2.27), the FFA term vanishes

12
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identically. There is no scalar field, we have thus a = 0, ∆ = 4 and the solution for

M2-brane

ds211 = (1 +
k

r6
)−2/3ηµνdx

µdxν + (1 +
k

r6
)1/3dymdym,

Aµνλ = εµνλ(1 +
k

r6
)−1, ϕ = 0,

(2.39)

in isotropic coordinates. The solution has a similar causal structure as the extremal

black hole solution. For more details, see the ref. [16].

2.2.2 Magnetic p-brane solutions

The other choice is the solitonic ansatz (or magnetic ansatz). In the solitonic

solution, it is the dual gauge potential K[D−n−1] of A[n−1] coupling to a (D − n − 2)-

brane. Thus, the solitonic ansatz will provide us a (D − n − 2)-brane solution with

dso ≡ d̃el = D − n − 1. The dual field strength G[D−n] = dK[D−n−1] related to the

original one by

F[n] = e−aϕ ∗G[D−n], (2.40)

and the Lagrangian written in new variables is

I =

∫
R ∗ 1− 1

2
dϕ ∧ ∗dϕ− 1

2
e−aϕG[D−n] ∧ ∗G[D−n]. (2.41)

Note that the sign of the coupling constant on the exponential flips. Similar to the

Eq.(2.26), we choose the gauge field to be

K[D−n−1] = eC(y)vol(MD−n−1). (2.42)

We can directly write down the solution compared with the electric brane solutions

Eq.(2.35),

ds2D = H− 4del
∆(D−2)ηµνdx

µdxν +H
4d̃el

∆(D−2)dymdym,

K[D−n−1] =
2√
∆
H−1vol(MD−n−1), eϕ = H

−2a
∆ , ∇2H = 0.

(2.43)

Again, H(y) is a harmonic function on the transverse space. In the original variables,

this is

Fm1···mn =
2√
∆
εim1···mn

∂iH. (2.44)

The solutions are also BPS solutions preserving half supersymmetries because they

saturate the mass-charge inequality E = V , with the magnetic charge density defined

13



2.2. SINGLE-CHARGE ACTION AND BRANE SOLUTIONS CONTENTS

by

V =

∫
∂B

eaϕF[n]. (2.45)

given the Bianchi identity dF[n] = 0.

The corresponding magnetic ansatz example in 11D supergravity is the M5-brane

solution

ds211 = (1 +
k

r3
)−1/3ηµνdx

µdxν + (1 +
k

r3
)2/3dymdym,

Fm1···m4 = 3kεm1···m4p
yp

r5
, ϕ = 0.

(2.46)

Identically, the FFA term vanishes with the solitonic ansatz and a = 0, ∆ = 4.

2.2.3 Dyonic p-brane solutions

Dyonic branes are charged under a self-dual or anti-self-dual field strength and

only occur in even dimensions with p + 2 = D/2 for odd p. In this case, the scalar

field decouples as it is sourced by F[p+2] ∧ ∗F[p+2] = ±F[p+2] ∧ F[p+2] = 0, Eq.(2.16).

Hence, we can set a = 0. The resulting solution is

ds2D = H− 2
∆ηµνdx

µdxν +H
2
∆dymdym, ∇2H = 0,

F±
[p+2] = L[p+2] ± ∗L[p+2], L[p+2] = ∓

√
2(D − 2)

d
H−2dH ∧ vol(Mp+1),

(2.47)

where the ± indicates whether the field strength is self-dual or anti-self-dual. Again,

H(y) is a harmonic function on the transverse space. The conserved charge associated

with the dyonic brane is both electric and magnetic.

There is no dyonic brane in 11D supergravity. One classic dyonic brane solution

is the D3-brane in type IIB supergravity coupling to the gauge field with a self-dual

5-form field strength in the R-R sector [20].

2.2.4 Preserved Supersymmetry

Let’s discuss these solutions from the perspective of supersymmetry. As the

discussions depend on the specific solutions, we only discuss the M2-brane solution,

Eq.(2.39), other cases are similar.

In M2-brane solution, we would like to preserve SO(1, 2) × SO(8) covariance in

consistent with the ISO(1, 2)× SO(8) invarant background. Hence, we need to adopt

14
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a suitable basis for the Gamma matrices. An appropriate one can be

ΓA =
(
γµ ⊗ Σ̃9,1⊗ Σm

)
, (2.48)

where γµ are Gamma matrices with Spin group SO(1, 2) in 3 dimensions, Σm are

Gamma matrices with SO(8) in 8 dimensions and Σ̃9 = Σ3Σ4 · · ·Σ10. Then a general

spinor field in the M2-brane background can be written as

ϵ(x, y) = ϵ2 ⊗ η(r), (2.49)

where ϵ2 is a constant SO(1, 2) spinor and η(r) is an SO(8) spinor. Substituting this

expression and Eq.(2.22) into the Killing spinor equation, Eq.(2.11), we can solve them

with

dA+ d̃B = 0, C ′eC = 3A′e3A;

η(r) = H−1/6(y)η0, (1+ Σ̃9)η0 = 0,
(2.50)

in which η0 is a constant SO(8) spinor.

Here, the first-line equations are the supersymmetry conditions. The first one

is exactly the restriction we imposed when solving the p-brane solution, Eq.(2.30),

while the second one can be derived from the restriction Eq.(2.30) with Eq.(2.29) and

Eq.(2.32). It means that the restrictions we imposed to solve the p-brane solutions

are in fact required for preserving supersymmetries. On the other hand, the second-

line equations specify the form of Killing spinors. The first one says the M2-brane

solution breaks an infinite number of local supersymmetries to a finite number of rigid

supersymmetries in the special form ϵ(x, y) = H−1/6(y)ϵ2 ⊗ η0. The second equation

indicates that the surviving rigid supersymmetries are chiral in the transverse part,

and hence, only 2 · 8 = 16, i.e. half of the 32, supersymmetries survive.

The Killing spinor equations are highly restricted and, in many cases, they de-

termine the p-brane solution. When there is a time-like Killing spinor, whose corre-

sponding Killing vector is time-like, the geometry solving the Killing spinor equations

will solve all the equations of motions spontaneously provided that the antisymmetric-

field strength F[n] satisfies the Bianchi identity dF[n] = 0 and the equation of motion

d∗F[n]+
1
2
F[n]∧F[n] = 0. When all the Killing spinors are null, the additional condition

for the geometry is satisfying just one component of the Einstein equations [21].

We can also count the preserved supersymmetry through the supersymmetry al-

gebra. For the M2-brane oriented in the {012} directions, which satisfies E = U = U12,
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the 11D supersymmetry algebra, Eq.(2.3) becomes

1

vol(M2)
{Qα, Qβ} = −(CΓ0)αβE + (CΓ12)αβU12 = 2EP012, P012 =

1

2
(1+ Γ012).

(2.51)

using C = Γ0 and Γ2
0 = 1. The P012 is a projection operator satisfying P 2

012 =

P012 with eigenvalues +1 and 0. Since the supercharges Qα are the generators of

the supersymmetry transformations, we can get the preserved supersymmetries by

counting the number of zero eigenvalues of {Qα, Qβ} which is simply tr(1− P012). As

tr(Γ012) = 0, there are only 16 supersymmetries preserved for the M2-brane solutions.

The above discussion can be easily generalized to other brane solutions.

2.3 Super p-brane Action

In brane solutions like Eq.(2.35-2.36), we can set the dilaton ϕ to vanish con-

sistently when a = 0. In such cases, r = 0 is not a physical singularity, as we can

check with the Riemann tensor in the orthonormal frame. We can conduct an ana-

lytical continuation. For example, in the M2-brane solution Eq.(2.39), we can choose

r = (r̃6−k) 1
6 . Here, r = 0 is a degenerate horizon, while r̃ = 0 is a curvature singular-

ity. The r̃ = 0 is actually an extended subspace (xµ, ym = 0) suggesting an M2-brane

sitting there. For the cases a ̸= 0, r = 0 is singular which can be seen from the scalar

equation. Thus, we consider the p-brane is sitting at r = 0 when a ̸= 0. To describe

the sources, i.e. p-branes, we need to consider the p-brane action.

Let’s start from the bosonic part p-brane action in the Polyakov form,

I =
1

2

∫
dp+1ξ

√
−γ
[
γij∂ix

m∂jx
ngmn − (p− 1)

]
. (2.52)

Here, γij is the auxiliary worldvolume metric with i = 0, 1, · · · , p depending on the

worldvolume coordinate ξi, and m = 0, 1 · · · , D− 1 is the spacetime indices used only

in this section, which is different from our previous convention.

We need to generalize the target space xm to superspace ZM = (xm, θα) to get an

action consistent with supersymmetry. For simplicity, we introduce vielbeins EA(Z) =

dZMEA
M(Z) with the world indices M and tangent space indices A ranging from both

bosonic values m, a = 0, 1, · · · , D− 1 and fermionic values α depending on the spinor

dimensions. Thus, we can describe the supergravity background with vielbeins EA
M(Z)
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and a superspace (p+ 1)-form B = 1
(p+1)!

EA1 · · ·EAp+1BAp+1···A1
2.

With ZM(ξ) serving the map from the worldvolume to the target space, we have

EA(Z) = dZMEA
M(Z) = dξi∂iZ

M(ξ)EA
M(Z(ξ)) ≡ dξiEA

i (ξ) on the super p-brane world-

volume. Then, generalizing the metric gmn with vielbeins and adding super (p + 1)-

form, we get the super p-brane action in Green-Schwarz form

I =

∫
dp+1ξ

{
1

2

√
−γ
[
γijEa

i E
b
jηab − (p− 1)

]
+

1

(p+ 1)!
εi1···ip+1E

A1
i1

· · ·EAp+1

ip+1
BAp+1···A1

}
.

(2.53)

In such a target space supersymmetry invariant form, we encounter a new question

of how to balance the bosonic and fermionic sectors on the worldvolume. For example,

on the supermembrane in 11 dimensions, the bosonic coordinates xm take 11 values

while Majorana spinors have 32 degrees of freedom. Due to the reparameterizations

on the worldvolume of supermembrane, there are 11− 3 = 8 on-shell bosonic degrees

of freedom left. Further, considering the bosonic equations of motion are second-order

differential equations while the fermionic equations are first-order, we expected that

there would be 16 worldvolume fermionic degrees of freedom instead of 32. Thus,

we expect that there exists a fermionic gauge symmetry on the super p-brane action

Eq.(2.53).

This fermionic gauge symmetry is called κ symmetry [22, 23], which will kill half

of the fermionic degrees of freedom. The fermionic gauge transformation is generated

by a spinor labeled by κα,

δza = 0, δzα =
1

2
(1 + Γ)αβκ

β(ξ), (2.54)

with

Γ =
(−1)

(p+1)(p−2)
4

(p+ 1)!
√
γ
εi1···ip+1Ea1

i1
· · ·Eap+1

ip+1
(Γa1···ap+1), γij = Ea

i E
b
jηab. (2.55)

It is easy to check that Γ2 = 1 and, hence, P = 1
2
(1 + Γ) is a projection operator

with trP = 1
2
tr1. Thus, we can set half zα to zero and hence balance the bosonic and

fermionic sectors in the supermembrane case.

2Note the order of indices.
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2.4 Kaluza-Klein Dimensional Reduction

Supergravity and superstring theories are essentially higher-dimensional theories.

To generate a 4-dimensional effective theory, we need a technique to reduce dimensions.

On the other hand, Supergravity theories can be obtained via dimensional reduction

from higher-dimensional supergravity like 11D supergravity. In this section, we will

introduce the classical dimensional reduction technique, Kaluza-Klein dimensional re-

duction. For simplicity, we only consider the bosonic sector here.

We consider the case when the spacetime can be written as a product manifold

MD = Md × BD−d. The dimension reduction on a compact manifold BD−d is well-

understood for physicists, while the reduction on non-compact BD−d was first discussed

in [9]. For our main interests, we will consider only non-compact BD−d when discussing

how to get effective theories on or near the lower-dimensional branes Md in the rest

chapters. In this section, however, we discuss the dimensional reduction in a compact

transverse space, while the non-compact cases are direct generalizations.

When the transverse space BD−d is compact, a general variable in the higher-

dimension MD can be written as

Φ(x, y) =
∑
n

ϕn(x)ζn(y), (2.56)

where xµ and ym are coordinate on Md and BD−d respectively and ζn(y) are a set of

Fourier modes on BD−d labeled by eigenvalues n. Here, we suppress all the possible

indices of spacetime or internal symmetries. Then, higher-dimensional equations of

motion for Φ(x, y) will generate an infinite tower of lower-dimensional equations of

motion for ϕn(x). For example, considering a massless scalar field Φ(x, y) on R1,3×S1

with the length of S1 being l, we have

0 = 25Φ(x, y)

= 25

[
∞∑

n=−∞

anϕn(x)e
inπy/l

]

=
∞∑

n=−∞

ane
inπy/l ×

[
24 −

(nπ
l

)2]
ϕn(x).

(2.57)

The linear independence of the Fourier modes implies the equations of motion of the

set of modes with different masses[
24 −

(nπ
l

)2]
ϕn(x) = 0, n ∈ Z. (2.58)
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Note that the mass nπ/l is inversely proportional to the length scale l of the compact

space. If we take l ∼ lpl, the massive modes will be too heavy to be generated in the

recent energy scale in colliders.

The essential step after writing in lower-dimension is a consistent truncation of

the field variables to make the theory more tractable. We always leave only the modes

independent of the reduced coordinate ym in Kaluza-Klein reduction, such as the

constant mode in the previous example.3 The consistent truncation premises that the

reduced lower-dimensional solutions are also solutions for the original theory.

2.4.1 Reduction from D + 1 to D dimensions

Let’s first consider the dimensional reduction from D + 1 to D dimensions. The

metric in MD =MD−1 ×B1 can be written as

dŝ2 = e2αφds2 + e2βφ
(
dz +AMdx

M
)2
, (2.59)

where ds2 is the metric on MD−1. Introduce vielbeins on MD

θ̂A =

eαφθa, A = a = 0, · · · , D − 1,

eβφ
(
dz +AMdx

M
)
, A = D,

(2.60)

with θa being the vielbeins on metric ds2. We use hatted and unhatted variables to

distinguish the variables in D + 1 and D dimensions.

Using the first Cartan’s structure equation and metric compatibility condition,

we solve the connection 1-form

ω̂D
a = e−αφ

(
β∂aφθ̂

D + eβφ
1

2
Fabθ

b

)
,

ω̂a
b = ωa

b + α∂bφθ
a − α∂aφηdbθ

d − e(β−2α)φ1

2
Fa

bθ̂
D,

(2.61)

with Fab = ∂aAb − ∂bAa. After a long and tedious but straightforward calculation,

we can express the Ricci scalar with lower-dimensional variables. Combining with

3The constant mode and consistent truncation do not always exit on the compact transverse space.

A practical method to find a consistent truncation is utilizing the group theory and keeping only the

singlets. Because the multiplication of singlets is always singlet, the interaction between singlets will

not generate other representations of the group.
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√
ĝ = e(Dα−β)φ√g, we have

√
ĝR̂(ĝ) = e((D−2)α+β)φ

[
R(g)− e2(β−α)φ1

4
FabFab − 2 ((D − 1)α + β)Dc (∂

cφ)

−
[
(D − 1) (D − 2)α2 + 2β((D − 2)α + β)

]
∂cφ∂

cφ
]
.

(2.62)

Different combinations of α and β are related by Weyl transformations. We can choose

(D − 2)α + β = 0 to make reductions of the Einstein-frame form gravitational action

in D + 1 dimensions to Einstein-frame form gravitational actions in D dimensions.

Further, we can choose α2 = [2(D− 1)(D− 2)]−1 to make a canonical kinetic term for

φ. In these coefficient choices, we have√
ĝR̂(ĝ) =

√
−g
[
R(g)− 1

2
∂cφ∂

cφ− e−2(D−1)αφ1

4
FabFab

]
. (2.63)

Next, we need to establish the reduction ansatz for a (D + 1)-dimensional anti-

symmetric tensor gauge field F̂[n] = dÂ[n−1]. We have the decomposition

Â[n−1](x, z) = B[n−1](x) +B[n−2](x) ∧ dz, (2.64)

using x to indicate the coordinates in the residual D dimensions. That is, A[n−1]

is decomposed into two parts with 0 or 1 index take the value z. Due to a certain

Chern-Simons structure appearing upon dimensional reduction, instead of defining

G′
[n] = dB[n−1], we define the reduced field strengths to be

G[n] = dB[n−1] − dB[n−2] ∧ A[1], G[n−1] = dB[n−2]. (2.65)

In such an ansatz, the dimensional reduction of the gauge field kinetic term is given

by
1

2
F̂[n] ∧ ∗̂F̂[n] =e

[−2(n−1)α+(D−2)α+β]φ1

2
G[n] ∧ ∗G[n]

+ e[2(D−n)α−((D−2)α+β)]φ1

2
G[n−1] ∧ ∗G[n−1].

(2.66)

Here, ∗̂ is defined on D+1 dimensions while ∗ is defined on D dimensions. And finally,

for a scalar field, we define

ϕ̂(x, z) = ϕ(x). (2.67)

We can use the result to check the dimensional reduction from 11D supergravity

Eq.(2.9) to type IIA supergravity directly Eq.(2.12). The 11-dimensional metric is

decomposed into 10-dimensional metric, the dilaton and the R-R vector A[1] shown in

the first line of Eq.(2.12). The 11-dimensional 3-from A[3] becomes the R-R 3-form
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field A[3] and the NS-NS 2-form B[2] in the second line. The dA∧ dA∧A origins from

the FFA term.

Let’s consider the dimension reduction of a single-charge action Eq.(2.15) to the

Einstein frame with a canonical kinetic term for the Kaluza-Klein scalar. Substituting

Eq.(2.63), Eq.(2.66) and Eq.(2.67) into

Î =

∫
dD+1x

√
−ĝ
[
R (ĝ)− 1

2
∇̂Mϕ∇̂Mϕ− 1

2n!
eâϕF̂ 2

[n]

]
(2.68)

we have

I =

∫
dDx

√
−g
{
R− 1

2
∇mφ∇mφ− 1

2
∇mϕ∇mϕ− e−2(D−1)αφ1

4
FcdF cd

− 1

2n!
e−2(n−1)αφ+âϕG2

[n] −
1

2 (n− 1)!
e2(D−n)αφ+âϕG2

[n−1]

}
.

(2.69)

Note that each of the antisymmetric-tensor field strengths couples the scalar fields

with the factor earϕ̃r where ϕ̃r is the SO(m)-rotated combination of m scalar fields.

Here m = 2. The ∆, defined in Eq.(2.31), of each ar satisfying

a2r = ∆− 2drd̃r
D − 2

= ∆− 2(r − 1)(D − r − 1)

D − 2
(2.70)

is the same as the ∆ of the parent coupling parameter â satisfying

â2n = ∆− 2dnd̃n
(D + 1)− 2

= ∆− 2(n− 1)(D − n)

D − 1
. (2.71)

We can do a consistent truncation further and leave only one field strength and the

corresponding scalar field to get a lower-dimensional single-charge action [16].

Dimensional reduction can not only be applied to supergravity theories but also to

brane solutions. Note that in the p-brane solutions we get like Eq.(2.35), variables are

independent of the worldvolume, which provides a naturally dimensional reduction on

the worldvolume direction. Reductions on worldvolume directions are called diagonal

dimensional reduction. On the other hand, the existence of multi-center solutions of

the harmonic function Eq.(2.37) allows us to stack an infinite number of parallel branes

with the same orientation along a transverse direction. Without loss of generality, we

choose the stacked direction to be yD−1 and relabel it with z. In this case, the harmonic

function becomes

H(y) = 1 +

∫ +∞

−∞

kdz

(r̂2 + z2)d̃/2
= 1 +

k̃

r̃d̃−1
, (2.72)
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with

r̂2 =
D−2∑
m=d

ymym, k̂ =

√
πkΓ(d̃− 1

2
)

2Γ(d̃)
. (2.73)

The result solution is independent of the stacked direction, and hence we can dimen-

sional reduction on it. Reduction on the transverse space called vertical dimensional

reduction. These dimensional reductions on the brane solutions are commute and

reversible.

The dimensional reduction can be performed repeatedly for n times which is

equivalent to a dimensional reduction on Bn = T n. Dimensional reduction on differ-

ent transverse spaces BD−d will result in different d-dimensional supergravity theories.

One of the differences is the symmetries in the lower-dimensional supergravity theories.

The general covariant symmetries of the original theory will result in global symme-

tries and gauge symmetries, which depend on the transverse space, in addition to the

diffeomorphism in the reduced theory. When dimensional reduction on a complicated

transverse space, e.g. Sn, instead of expressing the action with reduced variables we

do in this subsection, we will first express the higher-dimensional equations of motion

with reduced variables and then find an appropriate action for them. [24] provides a

good review of Kaluza-Klein dimensional reduction.
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Chapter 3

Type I - Effective Theories on

Branes

Supergravity and superstring are essentially higher-dimensional. However, all the

observations up to now suggest that we live in 4-dimensional spacetime. Contrast

to the issue of the non-gravitational matters in the standard model can be solved

by confining them on a 3-brane, gravity cannot be confined on a lower-dimensional

subspace as it is the dynamic of spacetime itself. Getting effective gravitational theories

on branes through the Kaluza-Klein dimensional reduction on compact transverse

space has been well-studied by physicists. One of the most popular models assumes

that there are six extra compact and extremely small dimensions space described by

Calabi-Yau manifolds [25, 26]. In this dissertation, we focus on constructing effective

theories with non-compact transverse spaces.

Unfortunately, it is not that straightforward to get a well-behaved effective gravity

with a non-compact transverse space. Before starting with any specific models, we can

first contemplate the characteristics of effective gravitational theories we want. Firstly,

the gravity spectrum must include a massless mode. Similar to the Kaluza-Klein

dimensional reduction, the existence of transverse space will generate an infinite tower

of gravitons with different masses. To have a massless graviton, the transverse space

problem must admit a zero eigenvalue. Then, we need a finite Newton constant Gd. If

we simply consider direct product spaceMD =Md×BD−d, their Newton constants are

related by Gd = GD/VolB. The infinite volume of the non-compact transverse space

BD−d then suppresses Gd to zero. Besides, we need to check the Newtonian limit of

gravity and we want to get a 1/r gravitational potential at the first order, which is the
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characteristic of gravity in three spatial dimensions. In the relativity limit, we need

to check the gravitational self-coupling and the coupling constant between gravity and

matter fields. Because of the self-coupling, we also need to promise the insignificance

of energy loss induced by the coupling of the zero mode and to massive modes which

do not ultimately couple back to matter on the brane.

Even if we have a theory satisfying the above requirement, we must guarantee

that the lower-dimensional behavior of the effective theory is stable. A trivial example

of non-compact reductions is starting from a higher-dimensional Minkowski space and

requiring translational invariance in all dimensions higher than 4. There is a continuous

massive sector spectrum right down to zero in this example and hence any small

excitation of the massive modes causes the theory to behave like a higher dimensional

theory. This construction is obviously unstable.

Ref.[11] provides a taxonomy for the effective gravitational theories on or near

lower-dimensional branes. In this chapter, we discuss the type I construction of effec-

tive theory. We start it with a summary of the characteristics of type I constructions

and then discuss it with specific models.

3.1 Characteristics of Type I Effective Theories

Type I constructions admit consistent truncation of the higher-dimensional the-

ories and give rise to fully non-perturbative gravity on the worldvolume. One can

consider type I effective theories as embedding lower-dimensional gravity into higher-

dimensional space. Indeed, we set up the type I gravity by replacing the worldvolume

variables of a brane solution with four-dimensional gravitational solutions. In addition

to the simplest Ricci-flat Einstein gravity, we can substitute the worldvolume metric

with supergravity. As a type I gravity is constructed by embedding, they satisfy al-

most all the criteria for a lower-dimensional gravity, except for a well-defined Newton

constant because of the trombone symmetries.

The metrics of a type I gravity can be written in the form as

ds2D(x, y) = e2α(y)gµν(x)dx
µdxν + ds2(D−4)(y). (3.1)

In a perturbative way, the gravitational effect is described by the perturbations hµν(x)

only along the worldvolume dressed by a specific factor depending on the transverse
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space,

ds2D(x, y) = e2α(y) (ηµν + hµν(x)) dx
µdxν + ds2(D−4)(y). (3.2)

It promises the lower-dimensional nature of the effective theory. As there is no de-

pendence on the worldvolume part, it naturally admits a consistent truncation for

transverse space.

We can investigate the type I construction from the perspective of a transverse

space problem. Let’s consider there is only one non-compact direction ρ in the trans-

verse space. Then, a perturbation with both worldvolume and transverse space spher-

ical symmetric can be written as

gµν(x, y) = ηµν(x) + hµν(r, ρ). (3.3)

The higher-dimensional Einstein equations at first order will result in a Green’s func-

tion problem

∆hµν(x, ρ) =

(
∂2r +

2

r
∂r + g2∆ρ

)
hµν(x, ρ) = 0, (3.4)

where ∂2r+
2
r
∂r and ∆ρ is the harmonic operator in the three-dimensional and transverse

space respectively, and g is a coupling constant. Accordingly, we posit an expansion

hµν(x, ρ) =
∑
i

h(λi)
µν (x)ξ(λi)(ρ) +

∫ ∞

Λedge

h(λ)µν (x)ξ(λ)(ρ), (3.5)

in which the ξλi
are discrete states and the ξλ are scattering states with eigenvalues λ

starting from the edge of the continuous spectrum Λedge. The expansion reduces the

problem further into the eigenvalue problem in the transverse space

∆ρξ(λ) +m2
λξ(λ) = 0. (3.6)

Since we require a massless graviton, there must exist a zero eigenvalue m2
0 = 0. As

a homogeneous differential equation, the eigenfunction with zero eigenvalue can be

solved by

ξ(0)(ρ) = c1 + c2ζ(ρ) (3.7)

with arbitrary constants c1 and c2.

We need c2 = 0 for type I construction to restrict the perturbations along the

worldvolume as Eq.(3.2). The combinations of c1 and c2 can be selected with proper

choices of boundary conditions. Hence, the type I construction, whose perturbations

hµν(x) have fixed transverse space dependence, is based on a Dirichlet boundary con-

dition on the transverse space problem.
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3.2 Einstein Gravity on Branes

3.2.1 The Black String Solutions

It was first found in ref.[12] that we can replace the worldvolume of magnetic

braneworlds like Eq.(2.43) with Ricci-flat metric. Based on the Randall-Sundrum

model1 Eq.(4.69), ref.[13] provided a model describing Schwarzschild black holes set-

ting on domain walls in a AdS5 background. As the domain wall solution is a magnetic

solution, the construction is consistent with the conclusion in ref.[12]. The metric takes

the form

ds2 =
l2

z2

(
−
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2 θdϕ2) + dz2

)
(3.8)

in the Poincare patch coordinate, where l is the AdS radius. The induced metric on a

domain wall at z = z0 can be transformed into the standard Schwarzschild metric by

rescaling the coordinate t and r.

It is important to note that the Schwarzschild spacetime is not localized in a

specific transverse position and the singularity at r = 0 is not generically a point in

the AdS5 background. Thus, the singularities r = 0 spread out in the transverse space

and stake up like a string. That is the reason why the model is called the black-

string solution. The black-string solution provides a type I construction with general

relativity on 3-branes.

To incorporate the Schwarzschild metric, the AdS5 structure becomes non-trivial.

The extensional nature of the black string has a significant impact on the AdS5 space-

time geometry resulting in singular AdS horizon z = ∞.

We closely follow the discussion in ref.[13], in which they first considered the

square of the Ricci tensor

RµνρσR
µνρσ =

1

l4

(
40 +

48M2z4

r6

)
. (3.9)

It diverges at the singularity at each slice of 3-brane r = 0 as expected, while it is

still singular at the AdS horizon z = ∞ with finite r. We can investigate the singular

horizon by considering null or timelike geodesics

z = −z1l
λ
, z = − z1

sin(λ/l)
, (3.10)

1We will provide more details for it in section 4.2.
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that will approach the horizon z = ∞. Here, z1 is a constant and z → ∞ as λ → 0−.

For simplicity, we define new coordinates r̃ = z1r/l, t̃ = z1t/l and new parameter

ν = −z21/λ for null geodesics and ν = −(z21/l) cot(λ/l) for timelike geodesics. Then,

the radial motions on the 3-brane of both null and timelike geodesics are effective

4-dimensional timelike orbits of Schwarzschild black holes(
dr̃

dν

)2

+

(
1 +

L̃2

r̃2

)(
1− 2M̃

r̃

)
= Ẽ. (3.11)

with the effective energy Ẽ = z1E/l, effective angular momentum L̃ = z21L/l
2, and

effective mass M̃ = z1M/l. That is, the motions in the transverse space give rise

to an effective mass in four dimensions. Once again, we see the effective gravity on

3-branes embedded in a higher-dimensional AdS5 spacetime. In 5 dimensions, the 4-

dimensional bound geodesic will stay at finite r and spiral along with the black string

until ultimately hitting the singularity at the AdS horizon at z = ∞.

The unbound geodesics that reach r = ∞, however, have a well-defined square

of the Ricci tensor because of their late time behavior r ∼ z1l
l

√
Ẽ2 − 1. To check the

singular structure at the z → ∞, r → ∞, we can check the Riemann tensor in an

orthonormal frame, which is set up by the tangent vector uM and a unit normal nM

on the geodesic. [13] showed that the component

R(u)(n)(u)(n) = RMNPQu
MnNuPnQ =

1

l2

(
1− 2Mz4

z21r
3

)
(3.12)

is divergent as r → z1l
l

√
Ẽ2 − 1 along the unbound geodesics.

What’s more, the Schwarzschild black in Randall-Sundrum background is not an

extremal solution, M ̸= Q, and will suffer a Gregory-Laflamme type of instability [27]

near the AdS horizon. The black string will pinch off near the AdS horizon and give

rise to a stable black cigar extend in the AdS space. That is, the black-string solution

will not be the ultimate stable state.

3.2.2 Doubly-Ricci-flat Branes and Black Spoke Solutions

It is possible to replace both the worldvolume and transverse space with arbitrary

Ricci-flat metrics for supersymmetric brane solutions. We call such a solution doubly-

Ricci-flat brane whose metric is given by

ds2 = Hα(y)ḡµν(x)dx
µdxν +Hβ(y)g̃ij(y)dy

idyj. (3.13)
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Here, α, β are two appropriate constants, H(y) is a harmonic function on the trans-

verse space, ḡµν and g̃ij are Ricci-flat metrics on worldvolume and transverse space

respectively. The harmonic function H(y) is trivial in a compact transverse space and

has singularities in a non-compact one.

Depending on the transverse space dimension, the transverse Euclidean space

can be replaced by Calabi-Yau, hyper-Kähler, G(2), or Spin(7) manifold. The Killing

spinor must be a singlet of the special holonomy group [20]. On the other hand,

replacing the Minkowski worldvolume metric with a general Ricci-flat metric allows us

to construct a worldvolume Einstein’s gravity. The black-spoke solutions that we will

discuss are the examples with Einstein’s gravity, described by Schwarzschild metric,

on the worldvolume.

It was proven that the metric in Eq.(3.13) along with appropriate scalars and

gauge fields are supersymmetric provided that ḡµν and g̃ij admit covariantly constant

spinors with appropriate projection conditions. We can build supersymmetric brane

solutions similar to those in section 2.2. For example, the electric p-brane solution in

Eq.(2.35) becomes [11]

ds2D = H− 4d̃el
∆(D−2)ds2(Mp+1) +H

4del
∆(D−2)ds2(BD−p−1),

A[p+1] =
2√
∆
H−1vol(Mp+1), eϕ = H

2a
∆ , ∇̃2H = 0.

(3.14)

The resulting brane solutions have the same structure as those with flat worldvolume

embedded in a flat background. Similar situations happen to the magnetic and dyonic

brane solutions.

The doubly-Ricci-flat solutions Eq.(3.14) admit three global symmetries called

trombone symmetries. The first one is

gMN 7→ k2HgMN , ϕ 7→ ϕ, F[p+2] 7→ kp+1
H F[p+2], (3.15)

and the other two are individual rescaling of the worldvolume and transverse metric

ḡµν 7→ k2W ḡµν , g̃ij 7→ k2T g̃ij. (3.16)

It is the existence of trombone symmetries prevents a well-defined 4-dimensional New-

ton constant as we can scale the Newton constant to any value by a trombone trans-

formation.

Not restricted to embedding a 4-dimensional Schwarzschild metric into the Randall-

Sundrum type AdS5 background, we can simply substitute the worldvolume of the
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doubly-Ricci-flat spacetime in Eq.(3.13) with a n-dimensional Schwarzschild metric

ds2n = −

(
1− M

rn−3

1 + M
rn−3

)2

dt2 +

(
1 +

M

rn−3

) 4
n−3 (

dr2 + r2ds2(Sn−2)
)
. (3.17)

Because there could be not only one transverse dimension, the singularities spread out

radially in the transverse space like a spoke rather than a string. Ref. [11] named it

the black-spoke solution.

We can write the black spoke metric in a perturbation picture around a doubly-

Ricci-flat brane with a R1,n−1 worldvolume,

ds2 = Hα (ηµνdx
µdxν +Mhµνdx

µdxν) +Hβ g̃ijdy
idyj +O(M2), (3.18)

with

h00 =
4

rn−3
, hmn =

4

(n− 3)rn−3
δmn. (3.19)

It is easy to check that the perturbation is not traceless and obeys the de Donder

gauge

∂µhµν −
1

2
∂vh

µ
µ = 0, (3.20)

sourced by the stress tensor

TMN =MδM0δN0f(y)
δ(r)

rn−2
. (3.21)

f(y) depends on the transverse space geometry. There is only a δ-function in the

worldvolume, i.e. the source spread out in the whole transverse space. We can see

the important characteristic of type I gravity that the perturbations only along the

worldvolume, while the transverse space dependence is fixed by the factor Hα(y).

3.3 Supergravities on Branes

By counting the preserved supersymmetries on the AdS5 spacetime and the 3-

branes, ref.[14] recognized that, in the Rundall-Sundrum model, the worldvolume

gravity can be viewed as a 4D N = 1 supergravity, whose bosonic sector comprises

only the metric, while the whole spacetime theory is a 5D N = 2 gauged supergravity.

Two supergravity theories are related by a consistent dimensional reduction. It can be

viewed as the worldvolume supergravity is embedded into the spacetime supergravity.

Analog to it, they found a consistent dimensional reduction from the 5D N = 4 gauged
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supergravity to the 4D N = 2 Einstein-Maxwell supergravity, whose bosonic sector

comprises the metric and the Maxwell gauge field.

Because of the gauge field, the 3-brane allows for the Reissner–Nordström black

hole, which in the 5-dimensional spacetime can be viewed as a string. The solution

describes a string ending on a D3-brane in type IIB supergravity after being lifted

to 10 dimensions with S5. That is, in this manner, we can construct brane-on-brane

solutions with lower-dimensional supergravity embedded into higher-dimensional ones.

Realizing AdS5 × S5 is the near-horizon geometry of a D3-brane in Type IIB

supergravity, ref.[15] promoted the embedding of supergravity in ref.[14] to embedding

the 4DN = 4 supergravity in Type IIB supergravity with the D3-brane severing as the

skeleton. In such case, the worldvolume 4D N = 4 supergravity has the same amount

of supersymmetries as the D3-brane solutions in Type IIB supergravity. By finding

null geodesics on the scalar coset space, they found a certain class of stationary black

hole solution. And they also constructed 6D N = (4, 0) worldvolume supergravity

embedded in 11D supergravity with the M5-brane severing as the skeleton.

3.3.1 4D N = 2 supergravity from 5D N = 4 supergravity

The bosonic sector of 5-dimensional N = 4 supergravity is composed by the

metric, a scalar ϕ, SU(2) Yang-Mills potentials Ai
[1], a U(1) gauge potential B[1], and

two 2-form potentials Aα
[2] which transforms as a charged doublet under the U(1)

symmetry. The Lagrangian is written as [28] 2

L5DN4 =R∗̃1− 1

2
dϕ ∧ ∗̃dϕ− 1

2
X4G[2] ∧ ∗̃G[2] −

1

2
X−2

(
F i
[2] ∧ ∗̃F i

[2] + Aα
[2] ∧ ∗̃Aα

[2]

)
+

1

2g
εαβA

α
[2] ∧ dA

β
[2] −

1

2
Aα

[2] ∧ Aα
[2] ∧B[1] −

1

2
F i
[2] ∧ F i

[2] ∧B[1]

+ 4g2
(
X2 + 2X−1

)
∗̃1,

(3.22)

where X = e
− 1√

6
ϕ
, F i

[2] = dAi
[1] +

1√
2
gεijkAj

[1] ∧Ak
[1] and G[2] = dB[1], and ∗̃ donates the

5-dimensional Hodge dual. For simplicity, we can define A[2] ≡ A1
[2] + iA2

[2]. Varying

2Our convention for the Hodge dual is different from that in [14, 28].
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the Lagrangian, we get the equations of motion

d(X−1∗̃dX) =
1

3
X4G[2] ∧ ∗̃G[2] −

1

6
X−2

(
F i
[2] ∧ ∗̃F i

[2] + Ā[2] ∧ ∗̃A[2]

)
− 4

3
g2
(
X2 −X−1

)
∗̃1,

d(X4∗̃G[2]) = − 1

2
F i
[2] ∧ F i

[2] −
1

2
Ā[2] ∧ A[2],

d(X−2∗̃F i
[2]) =

√
2gεijkX−2F j

[2] ∧ ∗̃Ak
[1] − F i

[2] ∧G[2],

X2∗̃F[3] = − igA[2],

RMN = 3X−2∂MX∂NX − 4

3
g2
(
X2 + 2X−1

)
gMN

+
1

2
X4(G P

M GNP − 1

6
gMNG

2
[2]) +

1

2
X−2(F i P

M F i
NP − 1

6
gMN(F

i
[2])

2)

+
1

2
X−2(Ā P

(M AN)P − 1

6
gMN

∣∣A[2]

∣∣2),
(3.23)

with F[3] = DA[2] ≡ dA[2] − igB[1] ∧ A[2].

The dimensional reduction ansatz is

ds25 = e−2k|z|ds24 + dz2, A[2] =
1√
2
e−k|z|(F[2] − i ∗ F[2]), (3.24)

in which unmentioned fields are set to zero and k < 0, z is the coordinate of the fifth

dimension ds24 is the worldvolume metric, F[2] is the Maxwell field in the 4-dimensional

N = 2 supergravity, and ∗ donates the 4-dimensional Hodge dual. Here, the absolute

value of z on the exponential is the characteristic of the Randall-Sundrum model which

is an orbifold. Different from the general Kaluza-Klein dimensional reduction discussed

in sec.2.4, in which the surviving fields are independent of the reduced dimensions, the

reduction ansatz of both the metric and 2-form gauge fields depends on the fifth

dimension z.

The first three equations in Eq.(3.23) are satisfied trivially because Ā[2]∧A[2] = 0

and ∗̃A[2] = A[2] ∧ dz using ∗F[2] ∧ ∗F[2] = −F[2] ∧ F[2], where the minus sign appears

because of the Minkowski signature of the spacetime. Substituting the ansatz Eq.(3.24)

into the A[2] equation, we find

dF[2] = 0, d ∗ F[2] = 0, g =

+k, z > 0,

−k, z < 0.
(3.25)

With the non-vanishing component of Ricci tensor given by

R(5)
µν = e2k|z|R(4)

µν − 4k2ηµν + 2kδ(z)ηµν

R(5)
zz = −4k2 + 8kδ(z),

(3.26)
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Einstein’s equations provide us

Rµν −
1

2
Rgµν =

1

2
(FµρF ρ

ν − 1

4
F2gµν), k2 = g2. (3.27)

Eq.(3.25) and Eq.(3.27) are the equations of motion for the Einstein-Maxwell

theory except for the domain wall z = 0. On the domain wall, we need an external δ-

function source. That is, with a subtle construction of worldvolume and the transverse

space, we get a consistent dimensional reduction from a 5D N = 4 supergravity to 4D

N = 2 supergravity whose bosonic sector is exactly the metric and the Maxwell gauge

field. The geometry requires that the Yang-Mills coupling constant g has opposite

signs on the two sides of the domain wall at z = 0, equal to the inverse of the AdS

radius.

3.3.2 Reissner–Nordström black holes on the branes

The Einstein-Maxwell theory, Eq.(3.25) and Eq.(3.27), admits a class of Reiss-

ner–Nordström black holes

ds2 = −∆

r2
dt2 +

r2

∆
dr2 + r2dΩ2, A0 = −q

r
(3.28)

where ∆ = r2 − 2Mr+ q2/4 and is irrelevant to the ∆ in Eq.(2.31). Here, we are only

interested in the extremal black holes with M = |q|/2,

ds24 = −H−2dt2 +H2dyidyi, F[2] = 2dt ∧ dH−1, ∇2
(y)H = 0. (3.29)

With the dimensional reduction ansatz Eq.(3.24), we can lift the extremal RN

black holes solution straightforwardly to

ds25 = e−2k|z|(−H−2dt2 +H2dyidyi) + dz2, ∇2
(y)H = 0

A[2] =
√
2e−k|z|(dt ∧ dH−1 +

i

2
εijk∂iHdy

j ∧ dyk).
(3.30)

Like the black string solution, the sources are spread out in the transverse dimension.

It can be viewed as strings coupling to the 2-form gauge field A[2].

The ansatz of Kaluza-Klein reduction from type IIB supergravity to 5D N = 4

gauged supergravity with a S5 was derived in ref.[28]. To generate the SU(2) × U(1)

gauge symmetry, we need a S3 × S1 foliation of the S5 given by

dΩ2
5 = dξ2 + sin2 ξdτ 2 + cos2 ξdΩ2

3. (3.31)
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Here, 0 ≤ ξ ≤ π
2
, 0 ≤ τ ≤ 2π, and dΩ2

3 is the metric on the unit S3. After being lifted

to type IIB supergravity, both SU(2) × U(1) gauge fields and the scalar vanish. We

have the ansatz

dŝ210 = e−2k|z|ds24 + dz2 + g−2
(
dξ2 + sin2 ξdτ 2 + cos2 ξdΩ2

3

)
,

Ĥ[5] = 4gϵ[5] + 4g−5 sin ξ cos3 ξdξ ∧ dτ ∧ Ω[3],

Â[2] = −1

2
g−1 sin ξe−k|z|−iτ (F[2] − i ∗ F[2]).

(3.32)

Here, we label 10-dimensional variables with hat, ϵ[5] = e−4k|z|ϵ[4] ∧ dz, with ϵ[4] being
the volume form of the 4-dimensional metric ds24, and Ω[3] is the volume form of the

unit S3. Â[2] is a complex 2-form defined by

Â[2] = ÂRR
[2] + iÂNS

[2] , (3.33)

where ÂRR
[2] and ÂNS

[2] are the R-R and NS-NS 2-form potentials of the type IIB super-

gravity. Ĥ[5] is the self-dual 5-form field strength in the R-R sector, and the dilaton

and axion are set to zero.

Then, we can uplift the RN black hole on the branes solution to 10-dimensional

as

dŝ210 = e−2k|z|(−H−2dt2 +H2dyidyi) + dz2 + g−2
(
dξ2 + sin2 ξdτ 2 + cos2 ξdΩ2

3

)
,

Ĥ[5] = 4ge−4k|z|H2dt ∧ d3y ∧ dz + 4g−5 sin ξ cos3 ξdξ ∧ dτ ∧ Ω[3],

Â[2] = −g−1 sin ξe−k|z|−iτ (dt ∧ dH−1 − i

2
ϵijk∂iHdy

j ∧ dyk), ∇2
(y)H = 0,

(3.34)

with g = k for z > 0 and g = −k for z < 0. It’s a D3-brane solution coupling to the

self-dual field strength H[5]. Hence, we can interpret it as an open string ending on a

D3-brane.

No matter the brane solutions in 5 dimensions, Eq.(3.30), or in 10 dimensions,

Eq.(3.34), the gravitational effect is only within the worldvolume and the transverse

space dependence is fixed by e−2k|z| as we discuss in the section 3.1. Both of them

admit a deformed consistent truncation, which depends on the transverse space, to

the worldvolume gravity. The crucial structure in the embedding is the non-trivial

Randall-Sundrum type of transverse space geometry. Further, the AdS5 singular struc-

ture changes due to the incorporation of the worldvolume gravity. With a similar in-

vestigation of the curvature variables along the null and timelike geodesics, we can also

find the AdS horizon becomes singular. Fortunately, for our extremal BPS solution,

the RN black holes on branes solutions do not suffer the Gregory-Laflamme instability

[27] as the black-string solution.
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3.3.3 Worldvolume Supergravity on D3-branes

AdS5×S5 spacetime is the asymptotic near-brane geometry of a D3-brane in type

IIB supergravity which has 16 unbroken supersymmetries. However, the worldvolume

Einstein-Maxwell 4D N = 2 supergravity constructed in ref.[14] has only 8 supersym-

metries. Noting the difference, ref.[15] suggested that it is possible to embed a 4D

N = 4 supergravity, which has 16 supersymmetries, on the worldvolume of D3-brane.

Type IIB supergravity admits N parallel D3-branes solution, as we mentioned in

subsection 2.2.3,

dŝ2 = H−1/2ηµνdx
µdxν +H1/2(dr2 + r2dΩ2

5),

F̂[5] = 16πN(1 + ∗̂)vol5, H = 1 +
4πN

r4
.

(3.35)

with vol5 is the volume form of the S5. This D3-brane solution is the skeleton used to

embed the 4D N = 4 supergravity whose Lagrangian of the bosonic part is

L4DN4 = R ∗ 1− 1

2
dϕ∧∗dϕ− 1

2
e2ϕdχ∧∗dχ− 1

2
e−ϕFΛ

[2] ∧∗FΛ
[2] −

1

2
χFΛ

[2] ∧FΛ
[2]. (3.36)

It is composed of the metric gµν , 6 U(1) vectorsAΛ
[1] with field strength FΛ

[2] = dAΛ
[1], and

one complex scalar τ = χ+ ie−ϕ, which parametrizes the coset space SL(2,R)/SO(2).

The embedding of the 4D N = 4 supergravity on the worldvolume of skeleton

D3-branes is given in ref.[15] as

dŝ2 = H−1/2gµν(x)dx
µdxν +H1/2dyΛdyΛ, Φ̂ = ϕ(x), Ĉ0 = −χ(x),

Ĥ[3] =
1√
2
FΛ

[2] ∧ dyΛ, FΛ
[3] = − 1√

2
e−ϕ ∗ FΛ

[2] ∧ dyΛ,

F̂[5] = H−2vol4 ∧ dH − ∗6dH, H = 1 +
4πN

r4
,

(3.37)

in which Λ ∈ {1, · · · , 6}, ∗ and the volume form vol4 are both associated with gµν , ∗6
is the Hodge dual on the R6 transverse space. The type IIB supergravity comprises a

dilaton Φ̂, a NS-NS 3-form field strength Ĥ[3], and R-R sector field strengths F̂[1], F̂[3]

and F̂[5].

3.3.4 Stationary Black Holes in 4D N = 4 worldvolume su-

pergravity

Due to the various field contents in 4D N = 4 supergravity, there could be more

possible solutions on the worldvolume. To find stationary black hole solutions, we can
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utilize the trick developed in ref.[29, 30]. Note that, a 1-form gauge field is dual to

a scalar field(axion) in 3 dimensions. After reducing the 4-dimensional supergravity

along a timelike U(1) isometry and obtaining a 3-dimensional Euclidean theory, we

can make a dualization turning all the gauge fields into scalars. The resulting theory

comprises the metric and scalars, which can be described using a non-linear sigma

model with target space Ms. The null geodesics on Ms correspond to certain classes

of black holes.

With the reduction ansatz3

ds24 = −eρ(x)(dt+ A[1])
2 + e−ρ(x)hmn(x)dx

mdxn, ϕ = ϕ(x), χ = χ(x)

AΛ
[1] = aΛ(x)(dt+ A[1]) + BΛ

[1],
(3.38)

we get the reduced 3-dimensional Euclidean Lagrangian from the Lagrangian Eq.(3.36)

L3 =R ∗ 1− 1

2
dϕ ∧ ∗dϕ− 1

2
e2ϕdχ ∧ ∗dχ− 1

2
dρ ∧ ∗3dρ+

1

2
e−ρ−ϕdaΛ ∧ ∗3daΛ

+
1

2
e2ρF[2] ∧ ∗3F[2] −

1

2
eρ−ϕHΛ

[2] ∧ ∗3HΛ
[2] + χdaΛ ∧HΛ

[2],
(3.39)

where R is the Ricci sacalar associate to hmn, HΛ
[2] = dBΛ

[1] + aΛF[2], and F[2] = dA[1].

The Bianchi identities and equations of motion of H[2] and F[2] are

dHΛ
[2] = daΛ ∧ F[2], d(e−ϕ+ρ ∗3 HΛ

[2] − χdaΛ) = 0,

dF[2] = 0, d(e2ρ ∗3 F[2] − e−ϕ+ρaΛ ∗3 HΛ
[2] + χaΛdaΛ) = 0.

(3.40)

To make a dualization, it is equivalent to introducing a set of new variables that

interchange the roles of Bianchi identities and equations of motion. We can make the

choice
HΛ

[2] = eϕ−ρ ∗3 (dhΛ + χdaΛ) ≡ eϕ−ρ ∗3 PΛ
[1],

F[2] = −e−2ρ ∗3 (df +
1

2
hΛdaΛ − 1

2
aΛdhΛ) ≡ −e−2ρ ∗3 Q[1],

(3.41)

where the scalar fields hΛ and f are the axions dual to HΛ
[2] and F[2], with PΛ

[1] and Q[1]

being their field strength. Redefine ρ and ϕ as

ρ = − 1√
2
(ϕ1 + ϕ2), ϕ = − 1√

2
(ϕ1 − ϕ2). (3.42)

With the integration by part using Eq.(3.41), the Lagrangian in terms of new variables,

16 scalars and axions in total, are

L3 =R ∗ 1− 1

2
dϕ1 ∧ ∗dϕ1 −

1

2
dϕ2 ∧ ∗3dϕ2 −

1

2
e−

√
2ϕ1+

√
2ϕ2dχ ∧ ∗dχ

+
1

2
e
√
2ϕ1daΛ ∧ ∗3daΛ +

1

2
e
√
2ϕ2PΛ

[1] ∧ ∗3PΛ
[1] −

1

2
e
√
2ϕ1+

√
2ϕ2Q[1] ∧ ∗3Q[1].

(3.43)

3The reduction ansatz for gauge field is slightly different from that in subsec.2.4.1
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In terms of the non-linear sigma model, the target space is the closet space

SO(8, 2)/(SO(6, 2)× SO(2)) and the Lagrangian becomes [15]

L3 = R ∗ 1+
1

4
tr(dM−1 ∧ ∗3dM), (3.44)

with the matrix M = VTW0V where

V = exp

{
1

2
ϕ1H1 +

1

2
ϕ2H2

}
exp

(
−χE 2

1

)
exp(−fV 12) exp(aΛU 1

Λ + hΛU 2
Λ ) (3.45)

is the coset representative, (H1, H2) and (E 2
1 , V

12, U 1
Λ , U

2
Λ ) are the 2 non-compact

Cartan generators and the 14 positive-root generators of so(2, 8), and the fiducial

matrix W0 = diag(−1,−1, 1, 1, 1, 1, 1, 1,−1,−1), which determines the denominator

group of the coset to be SO(6, 2)× SO(2). Ref.[24] provided an elementary introduc-

tion to constructing the coset manifold V based on the group theory. Varying the

Larganian, we get the equations of motion

Rmn = −1

4
tr(∂mM∂nM

−1), ∇m(M
−1∇mM) = 0, (3.46)

with ∇ associated to hmn.

Let’s assume that all the scalars are taken to depend on the spatial coordinates

through a single harmonic function σ(x), i.e. M(σ). Then, the scalar equation of

motion becomes
d

dσ

(
M−1dM

dσ

)
= 0, (3.47)

with solutions

M = A exp(σB), (3.48)

where the constant matrix B gives the velocity for the geodesic parametrized by σ,

while the constant matrix A specifies the initial point of the geodesic. Then Einstein’s

equation reduced to

Rmn = −1

4
tr(B2)∂mσ∂nσ. (3.49)

As the black hole solutions correspond to the null geodesics on the target space

Ms, we need to consider the metric on geodesics pulled back from the target space,

which takes the form

ds2 = −1

2
tr(dM−1dM) =

1

2
tr(B2) dσ2. (3.50)

That is, the stationary black hole solutions on the worldvolume have Ricci-flat spatial

geometries. Thus, the harmonic function σ : x 7→ σ(x) maps 3-dimensional Ricci-flat
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space to null geodesics on the target space. The extension to involve multiple harmonic

maps σa(x) is straightforward.

After being lifted back to 10 dimensions with Eq.(3.37), the solutions describe

charged black holes on the worldvolume of D3-branes or string ending on the D3-

branes. Note the structure of Eq.(3.37). The supergravity is confined to the world-

volume, and the transverse space dependence is fixed by the factor H−1/2(y), which is

exactly the characteristic of type I effective gravity. And the sources, i.e. black holes,

spread out in the transverse space similar to the black-spoke solutions.
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Chapter 4

Type III - Effective Theory near

branes

In chapter 3, we explored the type I construction of lower-dimensional effective

gravity through embedding Einstein’s gravity or supergravity on the world volume.

This results in gravitational effects that are only along the world volume, with a fixed

transverse space dependence factor. Instead of being localized at a point, the source

spreads out in the transverse space. This ingenious construction allows for a consistent

truncation to a world volume gravity and satisfies all of the criteria for an effective

4-dimensional gravity, except for a reasonable Newton constant.

In this chapter, we will discuss the type III construction classified in [11], which

is rather different. In type III construction, we consider a δ-function type of source

sitting at one point in the spacetime. By carefully choosing the geometry and the

boundary condition of the eigenvalue problem on the transverse space, we can have a

transverse spectrum containing a zero eigenvalue with a non-constant eigenfunction,

i.e. non-zero c2 and non-trivial ζ(0) in Eq.(3.7). The zero mode admits the massless

graviton while the non-constant eigenfunction is vital in localizing the gravity near the

brane on which the source sits. The dominant contribution to gravity in the Newtonian

limit comes from the zero modes with a 1/r behavior, which are corrected by higher

modes that decrease rapidly at large distances and are suppressed by a scale factor. In

different models, the transverse space spectra are different, and they will have different

mechanisms to keep the lower-dimensional behavior stable.

In contrast to type III, the type II construction employs a Neumann near-source
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boundary condition. This results in the absence of a zero eigenvalue and a massless

graviton in type II, which is different from type III where the boundary condition used

is Robin.

In this chapter, we focus on the SS-CGP model, which is based on the ground-

state solution of 6-dimensional supergravity found by Salam and Sezgin [31] that was

lifted into type IIA supergravity by Cvetic, Gibbons and Pope [32]. We end this

chapter with the Randall-Sundrum model and compare it to the SS-CGP model as

it has a distinct spectrum. This discussion also complements the Randall-Sundrum

structure that we used in the type I construction.

4.1 Effective gravity based on SS-CGP model

4.1.1 The SS-CGP Background

The bosonic sector of the 6-dimensional Salam-Sezgin theory is given by

L̄6 = R̄∗̄1− 1

4
dϕ̄ ∧ ∗̄dϕ̄− 1

2
e

1
2
ϕ̄F̄[2] ∧ ∗̄F̄[2] −

1

2
eϕ̄H̄[3] ∧ ∗̄H̄[3] − 8ḡ2e−

1
2
ϕ̄∗̄1, (4.1)

where we put a bar on all quantities in the 6 dimensions in this chapter and dH̄[3] =
1
2
F̄[2] ∧ F̄[2], F̄2 = dĀ[1]. There exists a ISO(1, 3)× S2 vacuum solution

ds̄26 = ηµνdx
µdxν +

1

8ḡ2
(
dθ2 + sin2 θdφ2

)
,

Ā[1] = − 1

2ḡ
cos θdφ, H̄[3] = 0, ϕ̄ = 0.

(4.2)

Cvetic, Gibbons and Pope [32] showed that the Salam-Sezgin theory can be up-

lifted to the type I supergravity via a R×H(2,2). The 3-dimensional hyperbolic space

H(2,2) is defined as the surface X2
1 + X2

2 − X2
3 − X2

4 = 1 embedded in the Euclidean

space E4 with U(1)× U(1) isometry. In terms of a new set of parameters

X1 = cosh ρ cosα, X2 = cos ρ sinα, X3 = sinh ρ cos β, X4 = cos ρ sin β, (4.3)

we can write the metric on H(2,2) as

ds23 = cosh 2ρ dρ2 + cosh2 ρ dα2 + sinh2 ρ dβ2, (4.4)
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where ρ ≥ 0 and 0 ≤ α < 2π, 0 ≤ β < 2π. For our purposes, let’s introduce

coordinates ψ ∈ [0, 4π) and χ ∈ [0, 2π) defined as

ψ = α + β, χ = α− β. (4.5)

The embedding of the Salam-Sezgin theory in type I supergravity in terms of these

parameters was given in ref.[10] as

ds210 = (cosh 2ρ)1/4
[
e−

1
4
ϕ̄ds̄26 + e

1
4
ϕ̄dy2 +

1

2
ḡ−2e

1
4
ϕ̄
(
dρ2

+
1

4
[dψ + sech2ρ(dχ− 2ḡĀ)]2 +

1

4
(tanh 2ρ)2(dχ− 2ḡĀ)2

)]
,

F[3] = H̄[3] −
sinh 2ρ

4ḡ2(cosh 2ρ)2
dρ ∧ dψ ∧ (dχ− 2ḡĀ[1])

+
1

4ḡ2 cosh 2ρ
F̄[2] ∧ [dψ + cosh 2ρ(dχ− 2ḡĀ[1])],

eϕ = (cosh 2ρ)−1/2e−
1
2
ϕ̄.

(4.6)

In the 10-dimensional metric, the y ∈ [0, ly) origins from the R while the rest are the

embedding of H(2,). We can verify this reduction ansatz by substituting it into the

bosonic Lagrangian of type I supergravity

L10 = R ∗ 1− 1

2
dϕ ∧ ∗dϕ− 1

2
e−ϕF[3] ∧ ∗F[3], (4.7)

and obtaining the bosonic equations of motion for the Salam-Sezgin theory, which

follow from Eq.(4.1).

Then, the uplifted vacuum solution Eq.(4.2) in type I supergravity becomes

ds210 = H−1/4

(
ηµνdx

µdxν + dy2 +
1

4g2
(dψ + sech2ρ(dχ+ cos θdφ))2

)
+

1

g2
H3/4ds2EH ,

B[2] =
1

4g2
(dχ+ sech2ρ dψ) ∧ (dχ+ cos θdφ), e2ϕ = H, H = sech2ρ,

(4.8)

where F[3] = dB[2], g =
√
2ḡ and ds2EH is the 4-dimensional Eguchi-Hanson metric

ds2EH = cosh 2ρ

(
dρ2 +

1

4
(tanh 2ρ)2(dχ+ cos θdφ)2 +

1

4
(dθ2 + sin2 θdφ2)

)
. (4.9)

The coordinates take values in xµ ∈ R1,3, y ∈ [0, ly), χ, φ ∈ [0, 2π), ψ ∈ [0, 4π), θ ∈
[0, π] and ρ ∈ [0,∞). As opposed to 4π, χ has a period of 2π suggests that the

boundary of the Eguchi-Hanson space at ρ→ ∞ is given by RP3 ≃ S3/Z2, where the

S3 is realized as a Hopf fibration over S2, with χ being the fiber coordinate. While in
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the ρ → 0 limit, the Eguchi-Hanson space becomes R2 × S2 with (ρ, χ) acting as the

polar coordinate to comprise the R2 [33].

The SS-CGP solution, Eq.(4.8), takes the form of an NS5-brane wrapping on the

(y, ψ) ∈ T 2 with the transverse space being the Eguchi-Hanson space. Indeed, similar

to the brane solutions we discuss in section 2.2, the factor H = sech2ρ is the harmonic

function on the transverse space

∆EHH = −g
2

2
(F[2])

2, (4.10)

with ∆EH being the Laplacian on the Eguchi-Hanson space. The appearance of the

anti-self-dual field strength F[2] = dA[1], defined as

F[2] = dA[1], A[1] = sech2ρ(dχ+ cos θdφ), (4.11)

is the result of the transgression [10, 34].

The supersymmetry transformation rules in type I supergravity are given by

δψM = ∇Mϵ−
1

8
FMNPΓ

NPΓ11ϵ, δλ = ΓM∂Mϕϵ−
1

12
FMNPΓ

MNPΓ11ϵ. (4.12)

The spinors are written in the form of ϵ = e−
1
2
χΓ89η, where η is any constant spinor

satisfying the two projection conditions

Γ11η = −η, Γ67η = Γ89η. (4.13)

Here, the 6, 7, 8 and 9 vielbein indices refer to the 4 transverse directions, with

ê6 =
1

2
sinh 2ρ(cosh 2ρ)−1/2(dχ+ cos θdφ), ê7 = (cosh 2ρ)1/2dρ,

ê8 =
1

2
(cosh 2ρ)1/2dθ, ê9 =

1

2
(cosh 2ρ)1/2 sin θdφ.

(4.14)

Thus, the SS-CGP model exists 1
2
× 1

2
× 32 = 8 Killing spinors and preserves 8 super-

symmetry.

It is available to include an additional NS5-brane [10] into the SS-CGP solution

without breaking any more supersymmetry. After embedding the SS-CGP solution

into the type IIA supergravity, we only need to add to the special solution H = sech2ρ

of Eq.(4.10) homogeneous terms as

H = sech2ρ+ H̃, H̃ = −k log tanh ρ. (4.15)

Here, k is positive to obtain a well-behaved positive-tension brane solution. Accord-

ingly, the NS-NS 2-from is modified to be

B[2] =
1

4g2
((1 + k)dχ+ sech2ρdψ) ∧ (dχ+ cos θdφ). (4.16)
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4.1.2 Geodesics, Perturbations and Newtonian Potential

A well-behaved effective gravity needs to possess a 1/r gravitational potential in

the Newtonian limit. We can determine the gravitational potential of the effective

gravity by measuring the response of a test particle to a known source mass, i.e. the

distortion of timelike geodesics due to the gravitational perturbations.

Let’s donate the coordinates of the geodesics as ZM = (Xµ, Y, P,Θ,Φ,Σ,Ψ) in-

stead of (xµ, y, ρ, θ, φ, χ, ψ) to avoid confusion with the global coordinates. The time-

like geodesics equation with proper time τ serving as the parameter is

d2ZM

dτ 2
+ ΓM

KL(Z)
dZK

dτ

dZL

dτ
= 0. (4.17)

Let’s find the unperturbed geodesics in the SS-CGP background Eq.(4.8). Firstly, its

isometry group is ISO(1, 3)×U(1)3×SO(3) resulting from the Minkowski coordinates

xµ, 3-torus coordinates (y, χ, ψ) and the S2 coordinates (θ, φ). With these isometries,

we can choose geodesics with Y = Φ = Σ = Ψ = 0 and Θ = π without losing

generality. Then, the equation of motion for the transverse radius P (τ) reduces to

d2P

dτ 2
+

1

4
tanh(2P )

(
dP

dτ

)2

− g2

4
tanh(2P )ηµν

dXµ

dτ

dXν

dτ
= 0, (4.18)

while the equation for Xµ are the usual geodesic equations on R1,3. Thus, we can find

a static timelike geodesic on the 4-dimensional Minkowski subspace as

X0 = τ, X i = 0, P = 0, Θ = π, Φ = 0, Σ = 0, Ψ = 0. (4.19)

Let’s find the distortion of the static geodesic Eq.(4.19) under perturbations HMN

given by

ĝMN = (cosh 2ρ)1/4(ḡMN +HMN), (4.20)

where ḡMN is the string-frame metric on the SS-CGP background related to the

Einstein-frame with the Weyl transformation ḡMN = eϕ/2gMN . To check the 4-

dimensional gravitational potential in the Newtonian limit, we only need to con-

sider the time-independent perturbations with components along the xµ and ρ and

H0i = 0. Further, we assume the perturbations only depend on coordinates xµ and ρ

for simplicity. In this case, the redisual isometry is U(1)3 × SO(3), and we can choose

Y = Φ = Σ = Ψ = 0 and Θ = π. Before calculating the perturbed geodesic equations,

we write the deviation of the original static geodesic as

X0 = τ + δX0, X i = δX i, P = δP. (4.21)
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Then, the perturbed geodesic equations up to the first order are

d2δX0

dτ 2
= 0,

d2δX i

dτ 2
=

1

2

∂

∂δX i
H00,

d2δP

dτ 2
+
g2

2
δP − g2

2

∂

∂δP
H00 = 0. (4.22)

In the calculation, we need to use H0i = 0 and time independence of the perturbation.

The full geodesics equation under the perturbations Eq.(4.20) can be found in ref.[11].

The δX0 equation allows us to set δX0 = 0 and X0 = τ in the linear regime. Thus,

we can take τ as the Newtonian time t. The δX i equation is exactly the Newtonian

equation of motion with the gravitational potential

VN(δX
i, δP ) = −1

2
mH00(δX

i, δP ), (4.23)

where m is the small mass of the test particle following the geodesic. In summary, the

perturbed geodesics are

X0 = t, m
d2X i

dt2
= − ∂

∂X i
VN , m

(
d2P

dt2
+
g2

2
P

)
= −g2 ∂

∂P
VN . (4.24)

We achieve one of the main conclusions that the gravitational potential is determined

by the perturbations about the SS-CGP background via VN ∝ H00 at the leading

order. The result is similar to the Newtonian limit of general relativity in the Newton

gauge, in which g00 = 1 + 2Φ.

We need to find the H00 perturbation by solving the equations of motion in the

SS-CGP background. Because we are interested in the perturbations depend on xµ and

ρ, we can solve the perturbation problem easier in the 5-dimensional theory reduced

from the type I supergravity on T 3 × S2, which corresponds to the residual isometry

U(1)3 × SO(3). The reduced 5-dimensional Lagrangian is [11]

L5 = R ∗ 1− 1

2
dΦi ∧ ∗dΦi −

1

2
e
√
2Φ1dσ ∧ ∗dσ − V ∗ 1, i = 1, 2, 3,

V = 2g2e
√

2
5
Φ2− 8√

15
Φ3

(
e−

√
2Φ1 + σ2 +

1

4
e
√
2Φ1(σ2 − 2)2 − 4e−

√
2
5
Φ2+

√
3
5
Φ3

)
,

(4.25)

and the reduced Salam-Sezgin vacuum solution is

ds25 = (sinh 2ρ)
2
3

(
ηµνdx

µdxν +
1

g2
dρ2
)
, e−

√
2Φ1 = (tanh 2ρ)2

e
√
10Φ2 = e

√
15Φ3 = (sinh 2ρ)2, σ =

√
2sech2ρ.

(4.26)

Consider perturbations around the reduced SS-CGP background as

gMN = (sinh 2ρ)
2
3 (ḡMN +HMN), Φi = Φ̄i + ϕi, σ = σ̄ + Σ (4.27)
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where we put bars on the background variables, and ds̄25 = ḡMNdX
MdxN = ηµνdx

µdxν+
1
g2
dρ2 so that the perturbation is exactly the one in Eq.(4.20).

Varying the Lagrangian Eq.(4.25) and substituting the perturbation around the

SS-CGP background, we can get the equations of motion up to the first order. Firstly,

for the scalar part,

Σ : (∆5 − 8gcsch(4gz)∂z − 8g2(sech(2gz))2)Σ = −2g sech(2gz) tanh(2gz)

×
(√

2Gz − 2(∂zϕ1 − 2g tanh(2gz)ϕ1)
)
,

ϕ1 : (∆5 − 8g2)ϕ1 = −4gcsch(4gz)
(√

2Gz + 2 cosh(2gz)(∂zΣ + 2g tanh(2gz)Σ)
)
,

ϕ2 : ∆5ϕ2 −
8g2

5
ϕ2 +

32

5

√
2

3
g2ϕ3 = 2

√
2

5
g
(
coth(2gz)Gz + 2gHzz

)
,

ϕ3 : ∆5ϕ3 −
56g2

15
ϕ3 +

32

5

√
2

3
g2ϕ2 =

4g√
15

(
coth(2gz)Gz + 2gHzz

)
(4.28)

where z(ρ) = ρ/g, ∆5 = ηµν∂µ∂ν + g2(∂2ρ +2 coth(2ρ)∂ρ) and Gz = ∂MHMz − 1
2
∂zH

N
N .

We can solve them by first requiring

Σ = sinh(2gz) tanh(2gz)ϕ, ϕ3 =

√
2

3
ϕ2, (4.29)

and set Gz = 0 as part of the de Donder gauge. The equations become

ϕ1 : (25 + 2gcsch(4gz)(3 cosh(4gz)− 1)∂z + 8g2)ϕ1 = 0,

ϕ2 : ∆5ϕ2 −
8g2

3
ϕ2 − 4

√
2

5
g2Hzz = 0.

(4.30)

where 25 = ηMN∂M∂N . Since the equation of ϕ1 decouples from the perturbation

HMN , we can simply set ϕ1 = 0. Then, the Einstein Equations with the de Donder

gauge GN = ∂MHMN − 1
2
∂NH

M
M = 0 are

zz : ∆5Hzz −
8g2

3
Hzz −

8g2

3
Hzz +

8
√
10

9
g2ϕ2 = 4g coth(2gz)

(
∂zHzz −

√
10

3
∂zϕ2

)
(4.31)

which can solve them by introducing Hzz =
1√
2
ϕ + φ and ϕ2 =

3
2
√
5
ϕ. Integrating the

scalars and Einstein equation, we have

ϕ : ∆5ϕ =
8
√
2

3
g2φ,

φ : (25 − 2g coth(2gz)∂z)φ = 0

µz : 25Hµz = 2g coth(2gz)
(
∂µφ− 1√

2
∂µϕ
)

µν : ∆5Hµν = 4g coth(2gz)∂(µHν)z +
8g2

3
φηµν

(4.32)
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As ∆5 is a linear operator, we can further split Hµν = Hµν +Kµν + Jηµν where

∆5Hµν = 0, ∆5Kµν = 4g coth(2gz)∂(µHν)z, ∆5J =
8g2

3
φ. (4.33)

The ϕ2 equation in Eq.(4.32) restrict ϕ2 = J .

Recall that we are interested in finding the Newtonian potential H00 in the time-

independent perturbations. Immediately, we have H0z = 0, K00 = 0, and H00 =

H00 − J . That is, the gravitational potential is only determined by the equations.

∆5H00 = 0, ∆5J =
8g2

3
φ, (25 − 2g coth(2gz)∂z)φ = 0. (4.34)

For simplicity, we only consider perturbations with spherical symmetric in R1,3 and

φ = 0. Then, the only condition for H00 should be the harmonic function as

∆5H00 = ∂2r +
2

r
∂r + g2(∂2ρ + 2 coth 2ρ ∂ρ)H00 = 0. (4.35)

We achieve the conclusion of the subsection that the gravitational potential is

determined by the perturbations about the SS-CGP background via VN ∝ H00 at the

leading order, while H00 is the Green’s function associated with ∆5, the CPS operator

[10]. We write the transverse part of the CPS operator as

∆ = ∂2ρ + 2 coth 2ρ ∂ρ, (4.36)

and name it the transverse operator.

4.1.3 Green’s Function for the CPS Operator ∆5

We suppose the Green’s function G may be written formally

G(r, ρ) =

∫
I
fω(r)ζω(ρ)dω, (4.37)

where I is the spectrum of the transverse operator ∆ and the functions are eigenfunc-

tions of the worldvolume or transverse differential operators away from r = ρ = 0,(
∂2r +

2

r
∂r

)
fω(r) = g2ω2fω(r),

(∂2ρ + 2 coth(2ρ)∂ρ)ζω(ρ) = −ω2ζω(ρ).

(4.38)

We find that the mass g2ω2 of a worldvolume function is determined by the transverse

space eigenfunction it couples to. To have a massless graviton, we want the transverse
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spectrum containing a zero eigenvalue. Let’s investigate how many bound states the

transverse operator admits.

In order to write the Green’s function in the Eq.(4.37), we require that any bound

states ζi with eigenvalue ωi be Kronecker delta orthonormalized and any scattering

states ζω be Dirac delta distribution orthonormalized∫ ∞

0

sinh(2ρ)ζi(ρ)ζj(ρ)dρ = δij,

∫ ∞

0

sinh(2ρ)ζω(ρ)ζτ (ρ)dρ = δ(ω − τ). (4.39)

The measure µ(ρ) = sinh(2ρ) can be seen from a consideration of the H2
µν terms in the

perturbative action or simply as the ρ dependence part of the background measure.

The orthonormalized basis needs to comprise a self-adjoint domain D of the transverse

operator. By definition, any two functions ζω and ζτ in the self-adjoint domain D must

satisfy

⟨ζω,∆(ζτ )⟩ = ⟨∆(ζω), ζτ ⟩ . (4.40)

With ∆ = 1
µ(ρ)

∂ρ
(
µ(ρ)∂ρ

)
, we can integrate by part and get

⟨ζω,∆(ζτ )⟩ ≡
∫ ∞

0

µ(ρ)ζω
1

µ(ρ)
∂ρ
[
µ(ρ)∂ρζτ

]
=

∫ ∞

0

µ(ρ)
1

µ(ρ)
∂ρ
[
µ(ρ)∂ρζω

]
ζτ + (µ(ρ)ζω∂ρζτ − µ(ρ)∂ρζω)

∣∣∣∞
0

= ⟨∆(ζω), ζτ ⟩+ (µ(ρ)ζω∂ρζτ − µ(ρ)∂ρζω)
∣∣∣∞
0

(4.41)

That is, the self-adjointness of an operator is not always defined and depends on the

boundary conditions [35].

There is no problem for bound states at infinity ρ→ ∞, where the functions and

their derivatives can be safely taken to vanish with physical requirements. The bound-

ary condition at ρ→ 0 needs more attention. We can solve the transverse operator in

the ρ→ 0 limit with the Frobenius method. We first write ζω = ρs
∑∞

j=0 ajρ
j, a0 ̸= 0,

substitute it into the transverse operator in Eq.(4.38) and solve the coefficient for each

order of the polynomial. We can find the relations

s = 0, a1 = 0, aj+2 = − ω2

(j + 2)2
aj. (4.42)

Take care of the s = 0, which implies the log ρ contribution. Thus, in the ρ→ 0 limit,

the leading order is

ζω(ρ) → aω + bω log ρ, (4.43)
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with constant aω and bω. Then, the self-adjointness and ρ → 0 boundary condition

require

aωbτ − aτbω = 0. (4.44)

As aω/bω is a single-valued function of ω, we can only have a unique bound state.

We can view the result from the perspective of the Schrodinger equation. With

the rescaling Ψω =
√

sinh(2ρ)ζω(ρ), We can rewrite the ∆ eigenvalue problem as a

Schrodinger equation

−d
2Ψω

dρ2
+ V (ρ)Ψω = ω2Ψω, V (ρ) = 2− (coth 2ρ)2. (4.45)

The Schrodinger equation possesses a potential of Poschl-Teller type and the corre-

sponding Sturm-Liouville problem is integrable. As we need to take care of only the

ρ→ 0 behavior of the bound state, in which limit the potential takes the form

V (ρ) = − 1

4ρ2
. (4.46)

A review of the 1/x2 potential quantum mechanical problem is given in ref.[36]. The

special character of the transverse operator is that the potential in the ρ→ 0 has the

factor −1
4
, which is a critical value. For potential V = γ/ρ2, there is an infinity discrete

L2 normalizable bound states appear when γ < −1
4
, no bound state for γ > −1

4
, and

only one bound state when γ = −1
4
.

The general solution of the transverse operator is given by Legendre functions

ζω(ρ) = aωP− 1
2
+

√
1−ω2

2

(cosh(2ρ)) + bωQ− 1
2
+

√
1−ω2

2

(cosh(2ρ)). (4.47)

Considering a massless graviton is required and there is only one bound state, we need

to carefully choose a boundary condition of the transverse operator to process a bound

state with the zero eigenvalue ω = 0. After normalized, the zero mode is

ζ0 = ±2
√
3

π
log tanh ρ, (4.48)

which can be chosen by boundary conditions

(sinh(2ρ) log tanh ρ ∂ρ − 2)ζω(ρ)
∣∣∣
ρ=0

= 0,
√

sinh(2ρ)ζω(ρ)
∣∣∣
ρ→∞

<∞. (4.49)

The boundary condition at infinity promises the eigenfunctions are normalizable. In

the ρ → 0 limit, ζ0 ∼ log ρ implies that the transfer space has the structure R2 ×
{compact}. Notice the in the ρ→ 0 limit, the Eguchi-Hanson space becomes R2 × S2
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with (ρ, χ) comprise the R2 in Eq.(4.9). We know that the non-compact part of the

transverse space is spanned by ρ and χ. We will see that the non-constant zero mode

makes possible the integrals over products of the zero-mode transverse, which allows

for the study of lower-dimensional effective field theory beyond linear order.

Given the boundary conditions, we find that the scattering states are given by

ζω(ρ) = MωQ− 1
2
+

√
1−ω2

2

(cosh(2ρ)) + c.c, ω > 1. (4.50)

with normalization constantMω. That is, the spectrum is composed of a discrete state

at ω = 0 and continuum states ω > 1 [11]. The mass gap guarantees the stability of the

lower-dimensional gravity. The magnitude g of the mass gap depends on the geometry

of the SS-CGP background geometry in Eq.(4.8). When the energy level is low or the

length scale is large enough, the gravitational behavior will be low-dimensional.

The basis Eq.(4.48) and Eq.(4.50) satisfies the resolution of identity∫
I
ζω(ρ)ζω(η)dω =

δ(ρ− η)

µ(ρ)
. (4.51)

It is easy to find the solutions of the worldvolume differential equation(
∂2r +

2

r
∂r − g2ω2

)
fω(r) =

1

4πr2
δ(r) (4.52)

as

fω = −exp(−gωr)
4πr

. (4.53)

We can find the Green’s function of the CPS operator

∆5G(r, ρ− η) =
gκ̂2Mδ(r)δ(ρ)

4πr2 sinh 2ρ
, (4.54)

by invoking a resolution of the identity as

G(r, ρ− η) = −gκ̂
2M

4πr
ζ0(ρ)ζ0(η)−

∫ ∞

1

gκ̂2M exp(−gωr)
4πr

ζω(ρ)ζω(η)dω. (4.55)

Here, κ̂2 is the five-dimensional Newton constant andM is the mass of the source. We

can check that Green’s function inherits the Robin boundary condition at ρ = 0 and

satisfy the boundary condition at ρ→ ∞

(sinh(2ρ) log tanh ρ ∂ρ − 2)G(r, ρ− η)
∣∣∣
ρ=0

= 0, G(r, ρ− η)
∣∣∣
ρ→

= 0. (4.56)

We can get the coefficient on the right-hand side of Eq.(4.54) with

∆(g)G(x) =
1√
−g

δ(5)(x) (4.57)
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where ∆(g) = 1√
−g
∂µ(

√
−ggµν∂ν) is the harmonic operator defined with the metric in

Eq.(4.26).

Let’s check the asymptotic behavior of the Green’s function to understand the

effective gravity in different regimes [11]. Firstly, η ≪ 1 and R =
√
g2r2 + ρ2 ≪ 1,

the leading behavior is given by

G(r, ρ− η) = − g4κ̂2M

2π(g2r2 + (ρ− η)2)
3
2

+O(
1

R2
). (4.58)

The gravitational behavior returns to 5-dimensional in the near-source regime. We do

not need to worry about it. In the regime close to the source sitting at ρ = η, i.e. the

small distance scale, it must be a high energy regime where all the massive gravitons

modes are excited.

The other interesting regime is the near brane large radius one with η ≪ 1, r ≫ 1

and ρ≪ 1. The zero mode has the form

G(r, ρ− η) = −g
4κ̂2M

4πr
ζ0(ρ)ζ0(η) +O(exp(−gr)). (4.59)

The leading contribution comes from the zero mode, acting as a 3-dimensional potential

with 1/r, while contributions from higher modes are suppressed by exp(−gωr) at

the r ≫ 1. We can see that, in this type III construction, the Greens function is

effectively 3-dimensional at large r, but also that it diverges logarithmically when ρ

or η approaches zero. That is, instead of effective gravity on brane, we only have a

well-behavior gravity near the brane at ρ ∼ η ∼ 0.

4.1.4 Newton Constant

We also need to check the 4-dimensional Newton constant. Different from the type

I construction, in which there is no well-defined Newton constant due to the trombone

symmetries, the construction based on SS-CGP background does possess a reasonable

Newton constant. According to Eq.(4.24), in the radial coordinates R2(t) = X i(t)X i(t)

on the worldvolume, we have [11]

R′′(t)− l2W
R(t)3

= − 6gκ̂2M

π3R(t)2
log tanh(P (t)) log tanh(η(t)) +O(R(t)−3)

P ′′(t)− g2

2
P (t) =

12g3κ̂2M

π3R(t)

log tanh(η)

sinh(2P (t))
+O(R(t)−2),

(4.60)

in the r ≫ 1 and ρ≪ 1 regime with l2W the worldvolume angular momentum.
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One method to get the lower-dimensional Nowton constant is finding a fixed

transverse plane P . To find a fixed transverse point, we need to include the coordinate

angular coordinate χ which pairs with ρ to form an R2 [10] and add an angular

momentum term to the geodesic equation as

P ′′(t)− g2

2
P (t)− l2T

P (t)3
=

12g3κ̂2M

π3R(t)

log tanh(η)

sinh(2P (t))
+O(R(t)−2), (4.61)

We can find a constant P solution as

P = 2
1
4

√
lT
g
+

3g
3
2 κ̂2M log(η)

2
1
4π3R(t)

√
lT

+O(R(t)−2). (4.62)

At the leading order, there is a stable circular orbit with P = 21/4
√
lT/g, and the

potential is attractive.

If we suppose there is some minimum non-zero transverse angular momentum lT

as the Bohr-Sommerfeld quantization condition which restricts the minimum radius

P . Considering a similar interpretation for η where mass M source is located and

substituting the stable circular orbit into the worldvolume radial equation in Eq.(4.60),

we have

R′′(t)− l2W
R(t)3

= − 6gκ̂2M

π3R(t)2

(
log tanh

(
2

1
4

√
lT
g

))2

≈ −
6gκ̂2 log

(√
2g/lT

)2
M

4π3R(t)2
.

(4.63)

Comparing it with the usual radial geodesic equation in 4 dimensions

r′′(t)− l2W
r(t)3

= − κ2M

4π3r2
, (4.64)

we have the effective 4-dimensional Newton constant

κ =

√
6g

π

∣∣∣∣∣log
(√

2lT
g

)∣∣∣∣∣ κ̂. (4.65)

That is, the Newton constant depends on the 5-dimensional Newton constant κ̂2,

minimum transverse angular momentum lT and the geometry factor g in the SS-CGP

background Eq.(4.8).

We can also achieve a similar result with the quantum localization method or

smeared transverse expectation values method, which are presented in ref.[11]. The

numerical approximation is about

κ ≈ 1.7
√
gκ̂ (4.66)

if we set ℏ = g. To get the same result, we need the minimum non-zero transverse

angular momentum lT ≈ 6.5ℏ.
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4.1.5 The Effective Field Theories of the SS-CGP background

Since the products of non-constant zero modes Eq.(4.48) are integrable, it opens

the way to study the effective field theories on the worldvolume by expanding the

action into more than quadratic order.

Ref.[37] introduced the convert symmetry breaking as the phenomenon that the

interaction coefficient at the quartic order in the action is different from the square of

the cubic order expansion constant as expected in gauge theories. Instead of studying

the theories in the SS-CGP background, ref.[37] studied the simpler d-dimensional

scalar QED model reduced from (d + 1) dimensions with geometry R1,d × I, with

I = [0, 1]. The scalar QED model rather captures the same characteristic.

When the Maxwell theory does not couple to complex scalar fields, the non-

constant transverse zero mode induces the Stueckelberg fields in the zero-level sector

whose presence indicates the U(1) symmetry associated with the zero-level sector being

non-linearly realized.

After coupling to the complex scalar fields, ref.[37] obtained the effective field

theory by integrating out all the fields whose mass is greater than the least massive

gauge field. Again, the non-linear realization of the U(1) gauge symmetry appears. At

the same time, the mismatch of the coupling constants present at the quartic term is

explained by the Stueckelberg field. It was shown that the effective theory, however,

keeps the gauge invariant due to the joint action of the unusual quartic coupling and

the non-linear realization.

As the non-constant zero mode Eq.(4.48) appears in the SS-CGP model, the

analysis in ref.[37] implies that the convert symmetry breaking will appear in the

effective field theories in the SS-CGP background as a consequence of the underlying

gauge symmetry, four-dimensional diffeomorphisms, being non-linearly realized.

4.2 Effective gravity based on RS model

Randall and Sundrum provided a type III effective gravity construction based

on two domain walls in a 5-dimensional AdS background with Z2 symmetry [17].

Putting one of them to infinity, they obtained an effective one-brane construction,
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on which the lower-dimensional gravity is localized. This construction has a rather

different transverse spectrum compared with the effective gravity based on the SS-CGP

background.

4.2.1 The geometry of Randall-Sundrum model

The Randall-Sundrum background is constructed by making the fifth dimension

y of the AdS5 to be periodic with range [−rcπ, rcπ) possessing a Z2 symmetry y ↔ −y.
The action of the Randall-Sundrum model takes the form

S = Sgrav + Sbrane1 + Sbrane2

Sgrav =

∫
d4x

∫
dy

√
−G{−Λ + 2M3R(G)}

Sbrane =

∫
d4x

√
−g{L+ Vbrane}

(4.67)

where the two domain walls locate at y = 0 and y = rcπ in the background, R is the

5-dimensional Ricci scalar and Λ and Vbrane are cosmological terms in the background

and branes respectively. The explicit expression of the bosonic part of the 3-brane

action is [4]

Sbrane =

∫
d4x

√
−g{Vbrane +

1

2
gµνDµϕDνϕ− U(ϕ)− 1

4
FµνF

µν + · · · }. (4.68)

Substituting the Z2 symmetric metric ansatz

ds2 = e−2k|y|ηµνdx
µdxν + dy2, 0 ≤ y ≤ πrc (4.69)

into the 5-dimensional Einstein’s equations of the action, we get the relation between

the cosmological terms

Vbrane1 = −Vbrane2 = 24M3k, Λ = −24M3k2, (4.70)

required by the orbifold symmetry y → −y. Finally, we achieve an effective one-brane

model by putting the second brane into the infinity by choosing the limit rc → ∞.

According to the Randall-Sundrum model, the 3-brane located at y = 0 is where we

live.

In this construction, we obtain an effectively non-compact rc transverse space.

However, it must be essentially different from the true non-compact transverse space

in the SS-CGP background. Nevertheless, the orbifolded domain wall structure is

useful in constructing the embedding of gravity as we have seen in the chapter 3.
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4.2.2 Effective Gravity on the Randall-Sundrum background

Let’s check the effective gravity on the y = 0 domain wall result from the Randall-

Sundrum construction. Firstly, we need to check the Newton constant or equivalently

Planck mass. The Planck mass can be seen by substituting into Eq.(4.67) the per-

turbed metric with ηµν replaced by gµν in Eq.(4.69),

Seff =

∫
d4x

∫ πrc

0

dy{2M3e−2k|y|√gR(g)− Λ} (4.71)

and integrating out the fifth dimension y. The resulted Planck mass is

M2
pl = 2M3

∫ πrc

0

dye−2k|y| =
M3

k

(
1− e−2kπrc

)
, (4.72)

which will be M3/k as we put the auxiliary brane to infinity. k can be identified as

the AdS radius. It is the factor exp(−2k|y|) that saves the Planck mass. In a general

non-compact transverse space, the integral over the transverse space will result in the

relation M2
pl = 2MnVn−2 where the volume of the transverse space Vn−2 diverges.

Then, the spectrum of the transverse space. Similarly, we separate the perturba-

tions hµν , defined by Gµν = e−2k|y|ηµν +hµν(x, y), into hµν =
∫
I ψω(y)h̃

ω
µν(x)dω. Then,

the transverse space equations of motion become[
1

2
∂2y + 2kδ(y)− 2k2 +

ω2

2
e2k|y|

]
ψω(y) = 0. (4.73)

With a change of coordinate z ≡ sgn(y)(ek|y| − 1)/k, the differential equation is trans-

formed into the Schrodinger equation[
−1

2
∂2z + V (z)

]
ψω(y) = 0, V (z) =

15k2

8(k|z|+ 1)2
− 3k

2
δ(z). (4.74)

The δ-function appears here due to the Z2 symmetry, which supports a single normal-

izable bound state. The positive definite part of potential admits continuum modes.

As the potential falls off to zero as |z| → ∞, we expect that the scattering modes

behave like plane waves in the asymptotically faraway. The spectrum is composed of

a bound state with zero eigenvalue with continuum modes right down to zero. There

is a zero mode corresponding to the massless graviton but no mass gap. With the

boundary condition required by the δ-function at z = 0, we can solve the transverse

problem with Bessel functions [17]. For small ω, the wavefunction is

ψω ∼ Nω(|z|+ 1/k)1/2
[
Y2(ω(|z|+ 1/k)) +

4k2

πω2
J2(ω(|z|+ 1/k)

]
, (4.75)
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and zero mode

ψ0(z) =
1

k(k|z|+ 1)3/2
. (4.76)

Here, Nω is a normalization constant.

The gravitational potential in the Newtonian limit comprises the exchange of the

zero-mode and continuum massive mode propagators. The gravitational potential on

the domain wall z = 0 of a source with mass M is

V (r) ∼ GNM

r
+

∫ ∞

0

dω
GN

k

Me−ωr

r

ω

k
=
GNM

r

(
1 +

1

r2k2

)
. (4.77)

in which the Newton constant is GN = k/M2 resulted from Eq.(4.72). The ω/k sup-

pression in the integral is a result of continuum wave-functions at z = 0 in Eq.(4.75).

Each massive mode contributes a Yukawa type of potential, while the overall contribu-

tions of massive modes is a type of 1/r3 potential suppressed by the AdS radius 1/k.

In large r, the gravity is effectively lower-dimensional. If we take the AdS radius to

be small enough, like the Planck scale, the correction from the massive mode is hard

to observe.

As there is no mass gap, we would be afraid of the excitation of higher modes in-

ducing energy loss. Roughly, the excitation of massive modes for small ω is suppressed

by (ω/k)2 due to the continuum wavefunction suppression, which serves effectively as a

mass gap. The energy loss can happen when the the coupling of zero mode to massive

modes does not ultimately couple back to the matter on the brane. We need to take

care that the gravitational self-coupling gets large at a large value of z, as the blue

shift of the AdS space. However, ref.[17] showed that the probability for the massless

mode propagating to large z is too small to incur a problem. Besides, the gravita-

tional coupling to the matter does not change significantly because the interaction is

dominated by the massless graviton while the interaction between the massive modes

and matter is suppressed by ω/k.

In summary, we can find that the Z2 symmetry and the factor e−2k|y| are vital

in the construction. It provides a sensible Newton constant, a massless graviton, and

an effective mass gap that suppresses the excitation of massive modes. The Randall-

Sundrum effective gravity is an example without a mass gap. Ref.[11] showed that

if the transverse space geometry can be factorized into Rb × {compact}, the effective

gravity will behave with 1/r potential at large r spontaneously for b ≥ 3.
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Chapter 5

Conclusion and Outlook

In this dissertation, we first introduced supergravity and brane solutions in chapter

2. We took the 11-dimensional supergravity as an instance and introduced its equations

of motion and supersymmetry. Following that, we discussed the brane solution of the

single-charge action, which can be classified into electric, magnetic and dyonic brane

solutions. To provide a complete story, we briefly discussed the super p-brane action,

which is the source of the brane solution. Finally, we presented the important and

classic Kaluza-Klein dimensional reduction and showed the reduction from (D+1) to

D dimensions explicitly. The KK dimensional reduction allows us to connect different

supergravity theories and different brane solutions.

We started our main topic of effective theories on or near branes in the rest chap-

ters. In chapter 3, we illustrate the type I construction. The type I theories are

constructed by embedding the gravitational theories into the worldvolume of brane

solutions. Hence, they admit natural truncations to the lower-dimensional worldvol-

ume gravity. The worldvolume gravity can be general relativity or supergravity. We

provided some worldvolume black hole solutions including the black-spoke solution for

the general relativity scenario, the extremal RN black solution and a class of more

general stationary black hole solutions for the supergravity cases. Because the type

I effective gravity theory results from embedding, they almost satisfy all the criteria

that we want for a lower-dimensional gravity, except for a sensible Newton constant

because of the trombone symmetries. The lower-dimensional behavior is stable be-

cause the gravity is only along the worldvolume directions and dressed by a fixed

factor depending on the transverse space. Thus, the type I effective theory is gravity

on brane. In the perturbative description, the type I construction corresponds to a
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sort of Dirichlet boundary condition with the perturbation fixed by a specific factor

depending on the transverse space.

In chapter 4, we moved to the type III effective gravity near branes. We con-

centrate on the effective theories that are based on the SS-CGP background. We

found that the gravitational potential in the Newtonian limit depends on only the

00-component of the perturbations H00, which is the Green’s function of the CPS op-

erator ∆5. The eigenproblem of the CPS operator can be separated into worldvolume

and transverse parts. The transverse differential equation is a Sturm–Liouville prob-

lem and can be transformed into a Schrodinger equation with Poschl-Teller potential,

in which the self-adjointness restricts the spectrum to only a unique bound state. We

set the bound state to be the eigenstate of the zero eigenvalue by carefully choosing a

Robin boundary condition. The continuum spectrum and the bound state of the trans-

verse operator are separated by a mass gap with the magnitude of g. It is the mass gap

that provides us with a low-energy effective gravity. The effective gravity is essentially

5-dimensional if we consider the near source regime, while it is 3-dimensional when

we come to the large r regime. It is a result of the transverse spectrum. When we

consider the near-source area, we are considering high-energy physics, in which all the

massive modes are excited. To provide a complete discussion about the SS-CGP-based

construction, we provided a short comment on the convert symmetry breaking in the

effective field theories resulting from the non-constant transverse zero mode.

Finally, we discussed the Randall-Sundrum model briefly. The Randall-Sundrum

transverse problem does not possess a true mass gap compared with the SS-CGP

construction. The Z2 symmetry and the factor e−2k|y| are vital in the Randall-Sundrum

theory. They provide a reasonable Newton constant and an effective mass gap. What’s

more, the Randall-Sundrum geometry is widely used in constructing the embedding

in the type I theories as we presented.

There is still much work can be done on related topics. For the worldvolume

supergravity in type I constructions, recent literature only concerns the bosonic sector.

We can provide a more general construction including the fermionic part. In the

type III construction, the zero mode log tanh ρ implies the transverse space includes

a 2-dimensional non-compact subspace. We need to understand the 2-dimensional

structure better because it seems to be general for systems that successfully achieve

gravity localization. Besides, we can explore further the convert symmetry breaking

of the effective field theory to understand the gravity self-coupling and the coupling

to matter fields.
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