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Abstract

We review the principal ideas behind the literature on the topic of gravity monopoles,
which are defined as analogous to the well-studied electromagnetic ones. After
introducing the latter, we cover the former in the linearized regime, as well as a
general way to obtain their corresponding quantization condition, as a spin-2 gauge
theory. The duality-invariant interpretation of the Taub-NUT solution to Einstein
gravity is then presented, and its relation with the previous quantization condition.
Lastly, concepts from Cartan geometry are introduced and used to show a possible
condition for which the Bianchi identity is not satisfied, in a spontaneously broken

SO(1,4) gauge theory, in a manner akin to the 't Hooft-Polyakov monopole.
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Chapter 1

Introduction

1.1 Electromagnetism

In 1931 P.A.M. Dirac published[1] a paper postulating his famous equation for the
dynamics of a spin-1/2 particle, which predicted the existence of a new kind of
matter called antimatter. This revolutionary formula stemmed from his philosophy
of discovering new physics by seeking beauty and symmetry in nature’s equations.
A little less known, is the fact that it was only a few years later when he published
another scientific article, the consequence of which he was even more excited about.
This paper was on the nature of what is called the magnetic monopole.

Since Maxwell’s famous formulation of the equations of electrodynamics, which
describe the behaviour of electric and magnetic fields, it was noted that there was
an unaesthetic asymmetry about them. Although sources of single electric charge,
or monopoles, had already been detected in nature (e.g. electrons for negative
and protons for positive charge), not a single source of either positive or negative
“magnetic charge” had - no matter how close we look at any source of magnetic
field, we always find north and south poles! in pairs, such that overall the charge
density is zero. That is, we always detect dipoles. The consequence of this being that
even though we have a term in Maxwell’s equations for the electric charge density

and current, p. and j., we don’t have terms for the magnetic charge density and

INorth and south poles are historical names analogous to positive and negative magnetic charge.



current, p,, and j,,. Therefore, under the exchange of electric and magnetic fields
the equations are clearly not symmetric. As well, even though these new magnetic
terms could be added artificially, the fact that magnetic fields are described by
a vector potential gave rise to purely geometric reasons which seemed to further
impose that this density (and thus current) had to be zero.

In his new paper, Dirac considered an infinite number of vertically aligned mag-
nets. The first would have its north pole at the origin, and its south pole right below.
The next would also be vertical, with its north pole right below the south pole of
the previous. If we continue this ad infinitum, and make each magnet infinitely
small, while still keeping each of them infinitely close to the next, the opposite poles
cancel out everywhere except at the origin. At this point, it looks like there is an
isolated north pole at the origin, a magnetic monopole, while the line of infinitely
small magnets becomes a singularity that cannot be observed, also called the Dirac
string singularity.

Thanks to this incredible new mathematical trick, Dirac found a solution for the
vector potential of a magnetic field that gives a non-zero magnetic charge density at
the origin! With such an exact solution, there was motivation to include the extra
magnetic density and current, which in turn made Maxwell’s equations perfectly
symmetric under exchange of the electric and magnetic fields. But there is more,
because when he quantized the system another direct consequence appeared: the
electric charge must be quantized! This is known as the Dirac quantization condi-
tion, and it states that if a single magnetic monopole exists in the universe, then
all electric charge must be quantized. Given that electric charge seems to come in
blocks in the universe, this would be a fascinating reason as to why.

Although the symmetry introduced to electrodynamics due to the inclusion of
magnetic monopoles was enough for Dirac, it is also a valid point of view that just
because a magnetic monopole can be added to the equations, it doesn’t mean it
should. However, in 1974 't Hooft[2] showed that a gauge theory with a compact
covering Lie group, coupled to a scalar field, leads to the existence of non-singular

topological solitons which look like a magnetic monopole from far away. Due to our



understanding of particle physics and the standard model, we know that electro-
magnetism is obtained from a higher gauge theory, SU(2) x U(1)y, which is broken
to U(1).. Although the current standard model group SU(3) x SU(2) x U(1)y is
not compact, it is expected that the gauge group of a more complete “grand unified
theory”, such as SU(5) or SO(10), will be. Since this topological soliton, called a
't Hooft-Polyakov monopole, is also known to be equivalent to the Dirac monopole,
physicists around the world have been expecting these monopoles to be detected in
nature ever since. However, even to this day, no-one has been able to find them.
How has such a fundamental piece of one of our most well-understood theories been
able to elude us for so long?

This topic is introduced in chapter 2.

1.2 Gravity

For a lot of physicists, one of the earliest memories from our physics education, is
pairing Newton’s equation of gravity and Coulombs Law for electrostatics side by

side:

L 0 (1.1)
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and noticing the eerie similarity between them (granted, up to a constant). More
to the fact, if we consider the next-order corrections to Newtonian gravity, due to
Einstein’s theory of general relativity, we again obtain a theory which looks highly
similar to those from Maxwell’s electrodynamics!

Among the plethora of questions regarding the nature of both theories that this
has raised over time, and which are yet to be solved, a natural one to ask seems to
be whether Dirac’s monopole solution could be found in gravity, given its renewed
similarity with electrodynamics, and what the consequences would be. This is at
the heart of what this dissertation will review.

A. Zee considered|[3] the existence of such a solution in gravity, for this linearized



(weak field) limit. He speculated on its consequences, like all mass (later we find its
energy) being quantized in a manner analogous to the Dirac quantization condition,
as well as what the place of such a solution in the complete theory could be. This
is covered in the beginning of chapter 3, along with a full general treatment of the
quantization condition for a spin-2 gauge theory (which is equivalent to linearized
gravity) that includes magnetic monopoles.

It is important to reiterate, that the similarity between gravity and electromag-
netism is only explicit at the linear level. However, via a process of many papers
and several authors, a solution to the non-linear Einstein field equations was found,
called Taub-NUT. It can be interpreted as corresponding to the spacetime surround-
ing a dyon - an object with mass and its dual, “magnetic” mass. In the linearized
limit, Taub-NUT reduces to Zee’s gravipole. This is covered in chapter 4 along with
its implication on the mass quantization condition.

Finally, in chapter 5 we give a brief overview of how Cartan geometry can be used
to describe gravity as a spontaneously broken SO(1,4) gauge theory. It is shown
how this can be used to replicate the 't Hooft-Polyakov monopole of an SO(3) gauge
theory, and extended to give the conditions in which the broken gravity theory could
yield analogous gravipoles.

Very interesting efforts are going into finding experimentally verifiable signatures
of rotating black holes with dual mass[4, 5], for which the solution is known as
Kerr-Newman-Taub-NUT. As well as analysing their thermodynamic properties[6].

In the future, uncovering the problem of the magnetic monopole in gravity could
teach us about the nature of this force, energy, electromagnetism and how they all

fit with the rest of the universe.



Chapter 2

The electromagnetic monopole

2.1 Dirac monopole

Maxwell’s equations of electromagnetism can be written in covariant form as 9, F*" =
j¥ with the Bianchi identity 8M}~7 m — (), where the dual field strength is F* =
%e“”)‘pF \o- We can make these equations more symmetric by introducing a new cur-
rent in the Bianchi identity, such that 8u}~7’ m = 3 and this new theory is self-dual.

In other words, under a 7 rotation:

0 1) (Fm Fr

. — (2.1)
~10) \ Fw —
0 1 ]'V 3’1/

5 — (2.2)
-1 0 jl/ _ju

and the theory remains invariant.

In fact, if we look at Maxwell’s equations with both electric 7 =(pe, jm) and



magnetic current 3% =(pp, jm):

V-E=p.
OE
B=j.+—
V X J-f—at
V-B=p,
0B
E=—j,— —
V x j oy

we can see this is equivalent to the well-known invariance:

again, when applied with transformation (2.2).

Whilst considering the latter case, Dirac added a static point magnetic charge with

coupling g at the origin, such that equation (2.5) for p,, = 47gd® (r) reads:

VB = 47g6®(r)

which is solved by a magnetic field:

with magnetic flux:

d =4mg

(2.8)

(2.9)

(2.10)

But what kind of smooth vector potential A, such that B = V x A, generates

this magnetic field? After all, from vector calculus we know that V- (V x A) = 0.

Dirac’s key to solving this[1] was to consider two scenarios; one of infinitesimally

small magnetic dipoles paired vertically, north-to-south, from the origin all the way



along the positive z-axis to 400, and another one that instead goes along the negative

z-axis to —oo. In spherical coordinates, the former gives the solution:

g1+ cosf
r sind

AP = A7 =0, AS = (2.11)

where we find a singularity along the positive z-axis of magnetic dipoles, called the

Dirac string singularity, and the latter gives the solution:

g1l —cosf
AV =AY =0, A =7

 sng (2.12)

with the Dirac string singularity along the negative z-axis.

It is important to note that although the singularity at the origin is physical, the
rest of the Dirac string corresponds to an unphysical, or coordinate singularity. The
latter can be worked around by selectively using our two solutions in two different
coordinate patches. AY is used over all points excluding the negative z-axis, and
A% is used over all points excluding the positive z-axis. That way, for each solution
we avoid their respective Dirac string.

Because we assume that both solutions describe the same physical field, at the
points where the two charts intersect (that is, all points excluding the z-axis) they
must be related by a gauge transformation. This is:

AS =AY - 29 (2.13)

rsind

which, due to the general form of all gauge transformations, can be re-written as:
( _
A =AY — SSVS ! (2.14)
for

S = exp(2igeo) (2.15)



Due to the nature of the spherical coordinate system, ¢ ~ ¢ + 27 1. Therefore,
the gauge transformation should be single-valued over this interval as well. As such,

S = exp (2ige¢) = exp (2ige(¢ + 27Z)) we find:
2ge =7 (2.16)

This is called the Dirac quantization condition, and it shows that if we have a
single magnetic monopole of charge g in the universe, then all electric charge must

be quantized as:

e:;—g forneZ (2.17)

We can illuminate further what has just happened by looking at the Dirac monopole
from the fibre bundle formulation. In it, we obtain electromagnetism by finding the
gauge potential as a connection over a U(1)-bundle with 4-dimensional Minkowski
spacetime as base space.

But what happens if we change the topology of the base space? Ignoring the time
coordinate for simplicity, we remove the origin of R? to obtain a base space which
belongs to the same homotopy class as S%. Now, the connection of the U(1)-bundle
over S? requires two local charts to describe it. These can be our previous A" and
AS over their respective north and south charts. The transition function over their
overlap is the Abelian gauge transformation A — A + SdS™!, which brings us to
equation (2.14). Therefore, enforcing this to be single-valued over the range of ¢
gives us the quantization condition 2.

It is interesting to note that instead of altering the Bianchi identity, as Dirac did
via the introduction of a Dirac string, we obtain the same solution by changing the

topology of the base space instead!

L~ refers to an equivalence relationship. i.e. ¢ is cyclic over 27.
2To read about the fibre bundle formalism and the Dirac monopole, see [7]



There is a second way to derive the Dirac quantization condition that is more in
line with his original paper[1], and the calculations in this dissertation.

We begin with the potential of a magnetic monopole at the origin, A(r). The
wavefunction of a particle in this potential is found by making the substitution
P — p — eA to the solution for the Schrodinger equation of a free particle. This

corresponds to a change in phase:

(rly) — e7 A (x]y) (2.18)

The total phase change after going in a circle around the origin at constant 6 is

A¢:e]4A-dr (2.19)

= e/(ﬁ X A)-dS (2.20)

_ e/B - dS (2.21)

— e®(0) (2.22)

where ®(#) is the flux going through the cap with points at constant distance from
the origin, 0 < ¢ < 27, and polar angle that goes from zero to 6.

As @ — m, Aa — 0. But since ®(7) = 4mg, A is singular - our Dirac string again.
The Dirac veto states that the wavefunction is zero there, such that the discrepancy
in phase change is not a problem. However, it must be single-valued, such that

Aa = 27n for n € Z. Therefore, e®(7) = 27n and our quantization condition is:

eqg = (2.23)

|3

2.2 Solitons

A soliton is a stable solution to the equations of motion of a field theory which has
non-zero energy. In the context of gauge theories, we can obtain them by changing

the vacuum configuration of the fields at infinity.
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A simple example[8] is the sine-Gordon kink. It is equivalent to imagining an
infinite string of vertical pegs, each one attached to the next from the top and
bottom, being acted on by gravity. Clearly, if all the pegs are vertically aligned,
then that corresponds to a stable vacuum solution. In this scenario, the boundary
at infinity corresponds to the pegs infinitely far to the right and left. We can change
the boundary condition by turning by 180 degrees the peg at the boundary on the
right. In this case, the pegs in between would have to turn, in order to smoothly
connect the orientation of the two boundaries. Thus, each boundary condition
corresponds to a different solution of the whole field, with non-zero energy.

Extending this case to a scalar field in three-dimensional spacetime, with local

U(1) gauge invariance, we have the Lagrangian:
1
L= _ZFWFW + D,¢*D" ¢ — V(¢) (2.24)

for V(¢) = (a* — ¢*¢)?, constant a, F,, = 9, A, — 9,A, and D,¢ = 0,6 + ieA,¢.

In polar coordinates, the potential has equilibria at ¢ = ae’™, where n € Z. Since
the vacuum manifold in field space is S*, we include the phase to reflect the fact
that as long as |¢| = a, we have the freedom to choose a direction in field space.
The integer in the phase ensure that the field in single-valued as 0 < # < 27, and it
defines different vacuum solutions.

If we impose that at the boundary the vector potential is in the pure gauge:
T—00 ]-
A =" -V(nb) (2.25)
e

then F,, = 0, D,¢ = 0, and it corresponds to a vacuum solution. Now, assuming
that at the boundary the field is also in the previously mentioned vacuum solution,

we find:
H =—L (for a static configuration) (2.26)

and therefore H — 0 as r — oo, and the solution has finite energy over the whole
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space.
In exchange for obtaining a stable, finite energy field configuration, we introduced
a vector potential with non-zero flux:

o= %A ~dl = /Agrde __2m (2.27)

e

which is quantized!

In summary, for each value of n, we have a field configuration at infinity which
cannot be smoothly deformed via a gauge transformation to any of the other ones.
This configuration has finite energy, is stable, and due to the U(1) potential has a
non-zero electromagnetic field with quantized flux! This will be explained in more

detail in the next section.

2.3 The ’t Hooft-Polyakov monopole

In this case, we consider a gauge theory with a scalar field in the fundamental

representation of O(3):

L= —TFE, + DDA — gt — N6 (2.28)
where
D¢ = 9,0" + e Al ¢° (2.29)
P, = 0,A, — 0,A; + eeabCAZAi (2.30)
and |¢|? = F? = —m?/4\ defines the broken vacuum submanifold.

After spontaneous symmetry breaking (SSB), what remains is an unbroken U(1)
symmetry (SO(3) 558, SO(2) ~ U(1)). Usually, the gauge with broken configu-
ration ¢ = (0,0, F') is chosen globally, such that we have the massless vector field

A, = Ai and field strength F,, = 0,4, — 0, A,,.
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In his famous paper 't Hooft[2] defined these quantities in a different gauge, where
the field breaks radially outwards in field space, and proposed the following gauge

invariant field strength:

fwzﬁ Fy - o ¢|3 aed(D,8") (D) (2.31)
such that for
A, = Lgoa (2.32)
9
then
T = OpAy = Ay = (Mgeabcas“( 9,0")(9,9°) (2.33)

A key point to note is that since (2.31) is gauge invariant, we correctly recover the
expressions for the original gauge by simple substituting A> = A, # 0 and ¢* = F

(with the rest being equal to zero).

Next, he proposed the spherically symmetric ansatz at the boundary:

¢t = Fr/r (2.34)
b

A% = sl‘ab% (2.35)

A% =0 (2.36)

which mixes spatial and gauge indices in spherical coordinates, such that at each
point in the boundary the fields aim radially outwards as defined in physical space.

He called this a hedgehog solution.
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Substituting into our expression for the field strength we find

Foi =0 (2.37)
1
Fij = ?ajkrk (2.38)
such that
k
r
B* = g (2.39)

which looks like the field of a magnetic monopole!

Since A; = (1/|¢|)¢?A¢ = (1/F)(Fre/r)(e"r® /er?) o« eibrlaptl = 0, it is the
scalar field part of (2.31) that is responsible for this magnetic monopole, only this
time the full spherically symmetric ansatz is singularity free![2] It is only at infinity

that our solution looks like a magnetic monopole.

For a theory with gauge symmetry G that undergoes spontaneous symmetry break-
ing into another group H, (G 558, g ) we are interested in the gauge transforma-
tions in G which are not related by H since this is the remaining symmetry. This is
precisely the coset space G/H.

Since the boundary at infinity in physical space is S?, we define an equivalence
relation for all two-spheres which are mapped onto G/H by whether they can be
continuously deformed into each other. With the appropriate group action® this
becomes the second homotopy group, and it is labelled m(G/H).

Being more specific, the field at the boundary in physical space is non-zero and
has constant magnitude but different angles in field space, such that it defines a map
from points in S? to the manifold G/H. If this map can be continuously deformed
to a point, then the field at all points in the boundary can be smoothly deformed
to the same direction in field space, and thus we don’t have a soliton. Therefore,

if m(G/H) is trivial, all field configurations in the broken state at the boundary

3two inequivalent loops are mapped to a different one, defined by travelling the first loop and
then the second.
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can be continuously deformed into the same location in coset group space, and no
soliton solution exists. However, if this group is non-trivial, then soliton solutions
are allowed via spontaneous symmetry breaking.

In our previous example the scalar field defined a map ¢: S? — SO(3)/S0(2) ~
S? such that my(S?) = Z (i.e. the group of integers under addition) is non-trivial.

Hence, we were able to find the magnetic monopole as a topological soliton.

Although our Dirac and 't Hooft-Polyakov monopoles look very different - one has
a singularity at infinity and the other doesn’t, they correspond to the same solution
and can be related via the appropriate gauge transformation.

To do this, we first note that our previous result for the 't Hooft-Polyakov
monopole is equivalent to a scalar field in the adjoint representation of SU(2), which
breaks into U(1). Since these are equivalent representations.

We begin by embedding our Dirac monopole in an SU(2) theory with adjoint

scalar field in the usual broken state ¢* = T°F where A, = T A}, such that:

A=A =A;=0 and Ay = T3< - 3) (ﬂ) (2.40)

T sin 6

where we use the basis A, = AZT‘L.

It can be shown that:

cos? —e¥sin?
S = € SU(2) (2.41)
i oin 0 0
€' sin & cos
such that it defines the gauge transformation
A, — SAST + ;S@LLS (2.42)

¢ — SpS~t (2.43)
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and we have non-zero elements:

1
Ap = —(T'sing — T?cos ¢) (2.44)
er
1
A, = ;(T1 cos @ cos ¢ + T2 cos  sin ¢ — T? sin 6) (2.45)
¢ = F(T"sinfcos ¢+ T?sinfsin ¢ + T° cos ) (2.46)

which in Cartesian coordinates are our solutions (2.34)-(2.36)!
Thus, we can say 't Hooft-Polyakov = Dirac up to a gauge transformation, such
that all “responsibility” for the magnetic monopole is moved from the scalar field

to the gauge field, introducing a Dirac string singularity in the process.

2.4 Instantons

If “Euclideanise” spacetime such that ¢ — it, the boundary at infinity for the whole
manifold turns to S%. Since a soliton solution over this space would also involve
boundary conditions which vary over time, this is instead called an instanton solu-
tion. There is much literature on the topic, and the reader is directed to [8] for a
good introduction.

Shifting our attention to Einstein-Cartan (EC) theory with complexified time,
the vector potential now defines a map from S® to SO(4). Thus, by our previous
arguments, we are interested in m3(SO(4)), which is non-trivial, and we can have
instanton solutions without the need of spontaneous symmetry breaking.

Reference [9] lays out one such solution by considering EC’s equations of motion

without matter:

Cabea€® N € AN R4 =0 (2.47)
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which is solved for a (anti-) self-dual field strength, R® = 1R, = + R since:

1
2

eapeae’ N R = 2e° A Ry, (2.48)
= 2Ry A € (2.49)
= +2DT, (2.50)
=0 (2.51)

where DT* = 0 is the cyclic identity of the Riemann tensor for zero torsion.

We simplify this further by noticing that since
. 1, R
R:dw+§(wAw+w/\w) (2.52)

an (anti-) self-dual spin connection leads to an (anti-) self-dual curvature, and thus

we have an instanton solution for an equation of motion which is first order in the

tetrad field.



Chapter 3

Linearized gravity

3.1 Dirac monopole... again!

In 1985 Zee A. introduced|[3] to linearized Einstein gravity, an analogue of the Dirac
monopole. Motivated by the well known similarity between Einstein’s equations in
this regime and Maxwell’s equations of electrodynamics, he speculated on whether
there could be physical examples of magnetic monopoles - as Dirac predicted them

for electromagnetism - in gravity, and what the consequences of this would be.

By perturbing the metric from flat Minkowski spacetime as g, = M + Iy, we
can define the potentials ¢ = hgg and ¢* = hg;, and therefore the spatial 1-forms
g:—ﬁ¢andB:—§x§.

If we then substitute these into Einstein’s field equations, and choose what appears

to be the Lorentz gauge g“”l“/’\w =0= 40¢/0t + V- ¢ = 0, we obtain:

V.g=—47Gp (3.1)
V x B = —167GK + g—f (3.2)
Vxg=0 (3.3)

V-B=0 (3.4)

17
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which look like Maxwell’s equations, for p and K the lowest order! perturbations
of the energy-momentum tensor components Tyy and Tp; respectively. These indeed
correspond to our usual (we will get back to this later) notions of energy density

and momentum density respectively for the system.

Like for EM, equation (3.4) follows from the fact that for a smooth vector potential
V- (ﬁ X () = 0 is inevitable. Thus, Zee proceeds along the lines of Dirac and

introduces the term:
V- B = 4176 (r)? (3.5)

such that 7 corresponds to the magnetic/dual mass (as opposed to the usual “elec-
tric” mass) of what we now label as a gravitational magnetic monopole or gravipole.

Considering the action for a point particle in this perturbed metric:

S = —m/dT (3.6)
_ /dt(—m+m[%v2+é(vz)2] —m[¢+%¢2+w+;¢v2} —m¢-v)* (37)

The first and second terms are the relativistically corrected kinetic and potential

energy, respectively. The last term, which can be written as the line integral:

—m / dx - ¢ (3.8)

is the one of interest, since for a particle orbiting far enough away such that this
post-Newtonian approximation still applies, it is the total phase change in the wave-

function. Therefore, we can apply -exactly- the same arguments as in the last part

Lof parameter ~ (GM /r)'/? which becomes smaller for the weak gravity limit
2 Although not in the original paper by Zee, the writer of this dissertation included 47 to make
the connection with the end of sec. 2.1 clear.

S = —g$¥ /2 — ¢2 where g\ is next order correction to hgp.
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of sec. 2.1 and conclude the analogous mass quantization condition:

7

Moving on to the equations of motion of (3.7), we obtain an analogue of the Lorentz
law. A new force points away from the plane of rotation such that were there to be
a gravipole inside the sun, the orbital plane of the planet would no longer intersect
the central star - ideally something we could measure for our own sun!

This equation of motion is:

dat r2

dv GM |, pl
2

r+vx—=r (3.10)

Other speculations that Zee raises are:

1. If instead of a particle, we consider moving a given nucleus
around a gravipole, then our quantization condition would apply
to every possible nucleus, thus leading to the quantization of all
possible binding energies inside the nucleus. This, in turn, would
lead to some kind of constraints on the fundamental couplings of

nature. (At least for the strong and electromagnetic couplings.)

2. If mass is quantized, then so is photon energy. Although
our post-Newtonian approximation wouldn’t hold for the orbit of a
massless particle, we can consider the following thought experiment
- place a photon inside a stationary box. The increase in energy
of the box is equivalent to an increase in its mass, which can only
be increased in multiples of its smallest quantized value. However,

this energy comes purely from the photon, which therefore must
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also increase only in quantized amounts.

3. Friedman and Sorkin’s[10] topological solution of spacetime
contains spin-1/2 particle solutions. This could be motivation that
in some modified /generalized theory of gravity, the gravipole might

exist as a topological solution.

4. Montonen and Olive[11] proposed that in a quantized theory,
the magnetic monopole solutions form a triplet with the photon -
perhaps, the gravipole and graviton similarly form a representation

under some dual group.*

3.2 Spin-2 duality

In section 2.1, we saw that by adding a magnetic current to the Bianchi identity,
a new duality invariance of the theory appears - equations of motion remain the
same after a 7 rotation of the field strength and its dual. Paper [13] extends this to
linearized gravity by rotating the Riemann tensor and its dual into each other:
i\upg = cosa Ry, +sina Sype (3.11)

S pe = — SN Ryypo 4 cOS @ Sypupe (3.12)

such that not only the equations of motion remain invariant, but also the action.
Therefore, defining an SO(2) invariance of the theory.”

Starting from this principle, [14] adds symmetric electric and magnetic sources
to linearized spin-2 theory, and develops a general equation for its quantization

condition, the derivation of which we will cover in this section and the next.

“In [12] he suggests that a possible solution to the cosmological constant problem could be to
change the dimensionality of the constant term of the Lagrangian, as was done for an interaction
term in the proton decay problem, by making the graviton some kind of composite particle of a
higher theory.

5The equations of motion are invariant under any GL(2,R) transformation, however only a
rotation will leave the action invariant.
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These electric and magnetic sources, T, and ©,, respectively, are conserved such
that 9,7" = 0 and 9,0"” = 0. Since in our earlier example, the current and its dual
also had to transform under the SO(2) rotation, in this case we have the rotation

of our energy-momentum tensors:

T!5 = cosa Top +sina Oup (3.13)

©,5 = —sina Top + cosa Oug (3.14)
Under this duality, the relations below hold:
Rapyu = Rl (3.15)
For the trace reversed O,5 = Q.5 — (1/2)1,50, where © = 1,50

Ropau + Raapu + Barap = 87Geapr, 07, (3.16)

A very interesting point to notice that the paper doesn’t reference, is the fact
that this corresponds to breaking the cyclic symmetry of the Riemann tensor in
GR; DT = R Ae, which can only happen for non-zero torsion! - This raises whether
by adding a magnetic monopole, we immediately add torsion to the system.

By permuting the indices, this leads to:
Rugys — Rosap = 417G (€apyn ©% — €aprn (:))‘7 + €560 O, — €arin (:))‘B) (3.17)
The Bianchi identity:
OeRaprs + OuRpers + 0pRearys = 8TGecapy(0,075 — 85(:)'”7) (3.18)
which reinforces the electric energy-momentum tensor conservation via:

9,G" =0 (3.19)
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And the Einstein field equations:
G =81G T, (3.20)

These equations are now symmetric under our duality transformations. As a
result, we can obtain the same equations for the dual Riemann with the electric and
magnetic energy-momentum tensors rotated. And in the absence of any sources,
we recover the usual symmetries of the Riemann tensor and equations for linearized

gravity.

Next, we need to introduce an action in order to obtain our equations of motion.
Having said that, in order to invoke the variational principle, we need to introduce
the usual spin-2 field h,, = hy,,.

In a scenario without sources (i.e. T, = ©,, = 0) the two identities (3.16) and

(3.18) imply the existence of our familiar symmetric tensor gauge field, such that:
Ryuwso = Oahuiio. (3.21)

However, when we introduce our corresponding energy-momentum tensors these
symmetries are broken. To proceed, we introduce two components that make up
the Riemann tensor; one that satisfies the vacuum symmetries and one that is fixed

by the magnetic energy-momentum tensor. The latter is defined by:
0,07 = 167G O, (3.22)

where 8 y = pls L since the magnetic energy-momentum is conserved; 85@57 =

af
161@8[686!]@[ ]V = 0.

With this, we set:

1

RAMQB = T'\pafB + ZE/\MpU (aa(i)polg — agi)pa a) (323)
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where @7 = % 4 3 (53@5 - 55(130‘) and ¢¢ = 97 .

Given this, it is straight forward to check that
_ 1
O* = —§<I>a (3.24)
and
9,0 = 167G 67, — 9,9” (3.25)
such that r,g.s satisfies the cyclic and Bianchi identities respectively:

Tap~ys + T'yaBs + TByas = O, 8era675 + aarﬁe'y(s + aﬂrea75 =0 (326)

Now we can define the usual symmetric tensor by: 74,5 = Jjahg)y,s and with

yaﬁ \ = €999, hsy rewrite the curvature as:

1 L
R)\,uaﬁ = ZLE)\,LLpa (aayp 8 aﬂyp a> (327)

for
_ 1
TR R A AR (6:;1/“ - 6;:1/*’), YI=YP,  (3.28)

Next, we introduce explicit expressions for our electric and magnetic energy-

momentum tensors for a point source:

o,V
TW:uu

, vkt _
i —a(a?), 0 = i aa?)  (3.29)

where 2# and z* are the world lines of the electric and magnetic charge respectively,

i
u“:%\andv“:

i -’

Given this, to solve equation (3.22) a Dirac string is introduced with coordinates

y*(\, o). (A, o) parametrize its worldsheet, and since the string always starts at the
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point magnetic source, (A,0 = 0) parametrizes its worldline.

The solution is:

CI)a/BW = 167TGNU,Y/d)\da(y/ayﬁ _ ylﬁy-a)(g(@ (z —y(\, o)) (3.30)

Ay~ o Oy™

S = %, IV is the magnetic mass and the conserved magnetic

where y¢ =
4-momentum Nwv, plays the role of the magnetic coupling.

Finally, the action from which (3.20) can be obtained is:
Slh (@), ()] = —— / L ¥y Vo — Vv diy + / hoT"d's  (3.31)
peAT e 167G J 47 2) "

Interestingly, we vary the field h,, and the Dirac string y* (as long as it remains at-
tached to the magnetic source), but we don’t vary the electric and magnetic sources,
which is a limitation of the linearized theory in general even just with electric sources.

For no magnetic source, this action reduces to:

SPF —

1 1 _ A af Ao o 2\ A \
167G / 4( Oxhap0”h™ + 205h™%0" Iy — 207hO, R + OxhO h) (3.32)

which is called the Pauli-Fierz action, which describes a spin-2 gauge field as previ-

ously mentioned, and if we vary it by hg it gives Einstein’s linearized field equations.

Due to the freedom to choose a coordinate system, the action (3.31) must be dif-
feomorphism invariant, as well as invariant under translations of the Dirac string
(with an appropriate transformation of our spin-2 field) such that our Dirac string
remains classically unobservable.

If Y*  transforms in the form:
Y = Y 4 9yt (3.33)

where z# = 2"l the Riemann tensor remains invariant, as does the first element

of (3.31) up to a boundary term.
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Now considering an infinitesimal diffeomorphism,

hyw — by + 0,8 + 0.8, (3.34)

then
YW YR 4 e 0,0,80 (3.35)

and
Y = Y 4 e 0,0,85 (3.36)

Thus we can write 24 = e*#9,¢5 and the first element of our action is indeed
invariant. The second, minimally coupled term is invariant (up to a boundary term)
because T}, is conserved.

For a displacement of the Dirac string:

y* (N, o) = y* (N, 0) + 0y* (N, o) (3.37)

L Ly (3.38)

For the last, we don’t need to find the exact form of £*” _ from (3.30), as long as
k", = 0. Which must be the case since the magnetic energy-momentum tensor
is invariant under a displacement of the Dirac string (recall equation 3.22).

If we also apply a general diffeomorphism:
Y = Y™ 4+ "P70,0heq + K", (3.39)

For our previous condition, we can write k* , = 0,t"” ,, where t"? = 7L such
that 0,k" , = 0. This can be further simplified by t** , = €**?(ayq + Ssa), Where

(oo = Aga] A0 S50 = S(5q). Choosing the appropriate diffeomorphism, 6h,, = —s,,,
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then
Y, = Y 4+ P70, 004 (3.40)

such that for z,, = —%ew,poa’”’, we obtain (3.33).

An important point is that the spin-2 field is only varied for k** , # 0. However, y*
has support (the spacetime domain over which we vary) in the string locations, which
can’t intersect the electric mass worldline due to the Dirac veto. The consequence
of this is that the minimally coupled term in the action also remains invariant (i.e.
if 0h,, # 0 then T),, = 0 and vice versa).

Thus, the first two elements of (3.31) remain invariant -as well as the Riemann

tensor- under translations of the Dirac string.

3.3 Quantization condition

With the linearized spin-2 theory set-up with magnetic and electric sources, [14]
describes the process of quantizing the system by following a recipe from Dirac[15]
to make the Dirac string quantum mechanically unobservable - which inevitably
leads to the charge quantization condition.

So far we’ve established that the Dirac string is classically unobservable due to
the invariance of the action under perturbations of the string. This induces first

class constraints (in a gauge y° = \) with conjugate momentum for each spatial
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coordinate (y™)

oL
9 41
Tm = Hgm (3.41)
oy s
oYy, oy™
oL 007,
ay s, ogm (3.43)
oL o 58] 5(4)
=32rGNvy—= [ dAdoy"*6,,6" (z — y(A, 0)) (3.44)
oY,
m, 0L
= —32rGNy"v, v (3.45)

where we used the fact that Y™ = Y[mﬁ] and assumed that x intersects a Dirac
string (otherwise it vanishes). Since this generates the change in the gravitational
field after a shift in the Dirac string, by varying the wave functional with respect to
the string location in the quantum theory we obtain:

1 & oL
- — _327GNy"™
i oy™(0) Y Gy

7 (3.46)

such that if 00 = aW for small enough alpha,

U — U+ 00 (3.47)
— U+ oV (3.48)
=14+ a)V¥ (3.49)
~ e (3.50)

and the total phase change in the wave functional, after the string sweeps a two-

dimensional closed surface around an electric pole is:

AV = —16GNU7/ oL (g"y"™ — y"y™)dNdo (3.51)
oy
oL
: (gvs)
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where we used Gauss’s theorem on the last line.

Considering the first term in (3.31) -call this S} = [ £4- we know

L as_ 051

_ — 3.53
167G 5ha5 ( )
oL, oymw
3.54
<8Y“ s 00 ha5> (3:54)
0L\ e
( oy ) (3.55)
a£1 vpf 6 . .
e"PP (A property’of £, due to gauge invariance)
(3.56)
and substituting this into (3.52) we find
AV = 87GNuv, / d*zT" = 8tGN Muv,u? (3.57)
As usual, by imposing that the wavefunction is single-valued we obtain:
4GNMvuw' =n, neZ (3.58)
This is actually a relation for the 4-momenta of the poles:
AGP,Q" € Z (3.59)

for P, = Mu, and @, = Nv,.
In fact, if we choose the centre of momentum frame for the magnetic mass, we

obtain the relation:

AGEN € Z (3.60)

and thus our quantization condition is for the energy, not the mass! Thus demon-

strating in more generality (within the linearized limit) that Zee’s speculation on

5By inspection it also imposes the contracted Bianchi identities.
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section 3.1 on quantization of energy rather than mass is more accurate.

Had we considered two dyons - poles with both electric and magnetic mass - each
with charges (P?,Q7) and (P, Q") respectively, our quantization condition would

read:
AG(P,Q" = P,Q") = 4GeQQ" € Z (3.61)

where the last expression is explicitly duality rotation invariant, since €* is the
SO(2)-invariant Levi-Civita tensor, for the space with indices that determine charge

and dual charge.



Chapter 4

Taub-NUT

So far, in our quest for gravipoles we have looked at the concept of manually adding
them for linearized gravity, with the hopes that a higher theory will decompose to
this general solution. However, maybe there is no need for this, since there already
exists a solution to the full (non-linear) Einstein field equations which returns the

Zee gravipole! It is called the Taub-NUT spacetime.

4.1 Classical solution

In 1950 A. H. Taub[16] discovered the time-dependent part of the whole spacetime,
and in 1963, Newman, Tamburino and Unti[17] rediscovered in as a simple gen-
eralization of the Schwarzschild spacetime, with coordinates that cover the whole
manifold: both the stationary and time-dependent regions.

The Taub-NUT solution to the Einstein field equations is:

, ,  dr?
ds® = —f(r)(dt + 2l(k — cos0)dp)* + ——

7 + (r* 4 1%)(d6” + sin® 0d¢?) (4.1

where

r2 —2mr —[?

30
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for k = 0, with parameters' m and [.

The first parameter becomes the mass of the source in the Schwarzschild limit, and
it is generally accepted to be the electric mass (check out chapter 3 for terminology),
a notion that is nicely supported by the fact that it is always positive, since its sign
can be reversed by the coordinate transformation r — —r.

In the context of gravity monopoles, the second is called the NUT parameter,
and it is interpreted to be the dual/magnetic mass. If we let [ = 0 and m # 0 our
solution reduces to the Schwarzschild metric, and [18] uses the Weyl curvature of
Taub-NUT to show that for non-zero [ geodesics will twist, although the possible

sources of the twist need to be investigated.

Shifting the constant k by £ — k + « is equivalent to doing the coordinate transfor-
mation t — t + 2lad?.

From now on, we take the generally adopted form, with k£ = 1:

ds® = — f(r)(dt + 4l sin® %Hdgb)Q + ?(—7;2) + (r* + I?)(d6? + sin® 6d¢?) (4.3)

and it has a string-like singularity on the negative z-axis, for § = 7 (for other values of
k the singularity changes location). This singularity is present for [ # 0. Otherwise,

our solution becomes Schwarzschild, which doesn’t have this kind of divergence.

The spacetime is asymptotically flat in the sense that as r — oo, the Riemann tensor
decays as 3. However, since there is a singularity at § = m, for [ # 0 the spacetime

cannot be globally asymptotically flat.

! This solution also contains another parameter; € = +1. It is what we refer to as the Taub-NUT
solution. This is also the only case which includes the Schwarzschild solution[18].
2[14] has a typo - equation (IV.3) should have a plus sign.
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By defining .. = m + v/m? + [? such that:

Cror)-r)
f(?”) - TQ 4 12 (44)
we find some kind of singularity for f(r) = 0 at » = r.. In fact, these two hyper-

surfaces correspond to Killing horizons generated by 9.

Forr <ryandr>ry, f(r)>0 = risspacelike and ¢ is timelike - the metric

is stationary. These regions are called NUT_ and NUT, respectively.

Forr_ <r<ry, f(r) <0 = tis spacelike and r is timelike. This time-

dependent region is called the Taub region.

Some initial interpretations of the string singularity identified the solution with the
natural idealization of a semi-infinite massless source of angular momentum[19, 20],
where the source would be a thin semi-infinite spinning rod.

After noticing that in the linearized limit Taub-NUT gives the equivalent of a
magnetic monopole, [21] draws the analogy between the NUT solution and Dirac’s
theory of magnetic monopoles. It regards the source at the origin as a dyon - an or-
dinary mass (quantified by parameter m) together with a magnetic mass (quantified
by the NUT parameter 1), such that the string singularity in the metric is analogous
to the Dirac string of the magnetic monopole.

Additionally, [22] supports the analogy by showing that a test mass in the station-
ary (NUT) region possesses the same properties as those of an electrically charged
particle orbiting a magnetic monopole. The case for the gravitational analogue of a
magnetic monopole on an electrically charged particle is yet to be made.

A curious contradiction, is the fact that since (4.3) has no central curvature sin-

gularity for [ # 0, it is not clear where the source of the field is located.

Returning to the string singularity, Misner[23] got around this problem by choosing

two charts with differing time coordinates.
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For 0 < 6 < 7/2, the metric is the previous (4.3), and for 7/2 < 6 < 7, we
introduce ¢ — ¢ = t — 4l¢ such that the two metrics join smoothly at § = /2. Since
¢ = 0 and ¢ = 27 are identified in our coordinate system, that is ¢ ~ ¢ + 27, for
consistency our new time coordinate must have a periodicity of At = 8rl.

Thus, we manage to get rid of our string singularity, at the cost of a periodic
time coordinate, where all timelike curves that move along coordinate time are
closed (closed timelike curves)®. In fact, this periodicity is equivalent to the Dirac
quantization condition[21].

However, in this interpretation, there seems to be no argument to consider the
NUT parameter as a magnetic mass. At most, it is related to the periodicity of the

closed timelike curves.

4.2 (Quantization condition

As previously mentioned, Taub-NUT is a full solution of Einstein’s equations that
contains duality invariance*. Therefore, it is a good example of what the spacetime
surrounding a gravitational monopole could be, with the closed timelike curves of
Misner’s interpretation presenting the analogous Dirac quantization condition.
This is extended by [14]. Although they are able to introduce external electric and
magnetic energy-momentum tensors into the spin-2 (i.e. gravity) linearized theory
(see section 3.2), the formulation of external sources that are covariantly conserved
in the non-linear regime is still incomplete. So in order to learn more about the
non-linear case, they develop their own way of obtaining the quantization condition,

and proceed to calculate the Poincaré charges of the Taub-NUT solution.

3This is only a problem in the NUT regions where t and £ are timelike.
4In the linearized limit, the tools from section 3.2 can be used to show that the Riemann tensor
for ] =0, m #0is dual tol # 0, m = 0.
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First, the Killing vectors for our metric (4.3):

b= (4.5)
£, = — sin ¢— aa 7 — cos ot 85;5 (21 cos ¢ cot f — 210(1); Z)) % (4.6)
£, = cos ¢% _sinpeot 02 55" (21 sin ¢ cot 6 — 21211?1?) 5 (4.7)
&= 55 - U (4.8)

For each of these, the components perpendicular to the time direction look exactly

like those for a 3d space with spherical symmetry:

{x = —sin gb% — cos ¢ cot 9% (4.9)

§y = cos (bg — sin ¢ cot 9% (4.10)
0

2= 3 (4.11)

But what about the time direction components? Well, if to this space we add a
monopole vector potential, in order for the potential to stay invariant under active
rotation transformations, we also need to do an appropriate gauge transformation
such that o, A; = L, A + 0iAp = 0.

Once these are found, applying everything is equivalent to adding a new coordinate
to the Killing vector fields, (e.g. a new 9/0\ direction), and putting the gauge

transformation there:

Ex = —sm¢— —cos¢cot0%+ <2lcos¢cot9—2lcos )a2 (4.12)
;L sing\ 0

&y = cos ¢a — sin ¢ cot 08@25 <2l sin ¢ cot 0 — 2lsm0) 5 (4.13)
. 0 0

§2=52 5 — 25 (4.14)

where ) is the conjugate to the generator of U (1) transformations, and the coordinate

on the U(1) fibres of the manifold.
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In this case, the rotationally invariant, monopole one-form field looks like:

A =2l(1 — cos0)d¢ (4.15)

where this is really in the coordinate basis of the chart with Dirac string along the
negative z-axis.

Thus, we can notice that for (4.3), the Killing vector fields have the same compo-
nents as those of a monopole with vector potential A* ~ g% 5.

In fact, for an infinitesimal diffeomorphism z# — x* + &*, go; — goi + 9o&; + ;0.
Such that for ¢, = (A,0,0,0), dgo; = O;A, and substituting our definition for the
vector field, A; — A; + 0;A. Therefore, diffeomorphisms in the time direction are
equivalent to a gauge transformation of the vector potential, which is why the gauge
parameter A is the time direction for (4.5-4.8).

Indeed, the Killing vectors for Taub-NUT form the algebra:

[faafb] = _6abc€c (416)
[§a: &) =0 (4.17)

where a,b,c € {z,y, z}.
From this we can see that the isometries of Taub-NUT are generated by an su(2) x
u(1) Lie algebra, such that our spacetime is spherically symmetric (which upon initial

inspection of the metric isn’t explicitly clear) and stationary®.

With each Killing vector field there is an associated charge that is conserved along
geodesics; () = mou,&H, where mg is the rest mass of the particle following said
geodesic, and u,, its 4-velocity.

Thus, P, = mou,§¥ = py — 2lmqug is one such conserved quantity.

In classical electromagnetism, the additional co