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Abstract

This master’s thesis constitutes an in-depth exploration of the realm of generalised sym-

metries, with a primary focus on continuous higher form symmetries and higher groups.

The central objective of this study is to o↵er a comprehensive and systematic examination

of the construction of higher form symmetries and to illuminate their action on extended

operators. This construction is elucidated through the lens of a practical example—a

U(1) gauge theory—within the framework of generalised symmetries.

Additionally, this research delves into the intricate domain of continuous higher groups,

with a particular emphasis on the understanding of 2-groups. Through detailed analysis

and exploration, we unveil the underlying structure of 2-groups, exemplified by a model

like of quantum electrodynamics (QED). This practical illustration sheds light on the

emergence of a 2-group structure within the theoretical framework.

In essence, this thesis o↵ers a holistic and insightful journey into the world of higher form

symmetries and higher groups, providing valuable contributions to the understanding of

these intricate theoretical constructs.
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Chapter 1

Introduction

“Nothing in physics seems so hopeful

to as the idea that it is possible for a

theory to have a high degree of

symmetry was hidden from us in

everyday life. The physicist’s task is to

find this deeper symmetry.”

- Steven Weinberg

From the earliest days of scientific inquiry, our innate inclination to discern patterns in the

world around us has guided our exploration. It is a journey that traces back to Euclid’s

foundational work in geometry, marking the inception of our enduring quest to recognize

and comprehend the symmetries inherent in the natural world. Symmetries have served

as our guiding light, illuminating the intricate fabric of the universe.

Amidst the aftermath of World War I, Emmy Noether’s pioneering e↵orts formalized the

profound connection between continuous symmetries and the conservation laws that gov-

ern our physical reality. This pivotal work not only propelled us to unprecedented heights

in theoretical physics but also continues to inspire us to break free from the constraints

of seemingly counter-intuitive phenomena, unveiling the profound interconnections that

underpin our reality.

In the realm of Quantum Field Theory, the foundation of our understanding once again

rests upon our ability to grasp the symmetries deeply rooted within the mathematical

structure of group theory. Building upon the insights from [1], this dissertation introduces

a broader symmetrical formalism grounded in topology, known as Generalised symmetries

or higher form symmetries. These symmetries seamlessly fall into the broader framework

of category theory, ushering in a novel perspective on the very nature of symmetries.
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Chapter 1. Introduction

Within the pages that follow, we embark on an exploration of the construction of this

formalism, unraveling its intricacies and shedding light on gauge theories within this in-

novative context. This dissertation is a journey through the landscapes of higher form

symmetries and higher groups, where abstract mathematical concepts converge with the

empirical mysteries of the physical universe.

In Chapter 2 [Higher Form Symmetries], we embark on a captivating exploration into the

realm of higher form symmetries, focusing exclusively on continuous higher form sym-

metries. This chapter serves as a foundational stepping stone, where we redefine our

conventional understanding of symmetries through the language of generalized symme-

tries. We begin by reformulation of ordinary symmetries into 0-form symmetries, gradually

ascending the ladder to delve into the intricacies of higher form symmetries. Our journey

unfolds with a comprehensive examination of 1-form symmetries, which is then illustrated

using the 4dU(1) gauge theory as a guiding example. As we near the conclusion of this

chapter, we extend our insights to encompass the general framework of p-form symme-

tries, and understanding their action on p-dimensional operators.

In Chapter 3 [Anomalies], our focus shifts to the intriguing concept of anomalies. Here,

we undertake a thorough review to build a solid foundation for calculating anomalies,

harnessing the power of anomaly inflow and anomaly polynomials. Our journey leads us to

a detailed understanding of the construction and utilization of anomaly polynomials and

inflow, for anomaly calculation using descent equations. These concepts, explored in this

chapter, serve as essential cornerstones for the chapter to follow.

Chapter 4 [Higher Groups] guides us into the realm of higher groups, with a dedicated focus

on continuous higher groups. We commence with an introductory overview, gradually

narrowing our scope to the fascinating domain of continuous 2-groups. Our exploration

unfolds by elucidating the construction of 2-group structures and investigating the types

of theories that can incorporate this intricate framework using our earlier discussions

on anomalies. We conclude this chapter by o↵ering a tangible example—a theory like

QED—where we derive its 2-group structure.

Lastly, in Chapter 5 [Summary and Future Work], we draw the curtains with a compre-

hensive summary of the dissertation’s key insights. Furthermore, we engage in a forward-

looking discourse, shedding light on recent developments and charting potential avenues

for future research endeavors.

In essence, this dissertation embarks on a captivating journey, navigating through the

realms of higher form symmetries, anomalies, and higher groups. It is our hope that this

exploration enriches the reader’s understanding of these concepts.

2



Chapter 2

Higher Form Symmetries

Generalized global symmetries, also referred to as higher form global symmetries,

have become a focal point of extensive research in recent years. Their initial exploration

can be traced back to a seminal paper published in 2014 [1]. These symmetries hold a

pivotal role in advancing our understanding of gauge theories, o↵ering a profound and an

innovative perspective on the dynamics of these theories. Consequently, they contribute

to the formulation of hypotheses of theoretical structures that have yet to be explored in

depth.

This chapter embarks on an exploration of this intriguing concept, leveraging our exist-

ing understanding of symmetries. We will embark on the construction of higher form

symmetries through the utilization of di↵erential forms, thereby giving them a geometric

interpretation. Initially, our focus will be on redefining conventional symmetries in the

framework of generalized symmetries. We will delve into the intricacies of their actions

and other properties (gauging), all articulated through the language of higher di↵erential

forms. Subsequently, we will proceed to construct more encompassing higher form sym-

metries, shedding light on what they act on and the mechanisms through which they act

on higher dimensional operators.

The culmination of this chapter will revolve around an exploration of the well-studied

Maxwell theory in four dimensions. Here, we will emphasize how this theory can be

constructed using the novel formalism of generalized symmetries, thereby understanding

the practical applications and relevance of this emerging field of study.

3



Chapter 2. Higher Form Symmetries 2.1. Ordinary Symmetries as 0-Form Symmetries

2.1 Ordinary Symmetries as 0-Form Symmetries

In this section, we will construct conventional symmetries in the framework of di↵erential

forms. We shall delve into the intricacies of how these symmetries are reformulated,

all while redefining their action on local operators through the language of generalized

symmetries.

2.1.1 Symmetries in Quantum Field Theory

A fundamental principle, established by Wigner’s Theorem [2], asserts that symmetries

within a quantum theory necessitate their implementation through unitary operators (ap-

plicable to both continuous and discrete symmetries) or anti-unitary operators (for discrete

symmetries). To be more precise, to comprehend the manner in which the symmetry group

G operates on fields within the Hilbert space H of any given quantum field theory, along

with an examination of their corresponding transformations, it is important to construct

unitary irreducible representations of G.

If we denote an element of the symmetry group G(g, ·) using g, it has the following

properties:

Group Axioms

• Closure : g · g0 2 G 8g, g0 2 G

• Associativity : g · (g0 · g00) = (g · g0) · g00 8g, g0, g00 2 G

• Identity : 9e 2 G | e · g = g 2 G 8g 2 G

• Inverse : 9g0 ⌘ g�1 2 G | g · g0 = g0 · g = e 2 G 8g, g0 2 G

We can denote a unitary irreducible representation of g 2 G as R(g).

Let us consider a quantum field theory with fields '(x) in Euclidean spacetime, as states

in a quantum field theory in Lorentzian spacetime can be constructed from the Euclidean

path integral using Wick Rotation (Euclidean continuation) as shown in the figure:

4



2.1. Ordinary Symmetries as 0-Form Symmetries Chapter 2. Higher Form Symmetries

Figure 2.1: Given the 4-momemtum pµ of a QFT, the contour of the p0 part of the

intergal of the 1-loop contribution of self energy, i.e H(~p) =
s1
�1

dp0

2⇡
i

(p0)2�(~p2+m20)+i✏
of

I =
s dd�1~p
(2⇡)d�1

H(~p), can be rotated due to the positions of the poles shown above and hence

we get ik0E = p
0 and hence the Euclidean 4-momentum is now kµE =

!
�ip0, ~p

"
.

To see more details on Wick Rotation refer [3]. The rigorous treatment of generating

correlation functions of a QFT in Minkowski spacetime in Euclidean spacetime using

analytic continuation is done using Osterwalder-Schrader theorem [4, 5]

Action

The unitary irreducible representations of g acts on local operatorsa transforming in a

representation R present at any point in spacetime. They act as follows:

g · 'R(x) = R(g)
i
j '
j
R(x) (2.1)

alocal operators are 0-dimensional operators that exist at points in spacetime

5



Chapter 2. Higher Form Symmetries 2.1. Ordinary Symmetries as 0-Form Symmetries

2.1.2 Noether’s Theorem

Noether’s theorem deeply emphasises the connection between continuous symmetries and

conservation laws. We will be stating it in brief as a reference to redefine it in topological

framework later on in this chapter. An explicit derivation of Noether’s theorem can be

found in [3].

Theorem 2.1.1: Noether’s Theorem

According to Noether’s Theorem, if the action S of a field theory is invariant with

respect to some continuous transformation of a symmetry group G, then there exists

a conserved current jµ(x) that gives us a conserved charge, which is obtained by

integrating the current over all of space ⌃d�1 i.e.

Q =
⁄

⌃d�1
dd�1x jµ(x) (2.2)

The conservation of current is mathematically expressed as:

@µj
µ(x) = 0 (2.3)

Background Gauge Fields and Ward Identities : Conservation laws in quantum field

theories can be formulated as Ward Identities. These identities can be derived from

looking at the variation of the background gauge field. Consider the conserved current

jµ(x) coupled to a background gauge field Aµ(x). This can be expressed as adding the

following term to our action (S) [6]:

S� = +i
⁄
ddx Aµ(x)j

µ(x) (2.4)

Now under a gauge transformation,

Aµ(x)! Aµ(x) + @µ�(x) (2.5)

the action varies as b:

�S� = +i
⁄
ddx @µ�(x)J

µ(x) = �i
⁄
ddx �(x)@µJ

µ(x) (2.6)

Since we have a conserved current @µjµ = 0 , �S� = 0 i.e, the action S is gauge invariant.

busing intergation by parts

6



2.1. Ordinary Symmetries as 0-Form Symmetries Chapter 2. Higher Form Symmetries

Thus, using this method we can understand if we have conserved current in our theory by

computing if our action (specifically the path integral) is gauge invariant.

In the path integral formalism, the partition function is expressed as:

Z =
⁄
D' e iS

and the correlation functions are expressed as

h i =
1

Z

⁄
D'  e iS (2.7)

where  =
r
a '(xa).  also transforms in the same representation (R) as that of '.

g · R(x) = R(g)
i
j  

j
R(x) (2.8)

Now using the fact that G is the symmetry group and the variation of background gauge

field Aµ(x) (2.6) we obtain

��h R(x)i = 0, h�� R(x)� i�(y)@µj
µ(y) R(x)i = 0 (2.9)

then substituting the transformation of  R (2.1) the Ward Identity:

@µj
µ(x) R(y) = �

(d)(x � y)T a aR(x) (2.10)

Details of the formulation of the ward identities using the path integral formalism can be

found in [3].

2.1.3 Formulation Of Ordinary Symmetries in Topological Terms

From the previous sections on Unitary Operators and Noether’s Theorem, we reviewed the

role or ordinary symmetries in quantum field theory. Now we will formulate these sections

in topological terms to understand the language of generalised symmetries.

Ordinary symmetries are called 0-form symmetries because they act on 0-dimensional op-

erators in spacetime, which are local operators present at di↵erent points in spacetime

and excite particles when they act on vacuum. From now on we will refer to ordinary

symmetries as 0-form symmetries.

7



Chapter 2. Higher Form Symmetries 2.1. Ordinary Symmetries as 0-Form Symmetries

To formulate the above understanding of symmetries in a quantum theory in terms of

topology, we emphasise the philosophy of [1] using the statement:

Statement 2.1.1

0-form symmetry is a topological codimension 1 operator which is invertible a.

acodimension x= dimension (d � x), where d is the dimension of our manifold

Lets break this statement and understand it further using insights from [1] and [7].

Unitary Operators as Topological Operators

As we know, we can use unitary irreducible representations of the symmetry group G to

express symmetries in quantum field theory. Now to express these operators as topological

operators, we think of it as associating it to a (d � 1) dimensional submanifold ⌃d�1 [1].

These submanifolds are not necessarily compact. We denote the operators as:

Ug(⌃d�1) , g 2 G

where G is the symmetry group of quantum theory. To be precise, this g 2 G is expressed

the unitary irreducible representation R(g).

These 0-form symmetries for the 0-form symmetry group G(0).

Let us rewrite the group axioms for these topological operators to give us an insight as

to how they act.

• Closure :

Ug(⌃d�1)⌦ Ug0(⌃d�1) = Ugg0(⌃d�1) (2.11)

This is called the fusion rulec [7].

• Associativity :

Ug(⌃d�1)⌦
3
Ug0(⌃d�1)⌦ Ug00(⌃d�1)

4
=

3
Ug(⌃d�1)⌦ Ug0(⌃d�1)

4
⌦ Ug00(⌃d�1)

(2.12)

cIn the language of category theory, this is the fusion of objects [8]

8



2.1. Ordinary Symmetries as 0-Form Symmetries Chapter 2. Higher Form Symmetries

• Identity :

9Ue(⌃d�1)
----Ue(⌃d�1)⌦ Ug(⌃d�1) = Ug(⌃d�1)⌦ Ue(⌃d�1) = Ug(⌃d�1)

,e is the identity element of G

(2.13)

• Inverse :

9U�1g (⌃d�1) ⌘ Ug0(⌃d�1)
----Ug(⌃d�1)⌦ Ug0(⌃d�1) = 1 8R(g) · R(g

0) = R(e)

(2.14)

The association of the inverse operator along with Ug(⌃d�1) with the same subman-

ifold ⌃d�1 implies associating no operator or the identity operator Ue(⌃d�1) ⌘ 1

with ⌃d�1 [7].

Now before understanding how these operators act on local operators, first lets delve

briefly into the topological nature of these operators.

Ug(⌃d�1) being topological simply implies that the topological unitary operator is indepen-

dent of the submanifold we associate it to given that we can obtain the new submanifold

⌃0d�1 by topologically deforming
d ⌃d�1, i.e,

⌃0d�1 �⌃d�1 = @⌃d (2.15)

where @⌃d is the boundary of ⌃d [7]. Since, these operators are topological we can write

the following expression:

Ug(⌃d�1) = Ug(⌃
0
d�1) (2.16)

Action of Topological Operators:

Since Ug(⌃d�1) are topological, they can change only when the deformation of ⌃d�1

crosses a local operator 'R(x) charged under the symmetry group G of our theory [1].

The way to think about the action of these topological operators on local operators can be

understood in Euclidean picture via linking [Figure: 2.2], which intuitively can be thought

of as wrapping the unitary topological operator which is associated to a (d�1) dimensional

dcontinuously transforming which suggest that both the manifolds are homeomorphic

9



Chapter 2. Higher Form Symmetries 2.1. Ordinary Symmetries as 0-Form Symmetries

sphere Sd�1 and then deforming it to a point so that it crosses the local operator located

at x and acts on it.

Figure 2.2: In the above figure we illustrate the action of the topological operator Ug(Sd�1)
on the local operator 'iR(x). [Left] Wrapping of '

i
R(x) by Ug(S

d�1); [Centre] Action of
Ug(Sd�1) on 'iR(x) by contracting it so that it crosses the local operator. Note that Ug(S

0d�1)
does not link the transformed 'iR(x); [Right] Ug(S

0d�1) can be topologically deformed and

shrunk to a point giving us the desired result of the action R(g)i j '
j
R(x)

We can mathematically express it as :

Ug(S
d�1)'iR(x) = R(g)

i
j '
j
R(x) (2.17)

which is the same transformation as seen in equation (2.1).

In Minkowski spacetime, we can think of the action,

Ug(⌃d�1)'R(x) = R(g)
i
j '
j
R(x)Ug(⌃

0
d�1) (2.18)

as it giving us the equal time operator commutator relation:

The above equation can be seen from the Ward Identity stated later in (2.22).

2.1.4 Formulation of Noether’s Theorem as Generalised Symmetry

Lets rewrite Noether’s theorem 2.1.1 in the language of di↵erential forms.

To do this we note that the conserved current as the components a one form over a

di↵erential manifold J = jµdxµ. We can write the Hodge-dual of J as:

?J =

p
g

(d � 1)!
Jµ1✏

µ1
µ2...µd

dxµ2 ^ ... ^ dxµd

which is a (d�1) form where g is the metric on our d-dimensional manifold e. The action

efor Euclidean manifold gi j = �i j =)
p
g =
p
detg = 1

10



2.1. Ordinary Symmetries as 0-Form Symmetries Chapter 2. Higher Form Symmetries

of the exterior derivative operator d on the Hodge -dual of the one-form current can be

expressed as:

d ? J = @µJµ⌦g

where ⌦g is a volume form on our manifold f.

Thus, the conservation law @µjµ = 0 can be expressed as

d ? J = 0 (2.19)

This implies that the Hodge-dual of the conserved current (?J) is closed and hence the

conserved current (J) is co-closed.

In this language, the conserved charge (2.2) can be expressed as,

Q =
⁄

⌃d�1
?J (2.20)

where ⌃d�1 is a (d � 1)-dimensional submanifold of a d-dimensional submanifold ⌃d of

spacetime.

The topological unitary operator can be constructed by exponentiating the charge, we can

express the topological unitary operator as :

Ug(⌃d�1) = exp
3
i↵aT a

⁄

⌃d�1
?J

4
(2.21)

where R(g) = e i↵
aT a
2 G(0) which is the global 0-form symmetry group of given quantum

field theory, and T a are the generators of the group.

In presence of a local charged operator 'R, transforming under the representation R

of the symmetry group G(0), the Ward Identity in (2.10) can be expressed as [7]:

d ? J 'R(x) = �
d(x)R(g)i j '

j
R(x) (2.22)

where �d(x) is Poincaré dual 1-form g to the delta function �(x � y).

From (2.19), we know that ?J is closed. This in fact implies the topological nature of

operator as given in (2.36) [7].

forientable manifold/topform
gWe obtain this using Poincaré duality. For details refer [9]

11



Chapter 2. Higher Form Symmetries 2.1. Ordinary Symmetries as 0-Form Symmetries

Proof 2.1.1

Consider Ug(⌃0d�1) obtained by smooth deformation of Ug(⌃
0
d�1) as in (2.35).

Thus, Ug(⌃
0
d�1) = exp

3
i↵aT a

⁄

⌃d�1
?J + i↵aT a

⁄

@⌃d
?J

4
using (2.35)

Now using Stokes Theorem

= exp
3
i↵aT a

⁄

⌃d�1
?J + i↵aT a

⁄

⌃d
d ? J

4

= exp
3
i↵aT a

⁄

⌃d�1
?J

4
using (2.19)

= Ug(⌃d�1)

(2.23)

Now From the Ward Identities stated in (2.22) we can write down the action of these

topological operators on a local charged operator as we stated before in (2.18).

Ug(⌃d�1)'
i
R(x) = R(g)

i
j '
j
R(x)Ug(⌃

0
d�1)

Here ⌃0d�1 does not link with the local operator
h.

The action via linking is :

Ug(S
d�1)'iR(x) = R(g)

i
j '
j
R(x)

We can prove the above equation by explicitly computing it.

Proof 2.1.2

To do that lets consider a d-dimensional diskMd with the boundary Sd�1.

@Md = Sd�1

Now lets compute the action,

Ug(S
d�1)'iR(x) = exp

3
i↵aT a

⁄

Sd�1
?J

4
'iR(x)

hWe will look at what linking means in the next section.
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2.1. Ordinary Symmetries as 0-Form Symmetries Chapter 2. Higher Form Symmetries

Now using (2.24) and Stokes theorem,

= exp
3
i↵a

⁄

Md
d ? J

4
'iR(x)

Now using (2.22)

= exp
3
i↵a

⁄

Md
�d(x)T a

4
'iR(x)

= exp(i↵aT a)'iR(x)

Now using the fact that R(g) = exp(i↵aT a), we can write:

Ug(S
d�1)'iR(x) = R(g)

i
j '
j
R(x) (2.24)

⌅

13



Chapter 2. Higher Form Symmetries 2.2. 1-Form Symmetries

2.2 1-Form Symmetries

Now that we understand how to construct ordinary symmetries as 0-form symmetries, we

can start constructing higher form symmetries or p -form symmetries and delve into their

action on higher dimensional operators. Lets first look at the case of p =1.

2.2.1 Construction of 1-Form Symmetries

A 1-form symmetry acts on 1-dimensional operators (eg: Wilson lines, ’t Hooft lines).

Using the statement 2.1.1 we can say that:

Statement 2.2.1

1-form symmetry is a topological codimension 2 operator which is invertible.

A 1-form symmetry is associated to a (d�2)-dimensional submanifold ⌃d�2 and is denoted

as:

Ug(⌃d�2) ,where g 2 G(1) (2.25)

G(1) is the symmetry group formed by 1-form symmetries. Consider G(1) as a continuous

symmetry group of a quantum field theory. In the case of 1-form symmetry, we can

associate a 2-form conserved current:

J(2) =
1

2
jµ⌫ dx

µ
^ dxµ (2.26)

We can write the conservation law as :

@µ j
[µ⌫](x) = 0 , d ? J(2) = 0 (2.27)

The conserved charge is now defined as an integral of the hodge dual of the 2-form current

over ⌃d�2 :

Q =
⁄

⌃d�2
?J(2) (2.28)

and now we define the topological operator by exponentiating the conserved charge:

Ug(⌃d�2) = exp
3
i↵aT a

⁄

⌃d�2
?J(2)

4
(2.29)
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2.2. 1-Form Symmetries Chapter 2. Higher Form Symmetries

Here T a are the generators of g 2 G(1).

Group Multiplication: For G(1) to be a group, topological operators need to satisfy the

group multiplication law among other group axioms. The fusion rule (group multiplication

law) states:

Ug(⌃d�2)⌦ Ug0(⌃d�2) = Ugg0(⌃d�2) 8g, g0, gg0 2 G(1) (2.30)

Remark : Group Multiplication Law

The above group multiplication law is also a result of the operator product expansion:

@µ j
µ⌫
a (x) j

⇢�
b (y) = f

c
ab j

⇢�
c (x) �

(d)(x � y) (2.31)

Lets simplify our calculations by using the following statement:

Statement 2.2.2

The 1-form global symmetry groups are always Abelian. [6].

We will emphasize and prove this statement later on.

From the above statement, we can say that for continuous case G(1) ⇠=
r
i U(1)i where

i 2 N, and for simplicity we consider G(1) = U(1).

Since G(1) = U(1), The topological operator (2.104) can be expressed as:

Ug(⌃d�2) = exp
3
i↵

⁄

⌃d�2
?J(2)

4
, g = e i↵ ↵ 2 R (2.32)

also (2.31) becomes:

@µ j
µ⌫
a (x) j

⇢�
b (y) = 0 (2.33)

and hence we can see the group multiplication (2.30) gives us:

Ug(⌃d�2)⌦ Ug0(⌃d�2) = exp
3
i(↵1 + ↵2)

⁄

⌃d�2
?J(2)

4
(2.34)

15



Chapter 2. Higher Form Symmetries 2.2. 1-Form Symmetries

Topological Property: Now the requirement of being toplogical is analogous to the 0-

form symmetry case.

Ug(⌃d�2) being topological simply implies that the topological unitary operator is indepen-

dent of the submanifold we associate it to given that we can obtain the new submanifold

⌃0d�2 by topologically deforming ⌃d�2, i.e,

⌃0d�2 �⌃d�2 = @⌃d�1 (2.35)

where @⌃d�1 is the boundary of ⌃d�1 Since, these operators are topological we can write

the following expression:

Ug(⌃d�2) = Ug(⌃
0
d�2) (2.36)

2.2.2 Action of 1-Form Symmetries

Now that we have understood the construction of 1-form symmetries, lets understand

their action on 1-dimensional operators. These 1-dimensional opertors, often called line

opertors can be denoted at:

Lq(�) (2.37)

where q is the charge of the line operator under G(1) ⇠= U(1), and � is the curve that

parameterises the line operator. Now before we understand the action of the 1-form

symmetry on line operators lets step aside and discuss some concepts that will help us in

our discussion later.

Remark : Transversality and Linking

Lets consider a d-dimensional manifold Md . Let Ns and Xr be s-dimensional and

r -dimensional submanifolds ofMd respectively.

Definition: Ns and Xr are said to be transverse (or intersect transversally) if, 8p 2

Ns \ Xr ,

TpNs � TpXr ✓ TpMd , s + r  d (2.38)

where TpNs denotes the tangent space of Ns at a point p [10].

16



2.2. 1-Form Symmetries Chapter 2. Higher Form Symmetries

We can denote it as:

Ns t Xr (2.39)

Lets understand linking number using insights from [6]. Now consider Md to be a

compact, orientable and closed (@Md = 0). Now let Ns and Xr be orientable and

non-intersecting with the condition, s + r = d � 1 and we assume they are trivial

homotopically a. Now introducing an (r + 1)-dimesnional submanifold ofMd : Yr+1

such that @Yr+1 = Xr . Let Yr+1 t Ns and Yr+1 \Ns = {pi}, then

TpiNs � TpiYr+1 = TpiMd (2.40)

Using this we can define an orientation on Md using orientations of Ns and Yr+1.

Define sign(pi) such that :

sign(pi) =

Y
_]

_[

+1 induced orientation ofMd at pi same as original

�1 induced orientation ofMd at pi opposite to original

Definition: Linking Number is a topological invariant. The linking number of Ns and

Xr can be defined as:

Link(Ns ,Xr) =
ÿ

i

sign(pi) (2.41)

where r = d � s � 1.

Using di↵erential form notation, we can define the linking number as follows:

Link(Ns ,Xr) =
⁄

Md

�(d�r�1)(p 2 Yr+1) ^ �
(d�s)(p 2 Ns)

=
⁄

Yr+1
�(d�s)(p 2 Ns)

=
⁄

Ns
�(d�r�1)(p 2 Yr+1)

(2.42)

where �(r) is a Poincaré dual r -form.
aTo under homotopy in detail, refer [9].
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Chapter 2. Higher Form Symmetries 2.2. 1-Form Symmetries

Now that we have the required mathematical notions ready, lets write down the action of

a 1-form symmetry on a line operator.

Since these line operators (2.37) are charged under 1-form symmetries (2.32) they obey

the Ward Identity [6]:

d ? J(2)(x)Lq(�) = q�
(d�1)(x 2 �)Lq(�) (2.43)

where �(d�1)(x 2 �) is a (d�1)-form that integrates to 1 on any manifold that is transverse

to � and is 0 otherwise.

Now lets we can link the curve � on ⌃d�2. Thus in a similar manner as the action of

0-form symmetries, as we topologically deform ⌃d�2 ! ⌃0d�2, it crosses � and due to the

Ward Identity (2.43), when Ug(⌃d�2) intersects Lq(�), it generates a phase :

hUg(⌃d�2)Lq(�)i = e
i↵qLink(⌃d�2,�)hLq(�)Ug(⌃

0
d�2)i (2.44)

We can prove this as follows:

Proof 2.2.1

Using (2.32), we can rewrite the above action as follows:

hexp
3
i↵

⁄

⌃d�2
?J(2)

4
Lq(�)i (2.45)

Now we can define a (d � 1) dimensional manifold Nd�1 such that,

@Nd�1 = ⌃d�2

Thus (2.45) can be written as:

hexp
3
i↵

⁄

@Nd�1
?J(2)

4
Lq(�)i

Using Stokes Theorem,

= hexp
3
i↵

⁄

Nd�1
d ? J(2)

4
Lq(�)i

Using the ward identity (2.43),

= hexp
3
i↵

⁄

Nd�1
q�(d�1)(x 2 �)

4
Lq(�)i
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2.2. 1-Form Symmetries Chapter 2. Higher Form Symmetries

Now we homotopically deform ⌃d�2 to ⌃0d�2 such that (2.35) is valid. We also deform

it such that ⌃0d�2 and � do not link. Now we know from (2.42) and the remark on

transversality and linking, that if Nd�1 t � we can define the linking between ⌃d�2
and � as :

Link(⌃d�2, �) =
⁄

Nd�1
�(d�1)(x 2 �) (2.46)

Thus we can now write the action as:

e i↵qLink(⌃d�2,�)hLq(�)Ug(⌃
0
d�2)i (2.47)

⌅

By considering the action, using wrapping of Ug(Sd�2) around the line operator Lq(�),

we can write the action as:

Ug(S
d�2)Lq(�) = e

i↵qLink(Sd�2,�)Lq(�) (2.48)

We can illustrate this action using figure:

Figure 2.3: [Left:] Here we see how the topolgical operator Ug(Sd�2) wraps around a line
operator Lq(�). [Center:] We homotopically deform Ug(Sd�2) till it crosses the line operator
to get the transformed operator R(g) · Lq(�) and Ug(S0d�2). [Right:] Since S0d�2 and �
do not link, we can homotopically deform Ug(S0d�2) to point giving us the action of the
topological operator Ug(Sd�2) wraps on the line operator Lq(�).
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Now lets prove the statement 2.2.2 which says that the 1-form symmetries are Abelian.

Since the 1-form symmetry operators are associated to a (d � 2)-dimensional manifold,

there exists a locally transverse plane due to which we can shift the symmetry operators

by smooth topological deformations as shown in the figure below.

Figure 2.4: The first figure depicts a configuration of both the topological operators
Ug1(⌃d�2) and Ug2(⌃d�2) wrapping a charged line operator Lq(�). We see that how we
can topologically deform these operators such that we can exchange the configuration of
these operators.

Thus there is no well defined notion of ordering [6] due to which the 1-form symmetry

groups are abelian.

Ug1(⌃d�2)⌦ Ug2(⌃d�2)
⇠= Ug2(⌃d�2)⌦ Ug1(⌃d�2) (2.49)
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2.2. 1-Form Symmetries Chapter 2. Higher Form Symmetries

2.2.3 Gauging 1-Form Symmetries

Gauging simply implies coupling background fields to our theory. As in the case of ordi-

nary symmetries, this is done because it’s an excellent way to understand which currents

are conserved in our theory by looking at the variation of the action coupled with the

background fields under gauge transformations.

In the case of 1-form symmetries, we couple a 2-form background gauge field B(2) to our

2-form conserved current ?J(2) and add the following term to our action:

Sgauge = +i
⁄
B(2) ^ ?J(2) (2.50)

where B(2) has the following gauge transformation:

B(2) ! B(2) + d⇤(1) (2.51)

Under the above mentioned gauge transform, (2.50) varies as follows:

�Sgauge = +i
⁄
d⇤(1) ^ ?J(2) = +i

⁄
⇤(1) ^ d ? J(2) = 0 (2.52)

which is true due to the conservation law (2.27) which implies that ?J(2) is a closed

2-form, which hence implies that the action is invariant under the background gauge

transformations.
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2.3 4d Maxwell Theory

Lets now look at the example of U(1) gauge theory in 4d (M4), i.e Maxwell Theory. We’ll

look at the theory in the light of generalised symmetries. Consider pure Maxwell theory

with gauge field Aµ(x), coupling e, and field strength Fµ⌫ = @µA⌫ � @⌫Aµ. We note that

the gauge field can be written as a 1-form:

A(1) = Aµdx
µ (2.53)

and the field strength tensor can be written as a 2-form

F(2) =
1

2
Fµ⌫ dx

µ
^ dx⌫ (2.54)

We also note that F is a locally exact 2-form, i.e

F(2) = dA(1) (2.55)

The action is given as:

S =
1

2e2

⁄

M4

F(2) ^ ?F(2) (2.56)

Here, A is a standard U(1) connection i. It is identified as

A(1) ⇠ A+ d�(0) (2.57)

where �(0) is a 0-form on our manifold and is periodic due to the fact that A(1) is a

standard U(1) connection, thus �(0) ⇠ �(0) + 2⇡. �(0) may not be well-defined.

Due to this the electric charged is quantised.

⁄

⌃2
F(2) 2 2⇡Z (2.58)

where ⌃2 is a submanifold ofM4 and Z denotes integers.
The equation of motion can be derived by varying S with respect to A(1). The equation

of motion is:

d ? F(2) = 0 (2.59)

iadd something about gauge theory geometry
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2.3.1 Construction of 1-Form Symmetries in Maxwell Theory

Now this equation of motion can be alternatively viewed as conservation of a 2-form

current:

J elc.2 =
1

e2
F(2) (2.60)

Thus, using the discussion in the previous section, we can say that 4d Pure Maxwell theory

has a U(1)(1)elc. 1-form symmetry called the electric 1-form symmetry.

Now from (2.55) and the fact that the exterior derivative operator is nil-potent, i.e d2 = 0,

we get the Bianchi Identity:

dF(2) = 0 (2.61)

This equation can also be alternatively viewed as conservation of a dual 2-form current:

Jmag.2 =
1

2⇡
? F(2) (2.62)

thus along with the electric 1-form symmetry, 4d Pure Maxwell theory has a U(1)(1)mag.

1-form symmetry called the magnetic 1-form symmetry.

This U(1)(1)mag. symmetry is dual to the U(1)
(1)
elc. symmetry and this has interesting implica-

tions on their action on line operators.

Before we construct the electric and magnetic 1-form symmetries and look at their ac-

tions on line operators, lets delve briefly in the electric-magnetic duality of Maxwell theory.

Remark : S-Duality

S-Duality in Maxwell theory is the invariance of Maxwell equations under the inter-

change of electric and magnetic fields. We can phrase this in terms of field strength

Fµ⌫ and dual field strength F̃µ⌫ where,

F̃µ⌫ =
1

2
✏µ⌫⇢�F

⇢� (2.63)

To write the action in terms of the dual field strength, we need to change the reason

of dF(2) = 0 being the constraint F(2) = dA(1), i.e F(2) is exact. To do this add a
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Lagrange multiplier term to the action as follows [11]:

S̃ =
1

2e2

⁄

M4
F(2) ^ ?F(2) +

1

2⇡

⁄

M4
F(2) ^ dÃ(1) (2.64)

where Ã(1) is the Lagrange multiplier term.

Now we get the condition dF(2) = 0 using the equation of motion of Ã(1) instead of

the constraint. Now substituting Ã(1) in S̃ gives us the original action (2.56).

Now looking at the equation of motion of F(2) we get:

�F(2)S̃ =
1

e2
? F(2) �

1

2⇡
dÃ(1) = 0 (2.65)

From this we can see:

?F(2) =
e2

2⇡
dÃ(1) F(2) = �

e2

2⇡
? dÃ(1) (2.66)

Substituting this back to S̃ gives us:

S̃ = �
e2

8⇡2

⁄

M4
?dÃ(1) ^ dÃ(1) �

e2

4⇡2

⁄

M4
?dÃ(1) ^ dÃ(1)

= �
e2

4⇡2

⁄

M4
?dÃ(1) ^ dÃ(1)

=
e2

4⇡2

⁄

M4
dÃ(1) ^ ?dÃ(1)

(2.67)

Now considering Ã(1) as a dual U(1) gauge field (connection) we can define the dual

field strength as:

F̃(2) = dÃ(1) (2.68)

and hence write the dual action as:

S̃ =
1

ẽ2

⁄

M4
F̃(2) ^ ?F̃(2) ẽ2 =

4⇡2

e2
(2.69)

where ẽ is the dual gauge coupling.

Ã has the gauge transform;

Ã(1) ⇠ Ã(1) + d �̃(0) (2.70)

where �̃(0) is a 0-form on our manifold and is periodic due to the fact that Ã(1) is a
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dual U(1) connection, thus �̃(0) ⇠ �̃(0) + 2⇡.

Due to this the magnetic charged is quantised.

⁄

⌃2
F̃(2) 2 2⇡Z (2.71)

Hence we can also represent the entire Maxwell theory and it’s higher form symmetries

in the dual representation.

Coming back to the discussion of 1-form symmetries of Maxwell in 4d, from (2.60) we

can construct the topological operator that enacts this symmetry:

U elc.g (⌃2) = exp
3
i↵

e2

j

⌃2
?F(2)

4
(2.72)

where ⌃2 is a closed 2-dimensional submanifold ofM4.

Now from (2.62) we can construct the corresponding dual magnetic 1-form symmetry :

U mag.g (⌃2) = exp
3
i↵

j

⌃2

F(2)
2⇡

4
(2.73)

2.3.2 Action of Umag.g (⌃2) and U elc.g (⌃2) on Line Operators

We need line operators which are gauge invariant. One such operator is the Wilson Line

which is defined as:

W (qe, �) = exp
3
iqe

j

�
A

4
(2.74)

Under a gauge transform,

W (qe, �)! exp
3
iqe

j

�
A+ d�

4

= exp
3
iqe(

j

�
A+

j

�
d�)

4

Using Stokes’ Theorem,

= exp
3
iqe(

j

�
A+

j

@�
�)

4

= W (qe, �)

(2.75)

if � is closed or infinite.

Interpretation of a Wilson Line: It can be interpreted as a world line of a non-dynamical

massive charged particle. Such a particle is the source of the electric flux. Using insights
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from [6] we can compute the correlator of the Wilson Line:

hW (qe, �)i =
⁄
DA exp

3
iqe

j

�
A

4
e iS[A] (2.76)

Now inserting (2.56) in the above equation:

=
⁄
DA exp

3
iqe

j

�
A

4
exp

3
1

2e2

⁄

M4

F(2) ^ ?F(2)

4

=
⁄
DA exp

3
iqe

⁄

M4

�3(�) ^ A+
1

2e2
F(2) ^ ?F(2)

4 (2.77)

where

⁄

MT
3

�3(�) = 1 (2.78)

such thatMT
3 t � once.

The equation of motion for A can be calculated by variation of action with respect to A

[show derivation] and it is expressed as [6]:

d ? F(2) = qee
2�3(x 2 �) (2.79)

Now integrating the above equation on M3 with a boundary such that @M3 = ⌃2 and

using the remark on transversality and linking we find [6] :

j

⌃2
?F(2) = qee

2 Link(⌃2, �) (2.80)

Using the above arguments we can see that Wilson Line W (qe, �) acts as an electric

source and modifies Maxwell’s equations.

Now lets write the action of U elc.g (⌃2) on W (qe, �) using (2.44) :

hU elc.g (⌃2)W (qe, �)i = e
i↵qeLink(⌃2,�)hW (qe, �)U

elc.
g (⌃

0
2)i (2.81)

We can derive the above action using an analogous proof as Proof 2.2.1.

Alternatively we can see that exponentiating (2.80) also gives the action of U elc.g (⌃2) on

W (qe, �).

Now lets see what the symmetry U mag.g (⌃2) acts on.

We can define a gauge invariant line operator that is the magnetic dual to the wilson

line. We do so because we explored S-duality in which we undertstood that U mag.g (⌃2) is
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constructed using the dual (magnetic) field strength F̃ .

Such an operator is called the ’t Hooft line operator and is expressed as:

T (qm, �) = exp
3
iqm

j

�
Ã

4
(2.82)

where Ã is the dual gauge field defined as :

?F(2) = dÃ(1) (2.83)

Using the remark on S-Duality in Maxwell theory, we write the dual field strength as:

?F(2) = ?dA(1) =
e2

2⇡
dÃ(1) =

e2

2⇡
d ˜F(2) (2.84)

This is the reason why we choose the normalization of currents as in (2.60) and (2.62).

The action of U mag.g (⌃2) on the ’t Hooft line operator T (qm, �) is same as (2.81), i.e the

electric case:

hU mag.g (⌃2)T (qm, �)i = e
i↵qmLink(⌃2,�)hT (qm, �)U

mag.
g (⌃02)i (2.85)

Thus, we conclude that 4d Maxwell Theory has a U(1)(1)elc.⇥U(1)
(1)
mag. global symmetry.

2.3.3 Gauging the Higher Form Symmetries of 4d Maxwell

Gauging means introducing background fields corresponding to each conserved current in

our action. Following the discussion in section [Gauging 1-Form Symmetries], in the case

of Maxwell with U(1)(1)elc. ⇥ U(1)
(1)
mag. symmetry we introduce the background fields B

e
(2)

and Bm(2) with the corresponding gauge transformations:

Be(2) ! B
e
(2) + d⇤

e
(1) (2.86)

Bm(2) ! B
m
(2) + d⇤

m
(1) (2.87)

where ⇤e(1) = d�
e
(0) We also have the usual transformation of the gauge field A(1) :

A(1) ! A(1) + d�
e
(0) = A(1) + ⇤

e
(1) (2.88)

27



Chapter 2. Higher Form Symmetries 2.3. 4d Maxwell Theory

Now we can couple the fields Be(2) and B
m
(2) to the action S (2.56) by adding the following

terms:

Se = �
1

e2

⁄

M4

Be(2) ^ ?F(2) Sm =
i

2⇡

⁄

M4

Bm(2) ^ F(2) (2.89)

Thus the gauged action is of the form Sg = S + Sm + Se, i.e:

Sg =
⁄

M4

1

2e2
(F(2) � B

e
(2)) ^ ?(F(2) � B

e
(2)) +

i

2⇡
(Bm(2) ^ F(2)) (2.90)

We have added an additional counter term made of only background gauge fields to make

the kinetic term invariant under gauged transformations (2.87) and (2.86) due to the fact

that A(1) is also shifted under these transformations.

Sct =
1

2e2

⁄

M4

Be(2) ^ ?B
e
(2) (2.91)

Lets look at the transformation of Sg under (2.86):

Sg !
⁄

M4

1

2e2
(F(2) � B

e
(2))^ ? (F(2) � B

e
(2)) +

i

2⇡
Bm(2) ^ (F(2) + d⇤

e
(1))

= Sg +
i

2⇡

⁄

M4

Bm(2) ^ d⇤
e
(1)

(2.92)

Thus, Sg is not invariant under the gauging of the electric symmetry.

Now lets look at the transformation of Sg under (2.87):

Sg ! Sg +
i

2⇡

⁄

M4

d⇤m(1) ^ F(2)

= Sg �
i

2⇡

⁄

M4

⇤m(1) ^ dF(2) = Sg · · · ignoring boundary terms
(2.93)

Thus, we see that we cannot gauge both electric and magnetic symmetry simultaneously

even though gauging the magnetic symmetry leaves the action invariant.

Lets add another counter term to make the gauging of electric symmetry non-anomalous:

S0ct = �
i

2⇡

⁄

M4

Bm(2) ^ B
e
(2) (2.94)

Now our action is:

S0g =
⁄

M4

1

2e2
(F(2) � B

e
(2)) ^ ?(F(2) � B

e
(2)) +

i

2⇡
Bm(2) ^ (F(2) � B

e
(2)) (2.95)
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Gauging of the electric symmetry (2.86), the action S0g is invariant since we can see that

(F(2) � B
e
(2)) terms are gauge invariant.

Gauging of the magnetic symmetry (2.87), the action is not invariant,

S0g ! S
0
g �

i

2⇡

⁄

M4

d⇤m(1) ^ B
e
(2) (2.96)

We can hence say that no counter terms in the action can help us gauge the electric and

the magnetic symmetry simultaneously. This situation arises when we have a mixed ’t

Hooft anomaly between our two symmetries. We can define the mixed ’t Hooft anomaly

in terms of anomaly inflow action in 5 dimensions as:

Sinflow = �
i

2⇡

⁄

N5
Be(2) ^ dB

m
(2) (2.97)

where @N5 =M4.

We have used the idea of anomaly inflow which we will discuss in detail in the next chapter.

For now lets compute the background gauge transformation of the inflow action under

both the symmetries:

Sinflow !Sinflow �
i

2⇡

⁄

N5
d⇤e(1) ^ dB

m
(2)

= Sinflow +
i

2⇡

⁄

N5
d(d⇤e(1) ^ B

m
(2))

(2.98)

Now using Stokes’ Theorem,

= Sinflow +
i

2⇡

⁄

@N5
d⇤e(1) ^ B

m
(2)

= Sinflow �
i

2⇡

⁄

M4

Bm(2) ^ d⇤
e
(1)

(2.99)

It’s extremely fascinating that (2.92) and (2.99) are the same except their signs. Thus,

we can add Sinflow to Sg to cancel out the anomaly and hence get a non-anomalous gauged

Maxwell theory. We can write the final action as :

S =
⁄

M4

1

2e2
(F(2) � B

e
(2)) ^ ?(F(2) � B

e
(2)) +

i

2⇡
(Bm(2) ^ F(2))�

⁄

N5

i

2⇡
(Be(2) ^ dB

m
(2))

(2.100)

Instead of adding Sinflow to Sg, we change also add Sinflow(e $ m) to S0g to get an anomaly

free action.
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2.4 p-form Symmetries

After exploring 0-form and 1-form symmetries, we can now generalise our discussion to

understand p-form symmetries.

2.4.1 Construction of p-Form Symmetries

We can generalise the statement 2.1.1 for p-form symmetries as:

Statement 2.4.1

p-form symmetry is a topological codimension (p + 1) operator which is invertible.

Lets break this statement and understand it further using insights from [1] and [7].

A p-form symmetry is associated to a (d � p� 1)-dimensional submanifold ⌃d�p�1 and is

denoted as:

Ug(⌃d�p�1) ,where g 2 G(p) (2.101)

G(p) is the symmetry group formed by p-form symmetries.

The fusion rule shows the composition of the p-form topological operators.

Ug1(⌃d�p�1)⌦ Ug2(⌃d�p�1) = Ug1g2(⌃d�p�1) (2.102)

In the case of p-form symmetry, we can associate a p + 1-form conserved current. We

can write the conservation law as :

d ? Jp+1(x) = 0 (2.103)

Thus, ?Jp+1 is a closed form which implies the topological nature of p-form symmetry

operators same as 0-form and 1-form symmetries. We define the topological operator by

exponentiating the conserved charge:

Ug(⌃d�p�1) = exp
3
i↵

⁄

⌃d�p�1
?Jp+1

4
, g = exp(i�) (2.104)
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2.4.2 Action of Topological Operators of p-Form Symmetry:

As proven before in [Figure 2.4], 1 form symmetry groups are abelian. Similarly we can use

topological deformations to exchange the configuration of 2 p-form symmetry topological

operators since there exists a locally transverse plane.

p-form symmetries act on k-dimensional operators where, k � p. [7].

Lets first discuss the action of p-form symmetries on p-dimensional operators.

Let us consider a p � 1-dimensional operator W(Mp) associated to a submanifold Mp

of spacetime. Let W(Mp) be a simple/irreducible j operator. Toplogically deforming

Ug(⌃d�p�1) such that it crosses the operator W(Mp) gives us a local operator W(x) at

the point of intersection x ofMp and ⌃d�p. Thus we can write the action as [7]:

Ug(⌃d�p�1)W(Mp)) =W(x)W(Mp)Ug(⌃
0
d�p�1) (2.105)

TheseW(x) are actually the charges of the p-dimensional operators and they are actually

numbers such that:

W(x)$ �(g) ,�(g) 2 C� {0} (2.106)

Thus we can rewrite the action as:

Ug(⌃d�p�1)W(Mp) = �(g)⇥W(Mp)Ug(⌃
0
d�p�1) (2.107)

Since G(p) is an abelian group, it’s 1-dimensional representations are it’s irreducible rep-

resentations and due to the fusion rule (2.102) we have:

�(g1)�(g2) = �(g1g2) (2.108)

which implies that the charges �(g) form a 1-dimensional irreducible representation of

G(p).

We can also define the action by associating the topological operator to a (d � p � 1)-

dimensional sphere Sd�p�1 and then deforming it to a point so that it crosses W(Mp).

Ug(S
d�p�1)W(Mp) = �(g)⇥W(Mp) (2.109)

Lets look at a special case where G(p) ⇠= U(1) where �(g) = q where q are just numbers

and Wq(�p) is a p-dimensional operator with charge q defined on the curve �p.

j
W(Mp) cannot be expressed as a sum of other p-dimensional operators
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We express the ward identity in this case as [6]:

d ? Jp+1(x)Wq(Mp) = q�
(d�p)(x 2Mp)Wq(Mp) (2.110)

where �(d�p) is the Poincaré dual (d � p) form associated to the delta function onMp.

Now lets assume a ⌃d�p such that it links toMp and another ⌃0d�p which is homotopic

to ⌃d�p and does not link toMp, then we can define the action of the p-form symmetry

operator in an analogous way as done previously for 1-form symmetry operator as:

hUg(⌃d�p�1)Wq(Mp)i = e
i↵qLink(⌃d�p�1,Mp)hWq(Mp)Ug(⌃

0
d�p�1)i (2.111)

where g = exp(i↵).

Remark : Characters and Pontryagin Dual Group

Consider the abelian group G(p) and a torus T which is just a unit circle in C.
The character � is defined as the homomorphism � : G(p) ! T [12] [13].
The group formed by such homomorphisms is called the Pontryagin Dual Group

Ĝ(p) of G(p).

Now for our context, the iireducible representations (charges) of G(p) are homomor-

phisms :

� : G(p) ! U(1) (2.112)

Thus, using above terminology, the charges of a simple p-dimensional operator under

a p-form symmetry group G(p) are elements of the Pontryagin Dual Group Ĝ(p).

Now lets understand the action of p-form symmetries on k-dimensional operators with

k > p.

We are going to briefly discuss this using insights from [14] and [15]. k-dimensional

operators transform in k-charges under G(p). We define k-charges such that:

k � charges of G(p) = (k + 1) representations of the (p+1) group Gp+1
G(p)

(2.113)

where Gp+1
G(p)
is a higher group. We are going to talk about higher groups in a later chapter

but for now just remember that they are ’categorical’ generalisations of ordinary groups.

For a more detailed undertstanding look at [14] and [15] for higher representations of
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invertible symmetries and for higher representations of non-invertible symmetries look at

[16, 17, 18, 19, 20].

2.4.3 Gauging p-Form Symmetries

In the case of p-form symmetries, we couple a (p+1)-form background gauge field B(p+1)

to our (p + 1)-form conserved current ?J(p+1) and add the following term to our action:

Sgauge = +i
⁄
B(p+1) ^ ?J(p+1) (2.114)

where B(p+1) has the following gauge transformation:

B(p+1) ! B(p+1) + d⇤(p) (2.115)

Under the above mentioned gauge transform, (2.114) varies as follows:

�Sgauge = +i
⁄
d⇤(p) ^ ?J(p+1) = +i

⁄
⇤(p) ^ d ? J(p+1) = 0 (2.116)

which is true due to the conservation law (2.103) which implies that ?J(p+1) is a closed

(p+1)-form, which hence implies that the action is invariant under the background gauge

transformations.
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Chapter 3

Anomalies

Anomalies constitute a pivotal aspect in the understanding of quantum field theories

They o↵er profound insights into the dynamics of gauge theories. Understanding these

anomalies, particularly how they cancel, serves as a key to unlocking a more nuanced

understanding of the underlying dynamics of a gauge theory.

In this chapter, we embark on an exploration of anomalies, encompassing an introductory

overview and the classification of di↵erent anomaly types. Subsequently, we delve into ’t

Hooft anomalies, and understanding them within the context of higher form symmetries.

In the last section of this chapter, we delve into the crucial concept of anomaly polynomials

and the notion of anomaly inflow, providing us with a powerful toolkit for the determination

of anomalies. This toolkit will serve as a vital bridge between the concepts established in

our earlier chapter on higher form symmetries and our forthcoming exploration of higher

groups in the next chapter.
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3.1 Introduction to Anomalies

Anomalies are critical to understand Quantum field theories. They generally arise when

symmetry of the Classical Field theories the are invalid in the Quantum Field Theory.

As we mentioned before in the first section, symmetries in the path integral formalism,

they are expressed as Ward identities of the correlation functions [21]. If the integral

measure of the partition function is not invaraint under the action of symmetries then

our theory has an anomaly. This method of finding anomalies in the measure is called

the Fujikawa method a(refer [22] for details). Another way an anomaly arises is while

renormalization, no regularization scheme preserves all the symmetries.

The most e↵ective and equivalent way to know if there exists an anomaly on our theory

is by checking if the classically conserved current is still conserved in Quantum Field

Theory, if it isn’t then we have an anomaly. Anomalies are computed using one loop

Feynman diagrams called ’triangle diagrams’. Evaluating triangle diagrams and computing

anomalies using them is introduced and explained in detail in [23].

Figure 3.1: This diagram illustrates the one loop Feynmann diagram which calculates the
anomaly. The wiggly lines represent gauge fields and each vertex we assign a current. The
arrows represent the running of fermions along the triangle loop.

If we have a theory on a manifold Md with a partition function Z[{A}] where {A} is a

set of background gauge fields in our theory with the corresponding transformations:

{A}! {A}+ d{�}

then we after gauging the partition function we can write the anomaly Ad as:

Z[{A}+ d{�}] = e
i
s
Md
A(d)[{A},{�}]

Z[{A}] (3.1)

aWe will be using the Fujikawa method to calculate the anomaly of a QED like theory later on in the
dissertation.
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Di↵erent types of anomalies

1. Chiral anomaly:

Also known as ABJ anomaly after Adler [24], Bell and Jackiw [25] discovered it in

1969. These kind of anomalies exist when the symmetry of the classical field theory

doesn’t translate to being 4 symmetry of the Quantum Field Theory. In 4d gauge

theories with continuous gauge groups, they are classified by placing currents due

to gauge symmetries on 2 vertices and the current due to 0-form global symmetry

on the 3rd vertex of the triangle diagram. The ABJ anomaly is an anomaly in the

global symmetry.

2. Gauge anomalies:

Gauge symmetry isn’t a true symmetry of the theory but a redundancy in our de-

scription of the Quantum Field Theory. Anomaly in the gauge symmetry is terrible

as it removes then redundancy thus giving us an inconsistent theory. These kind of

anomalies exist when the partition function isn’t invariant under the gauge fields.

For 4d gauge theories with continuous gauge groups we can compute the anomalies

using triangle diagrams with currents due to gauge groups on all 3 vertices.

3. ’t Hooft anomalies:

These are the anomalies we will be interested in. Consider an anomaly free theory

with a non-anomalous gauge group, if we attempt to gauge the symmetry , it turns

out it has an quantum anomaly. Such anomalies are called ’t Hooft anomalies. They

were first discovered by Prof.Gerard ’t Hooft in 1980 in [26]. They are famously

described as obstruction to gauging a global symmetry. In 4d gauge theories , ’t

Hooft anomalies are computed using triangle diagrams with currents due to global

symmetry on all 3 vertices. We will explain them in detail in the next section

For a more detailed discussion on anomalies and their origin and how they behave we refer

the reader to [21, 23, 27, 3, 28].
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3.2 ’t Hooft Anomalies

Lets delve deeper into t’Hooft anomalies. These kind of anomalies are particulary inter-

esting as they can be tracked along the renormalization group(RG) flow [29]. This means

that along flowing from UV to IR phase of the theory, these anomalies stay invariant even

if the fields in the Lagrangian of our theory change, for example: In quantum chromody-

namics at high energies(UV) has quarks which are confined to bound states (baryons and

mesons) at low energies (IR).

As suggested by ’t Hooft, one of the ways to see the anomaly matching and cancellation is

to add decoupled fermions called spectator fermions that transform under the symmetry

group of the theory to our quantum theory so that it cancels the anomaly. [6] Consider

a theory with a ’t Hooft anomaly in the UV - AUV , to which we add the anomaly due to

the spectator fermions ASF such that:

AUV +ASF = 0 (3.2)

If the anomaly persists in the IR phase of the theory, the spectator fermions (which mostly

will be di↵erent than ones in UV) also provide an anomaly contribution here such that:

AIR +ASF = 0 (3.3)

which hence implies:

AIR = AUV (3.4)
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3.3 ’t Hooft Anomalies for Higher Form Symmetries

We can generalise the discussion of ’t Hooft anomalies to higher form symmetries. Con-

sider a p-form symmetry with a background gauge field B(p+1) coupled to the (p + 1)

form symmetry current with the gauge transformation (2.115).

There are two types of t’Hooft anomlies [7]:

1. Pure ’t Hooft Anomalies: A pure ’t Hooft anomaly A(d)[B(p+1),⇤(p)] is of the

form:

Z[B(p+1) + d⇤(p)] = e
i
s
Md
A(d)[B(p+1),⇤(p)]

Z[B(p+1)] (3.5)

No counter terms fix this anomaly.

2. Mixed ’t Hooft Anomalies: We have theories where in we have a p-form and a

q-form symmetry with corresponding background gauge fields B(p+1), B(q+1) and

their respective transformations:

B(p+1) ! B(p+1) + d⇤(p)

B(q+1) ! B(q+1) + d⇤(q)

It is possible that the partition function under gauging one of the symmetries remains

invariant but under simultaneous gauge transformations of both the higher form

symmetries, it generates an anomalous phase which cannot be fixed by adding more

counter terms.

Z[B(p+1) + d⇤(p), B(q+1) + d⇤(q)] = e
i
s
Md
A(d)[B(p+1),B(q+1),⇤(p),⇤(q)]

Z[B(p+1), B(q+1)]

(3.6)

We have seen an example of a mixed ’t Hooft anomaly in 4d Maxwell Theory in the

section Gauging the Higher Form Symmetries of 4d Maxwell. We will now discuss

the idea of anomaly inflow action so that we can clearly understand the fascinating

thing we did earlier in that section.
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3.4 Anomaly Polynomials and Inflow

In recent times, anomalies have been viewed in the perspective of topology. A neat way

of calculating anomalies is using the idea of Anomaly Polynomial and descent equations

[27, 30, 31]. An anomaly polynomial is a (d + 2)-form, I(d+2)[B(p+1)] that characterizes

the anomaly of the theory b. It is made up of gauge invariant operators, (as we will

explore later) and hence is itself gauge invariant. Lets now understand how it produces

the anomaly of our quantum field theory in d-dimensions c. In this section we will be using

insights from [6, 27, 32].

Consider the anomaly of the theory (boundary theory) written in the form:

Z[B(p+1) + d⇤(p)] = e
i
s
Md
A(d)[B(p+1),⇤(p)]

Z[B(p+1)] (3.7)

Let Sanom =
s
Md
Ad [B(p+1),�(p)].

We can write the exterior derivative (total derivative) of A(d)[B(p+1),�(p)] as the variation

of a (d + 1)-form dependent on B(p+1) (2.115)
d:

dAd [B(p+1),⇤(p)] = 2⇡�⇤(p)I(d+1)[B(p+1)] (3.8)

Consider a manifoldMd+1 such that it’s boundary isMd , i.e

@Md+1 =Md (3.9)

Now lets define a theory (bulk theory) in Nd+1 with the action:

Sinflow = �2⇡
⁄

Md+1

I(d+1)[B(p+1)] (3.10)

Now look at the variation of the action of the bulk theory under gauge transformations

and using (3.8) and (3.9) we get :

�⇤(p)Sinflow = �2⇡
⁄

Md+1

�⇤(p)I(d+1)[B(p+1)]

= �
⁄

Md+1

dAd [B(p+1),⇤(p)]

Stokes’ Thm
= �

⁄

Md

A(d)[B(p+1),⇤(p)] = �Sanom

(3.11)

bfor simplicity we consider one p-form symmetry with a background gauge field B(p+1) and it transforms
like in (2.115).

cWe will mainly be keeping d = 4 in our consideration when writing this section.
dThe normalization has been assigned for simplicity of computations.
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This seems extremely interesting as now if we combine the bulk theory with the boundary

theory, we can define an anomaly free partition function :

Z̃[B(p+1)] := Z[B(p+1)]⇥ exp(iSinflow) (3.12)

= Z[B(p+1)]⇥ exp
3
� 2⇡i

⁄

Md+1

I(d+1)[B(p+1)]
4

(3.13)

Now the Sinflow is called the anomaly inflow action as the anomaly flows from the bulk

to the boundary and gets cancelled.

Figure 3.2: [Left] This is the theory Td+1 which has the action Sinflow; [Center] This is
the boundary theory Td with the anomaly Ad [B(p+1),�(p)]; [Right] This is where we have
combined the bulk and boundary theory to get a non anomalous theory with the partition
function Z̃[B(p+1)] as in (3.12)

We define the anomaly polynomial as the exterior derivative of the inflow Lagrangian

I(d+1)[B(p+1)]:

I(d+2)[B(p+1)] = dI(d+1)[B(p+1)] (3.14)

Now that we understand the above procedure of deriving the anomaly polynomial, we can

use it to calculate the anomaly of our theory using the descent equations [33, 30, 27] :

I(d+2)[B(p+1)] = dI(d+1)[B(p+1)]

2⇡�⇤(p)I(d+1)[B(p+1)] = dAd [B(p+1),⇤(p)]⁄

Md

Ad [B(p+1),⇤(p)] = Sanom

(3.15)
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Remark : SPT Phases

In the literature on condensed matter physics, the inflow action is said to describe

an invertible topological quantum field theory often referred as Symmetry Protected

Topological Phases or SPT Phases. This is explored in great detail in [34]

We define a d-dimensional SPT phase protected by a set of p � 0-form symmetries

[7]

S = {G(p1), G(p2), G(p3), ..., G(pn)},

as an invertible d-dimensional invertible topological quantum field theory admitting

the symmetries S, such that the partition functions are trivial when all the background
fields are turned o↵

Z[B(p1+1) = 0, B(p2+1) = 0, ...., B(pn+1) = 0] = 1 (3.16)

and for general background gauge fields the partition functions are phase factors

Z[B(p1+1), B(p2+1), ...., B(pn+1)] 2 U(1) (3.17)

For a more detailed understanding of the anomaly inflow, polynomials, and SPT

phases in terms of categories and cohomology please refer [35, 36, 37, 38, 39].

So now that we understand how to calculate anomalies using anomaly polynomials, we

can ask how do we actually construct or build the anomaly polynomial of a theory.

Construction of Anomaly Polynomials

We know that the anomaly polynomial of a theory has to be gauge invariant or it completely

defeats the purpose of this discussion. We can construct them using gauge invariant poly-

nomials of the theory. We will use insights from [32] to construct anomaly polynomials.

Lets look at di↵erent types of symmetries our theory can have and what these symmetries

contribute to the anomaly polynomial. Lets consider d = 4 dimensional spacetime.

1. For Abelian 0-form symmetries like U(1)(0), the field strength(curvature) itself is

a gauge invariant quantity and hence we can have a contribution consisting wedge
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product of terms like:

A
1

2⇡
F(2) , F(2) = dA(1) (3.18)

where A(1) is the background field
e and A is a constant f. The contribution of

an abelian 0-form symmetry can be a mixed anomaly with the of the symmetries

U(1)(0)A � U(1)
(0)
B � U(1)

(0)
C , where A(1), B(1), C(1) are respective background gauge

fields of the above symmetries. The contribution to I6 using (3.18) can be expressed

as:

1

(2⇡)3
ÿ

A,B,C

ABC
Symmetry Factor

F A(2) ^ F
B
(2) ^ F

C
(2) (3.19)

Here ABC can actually be evaluated using the triangle diagrams or Fujikawa’s

method of derivation of an anomaly. We will see an example in the next chap-

ter. The indices A,B, C can be equal to each other giving us anomalies like the ABJ

anomaly and the symmetry factors are calculated based on the which symmetries

are being used to calculate the anomaly.

2. For non abelian 0-form symmetries [32], like SU(N)C with field strength F(2) =

dC(1), the contribution consists of terms like
g:

1

(2⇡)r
tr

3
(F(2))

r
4

, r � 2 (3.20)

3. For higher form symmetries, like U(1)(p)Bi the contribution to I(6) is using terms made

up of wedge products of the field strengths of the symmetries in our theory

dB1(p+1) ^ · · · ^ dB
n
(p+1) (3.21)

where Bi(p+1) is the background gauge field associated with a particular symmetry.

Lets now understand an important concept of reducible anomaly polynomials [32]. We

will see how we have already used this concept when we fixed the mixed ’t Hooft anomaly

of 4d-Maxwell Theory previously.

ethe normalization of the field strength actually comes from the fact that this is the first chern class,
c1(F(2)) =

1
2⇡F(2). To understand this in detail please refer chapter 11 of [9]

fmore specifically it’s the anomaly constant and we will discuss more on it in the next chapter

gThey actually contribute by chern classes cr (F(2)) =
1

(2⇡)k tr

3
(F(2))

r

4
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Statement 3.4.1

An anomaly polynomial I(d+2) is called a reducible anomaly polynomial if it can be

factorized or is the wedge product of gauge invariant, closed anomaly polynomials

U(q) and V(d+2�q), i.e

I(d+2) = U(q) ^ V(d+2�q) (3.22)

and

dU(q) = dV(d+2�q) = 0 (3.23)

Now to calculate the anomaly inflow and hence the anomaly we use the descent equations

(3.15). If we have a reducible anomaly polynomial we can take an exterior derivative out

of either U(q) or V(d+2�q). Let us write

I(d+2) = d(U(q�1) ^ V(d+2�q)) (3.24)

Using the Leibnitz property of the exterior derivative operator h and (3.23), we can write:

d(U(q�1) ^ V(d+2�q)) = dU(q�1) ^ V(d+2�q) + (�1)
(q�1)
U(q�1) ^ dV(d+2�q) = U(q) ^ V(d+2�q)

(3.26)

which looks exactly like I(d+2), but we could have removed a degree of power from V(d+2�p)

too. Due to this confusion, we can introduce a real constant term s 2 R in I(d+2) in the
following way [32]:

I(d+2) = U(q) ^ V(d+2�q)) + s(�1)
q
3
U(q) ^ V(d+2�q)

4
� s(�1)q

3
U(q) ^ V(d+2�q)

4

= U(q) ^ V(d+2�q) + s(�1)
q
3
U(q) ^ V(d+2�q)

4
+ s(�1)(q�1)

3
U(q) ^ V(d+2�q)

4

(3.27)

hd-operator obeys the Leibnitz property. If we consider ! 2 ⌦r and ⇠ 2 ⌦s , where ⌦r and ⌦s is the
vector space of r and s forms on our manifold, then [9]:

d(! ^ ⇠) = d! ^ ⇠ + (�1)r! ^ d⇠ (3.25)
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Now using (3.26) and (3.25) we can write:

U(q) ^ V(d+2�q) = d(U(q�1) ^ V(d+2�q)) (3.28)

and

(�1)qU(q) ^ V(d+2�q) = d(U(q) ^ V(d+1�q)) (3.29)

Now putting (3.28) and (3.29) in (3.27):

I(d+2) = d(U(q�1) ^ V(d+2�q)) + sd(U(q) ^ V(d+1�q)) + s(�1)
(q�1)d(U(q�1) ^ V(d+2�q))

= d
3
(U(q�1) ^ V(d+2�q)) + s(U(q) ^ V(d+1�q)) + s(�1)

(q�1)(U(q�1) ^ V(d+2�q))
4

(3.30)

Thus using (3.15), we can write:

I(d+1) =
3
(U(q�1) ^ V(d+2�q)) + s(U(q) ^ V(d+1�q)) + s(�1)

(q�1)(U(q�1) ^ V(d+2�q))
4

(3.31)

Now using (3.25), we can write:

d(U(q�1) ^ V(d+1�q)) = U(q�1) ^ V(d+2�q) + (�1)
(q�1)
U(q�1) ^ V(d+2�q) (3.32)

Now putting (3.32) in (3.31), we can write the inflow Lagrangian (up to normalization

constant 2⇡) as:

I(d+1) = (U(q�1) ^ V(d+2�q)) + sd(U(q�1) ^ V(d+1�q)) (3.33)

Now as we can see above in I(d+1), the real constant s is multiplied to an exact term. When

we write the inflow action we can interpret this term as a counterterm in 4 dimensions,

of our original action of the theory which can be used to modify, cancel, or absorb any

anomaly which can be eliminated using counter terms. [32].

Sct = i s
⁄

Md+1

d(U(q�1) ^ V(d+1�q)) = i s
⁄

Md

U(q�1) ^ V(d+1�q) (3.34)

where we used Stokes’ Theorem, and the fact that @Md+1 =Md .

Lets consider the previous example of 4d-Maxwell with U(1)(1)elc.⇥U(1)
(1)
mag. symmetry and

coupling the background fields Be(2) and B
m
(2) with the corresponding gauge transformations
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as in (2.86) and (2.87). The action of Maxwell theory can be written as:

S =
1

2e2

⁄

M4

F(2) ^ ?F(2) (3.35)

and under gauging both U(1)(1)elc. ⇥ U(1)
(1)
mag. simultaneously we need to couple the back-

ground fields to the action adding the terms (2.89). Following the discussion above, we

can write the anomaly polynomial:

I(6)[B
e
(2), B

m
(2)] = Be(2)Bm(2)dB

e
(2) ^ dB

m
(2) (3.36)

where Be
(2)
Bm
(2)
dBe(2) is a real constant. Now this is a reducible anomaly polynomial and

hence we can write the anomaly inflow (up to the normalization 2⇡) using (3.33) as:

I(5)[B
e
(2), B

m
(2)] = Be(2)Bm(2)(B

e
(2) ^ dB

m
(2)) + sd(B

e
(2) ^ B

m
(2)) (3.37)

Now using (3.34) the counter term action looks like:

Sct = i s
⁄

M4

Be(2) ^ B
m
(2) (3.38)

Now choosing s = 1
2⇡ , we can see that:

Sct =
i

2⇡

⁄

M4

Be(2) ^ B
m
(2) = �

i

2⇡

⁄

M4

Bm(2) ^ B
e
(2) = S

0
ct (3.39)

where S0ct is exactly the counter term (2.94) we added earlier in the Maxwell action to

make the electric symmetry non anomalous but this left the magnetic symmetry anoma-

lous as we saw in the previous section.

Now lets make a choice of s = 0, such that now write the anomaly inflow as:

2⇡I(5)[B
e
(2), B

m
(2)] = 2⇡Be(2)Bm(2)

3
Be(2) ^ dB

m
(2)

4
(3.40)

Now fix Be
(2)
Bm
(2)
= 1
4⇡2 and we write the anomaly inflow action as:

Sinflow = �
i

2⇡

3
Be(2) ^ dB

m
(2)

4
(3.41)

which is exactly the same as the Sinflow action we defined earlier (2.97) in Maxwell theory.

Now we can see that earlier we just followed the procedure above by actually combining
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the bulk theory in 5-dimensions with the action:

Sbulk = Sinflow = �
i

2⇡

⁄

M5

3
Be(2) ^ dB

m
(2)

4
(3.42)

to the boundary theory in 4-dimensions with the action i:

Sboundary =
⁄

M4

1

2e2
(F(2) � B

e
(2)) ^ ?(F(2) � B

e
(2)) +

i

2⇡
(Bm(2) ^ F(2)) (3.43)

to have a non anomalous theory with the action:

S =
⁄

M4

1

2e2
(F(2) � B

e
(2)) ^ ?(F(2) � B

e
(2)) +

i

2⇡
(Bm(2) ^ F(2))�

⁄

M5

i

2⇡
(Be(2) ^ dB

m
(2))

(3.44)

where @M5 =M4

ihere we have also added a ’seagull’ term 1
2e2

s
M4
Be(2) ^ ?B

e
(2) to make the kinetic terms of the field

strength invariant under background gauge transformations
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Higher Groups

The concept of higher groups emerges from the framework of n-categories within category

theory in mathematics. Credit for its inception is rightly attributed to Hoàng Xuân Śınh,

who discovered the categorical structure of 2-groups in her groundbreaking Ph.D. thesis

on Gr-Category [40]. In the historical context of this thesis by John C. Baez [41] he

writes,

”The story of Hoàng Xuân Śınh is remarkable because it combines dramatic historical
events with revolutionary mathematics. Some mathematicians make exciting discov-
eries while living peaceful lives. Many have their work disrupted or prematurely cut o↵
by wars and revolutions. But some manage to carry out profound research on the fiery
background of history. In war-torn Hanoi, Hoàng Xuân Śınh met the visionary mathe-
matician Alexander Grothendieck, who had visited to give a series of lectures—in part
as a protest against American aggression. After he returned to France, she did her
thesis with him by correspondence, writing it by hand under the light of a kerosene
lamp as the bombing of Hanoi reached its peak. In her thesis she established the most
fundamental properties of a novel mathematical structure that takes the concept of
symmetry and pushes it to new heights, making precise the concept of symmetries of
symmetries.”

In the context of hep-th literature, 2-groups have been explored previously in physics

[42, 43] etc. In this chapter, our aim is to delve into the emergence of such structures

within the framework of higher form symmetries. We begin our exploration by introducing

the concept of higher groups. Subsequently, we dive into the specifics of continuous 2-

groups, using the insights gained from our earlier discussion on anomaly polynomials and

inflow. We will explore abelian continuous 2-groups in detail, followed by a brief look at

their non-abelian counterparts. Finally, we wrap up our exploration by showcasing how

2-group symmetry can be applied in a QED like model to enhance our understanding of

continuous 2-groups and their relevance in the context of higher form symmetries.
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4.1 Introduction to Higher Group Symmetries

Statement 4.1.1

When a quantum field theory has multiple higher form symmetries, G(0), G(1), · · · , G(p),

they can mix together in some fashion and we can have a theory with a higher group

symmetry G(p+1).

They are studied using category theory as these higher groups form the structure of an

n-category. A nice introduction to see this can be found in [35] and gauge theory in terms

of di↵erential geometry and category theory is explored in detail in [42, 44].

We will understand higher group symmetries using background field transformations [6].

Lets consider a theory with a set of higher form symmetries {G(p)} with their corresponding

background fields {A(p+1)} which transform as:

{A(p+1)}! {A(p+1)}+ d{⇤p} (4.1)

If the partition function of the theory is invariant under the above background field trans-

formations then we say that we have a theory with the product of higher form symmetries.

Although if our theory is not invariant under the above background field transformations

but rather under transformations of the form:

{A(p+1)}! {A(p+1)}+ d{⇤p}+
ÿ

qp
⇤q ^ ⇣q({A(q)}) + {Schwinger Terms} (4.2)

then we say that our theory has a higher group symmetry {G(n+1)}, where n is the rank

of the highest higher form symmetry in our theory.

Here ⇣q({A(q)}) is a (p� q +1)-form which is dependent of the background fields {A(q)}

for q < p and {Schwinger Terms} terms which are non linear under the background field

transformations and depend on {A(q),⇤q} for q < p.

In this dissertation we are gong to understand continuous higher groups using the ex-

ample of 2-groups.
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4.2 Continuous 2-Groups

2-Group symmetry exists when a 0-form symmetry group G(0) mixes with a 1-form sym-

metry group G(1). We will try to undertand how the mixing of these groups take place

and hence understand what kind of theories can have a 2-group like structure. We will

mainly talk about the case where both G(0) and G(1) are continuous. The concept of ’t

Hooft anomalies, anomaly polynomail and inflow will play a central role in undertanding

how these groups mix.

Lets consider the simplest case where a continuous abelian 0-form symmetry U(1)(0)A and

a continuous 1-form symmetry U(1)(1)B combine to form a continuous 2-group symme-

try G(2). Let U(1)(0)A have a corresponding background field A(1) and U(1)
(1)
B have a

corresponding background field B(2) with the following transformations [32]:

A(1) ! A(1) + d�
A
(0) (4.3)

B(2) ! B(2) + d⇤
B
(1) +

A
2⇡
�A(0)F

A
(2) (4.4)

where A are real constants which are quantized, i.e A 2 Z [Proof 4.2.1]. The trans-
formation of the background field B(2) seems unconventional. This is because we want

the 0-form and 1-form symmetry groups to mix and hence we write the transformation of

B(2) following (4.2) and choosing the normalization for our convenience.

We can define the field strength(curvature) associated with the background gauge field

A(1) as:

F A(2) = dA(1) (4.5)

We will define the field strength(curvature) of the background field B(2) in an unconven-

tional manner below after some discussion.

Proof 4.2.1

We know that A(1) and B(2) are standard U(1) connections and hence their gauge

parameters �A(0) and ⇤
B
(1) are quantized and are periodic over closed 1-cycle ⌃1 and

2-cycle ⌃2 respectively. This leads to ambiguities :

�A(0) ⇠ �
A
(0) + 2⇡ ⇤B(1) ⇠ ⇤

B
(1) + 2⇡ (4.6)
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Due to this, the curvature F A(2) has the quantization condition:

⁄

⌃2
F A(2) = 2⇡Z (4.7)

which has a similar reasoning as seen previously in (2.58).

These ambiguities can be absorbed in the background transformation (4.3) for the

background field A(1) but since B(2) depends on �
A
(0), the ambiguity of �

A
(0) adds an

ambiguity in B(2):

B(2)
�A
(0)
⇠�A
(0)
+2⇡

�������! B(2) + AF
A
(2) (4.8)

Now from (4.6) and (4.7) we know that ⇤B(1) and F
A
(2) satisfy the same quantiza-

tion condition, so to absorb the above ambiguity in (4.4) we need the quantization

condition :

A 2 Z (4.9)

⌅

We can now write a statement:

Statement 4.2.1

A quantum field theory which can be coupled to 2-form background gauge field with

a background transformation involving terms dependent on the 1-form background

gauge field and it’s gauge parameter of the 0-form symmetry of the theory, is said

to have a 2-group symmetry.

Now lets define the field strength(curvature) of the background field B(2):

HB(3) = dB(2) �
A
2⇡
A(1) ^ F

A
(2) (4.10)

It obeys a modified Bianchi Identity:

dHB(3) = d(dB(2) �
A
2⇡
A(1) ^ F

A
(2)) = �

A
2⇡
d(A(1) ^ F

A
(2)) = �

A
2⇡
F A(2) ^ F

A
(2) (4.11)

where we used the fact that d is a nilpotent operator and F A(2) is closed.

It is quite straightforward to see that HB(3) is invariant under the background gauge trans-
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formation of B(2) (4.4):

HB(3) 7! d
3
B(2) + d⇤

B
(1) +

A
2⇡
�A(0)F

A
(2)

4
�
A
2⇡
A(1) ^ F

A
(2)

= dB(2) + d(d⇤
B
(1)) +

A
2⇡
�A(0)dF

A
(2) �

A
2⇡
A(1) ^ F

A
(2)

= dB(2) �
A
2⇡
A(1) ^ F

A
(2) = H

B
(3)

(4.12)

where again we used that d is a nilpotent operator and F A(2) is closed.

The background field transformation of B(2), (4.4) is the same form as the Green-Schwarz

Mechanism [45] a.

Thus we can say that the quantum field theory example discussed above has a 2-group

symmetry:

G(2) = U(1)(0)A ⇥A U(1)
(1)
B (4.13)

where A characterizes the mixing of the groups and the 2-group background field trans-

formations of the theory.

If A = 0, then we have the regular background field transformation:

B(2) ! B(2) + d⇤
B
(1) (4.14)

and then the global symmetry of the theory will just be a product of the 2 (or more)

symmetries:

U(1)(0)A ⇥ U(1)
(1)
B (4.15)

4.2.1 Constructing G(2) = U(1)(0)A ⇥A U(1)
(1)
B

Now lets understand how using our discussion of ’t Hooft anomalies and anomaly polynomi-

als we can deduce what kind of theories have a 2-group structure. We will be constructing

the same example of G(2) = U(1)(0)A ⇥A U(1)
(1)
B to build our intuition on this topic.

Lets consider a theory with the ordinary symmetry group:

U(1)(0)A ⇥ U(1)
(0)
C (4.16)

aGreen-Schwarz Mechanism was first used to cancel the anomaly with the gauge group SO(32) in
Type I String Theory. We will not explore the original Green-Schwarz Mechanism further but use the
ideology of it here to understand higher groups, in particular 2-groups. The relation between the background
transformations involving the Green-Schwarz mechanism and symmetries was explored in detail in [46].
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where U(1)(0)A and U(1)
(0)
C are 0-form symmetries with the corresponding 1-form back-

ground fields A(1) and C(1). This kind of theory can have a 2-group structure and we will

see how. This theory is usually called a ’parent theory’ [32].

The background gauge transformations of A(1) and C(1) are:

A(1) 7! A(1) + d�
A
(0) (4.17)

C(1) 7! C(1) + d�
C
(0) (4.18)

and we define the associated field strengths (curvatures) as:

dA(1) = F
A
(2) dC(1) = F

C
(2) (4.19)

We can write the most general anomaly polynomial in 4-dimensions that this theory can

have using the discussion we did on Construction of Anomaly Polynomials in the chapter

above. For a theory with symmetry group U(1)(0)A ⇥ U(1)
(0)
C ,

I6 =
1

(2⇡)3
ÿ

I,J,K

IJK
Symmetry Factor

F I(2) ^ F
J
(2) ^ F

K
(2) (4.20)

where I, J,K = A,C. Thus,

I6[A(1), C(1)] =
1

(2⇡)3

3
A3

3!
F A(2) ^ F

A
(2) ^ F

A
(2) +

A2C
2!
F A(2) ^ F

A
(2) ^ F

C
(2)

+
AC2

2!
F A(2) ^ F

C
(2) ^ F

C
(2) +

C3

3!
F C(2) ^ F

C
(2) ^ F

C
(2)

4 (4.21)

where F C(2) = dC(1).

Now lets use descent equations (3.15) to find the anomaly inflow and the anomaly in the

parent theory.

Lets take the first term in (4.21) and apply descent equations to it:

I6[A(1), C(1)] = dI5[A(1), C(1)] �
1

(2⇡)3

3
A3

3!
F A(2) ^ F

A
(2) ^ F

A
(2)

4
(4.22)

Thus,

I5[A(1), C(1)] �
1

(2⇡)3

3
A3

3!
A(1) ^ F

A
(2) ^ F

A
(2)

4
(4.23)
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where we used the Leibniz property of di↵erential forms and the fact that dF A(2) = 0,

d
3
A(1) ^ F

A
(2) ^ F

A
(2)

4
=

3
dA(1) ^ F

A
(2) ^ F

A
(2)

4
+ (�1)1

3
d(F A(2) ^ F

A
(2))

4

= F A(2) ^ F
A
(2) ^ F

A
(2)

(4.24)

Now lets consider the second term in the anomaly polynomial:

I6[A(1), C(1)] �
1

(2⇡)3

3
A2C
2!
F A(2) ^ F

A
(2) ^ F

C
(2)

4
(4.25)

Now this is a reducible terms and hence using (3.33) we can write the anomaly inflow

contribution of this term:

I5[A(1), C(1)] �
1

(2⇡)3

3
A2C
2!
A(1) ^ F

A
(2) ^ F

C
(2) + sd(A(1) ^ F

A
(2) ^ C(1))

4
(4.26)

where we used,

F A(2) ^ F
C
(2) = d

3
F A(2) ^ C(1)

4
(4.27)

and s 2 R.
Following the same procedure as above for the third term in the anomaly polynomial,

I6[A(1), C(1)] �
1

(2⇡)3

3
AC2

2!
F A(2) ^ F

C
(2) ^ F

C
(2)

4
(4.28)

we can write the anomaly inflow contribution as:

I5[A(1), C(1)] �
1

(2⇡)3

3
AC2

2!
A(1) ^ F

C
(2) ^ F

C
(2) + td(A(1) ^ C(1) ^ F

C
(2))

4
(4.29)

where t 2 R.
For the final term in I6[A(1), C(1)],

I6[A(1), C(1)] �
1

(2⇡)3

3
C3

3!
F C(2) ^ F

C
(2) ^ F

C
(2)

4
(4.30)

we can write:

I5[A(1), C(1)] �
1

(2⇡)3

3
C3

3!
C(1) ^ F

C
(2) ^ F

C
(2)

4
(4.31)
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Now combining (4.23), (4.26), (4.29) and (4.31), we can write the anomaly inflow(up to

the normalization of 2⇡) as:

I5[A(1), C(1)] =
1

(2⇡)3

3
A3

3!
A(1) ^ F

A
(2) ^ F

A
(2) +

A2C
2!
A(1) ^ F

A
(2) ^ F

C
(2)

+
AC2

2!
A(1) ^ F

C
(2) ^ F

C
(2) +

C3

3!
C(1) ^ F

C
(2) ^ F

C
(2)

+sd(A(1) ^ F
A
(2) ^ C(1)) + td(A(1) ^ C(1) ^ F

C
(2))

4
(4.32)

If we have the partition function of our theory under U(1)(0)A ⇥ U(1)
(0)
C symmetry as

Z[A(1), C(1)], then under the background gauge transformations of A(1) and C(1) in (4.17)

and (4.18), the partition function transforms as:

Z[A(1) + d�
A
(0), C(1) + d�

C
(0)] = e

i
s
M4
AA
(4)
[A(1),�

A
(0)
]
e
i
s
M4
AC
(4)
[C(1),�

C
(0)
]
Z[A(1), C(1)] (4.33)

where AA(4)[A(1),�
A
(0)] and A

C
(4)[C(1),�

C
(0)] are the anomalous phases generated by A(1) and

C(1) respectively.

Now we can use descent equations again on I5[A(1), C(1)], to calculate A
A
(4)[A(1),�

A
(0)] and

A
C
(4)[C(1),�

C
(0)].

Lets first calculate AA(4)[A(1),�
A
(0)].

Using the descent equation 2⇡�⇤(p)I(d+1)[B(p+1)] = dAd [B(p+1),�(p)] we can write,

2⇡��A
(0)
I5[A(1), C(1)] = dA

A
(4)[A(1),�

A
(0)] (4.34)

Now LHS =

2⇡��A
(0)
I5[A(1), C(1)] =

1

(2⇡)2

3
A3

3!
d�A(0) ^ F

A
(2) ^ F

A
(2) +

A2C
2!
d�A(0) ^ F

A
(2) ^ F

C
(2)

+
AC2

2!
d�A(0) ^ F

C
(2) ^ F

C
(2) + sd(d�

A
(0) ^ F

A
(2) ^ C(1))

+td(d�A(0) ^ C(1) ^ F
C
(2))

4
(4.35)

For the term multiplied to parameter s, we can write it as:

d(d�A(0) ^ F
A
(2) ^ C(1)) = (�1)

1
3
d�A(0) ^ d(F

A
(2) ^ C(1))

4

= �(d�A(0) ^ F
A
(2) ^ dC(1))

= �(d�A(0) ^ F
A
(2) ^ F

C
(2))

= �d(�A(0) ^ F
A
(2) ^ F

C
(2))

(4.36)
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where we used d2 = 0, dF A(2) = 0 and dC(1) = F
C
(2).

Similarly for the term multiplied to parameter t, we can write it as:

d(d�A(0) ^ C(1) ^ F
C
(2)) = (�1)

1
3
d�A(0) ^ d(C(1) ^ F

C
(2))

4

= �(d�A(0) ^ dC(1) ^ F
C
(2))

= �(d�A(0) ^ F
C
(2) ^ F

C
(2))

= �d(�A(0) ^ F
C
(2) ^ F

C
(2))

(4.37)

Now substituting (4.36) and (4.37) in (4.35) we get:

2⇡��A
(0)
I5[A(1), C(1)] =

1

(2⇡)2

3
A3

3!
d�A(0) ^ F

A
(2) ^ F

A
(2) +

A2C
2!
d�A(0) ^ F

A
(2) ^ F

C
(2)

+
AC2

2!
d�A(0) ^ F

C
(2) ^ F

C
(2) � sd(�

A
(0) ^ F

A
(2) ^ F

C
(2))

�td(�A(0) ^ F
C
(2) ^ F

C
(2))

4

=
1

(2⇡)2

3
A3

3!
d(�A(0) ^ F

A
(2) ^ F

A
(2)) +

A2C
2!
d(�A(0) ^ F

A
(2) ^ F

C
(2))

+
AC2

2!
d(�A(0) ^ F

C
(2) ^ F

C
(2))� sd(�

A
(0) ^ F

A
(2) ^ F

C
(2))

�td(�A(0) ^ F
C
(2) ^ F

C
(2))

4

=
1

(2⇡)2

3
A3

3!
d(�A(0) ^ F

A
(2) ^ F

A
(2)) +

3
A2C
2!
� s

4
d(�A(0) ^ F

A
(2) ^ F

C
(2))

+
3
AC2

2!
� t

4
d(�A(0) ^ F

C
(2) ^ F

C
(2))

4

(4.38)

Now since �A(0) 2 R, we can write:

2⇡��A
(0)
I5[A(1), C(1)] =

1

(2⇡)2
d

3
A3

3!
(�A(0)F

A
(2) ^ F

A
(2)) +

3
A2C
2!
� s

4
(�A(0)F

A
(2) ^ F

C
(2))

+
3
AC2

2!
� t

4
(�A(0)F

C
(2) ^ F

C
(2))

4

= dAA(4)[A(1),�
A
(0)]

(4.39)

Thus we can finally write the anomalous phase due to the background field A(1) as:

A
A
(4)[A(1),�

A
(0)] =

1

(2⇡)2

3
A3

3!
(�A(0)F

A
(2) ^ F

A
(2)) +

3
A2C
2!
� s

4
(�A(0)F

A
(2) ^ F

C
(2))

+
3
AC2

2!
� t

4
(�A(0)F

C
(2) ^ F

C
(2))

4 (4.40)
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Now lets calculate AC(4)[C(1),�
C
(0)].

Using the descent equation 2⇡�⇤(p)I(d+1)[B(p+1)] = dAd [B(p+1),�(p)] we can write,

2⇡��C
(0)
I5[A(1), C(1)] = dA

C
(4)[C(1),�

C
(0)] (4.41)

Now LHS =

2⇡��C
(0)
I5[A(1), C(1)] =

1

(2⇡)2

3
C3

3!
d�C(0) ^ F

C
(2) ^ F

C
(2) + sd(A(1) ^ F

A
(2) ^ d�

C
(0))

+td(A(1) ^ d�
C
(0) ^ F

C
(2))

4 (4.42)

Now lets manipulate the term multiplied to the parameter s as before for ease of calculation
b :

d(A(1) ^ F
A
(2) ^ d�

C
(0)) = dA(1) ^ F

A
(2) ^ d�

C
(0) + (�1)

1A(1) ^ d(F
A
(2) ^ d�

C
(0))

= F A(2) ^ F
A
(2) ^ d�

C
(0)

= d(F A(2) ^ F
A
(2) ^ �

C
(0))

(4.44)

and similarly we manipulate the term multiplied to the parameter t as:

d(A(1) ^ d�
C
(0) ^ F

C
(2)) = dA(1) ^ d�

C
(0) ^ F

C
(2) + (�1)

1A(1) ^ d(d�
C
(0) ^ F

C
(2))

= F A(2) ^ d�
C
(0) ^ F

C
(2)

= d(F A(2) ^ �
C
(0) ^ F

C
(2))

(4.45)

bWe can write the last step of this calculation since:

d(FA(2) ^ F
A
(2) ^ �

C
(0)) = dF

A
(2) ^ F

A
(2) ^ �

C
(0)) + (�1)

2FA(2) ^ d(F
A
(2) ^ �

C
(0))

= FA(2) ^ (dF
A
(2) ^ �

C
(0) + (�1)

2FA(2) ^ d�
C
(0))

= FA(2) ^ F
A
(2) ^ d�

C
(0) which is step 2

(4.43)
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Now substituting (4.44) and (4.45) in (4.42) we get:

2⇡��C
(0)
I5[A(1), C(1)] =

1

(2⇡)2

3
C3

3!
d�C(0) ^ F

C
(2) ^ F

C
(2) + sd(F

A
(2) ^ F

A
(2) ^ �

C
(0))

+td(F A(2) ^ �
C
(0) ^ F

C
(2))

4

=
1

(2⇡)2

3
C3

3!
d(�C(0)F

C
(2) ^ F

C
(2)) + sd(�

C
(0)F

A
(2) ^ F

A
(2))

+td(�C(0)F
A
(2) ^ F

C
(2))

4
· · · · · · since �C(0) 2 R

=
1

(2⇡)2
d

3
C3

3!
(�C(0)F

C
(2) ^ F

C
(2)) + s(�

C
(0)F

A
(2) ^ F

A
(2))

+t(�C(0)F
A
(2) ^ F

C
(2))

4

= dAC(4)[C(1),�
C
(0)]

(4.46)

Thus we can write the anomalous phase due to the background field C(1) as:

A
C
(4)[C(1),�

C
(0)] =

1

(2⇡)2

3
C3

3!
(�C(0)F

C
(2) ^ F

C
(2)) + s(�

C
(0)F

A
(2) ^ F

A
(2))

+t(�C(0)F
A
(2) ^ F

C
(2))

4 (4.47)

Now we know that we couple the background fields to the action of our theory by the

following terms :

S̃ = i
⁄

M4

A(1) ^ ?J
A
(1) + i

⁄

M4

C(1) ^ ?J
C
(1) (4.48)

Now under the gauge transformations of A(1) and C(1),

��A
(0)
,�C
(0)
S̃ = i

⁄

M4

d�A(0) ^ ?J
A
(1) + i

⁄

M4

d�C(0) ^ ?J
C
(1)

= �i
⁄

M4

�A(0) ^ d ? J
A
(1) � i

⁄

M4

�C(0) ^ d ? J
C
(1) · · ·Taking boundary terms to 0

(4.49)

Now comparing this to (4.40) and (4.47), we see that the anomalous phasesAA(4)[A(1),�
A
(0)]

and AC(4)[C(1),�
C
(0)] lead to non conservation equations [32]:

d ? JA(1) = �
i

(2⇡)2

3
A3

3!
(F A(2) ^ F

A
(2)) +

3
A2C
2!
� s

4
(F A(2) ^ F

C
(2))

+
3
AC2

2!
� t

4
(F C(2) ^ F

C
(2))

4 (4.50)
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d ? JC(1) = �
i

(2⇡)2

3
C3

3!
(F C(2) ^ F

C
(2)) + s(F

A
(2) ^ F

A
(2))

+t(F A(2) ^ F
C
(2))

4 (4.51)

Now to derive the 2-group structure out of the parent theory U(1)(0)A ⇥ U(1)
(0)
C we would

like to gauge the subgroup U(1)(0)C of the parent theory.

Gauging the subgroup U(1)(0)C requires the background field C(1) to become dynamical:

U(1)(0)C 7! U(1)
(0)
c (4.52)

C(1) 7! c(1) (4.53)

F C(2) 7! f
c
(2) f c(2) = dc(1) (4.54)

Since we are gauging U(1)(0)C , we can add a counter term to make the kinetic term of

our action gauge invariant just like we did in the section on [Gauging the Higher Form

Symmetries of 4d Maxwell],

+
1

2e2

⁄

M4

f c(2) ^ ?f
c
(2) (4.55)

where e is the gauge coupling c.

Now since we want to gauge U(1)(0)C , we need it to be anomaly free. This requires setting

the anomalous phase:

A
C
(4)[C(1),�

C
(0)] = 0 (4.56)

Looking at (4.47), this means we need:

C3 = 0 s, t = 0 (4.57)

This lead to the conservation equation:

d ? JC(1) = 0 (4.58)

cWe can also add a topological action term involving ✓ to our theory to express some ABJ anomalies as
shift in ✓-terms. For more details on this refer [32].
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Now setting s, t = 0, sets the anomalous phase AA(4)[A(1),�
A
(0)] to:

A
A
(4)[A(1),�

A
(0)] =

1

(2⇡)2

3
A3

3!
(�A(0)F

A
(2) ^ F

A
(2)) +

A2C
2!
(�A(0)F

A
(2) ^ F

C
(2))

+
AC2

2!
(�A(0)F

C
(2) ^ F

C
(2))

4 (4.59)

and now the non-conservation equation is:

d ? JA(1) = �
i

(2⇡)2

3
A3

3!
(F A(2) ^ F

A
(2)) +

A2C
2!
(F A(2) ^ F

C
(2))

+
AC2

2!
(F C(2) ^ F

C
(2))

4 (4.60)

Lets first look at the anomaly with AC2 term.

Under gauging U(1)(0)C , the anomalous phase associated to the AC2 term becomes:

AC2

8⇡2
(�A(0)f

c
(2) ^ f

c
(2)) (4.61)

This is an ABJ anomaly term associated to the U(1)(0)A symmetry. We will assume that

U(1)(0)A has no ABJ anomaly for simplicity of calculations and thus we set:

AC2 = 0 (4.62)

Thus we have the anomalous phase as:

A
A
(4)[A(1),�

A
(0)] =

1

(2⇡)2

3
A3

3!
(�A(0)F

A
(2) ^ F

A
(2)) +

A2C
2!
(�A(0)F

A
(2) ^ F

C
(2))

4
(4.63)

Now lets examine the anomalous phase associated to the A2C term.

Under gauging U(1)(0)C , the anomalous phase associated to the A2C term becomes:

A2C
8⇡2
(�A(0)F

A
(2) ^ f

C
(2)) (4.64)

and thus the action varies as:

�S = i
A2C
8⇡2

⁄

M4

�A(0)F
A
(2) ^ f

C
(2) (4.65)

and from (4.50) we can see that this leads to the non-conservation equation:

d ? JA(1) � �
iA2C
8⇡2

(F A(2) ^ f
C
(2)) (4.66)
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Now we will try to convert this non-conservation equation into a conservation equation

and in doing so will obtain the 2-group structure of the parent theory.

Gauging U(1)(0)C we can construct a new 2-form current using the dynamical (magnetic)

field strength f c(2) :

JB(2) =
i

2⇡
? f c(2) (4.67)

Now this 2-form current is conserved:

d ? JB(2) =
i

2⇡
d ? (?f c(2)) =

i

2⇡
df c(2) = 0 (4.68)

since df c(2) = 0.

Now we can think of the 2-form conserved current JB(2) as arising from a 2-form background

gauge field B(2) and thus we can couple our theory with the term:

SB =
⁄

M4

B(2) ^ ?J
B
(2) =

i

2⇡

⁄

M4

B(2) ^ f
c
(2) (4.69)

Now since we have a 2-form background field B(2), we can think of this as being associated

to a U(1)(1)B 1-form symmetry, where B(2) has the gauge transformation :

B(2) 7! B(2) + d⇤
B
(1) (4.70)

To cancel the anomalous phase in (4.66), we can define the background field B(2) under-

goes a particular shift under the background gauge transformations of U(1)(0)A :

B(2) 7! B(2) �
A2C
4⇡

�A(0)F
A
(2) (4.71)

Lets look at the variation of the coupled term SB under the gauge transform of U(1)
(0)
A :

��A
(0)
SB =

i

2⇡

⁄

M4

(�
A2C
4⇡

�A(0)F
A
(2)) ^ f

c
(2)

= �i
A2C
8⇡2

⁄

M4

�A(0)F
A
(2) ^ f

c
(2)

(4.72)

which is exactly of the same form (with opposite sign) as (4.65).

Hence adding SB to our action and then undergoing the gauge transform under U(1)
(0)
A

after gauging U(1)(0)C , we can cancel the anomalous phase due to U(1)
(0)
A by having the
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background field B(2) transform as:

B(2) ! B(2) + d⇤
B
(1) +

A
2⇡
�A(0)F

A
(2) (4.73)

which is exactly of the form (4.4) as we mentioned above. Here we can set:

A = �
1

2
A2C (4.74)

This particular shift of B(2) is called a 2-group shift and is analogous to the Green-Schwarz

Mechanism we talked about earlier.

Lets summarize the above discussion in a statement:

Statement 4.2.2

We can say that the parent theory U(1)(0)A ⇥ U(1)
(0)
C has a 2-group structure :

G(2) = U(1)(0)A ⇥A U(1)
(1)
B ,A = �

1

2
A2C (4.75)

given that we have

1. The anomaly polynomial of the parent theory as:

I6[A(1), C(1)] =
1

(2⇡)3

3
A3

3!
F A(2) ^ F

A
(2) ^ F

A
(2) +

A2C
2!
F A(2) ^ F

A
(2) ^ F

C
(2)

4
(4.76)

2. The anomaly inflow of the parent theory as:

I5[A(1), C(1)] =
1

(2⇡)3

3
A3

3!
A(1) ^ F

A
(2) ^ F

A
(2) +

A2C
2!
A(1) ^ F

A
(2) ^ F

C
(2)

4
(4.77)

3. The anomalous phase of the parent theory as:

A
A
(4)[A(1),�

A
(0)] =

1

(2⇡)2

3
A3

3!
(�A(0)F

A
(2) ^ F

A
(2)) +

A2C
2!
(�A(0)F

A
(2) ^ F

C
(2))

4

(4.78)

The anomaly coe�cients A3 and A2C can be evaluated using triangle diagrams or Fu-

jikawa’s method of derivation of anomaly. The anomaly associated A3 can be reevaluated

and some part of it can be called by using a counter term formed by the shift due Green

Schwarz Mechanism. We will not be discussing this in detail. For readers interested in

the rigorous treatment of this term, refer [32].
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We know that ’t Hooft anomalies can be tracked along the renormalization group flow

and hence the anomaly in UV matches the anomaly in IR [29]. The 2-group structure

constants A stay the same along the RG flow. We can summarize the structure of the

above example of the 2-group G(2) = U(1)(0)A ⇥A U(1)
(1)
B in a neat diagram inspired from

[32].

Figure 4.1: This diagram illustrates the above procedure of deriving a 2-group structure. The

vertical arrows on both the sides represent ’t Hooft anomaly matching[29] along the RG flow

and the horizontal arrows on both the top and the bottom, represent the derivation of the

2-group structure of parent theory U(1)(0)A ⇥ U(1)
(0)
C with a mixed A2C ’t Hooft anomaly by

gauging the subgroup U(1)(0)C to generate a theory with U(1)
(0)
A ⇥AU(1)

(1)
B 2-group symmetry.

Here the partition functions of the parent theory are labelled with the subscript [1], and those

of the 2-group theory are labelled with the subscript [2].
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4.2.2 Some General Continuous 2-groups

In the previous section, we only discussed a specific example of 2-group symmetry G(2) =
U(1)(0)A ⇥A U(1)

(1)
B . We will now briefly discuss some other general cases of continuous

2-group structure.

Following the above discussion, we know how to construct 2-group structure of a parent

theory now. In summary, if we have parent theories of the form G(0) ⇥ U(1)(0)C with some

mixed ’t Hooft anomaly, where G(0) can be an abelian or non-abelian subgroup of the

parent theory, then we gauge the U(1)(0)C subgroup of the parent theory. Gauging the

U(1)(0)C subgroup gives us a conserved 2-form J
B
(2) current formed by the dynamical field

strength of U(1)(0)c which can be thought of as sourced by a background field B(2) of

U(1)(1)B 1-form group. The anomalous phase of the theory is cancelled by term coupled to

our theory due to the background field B(2) of U(1)
(1)
B , which looks like

s
M4
B(2) ^ ?J

B
(2).

The anomalous phase is cancelled upon gauge transformation of B(2) which is analogous

to the Green-Schwarz mechanism, and is determined by the anomalous phase due to G(0).

Lets look at some general cases [32]:

Abelian 2 group symmetry:

We can have a general parent theory (
r
N U(1)

(0)
N )⇥U(1)

(0)
C which has a 2-group structure:

(
Ÿ

N

U(1)(0)N )⇥NM U(1)
(1)
B ,NM 2 Z (4.79)

Here we have the background fields AN(1) associated to the
r
N U(1)

(0)
N subgroup with the

gauge transformations:

AN(1) 7! A
N
(1) + d�

N
(0) (4.80)

and the 2-form gauge field B(2) has the gauge transformation:

B(2) 7! B(2) + d⇤
B
(1) +

ÿ

N,M

NM
2⇡

�N(0)dA
N
(1) (4.81)

Non-Abelian 2 group symmetry:

We can also have a parent theory with the symmetry group G(0) ⇥ U(1)(0)C where G
(0) is

a non-abelian group. For calculation purposes lets consider G(0) = SU(N)(0)A .
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Hence we have a parent theory SU(N)(0)A ⇥ U(1)
(0)
C which has a 2-group structure:

SU(N)(0)A ⇥A U(1)
(1)
B ,A 2 Z (4.82)

Here the 2-form background field B(2) has the gauge transformation:

B(2) 7! B(2) + d⇤
B
(1) +

A
4⇡
tr(�N(0)dA(1)) (4.83)

We have the above 2-group shift of B(2), since to construct the anomaly polynomial of a

theory with SU(N)(0)A subgroup, we have the contributions of terms like:

1

(2⇡)r
tr

3
(dA(1))

r
4

, r � 2 (4.84)

In general we can also have a Poincaré 2-group symmetry, P ⇥P U(1)
(1)
B which have the

background fields B(2) with the transformation:

B(2) 7! B(2) + d⇤
B
(1) +

P
16⇡
tr(✓(0)d!(1)) ,P 2 Z (4.85)

Here ✓(0) is a local SO(4) frame rotation and !
a
(1)b is the matrix valued 1-form spin

connection:

! a(1)b = �
a

bc ✓̂
b (4.86)

where � a
bc are the connection components in non-coordinate basis and ✓̂

b are the dual

non-coordinate basis [9].

For more details of the general cases including the Poincaré 2-group symmetry please refer

[32].
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4.3 Example: QED like Model

Lets understand 2-group symmetry further using a simple example of a QED like model

with 4 Weyl fermions. Lets consider the parent theory with the symmetry group:

U(1)(0)A ⇥ U(1)
(0)
C (4.87)

where U(1)(0)A is the gauge group and U(1)
(0)
C is the global symmetry flavour group with

the background fields A(1) and C(1) with the gauge transformations:

A(1) 7! A(1) + d�
A
(0) (4.88)

C(1) 7! C(1) + d�
C
(0) (4.89)

Lets consider the theory with the following action:

S =
⁄
d4x

3
i ̄+L �̄

µ@µ 
+
L + i ̄

�
L �̄
µ@µ 

�
L + i ̄

+
R�
µ@µ 

+
R + i ̄

�
R�
µ@µ 

�
R

4
(4.90)

where �µ = (1,�i) d.

Lets assign some arbitrary charges to the Weyl fermions  +L , 
�
L , 

+
R , 

�
R under the sym-

metry U(1)(0)A ⇥ U(1)
(0)
C :

Fields U(1)(0)A U(1)(0)C

 +L +1 +1

 +R -1 +1

 �L +q -1

 �R �q -1

Table 4.1: Charge table for Weyl Fermions under U(1)(0)A ⇥ U(1)
(0)
C

We can clearly see that the above action is invariant under the U(1)(0)A ⇥U(1)
(0)
C symmetry

group as:

 ̄+L �̄
µ@µ 

+
L 7! e

�i↵e�i�e i↵e i� ̄+L �̄
µ@µ 

+
L =  ̄

+
L �̄
µ@µ 

+
L (4.91)

 ̄+R�
µ@µ 

+
R 7! e

i↵e�i�e�i↵e i� ̄+R�
µ@µ 

+
R =  ̄

+
R�
µ@µ 

+
R (4.92)

 ̄�L �̄
µ@µ 

�
L 7! e

�iq↵e+i�e iq↵e�i� ̄�L �̄
µ@µ 

�
L =  ̄

�
L �̄
µ@µ 

�
L (4.93)

 ̄�R�
µ@µ 

�
R 7! e

iq↵e i�e�iq↵e�i� ̄�R�
µ@µ 

�
R =  ̄

�
R�
µ@µ 

�
R (4.94)

d�i are the Pauli Matrices: �1 =

3
0 1
1 0

4
�2 =

3
0 �i
i 0

4
�3 =

3
1 0
0 �1

4
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where e i↵ 2 U(1)(0)A ,↵ 2 S1 and e i� 2 U(1)(0)C ,� 2 S1 Now from the above sec-

tion on [Construction of Anomaly Polynomials], we know that the most general anomaly

polynomial for this model can be written as:

I6[A(1), C(1)] =
1

(2⇡)3

3
A3

3!
F A(2) ^ F

A
(2) ^ F

A
(2) +

A2C
2!
F A(2) ^ F

A
(2) ^ F

C
(2)

+
AC2

2!
F A(2) ^ F

C
(2) ^ F

C
(2) +

C3

3!
F C(2) ^ F

C
(2) ^ F

C
(2)

4 (4.95)

where F A(2) = dA(1) and F
C
(2) = dC(1).

Now lets gauge the U(1)(0)C subgroup of the parent theory which leads to the background

field C(1) being dynamical,

U(1)(0)C 7! U(1)
(0)
c (4.96)

C(1) 7! c(1) (4.97)

F C(2) 7! f
c
(2) f c(2) = dc(1) (4.98)

This leads to the anomaly polynomial be written as:

I6[A(1), c(1)] =
1

(2⇡)3

3
A3

3!
F A(2) ^ F

A
(2) ^ F

A
(2) +

A2C
2!
F A(2) ^ F

A
(2) ^ f

C
(2)

+
AC2

2!
F A(2) ^ f

C
(2) ^ f

C
(2) +

C3

3!
f C(2) ^ f

C
(2) ^ f

C
(2)

4 (4.99)

Now from Appendix A, we can conclude that the anomaly coe�cients for the parent theory

U(1)(0)A ⇥ U(1)
(0)
C are:

A3 =
ÿ

 CN

3
r CN

43
(4.100)

A2C =
ÿ

 CN

3
r CN

423
p CN

4
(4.101)

AC2 =
ÿ

 CN

3
r CN

43
p CN

42
(4.102)

C3 =
ÿ

 CN

3
p CN

43
(4.103)

where N = {L,R}, C = {+,�}.

r CN are the charges of the Weyl fermions under U(1)
(0)
A symmetry and p CN are the charges

of the Weyl fermions under U(1)(0)C .
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Now by using Table [4.1], we can compute these anomaly coe�cients as:

A3 =
ÿ

 CN

3
r CN

43
= (+1)3 + (�1)3 + (+q)3 + (�q)3 = 0 (4.104)

A2C =
ÿ

 CN

3
q CN

423
p CN

4
= (+1)(+1)2 + (+1)(�1)2 + (�1)(+q)2 + (�1)(�q)2 = 2(1� q2)

(4.105)

AC2 =
ÿ

 CN

3
q CN

43
p CN

42
= (+1)2(+1) + (+1)2(�1) + (�1)2(+q) + (�1)2(�q) = 0

(4.106)

C3 =
ÿ

 CN

3
p CN

43
= (+1)3 + (+1)3 + (�1)3 + (�1)3 = 0 (4.107)

Now we know that to successfully gauge U(1)(0)C subgroup, we need that there be no ’t

Hooft anomaly and no ABJ anomaly in the U(1)(0)A current, i.e we need;

A3 = 0 AC2 = 0 (4.108)

which we have in our theory as per our calculations above. Now substituting (4.104),

(4.105), (4.106) and (4.107) in (4.99), we get:

I6[A(1), c(1)] =
1

(2⇡)3

3
A2C
2!
F A(2) ^ F

A
(2) ^ f

C
(2)

4
=
2(1� q2)

16⇡3
F A(2) ^ F

A
(2) ^ f

C
(2) (4.109)

Now using the descent equations (3.15), we can write the anomaly polynomial as :

I6[A(1), c(1)] =
2(1� q2)

16⇡3
d(A(1) ^ F

A
(2) ^ f

C
(2)) = dI5[A(1), c(1)] (4.110)

Thus the anomaly inflow is:

I5[A(1), c(1)] =
2(1� q2)

16⇡3
A(1) ^ F

A
(2) ^ f

C
(2) (4.111)
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Lets use descent equations, again to calculate the anomalous phase:

dA(4)[A(1), c(1)] = 2⇡��A
(0)
I5[A(1), c(1)]

=
2(1� q2)

8⇡2
d�A(0) ^ F

A
(2) ^ f

C
(2)

=
2(1� q2)

8⇡2
d(�A(0)F

A
(2) ^ f

C
(2))

(4.112)

Thus we can write:

A(4)[A(1), c(1)] =
(1� q2)

4⇡2
�A(0)F

A
(2) ^ f

C
(2) (4.113)

Now under gauging U(1)(0)C , we generate an anomaly:

Sanom = i
(1� q2)

4⇡2

⁄

M4

�A(0)F
A
(2) ^ f

C
(2) (4.114)

Now as before, we can cancel the anomalous phase by coupling 2-form background field

B(2) to our theory by adding the term:

SB =
⁄

M4

B(2) ^ ?J
B
(2) (4.115)

where we can think of JB(2) as the 2-form current built of the dynamical (magnetic)field

strength f c(2):

JB(2) =
i

2⇡
? f c(2) , d ? JB(2) = 0 (4.116)

Thus we write SB as:

SB =
i

2⇡

⁄

M4

B(2) ^ f
c
(2) (4.117)

Now we assign the following shift to B(2) under gauge transformations of U(1)
(0)
A :

B(2) 7! B(2) �
A2C
4⇡

�A(0)F
A
(2) (4.118)

Substituting (4.105) in the above equation, we get the shift in B(2) as:

B(2) 7! B(2) �
2(1� q2)

4⇡
�A(0)F

A
(2) (4.119)
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Now we can see that under gauge transformations of U(1)(0)A ,

��A
(0)
SB = �

i

2⇡

⁄

M4

2(1� q2)

4⇡
�A(0)F

A
(2) ^ f

c
(2)

= �i
(1� q2)

4⇡2

⁄

M4

�A(0)F
A
(2) ^ f

c
(2)

= �Sanom

(4.120)

Hence adding SB to our action cancels the anomaly and we have a non-anomalous theory.

Now since we have a 2-form background field B(2), we can think of this as being associated

to a U(1)(1)B 1-form symmetry, where B(2) has the gauge transformation :

B(2) 7! B(2) + d⇤
B
(1) �

(1� q2)

2⇡
�A(0)F

A
(2) (4.121)

Thus, we can conclude that this particular example of a QED like model has the 2-group

structure :

G(2)QED = U(1)
(0)
A ⇥A U(1)

(1)
B ,A = �(1� q

2) (4.122)

where A is the 2-group structure constant.

Interesting we can also observe using (4.105) that:

A = �
1

2
A2C = �(1� q

2) (4.123)
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Summary and Future Work

Summary

Beginning with our exploration of higher form symmetries in the first chapter [Higher

Form Symmetries], we embarked on a journey into a novel topological approach to un-

derstanding symmetries. As we constructed the formalism, we understood the action of

higher form symmetries on higher dimensional operators. In passing we note that p-form

symmetries can act on q-dimensional extended operators (q � p) using higher repre-

sentations. This falls under a really interesting area of research on generalised charges

[14, 15, 18]. We also looked at the example of 4D Maxwell theory and proved that it pos-

sesses a U(1)(1)elc.⇥U(1)
(1)
mag. global symmetry. We also had a sneak peek into the concept

of anomaly inflow and how it helped to cancel the anomaly of 4D Maxwell theory under

gauging both U(1)(1)elc.⇥U(1)
(1)
mag. simultaneously. For undertstanding on Maxwell theory in

d = 2, 3 please refer [47]. Although our primary emphasis was on the formalism for con-

tinuous symmetries yet it’s worth noting that even discrete symmetries can be considered

within the context of topological symmetries despite lacking a conserved current. For an

in-depth exploration of discrete symmetries as generalized symmetries, a comprehensive

resource can be found in [1, 6, 7].

In the subsequent chapter on [Anomalies], we delved into the intricate art of calculating

anomalies through the application of anomaly polynomials and inflow. These concepts

are pivotal and serve as the building blocks for our next chapter. To delve deeper into the

realm of anomalies, please refer [21, 27, 48].

In our final chapter on [Higher Groups], we extended our discussion to encompass higher

group symmetries within the framework of higher form symmetries. Here, we gained
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insights into the types of theories that can exhibit such structures and learned how to derive

the higher group structure of a theory using anomaly polynomials. We culminated our

exploration by examining a QED-like model, shedding light on why it possesses a 2-group

structure. While we extensively covered the continuous abelian case, we also provided

a brief overview of non-abelian continuous cases. Furthermore, for those intrigued by

the fascinating realm of higher-group structures, a deep dive into the 3-group structure

in Axionic Yang-Mills can be found in [49]. We can also form discrete higher groups

using discrete 0-form symmetries. Although we did not explore it extensively here, the

mathematics of category theory also provides insights in our discussion of continuous

higher groups [50, 51].

The concept of spontaneous symmetry breaking also plays a very important role in the

context of higher form symmetries. Extensive literature on this can be found in [6, 52, 47].

Future Work

There are a lot of areas of research that have been explored or are still under work that I

want to explore further.

• One of captivating avenue of research lies in contemplating higher form symmetries

and extended operators within the domain of gravity. This is done by constructing

generalized symmetries for linearised gravity. This has extensively been dealt with in

[53, 54, 55].

• While this thesis focused exclusively on Invertible higher form symmetries, it’s note-

worthy that there exists another formalism of Non-Invertible symmetries [16, 17, 18,

19, 56, 57], encompassing the construction of symmetries from higher categorical

symmetries. The fusion rule for Non-Invertible symmetries deviates from the group

associativity law and takes the form [35]:

Ug1(⌃)⌦ Ug2(⌃) =
ÿ

i

Ugi (⌃i) (5.1)

Example: The Ising Model studied in Conformal Field Theories exhibits a Non-

Invertible symmetry [58].

• Symmetries in String Theory and Holography are quite an exciting area of research.

They are explored using the tool of SymTFT - Symmetry Topological Field Theory

(used to separate the physical theory from its symmetries) and geometric engineering

on invertible and non-invertible symmetries. Research on this can be found in [59,

60, 61, 62, 57] and many more.
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In conclusion, I would like to express my fascination with this formalism and my hope to

continue working on it in the future. It is a captivating field with vast potential for further

exploration and discovery.
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Appendix A

QED Anomaly Calculation

This calculation is based on the highly influential paper by Kazuo Fujikawa in 1979 [22]

[Erratum [63]], on anomaly calculation using the path integral measure for theories with

gauge-invariant fermions. We will be using some results from this paper and from [23].

The calculation has also been explained in detail in [64, 23, 27, 65].

We will be calculating the anomaly for a theory with a Dirac fermion. The anomaly for

a theory with the Weyl fermion can be analogously calculated by shifting from Dirac to

Weyl Representation.

Lets consider a theory with a massless Dirac fermion coupled to the electromagnetic field

with the partition function:

Z =
⁄
D D ̄e iS[ ] (A.1)

where the action,

S[ ] =
⁄
d4x i ̄ 6@ (A.2)

where 6@:= �µ@µ. a

Here  is a Dirac fermion which is a 2-component Weyl Fermion:

 =

Q

a  L

 R

R

b (A.3)

aHere �µ are the Cli↵ord algebra matrices in Dirac representation

�0 =

3
0 12
12 0

4
, � i =

3
0 �i

��i 0

4
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In terms of the Weyl fermions we write the action as:

S[ ] =
⁄
d4x i ̄L�̄

µ@µ L + i ̄R�
µ@µ R (A.4)

We have the action (A.2) invariant under a U(1) vector symmetry under which the Dirac

fermion transforms as:

 7! e iq↵ (A.5)

and a U(1) axial symmetry under which the Dirac fermion transforms as [23]:

 7! e iq↵�
5
 (A.6)

Here e i↵ 2 U(1) ,↵ is a constant.

q is the charge of the Dirac fermion under U(1) symmetry rotation. Now we can write

the infinitesimal shift due to the axial symmetry as:

� = iq↵�5 , � ̄ = iq↵ ̄�5 (A.7)

Now under gauging the U(1) axial symmetry, we see have the following transformations:

Cµ 7! cµ (A.8)

6@ 7!6D=6@ �iqcµ (A.9)

cµ(x) 7! cµ(x) + @µ↵(x) (A.10)

where Cµ was the background gauge field associated to U(1) axial symmetry. Hence we

see that now ↵ is position dependent.

The above map from 6@ 7!6D takes place due to the coupling of the dynamical background

field cµ in the action S. Now our actions looks like:

S[ , cµ] =
⁄
d4x i ̄ 6D (A.11)

and the partition function can be written as:

Z[cµ] =
⁄
D D ̄e iS[ ,cµ] (A.12)

Now according to [22], the anomaly in the axial symmetry can be calculated using the

anomaly in the measure of the path integral, which now is invariant under the infinitesimal
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shifts due to the axial rotations even though the action is still invariant.

Fujikwa Method

Lets calculate the anomaly in the measure:

⁄
D D ̄ (A.13)

From [22, 27], we know that we can redefine the Dirac fermion as:

 0 =  + iq↵�5 ,  ̄0 =  ̄ + iq↵ ̄�5 (A.14)

This change of variables is due to transformation of coordinates under the infinitesimal

axial rotations which in-turn generates a Jacobian which will be the reason for the anomaly.

Lets first write the measure (A.13) in a form that is better suited for the calculation of

the Jacobian.

The following method of writing the measure in terms of it’s eigenfunctions is famously

what is mentioned in [22].

The Dirac operator 6D has eigenfunctions �n, which are 4-component spinors:

i 6D �n = �n�n (A.15)

where �i�n are the eigenvalues.

This eigenfunction basis has an orthonormality condition:

⁄
d4x �̄n�m = �nm (A.16)

Now we expand the Dirac spinor  in terms of these eigenfunction basis as:

 (x) =
ÿ

n

an�n(x) (A.17)

where an are Grassmann-valued numbers [23].

We can also express  ̄ in terms of eigenfunction basis as:

 ̄(x) =
ÿ

n

b̄n�̄n(x) (A.18)
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Now substituting (A.16), (A.17), (A.18) in (A.13), we get:

⁄
D D ̄ =

Ÿ

nm

⁄
db̄ndam�nm =

Ÿ

n

⁄
db̄ndan (A.19)

and substituting (A.16), (A.17), (A.18) in (A.11), we get:

S[ , cµ] =
⁄
d4x i ̄ 6D =

⁄
d4 i

ÿ

n

b̄n�̄n(x)(�i)�n
ÿ

m

am�m(x) =
ÿ

n

�nb̄nan (A.20)

Thus now we can write the partition function (A.12) as:

Z[cµ] =
⁄
D D ̄e iS[ ,cµ] =

Ÿ

n

⁄
db̄ndan exp

3 ÿ

n

�nb̄nan

4

=
Ÿ

n

⁄
db̄ndan

3
1 +

ÿ

n

�nb̄nan + · · ·
4

=
Ÿ

n

�n = i 6D · · ·

3
Since

⁄
db̄n b̄n = 1,

⁄
dan an = 1,

⁄
db̄n =

⁄
dan = 0

4

(A.21)

where to write the last step we used the rules of Grassmann integration b.

Now lets look at how the integral measure transforms under the infinitesimal axial rotations

(A.14).

These axial rotations vary the the Grassmann parameters an and b̄n :

ÿ

n

a0n�n(x) =
ÿ

n

an�n(x) + iq↵�
5

ÿ

n

an�n(x) (A.22)

Thus,

ÿ

n

�an�n = iq↵
ÿ

m

am�
5�n (A.23)

=) �an = iq↵am�
5 (A.24)

Now using the orthonormality relation (A.16) we can insert a complete set of states in

between which gives us:

�an = i�nmq↵am�
5 = iqam

⁄
d4x↵�̄n�

5�m (A.25)

bdetails can be found in [66] or any QFT textbook. For reference if ⌘ is grassmann variable then d⌘ = @
@⌘
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since ↵ is now position dependent as discussed earlier.

Now lets relabel �an as:

�an = Cnmam (A.26)

where,

Cnm = iq
⁄
d4x↵�̄n�

5�m (A.27)

Now since the shift in Dirac fermion due to the axial symmetry is same on both  and

 ̄, the Jacobian for the transformation of bn is same as that of an. Thus the integral

measure under the axial rotation is:

⁄
D D ̄ =

Ÿ

n

⁄
db̄ndan =

Ÿ

n

⁄
db̄0nda

0
nJ
2 (A.28)

where we the Jacobian J is inverse of determinant of the transformation due to the axial

rotation from:

an 7! a
0
n = an + Cnmam or bn 7! b

0
n = bn + Cnmbm (A.29)

Hence,

J = det�1 (�nm + Cnm) (A.30)

wherein we have written the above result from [23].

Now using binomial theorem, we can write(upto leading order):

J = det�1 (�nm + Cnm) = det (�nm � Cnm) (A.31)

and now for n = m, using taylor expansion(upto leading order), and the property of

determinant and traces, we can express the jacobian as:

J = det (�nm � Cnm) = det e
�Cnn = exp

3
� tr(Cnn)

4
(A.32)

Thus, our final expression for the Jacobian is:

J = exp

A

�iq
⁄
d4x↵(x)

ÿ

n

�̄n(x)�
5�n(x)

B

(A.33)
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This Jacobian J is now the anomaly of the theory !! Lets evaluate it further.

Now we use the result from [22, 23] and directly write:

A
ÿ

n

�̄n(x)�
5�n(x)

B

=
q2

32⇡2
✏µ⌫⇢�Fµ⌫F⇢� (A.34)

Now we use the equation for the 2-form field strength:

F =
1

2
Fµ⌫dx

µ
^ dx⌫ (A.35)

and we can write the Jacobian as:

J = exp

A

i
q3

8⇡2

⁄

M4

↵(x)F ^ F

B

(A.36)

If we have multiple Dirac fermions with U(1) axial symmetry, then the Jacobian can be

written as:

J = exp

A

i

q
n q
3
n

8⇡2

⁄

M4

↵(x)F ^ F

B

(A.37)

where qn is the charge of each Dirac fermion under the U(1) axial symmetry. In Weyl

representation, we can write the the Jacobian as:

J = exp

Q

ai
q
n (q

L,R
n )

3

8⇡2

⁄

M4

↵(x)F ^ F

R

b (A.38)

where qL,Rn is the charge of each Weyl fermion under the U(1) axial symmetry.

Finally we can see that the above equation matches the first term of anomaly that we

derived using the anomaly polynomial in the previous chapter. Hence:

A3 =
ÿ

n

(qL,Rn )
3

(A.39)

Now lets consider we have another symmetry U(1)T with the background field T(1) under

which the measure is not invariant under gauging U(1)T . This will result in the Jacobian:

J = exp

A

i

q
n (q

L,R
n )(p

L,R
n )

2

8⇡2

⁄

M4

↵(x)FA ^ fT

B

(A.40)
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where pL,Rn is the charge of each Weyl fermion under the U(1)T symmetry.

Thus,

AT 2 =
ÿ

n

(qL,Rn )(p
L,R
n )

2 (A.41)

We can similarly write:

A2T =
ÿ

n

(qL,Rn )
2(pL,Rn ) T 3 =

ÿ

n

(pL,Rn )
3

(A.42)
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2.1 Given the 4-momemtum pµ of a QFT, the contour of the p0 part of the in-

tergal of the 1-loop contribution of self energy, i.eH(~p) =
s1
�1

dp0

2⇡
i

(p0)2�(~p2+m20)+i✏

of I =
s dd�1~p
(2⇡)d�1 H(~p), can be rotated due to the positions of the poles

shown above and hence we get ik0E = p
0 and hence the Euclidean 4-

momentum is now kµE = (�ip
0, ~p). . . . . . . . . . . . . . . . . . . . . . 5

2.2 In the above figure we illustrate the action of the topological operator

Ug(Sd�1) on the local operator 'iR(x). [Left] Wrapping of '
i
R(x) by

Ug(Sd�1); [Centre] Action of Ug(Sd�1) on 'iR(x) by contracting it so

that it crosses the local operator. Note that Ug(S0d�1) does not link the

transformed 'iR(x); [Right] Ug(S
0d�1) can be topologically deformed and

shrunk to a point giving us the desired result of the action R(g)i j '
j
R(x) . 10

2.3 [Left:] Here we see how the topolgical operator Ug(Sd�2) wraps around a

line operator Lq(�). [Center:] We homotopically deform Ug(Sd�2) till it

crosses the line operator to get the transformed operator R(g) ·Lq(�) and

Ug(S0d�2). [Right:] Since S0d�2 and � do not link, we can homotopically

deform Ug(S0d�2) to point giving us the action of the topological operator

Ug(Sd�2) wraps on the line operator Lq(�). . . . . . . . . . . . . . . . . 19

2.4 The first figure depicts a configuration of both the topological operators

Ug1(⌃d�2) and Ug2(⌃d�2) wrapping a charged line operator Lq(�). We

see that how we can topologically deform these operators such that we

can exchange the configuration of these operators. . . . . . . . . . . . . 20

3.1 This diagram illustrates the one loop Feynmann diagram which calculates

the anomaly. The wiggly lines represent gauge fields and each vertex we

assign a current. The arrows represent the running of fermions along the

triangle loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
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3.2 [Left] This is the theory Td+1 which has the action Sinflow; [Center] This

is the boundary theory Td with the anomaly Ad [B(p+1),�(p)]; [Right] This

is where we have combined the bulk and boundary theory to get a non

anomalous theory with the partition function Z̃[B(p+1)] as in (3.12) . . . 40

4.1 This diagram illustrates the above procedure of deriving a 2-group struc-

ture. The vertical arrows on both the sides represent ’t Hooft anomaly

matching[29] along the RG flow and the horizontal arrows on both the

top and the bottom, represent the derivation of the 2-group structure of

parent theory U(1)(0)A ⇥ U(1)
(0)
C with a mixed A2C ’t Hooft anomaly by

gauging the subgroup U(1)(0)C to generate a theory with U(1)
(0)
A ⇥AU(1)

(1)
B

2-group symmetry. Here the partition functions of the parent theory are

labelled with the subscript [1], and those of the 2-group theory are labelled

with the subscript [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
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