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Abstract

This dissertation focuses on how recent developments in holography could be applied
to the black hole evaporation process, to get closer to resolving the black hole informa-
tion paradox. We begin by presenting some of the required background on Hawking
radiation and the AdS/CFT correspondence, before focusing on the quantum extremal
surfaces prescription for holographic entanglement entropy. We show how quantum
extremal surfaces and islands recover the Page curve and show that this description
of the system is consistent with unitarity, as well as how this description suggests

information might be conserved.
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Chapter 1

Introduction

Black holes have long been of interest to theoretical physicists. Since Karl Schwarzschild
first discovered black holes as features of spherically symmetric solutions to Einstein’s
field equations, there have been questions about what insights black holes might give
in the context of the fundamental theories of physics. Hawking’s landmark publication
in 1973 showed using quantum field theory in a curved spacetime (an intermediate step
towards a theory of quantum gravity) that black holes emit radiation as a perfect black
body, and so have a defined temperature. In radiating black holes slowly “evaporate”.
This groundbreaking result was the first step towards considering black holes as quan-
tum systems, but threw up many questions in itself. One central question concerned
information. If one threw a book into a black hole which proceeded to evaporate into
Hawking radiation, what happens to the information contained in the book? This idea

forms a part of what is known as the black hole information paradox.

There are currently many competing ideas about how this paradox could be resolved.
A small minority of theorists believe that information is indeed lost; the majority of
notable ideas aim to show that the information can be recovered. Some theories, such
as the fuzzball resolution, opt to modify common understanding about the geometry
of the black hole itself in order to recover the missing entropy. However, most widely
accepted ideas about the paradox believe that in order to fully understand where the
information goes a theory of quantum gravity must be formulated. The most well-
explored candidate theories of quantum gravity is string theory. The string theory
community argue that the horizon is of great importance in understanding the black

hole system. String theorists have been looking at the paradox from a number of



different angles. One such angle has been through the holographic principle. Recent
developments in the AdS/CFT, the most explored example of holography to date, have
had a great influence on the string theory community’s ideas about black holes. This
dissertation aims to give an overview of how AdS/CFT and the holographic principle
more generally have recently been used by theorists to understand the entropy of the
black hole system, and how this approach makes the unitarity of the black hole system
manifest. It aims to give a brief overview of the key literature, along with accompa-

nying derivations.

We begin by outlining some key results from classical considerations of black holes,
going over the development of uniqueness theorems as well as the laws of black hole
mechanics and their relation to the laws of thermodynamics. We also review some ba-
sic notions of the entropy of quantum systems. We then consider quantum field theory
on a curved spacetime, following Hawking, to arrive at his formulation of Hawking
radiation. We are then in a position to precisely frame the black hole information
paradox, and how we might go about viewing black holes as quantum systems. We
then aim to provide a brief overview of AdS/CFT and holography, before reviewing

recent literature on holographic solutions to the black hole information paradox.

Throughout the dissertation we use a mostly-plus Minkowski metric signature, 7, =

diag(—,+,..,+). We take the physical constants h =c = kg = Gy = 1.



Chapter 2

Background

2.1 Classifying Black Holes

Throughout the 20th century, after Karl Schwarzschild’s initial discovery of black holes,
there were many efforts to expand on this and find other exact black hole solutions.
One such solution, the Kerr-Newman metric, describes a charged, rotating black hole

in a vacuum. The Kerr-Newman metric [33] in Boyer-Lindquist coordinates is

A — a2sin0 2 2 _ A
ds® = — %dﬂ —2asm26’%
(r*+a%)? - A

by

dt d

>
sin?0 d¢* + ZdTQ + Y db?
where
Y =12 + a%cos’h
A=7r%—2Mr+a®+ e

Upon inspection of the metric it can be seen that the three parameters that can
describe individual black holes with this metric are M, a, and e. Here, a is the total

angular momentum .J per unit mass,

a = —:,

M

and e can be expressed in terms of electric and magnetic charges () and P as

= VTP

After the publication of this metric, many uniqueness theorems emerged. In 1967,

Israel conjectured that for static, asymptotically flat, vacuum black hole spacetimes
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that are “suitably regular” on and outside the event horizon, then the spacetime must
be isometric to the Schwarzschild solution [27]. Further theorems by Carter in 1971
[10], Robinson in 1975 [41], Bunting and Masood in 1987 [7], and Sudarsky and Wald
in 1992 [6] developed this idea. Carter and Robinson conjectured the no-hair theorem,
stating that all stationary electrovac black hole solutions can be described by the
three parameters that appear in the Kerr-Newman metric: mass M, total angular
momentum J, and electromagnetic charge e. The various uniqueness theorems have
been put together to show that the Kerr-Newman metric is the most general stationary,

asymptotically flat isolated black hole solution to Einstein’s field equations.

2.2 The Laws of Black Hole Mechanics

In 1973, Bardeen, Carter, and Hawking published a paper [3] which outlined the four
laws of black hole mechanics. Emerging only from classical general relativity, there
are clear parallels that can be drawn between the laws of black hole mechanics and

the laws of thermodynamics.

The 0th law of black hole mechanics states that for a stationary black hole space-
time with 7}, obeying the dominant energy condition', the surface gravity x on the
future event horizon H* is constant. The surface gravity on H™ has parallels with
thermodynamic systems at equilibrium, which have constant temperature as stated by

the Oth law of thermodynamics.

The 1st law of black hole mechanics is an expression of the conservation of energy
in black holes. The three classical fundamental quantities of black holes are mass M,
charge @), and angular momentum J. The 1st law states that for stationary black hole
with these fundamental quantities perturbed to a new state with M + dM, Q) + dQ,
and J 4 dJ, these quantities will change with respect to change in black hole area dA
as:

AM = 8idA + QudJ + ®dQ,
T

where x is the surface gravity on H*, Qp is the angular velocity, and ®y is the

electric surface potential. We see the analogy with classical thermodynamics by re-

Let a* be any causal 4-vector i.e. a,a” < 0 and a® > 0. Then the dominant energy condition

requires the stress-energy tensor TH” to satisfy the the condition that b* = —T*""qa,, is causal.
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lating entropy with the area of H*, and by relating the quantity g- to the temperature.

The 2nd law, Hawking’s area theorem, states that for a spacetime where the weak
energy condition and cosmic censorship holds, then the area of H™ is non-decreasing
with time, or

dA > 0.

The 3rd law of black hole mechanics is the statement that it is impossible to reduce
k to 0 by any finite number of operations. This is analogous to the third law of ther-
modynamics, which states that absolute zero temperatures cannot be obtained by a

finite number of operations.

From these laws of black hole mechanics, a notion of the thermodynamic entropy
of a black hole, known as the Bekenstein-Hawking entropy emerges. This is given as
a function of area of the future event horizon, A,

A

SBH(A) = Ma

(2.1)

where Newton’s gravitational constant G is explicitly included. Alternatively, by
reintroducing Planck’s constant and the speed of light to make the right hand side
dimensionless, we may replace G in the above with lg, the Planck length squared.
Although we have derived this law classically, in inserting the Planck length we can
begin to see how we might start thinking about the quantum nature of black hole
entropy. Bekenstein also showed that entropy is proportional to the area of the fu-
ture event horizon in 1973 using arguments from classical information theory [4], but

Hawking precisely identified the constant of proportionality as 1/4Gy.

2.3 The Generalised Second Law

Following the derivation of the Bekenstein-Hawking entropy, Bekenstein reconsidered
the second law of black hole mechanics in more depth [5]. Bekenstein was concerned
with reconciling previous notions of thermodynamic entropy with the Bekenstein-
Hawking entropy. Bekenstein considered the effect of a highly entropic system en-
tering a black hole; the entropy of spacetime outside the black hole, Seiterna Would

decrease. In order to avoid violating the second and third laws of thermodynamics the



black hole’s entropy, Spy, would have to increase enough to compensate for the loss
in Sezternai- This led to the formulation of the generalised second law: for any black
hole spacetime, the total entropy of the spacetime, which is known as the generalised

entropy, cannot decrease. More formally,
ngen = dSBH + dSeacternal > 0. (22)

It is worth reiterating that this law has been obtained by restricting ourselves to classi-
cal general relativity. However, the generalised second law has important implications

for our consideration of black holes as quantum systems, as we will see in later chapters.

2.4 Quantum Descriptions of Entropy

We now turn to quantum formulations of entropy.

Recall that all quantum systems can be described by state vector |¢), which resides on
the Hilbert space of all states H. We can then define a density operator p, which acts
on H. Concretely, p is generally a linear combination of projections of state vectors,
given by

P = Zpi |thi) (Wil (2.3)

where p; is the probability of the system being in state |1);). A pure state has only one

such possibility, so can be expressed as

p=pl) (Y. (2.4)

If it cannot be put into this form, the state is said to be mixed. Density operators
are extremely useful in that they encode all information about the quantum system.

From here we can find the expectation value of some general observable A as

(A) = tr(Ap). (2.5)

2.4.1 Fine-grained Entropy

We now arrive at our first formulation of entropy, the fine-grained entropy. This is the

von Neumann entropy, which is given by

Suy = —tr(plog p) = sz log pi, (2.6)



where p; are eigenvalues of p. For pure states, this quantity vanishes. We may think
of this formulation of entropy as describing how little information we have about the

precise quantum system [34].

We may use quantum statistical mechanics to note that thermal states are neces-
sarily mixed states at the quantum level. This fact will be useful in our formulation

of the black hole information paradox in the next chapter.

One important property of von Neumann entropy is that it is invariant under uni-
tary time evolution, i.e. S(p) = S(UpU~1). Thus we see that von Neumann entropy

is constant under some time evolution of the density operator.

From the von Neumann entropy we can also define the entanglement entropy. Consider
a bipartite system with Hilbert space H = H4 ® Hpr. We can find the density matrix

of Hp from the density matrix of H, pioar, by tracing over all states in subsystem A:

PB = trA(ptotal)- (27)

The entanglement entropy of subsystem B is then defined as

Sg(B) = —trg(pglog pg). (2.8)

It can be trivially shown that for systems in a pure state, Sp(A) = Sg(B). Another
useful property of entanglement entropy is strong subadditivity, which states that
for some system with three subsystems A, B, and C with no overlaps, we have the

inequality relations:

Sp(A+B+C)+ Sg(B) < Sgp(A+ B)+ Sg(B+0C), (2.9)
Sg(A)+ Sp(C) < Sg(A+ B)+ Seg(B+C). (2.10)

Though highly involved to prove using algebra [30], these inequalities can be seen as a
requirement for any entropy to be an entanglement entropy. This point will be useful

in later discussion.

2.4.2 Coarse-grained Entropy

We now turn to a different definition of entropy. Consider a system with density op-
erator p, where we do not measure all variables, but a subset of macroscopic “coarse-

grained” variables A; such that (A;) = tr(pA;). We then find all density matrices p
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which give the same result as the overall system for variables A;, i.e. tr(pA;) = tr(pA;).
We then find the p that gives the maximum von Neumann entropy and take this en-

tropy value to be the coarse grained entropy [2].

This is our usual thermodynamic entropy, which obeys the second law of thermo-
dynamics - it increases under unitary time evolution, where fine-grained entropy stays
the same. The Bekenstein-Hawking entropy of a black hole, (2.1), is a thermodynamic

formulation of entropy, so is the coarse-grained entropy of a black hole.

A useful result from the definition of coarse-grained entropy is that since by definition

p is the p which minimises the coarse-grained entropy, we have the relation
S’L}N S Scoarse‘ (211)

The coarse-grained entropy is dependent on the “coarse-grained” variables chosen, and

so will always be higher than the variable-independent fine-grained entropy.



Chapter 3

The Black Hole Information

Paradox

Let us now formulate the problem central to this dissertation: the black hole informa-
tion paradox. We will begin by deriving Hawking radiation, a key component of the
information paradox. We will then consider this in the context of our understanding

of black hole mechanics and entropy from the previous chapter.

3.1 Quantum Field Theory in a Curved Spacetime

In order to be able to derive Hawking radiation, we must formulate Quantum Field
Theory in a curved background. This is non-trivial since QFT relies on many of the
symmetries of Minkowski spacetime. For example, a general curved background no
longer generally has Poincare symmetry. In our treatment we will be neglecting the

back-reaction of any fields on the metric.

3.1.1 Quantizing the Free Scalar

Let us begin with the most simple quantum field: the real Klein-Gordon scalar. We
consider a general globally hyperbolic spacetime (M, g), i.e. a spacetime which admits

a Cauchy surface X..

The general significance of the existence of a Cauchy surface is that the spacetime has
a clear causal structure: for some initial data defined on X, it is possible to determine

how this data evolves across all of M [44]. In the context of quantum fields, spec-



ifying some field solution ¢ on ¥ uniquely defines solutions across the whole spacetime.

We now consider a scalar ¢ = ¢(t, ) on (M, g) with Lagrangian

1 1
L= §ga5va¢vﬁ¢ — §m2¢2. (3.1)

Using the Euler-Lagrange equation, we obtain the equation of motion
(9°°Vo V5 —m?)¢ =0, (3.2)

the Klein-Gordon equation for some general metric g. We may use the definition of
the covariant derivative to re-express this as
1
00— ) 6=, (3.3
7=
The canonically conjugate momentum to ¢ is

o
T AV9)

We now proceed to quantise in the same manner as for QFT in Minkowski spacetime -

=V=gVio. (3.4)

by promoting ¢ and 7 to operators ngS and 7 respectively, and imposing the equal time

commutation relations:

[6(t, %), 6(t,5)] = 0, (3.5)
#(t, ), 7#(69)) = 0, (3.6)
[6(t,3), 7 (1, 7)] = %__g&“(f—g), (3.7)

It is now useful to define a Hilbert space of states that these operators act on. Define
KC to be the Hilbert space of complex solutions of our above generalised Klein-Gordon

equation. For «, 8 € K, we define inner product

(@8)= [ dEV=ga’, - 69,0), (38)
)
for some Cauchy surface > defined on the manifold. We see that
(,a) = —(a*,a"), (3.9)
(a,a®) = 0. (3.10)

Using the above we see that letting { f;} be the complete set of positive norm solutions

of the Klein Gordon equation, {f’} is manifestly the complete set of negative norm
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solutions, and hence we form a complete set of solutions {f;, f} [14].

In Minkowski space, the set of positive norm solutions are positive frequency plane
wave modes, and negative norm solutions are negative frequency plane wave modes.

Hence the Hilbert space can be decomposed into subspaces,
K=K,&K,, (3.11)

with KC,, corresponding to positive frequency modes and K corresponding to negative

frequency modes [40].

We can now generalise this result for stationary spacetimes. Recall that a space-
time which is asymptotically flat at null infinity, ZF, is stationary if it admits a Killing
vector field k& which is timelike at Z*. The Killing vector k generates a symmetry of
the spacetime, so the Lie derivative of the scalar ¢ with respect to k, L;¢, is a solu-
tion to the Klein-Gordon equation provided that ¢ is a solution to the Klein-Gordon
equation. In addition, using (3.11) it can be shown that the Lie derivative operator Ly
is anti-Hermitian. This implies that £; has purely imaginary eigenvalues [48]. From

here we may fix a basis such that positive norm states f; obey

However, for some general space, we have no set positive or negative frequency plane
wave modes so there is no preferred way to decompose K. Instead we just chose some

basis of solutions such that

(X X5) = i, (3.13)
(xi:xj) = 0, (3.14)
(X5, X;) = —di, (3.15)

where we have replaced our momentum indices from Minkowski space with continuous

indices ¢, 7. We can now expand the scalar in our chosen basis and quantise to give
6= axi(x) +alxi(x),

where a; and a} are creation and annihilation operators obeying the usual commutation

relations and defined for our choice of basis by

a; = (xi,9), (3.16)
al = —(x;,9) (3.17)

11



From here we may construct a Fock basis in the usual way. It is worth noting that due
to the arbitrary nature of choosing a basis of solutions to the equations of motion in
curved spacetime, the spacetime does not admit a preferred vacuum state. Hence the

concept of a particle is not universal, and depends on the chosen basis of solutions.

Our freedom in choosing the basis gives us a tool which is useful for problems con-
cerning QFT in curved spacetimes. Let us choose a new basis of solutions {x;, x;}. In

this basis, we have new creation and annihilation operators, a; and al, so our scalar

17

can be expanded as

¢ = ZazXz +alx; (),

noting that in this basis we have a new vacuum.

Both {x;, x} and {X;, X;} span K, so we can map between the two choices of ba-

sis by what is known as a Bogoliubov transformation:
Tilz) = Zwaj + Bijx; (@), (3.18)

Xi(x) = ZBUXJ + AL (@), (3.19)

where A;; and B;; are known as Bogoliubov coefficients [40]. We may similarly relate

the annihilation operators in the two bases using
~ * * T
— Z Afja; — Bfal. (3.20)
J

Requiring that the expansion of x;(z) and x;(z) satisfies (3.13) and (3.14), we obtain

the conditions

Z( zkA szB]k) = 6ij’ (321)
k
> (AwBjr — BuAy,) = 0. (3.22)
k

3.1.2 Particle Creation in a Gravitational Background

Let us now consider a globally hyperbolic “sandwich” spacetime (M, g), where M =
M_UMoUM, with Mj non-stationary and M stationary, arranged as in Fig. 3.2.

12



time

-

M, stationary

M(]'

M _ stationary

Figure 3.1: Sandwich spacetime with a fixed direction of time. Image source:

[40]

The stationarity of M_ and M means that we have a preferred decomposition of the
Hilbert spaces of solutions to the Klein-Gordon equation, and hence preferred positive
frequency mode bases, on these sub-manifolds. This spacetime is globally hyperbolic,
so we can have a Cauchy surface with initial data on M. so that any solution of the

Klein-Gordon equation on My extends to all of M [40].

Let the preferred positive frequency mode bases admitted by M~ be {f*(x)}, with
-

associated annihilation operators a;-. The two bases and annihilation operators are

not generally the same, and so we can relate them by a Bogoliubov transformation:
f5o= ) Ayl + Bl (3.23)
J
af = > Aja; — B (3.24)
J

The two bases have different vacua, denoted |0%). We may also define number operator

for the ith mode in our two bases as

N =aflat (3.25)

K3 K3 3

Let us now consider what happens if we act with the number operator for M on the

vacuum of region M_. We can think about this explicitly in terms of the vacuum

13



expectation value of N;" with respect to [07):

(07| N [07) = (07|a; " |07) (3.26)
= (07| Z(Aijaj_T — Byja;) Z(A;‘kkak: Bj.a, )|0 ) (3.27)
J k

= Y {07 (= Bya;)(~Bja ") [07) (3.28)

7.k
= Y ByB; (07 ]aja, |07) (3.29)
7.k

J
We see that we have non-zero number of particles at late times for non-zero B, i.e. for
the case where {f;"} and {f; } have different bases, which is not generally the case.

Hence we arrive at the statement that dynamic gravitational fields produce particles.

3.1.3 Hawking Radiation

We are now in a position to recover Hawking’s famous result from 1973 [20]. To
begin, we consider a massless scalar ¢ in the spacetime of a radially collapsing body.
By Birkhoft’s theorem, we may describe the spacetime outside the radially collapsing

body by the Schwarzschild solution [44]. For this case let us use the form

2M
ds® = <1 — T) du dv + r*dQ?, (3.31)

with w =t — r, and v = t + r,, where r, are tortoise coordinates. We now consider
some massive scalar ¢ on this metric, satisfying Eq. 3.3. The spherical symmetry
of the Schwarzschild metric admits spherical harmonic solutions to the Klein-Gordon

equation, of the form

¢ = € R (1) Yim (0, 9), (3.32)

where w is the frequency of the mode, Y}, (6, ¢) are spherical harmonics, and Ry, (1)

is a radial component satisfying the Schrodinger-style equation

Liz 2} Roi(ry) = Vi(r) Ru(ry), (3.33)

with potential V; given by

Wir.) = (1 - 2M) (z(z+ D, QM) | 5.3

r r2 73

14



Using this form, we see that the potential vanishes at null infinities, Z*, so here the
scalar has plane wave solutions. The spherical symmetry of the spacetime allows us

to decompose into ingoing and outgoing solutions, which for Z= we define to be

(out) 1 —iwu Yim
= ——c¢ — 3.35
Imw /_27rw r ( )
in 1 —3 Ym
o) = v (3.36)

lmw_\/% 7”

and for ZT we define to be

1 ow Yim
(out) _ —iwu 1 Im (337)

e v (3.38)

Figure 3.2: Carter-Penrose diagram for a wavepacket travelling inwards from

Z% in the spacetime of a radially collapsing body. Image source: [40]

(out)

Imw

potential V;(r,), a part of the wavepacket p(l)

(2
part pZ@) is transmitted. pgl) does not experience any of the spherical collapse geometry

Let us now consider a wavepacket p; = g coming from Z*. As it approaches the

is reflected off the potential, and another

so only consists of positive frequency modes, with Bogoliubov coefficients Ag). The

transmitted part, pl@), does enter the time-dependent collapse geometry, before ending
up at Z~. This part does have positive and negative frequency modes on Z*, with

Bogoliubov coefficients Ag) + Bl(]2 ),

15



Let 3 be a generator of H* which is extended to Z~, where we have defined v so that
vy hits v = 0 at Z—. The wavepacket will be localised at some vy < 0 on Z—, with
infinitely many oscillations in the range v € (vg,0). Hence wavepackets originating at
v oscillates rapidly in the vicinity of a generator v from Z~ to Z*. This allows us to

use the geometric optics approximation that the scalar field has the form
¢ = A(z)e™®), (3.39)
for A > 1. To leading order in A the Klein-Gordon equation gives
(VS)? =0, (3.40)

which is the statement that surfaces of constant S are null hypersurfaces, and their
generators are null geodesics. Consider the null congruence of hypersurfaces satisfying
(3.40) and H™", which is at S = co. Let [ be a tangent vector to the congruence of null
geodesics, and introduce null vector n such that n-l = —1 and IV ,n” = 0. Spherical

symmetry implies that n’ = n® = 0.

Outside the collapsing body we have Schwarzschild spacetime, so in Kruskal-Szekeres

coordinates the affinely parametrised generator of H™ is given by

0
= — 3.41
av ) ( )
and so from our condition that n -l = —1 we obtain
0
=(C— 3.42
"=Yau (3-42)

for some positive constant C'. So outside matter we have deviation vector —en which
connects vy to some null geodesic v, which is located at U = —C'e. Using the definition
of the Kruskal-Szekeres coordinate U, we can now say that at late times « hits Z* with
u = —%log(C’e), and the phase of the wavepacket p; is hence %log(C’e) everywhere on

corresponding geodesic 7.

For Z= we may follow similar arguments to show that the phase of the wavepacket is

given by ’%log(—CDv), for positive constant D. Hence on Z~ we have

@) 0 for v > 0,
i~ (3.43)

e log(=v)  for 4 < 0.

16



We now assume that the wavepacket p; only has the positive frequency w, for the sake

of simplifying the calculation. We want to find how pff) relates to our basis of modes

fws [ We begin by taking the Fourier transform of pf), which gives

PP = / exrp {iw'v + Elog(—v) dv. (3.44)
oo K
We can also get the inverse
PO = [ N R + NS 0E ). (345)
0

Hence comparing coefficients to (3.18) above, we have

(3.46)
wa’ - N*’ﬁg)( /)

Using properties of Fourier transforms, we may then show that
Bl = eap (") 142}, (3.47)
and we get an analogous result when looking at the full wavepackets. Looking at the

normalisation of p§2), we get
W20 = 3 (14D - 1Byl) = (2 - DYIBP )
J

= (e*™/"—1)Tr(BB"). (3.49)

Hence, for I'; = (pg ),pi )) we see that

I
e2wr/k _ 1"

Tr(BB'") = (3.50)

If we interpret I'; to be the absorption cross-section for the f; mode, we see that
this result is exactly a blackbody spectrum with temperature Ty = 5=, known as the
Hawking temperature. This result shows that the particle production of black holes
is a continuous, radiative process which naturally follows from the starting point of
having a scalar field on a curved spacetime. With some work, this derivation can be
generalised to include fermions, for collapse to charged and/or rotating black holes,

for non-radial collapse among other generalisations [14].

Let us consider some generalised metric
ds* = — f(r)dt* + f~(r)dr?® + r*dQ?, (3.51)
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with some function f(r) with horizon at r; i.e. f(r;) = 0. In order to find the
Hawking temperature of this metric, we first employ a rule seen often in considerations
of quantum fields - we Wick rotate our time coordinate. We introduce Euclidean time

tg such that ¢t = itg. Our metric then becomes
ds® = +f(r)dty + fH(r)dr? + r2dQ>. (3.52)

It can be shown from arguments of gravitational path integrals that ¢z becomes com-
pact when it is periodic with period [, the inverse Hawking temperature. Let us now
go to the near horizon limit, such that r = r; + € for € small. In this limit we have

the expansion f(r) = f(rs) +ef'(rs) + O(€?). Noting f(rs) = 0, we can re-express our

metric,
1
ds® ~ ef'(ry)dt% + 7 (rs)d@ + (s + €)%d0%. (3.53)
We now ignore the angular term in the metric, and define new variables,
€ tef'(rs)
R=2 0=—"— 3.54
Fir) > &5
which gives us the metric
ds® ~ dR* + R*d©? (3.55)

which is flat space with polar coordinates R and ©. For a smooth geometry which
avoids conical singularities, which give divergences in gravitational path integrals, we
require that © is periodic with period 2. Through our definition of © this means that
tg must be periodic with period 47/ f'(rs) [17]. However, we have previously argued

that tg has period 3, so the Hawking temperature is given by

4
b= ) (3.56)

3.1.4 Entropy on a Curved Background

In the last chapter, we looked at the notion of fine-grained entropy. It is worth recon-
ciling this with our consideration of quantum fields on a curved background. Almheiri
et. al. [2] refer to the fine-grained entropy of quantum fields on the curved background
on some region of spacetime X as the semi-classical entropy, Ss.(X). This is a distinc-
tion worth noticing, and in our generalised second law (2.2) replaces Seyternar When we

are considering quantum fields on a curved background [2].
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3.2 Introducing the Black Hole Information Para-

dox

We have now formalised two key properties of black holes: entropy and Hawking ra-

diation. Let us now consider how these properties compete.

We have seen that by thinking about quantum fields on black hole spacetimes, there
is a natural production of particles by the black hole as a blackbody spectrum with
Hawking temperature. We have seen in Chapter 2 that classically all black holes can
be characterised by mass, charge, and angular momentum, and the mass-energy equiv-
alence means that the radiation of energy out to infinity from black holes reduces their

mass - black holes “evaporate”.

singularity

(0) ]

Hawking radiation

(a)

interior partners

star

Figure 3.3: A Carter-Penrose diagram of an evaporating black hole. (a) and
(b) are slices of the collapsed body producing entangled pairs, with one inside
the horizon and one outside the horizon. (c) is the state where the black
hole has infinitessimal horizon but still contains a spacetime singularity. (d)
shows the smooth spacetime containing no black hole but thermal Hawking

radiation. Image source: [2]

Fig. 3.3 shows how the process of black hole evaporation affects the spacetime. We

see that for the state d), when the black hole has fully evaporated, there is no evidence
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that a black hole has ever existed; the only remnant is Hawking radiation, which is
indistinguishable from any other thermal radiation. More formally, the surface (a) -
(c) are Cauchy surfaces, so for some initial data on these surfaces we would be able
to determine the evolution of that data for the entire manifold. However, (d) is not
a Cauchy surface, since with initial data on this surface we could not deterministi-
cally recover any data about the past black hole spacetime. In this way we see that
information has been lost through the evaporation of the black hole [2]. This is what
we know to be the black hole information paradox, derived using Hawking’s original

arguments [19].

3.3 The Page Curve

We will now endeavour to describe the information paradox from the perspective of

quantum mechanics and entropy.

We begin by considering a black hole spacetime formed from the gravitational col-
lapse of some pure state. At the moment the event horizon forms (i.e. before Hawking
radiation has begun), the fact that the system is in a pure state means that we have
fine-grained entropy S,y = 0. However, since there is an event horizon with non-trivial
area A, the system has coarse-grained entropy given by Sgy = A/4l22,. As the black
hole radiates, the area decreases linearly with time and so the coarse-grained entropy
also decreases linearly with time, eventually reaching zero when the black hole has

fully evaporated.

Let us now follow how Hawking thought about the entropy of the outgoing radia-
tion itself [19]. The black hole radiates like a blackbody with Hawking temperature,
so as time progresses and more radiation occurs, the entropy of outgoing radiation
increases linearly. When the black hole has fully evaporated, the entropy of outgoing
radiation remains constant at some maximum value. This calculation of the entropy
outgoing radiation has a clear problem. The process of Hawking radiation was derived
just by thinking about QFT on a curved spacetime, and so the process is definitively
unitary. Hence we expect the system to evolve unitarily, and so information is ex-
pected to be conserved. However, Hawking’s calculation violates this. Since Hawking

radiation is thermal, even if the infalling matter were in a pure state the entangled
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radiation from evaporation would be mixed. The quantum information about the state
of the original matter that formed the black hole is destroyed, violating the unitarity
of the system. There is a related issue that comes by thinking about the entropy of the
system. In the previous chapter we showed (2.11), that by definition the fine-grained
entropy could never exceed the coarse-grained entropy. However, we clearly see here
that the thermodynamic (coarse-grained) entropy will at some point in the evapora-
tion of the black hole be exceeded by the (fine-grained) entropy of outgoing Hawking

radiation.

Entropy of
outgoing
radiation

Hawking’s
calculation ™™

Thermodynamic entropy
~ of the black hole

Expected
from unitarity

tPage Time

Figure 3.4: A schematic illustration of the evolution of black hole entropy,
the fine-grained entropy calculated by Hawking, and the fine-grained entropy
expected from the unitarity of the system known as the Page curve. Image

source: [2]

The curve that the entropy of outgoing radiation is expected to follow in order to
preserve the unitarity of the system is known as the Page curve [36, 37|, roughly illus-
trated in Fig. 3.4. We will now follow Page’s suggestion for a qualitative explanation
for the shape of the Page curve. After the event horizon is formed, the fine-grained
entropy is expected to increase from zero as per Hawking’s calculation, emitting ther-
mal Hawking radiation that is entangled with some partner inside the black hole. This
continues until the so-called Page time tpq4., where the entropy of outgoing radiation
and the Bekenstein-Hawking entropy are equal, and the black hole interior no longer

contains enough degrees of freedom for the Hawking radiation to be entangled to. At
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this point, the outgoing Hawking radiation can only be entangled with Hawking radia-
tion that was emitted before ¢p,4e, and so the state of the outgoing radiation begins to
become more pure and the fine-grained entropy decreases as the upper bound provided
by the thermodynamic entropy of the black hole. By the time the black hole has fully
evaporated, the outgoing radiation is in a pure state and the fine-grained entropy has

decreased to zero.

A non-trivial assumption in our production of the Page curve is that we have re-
quired unitarity of our black hole system. This restriction assumes that unitarity is
manifest in the underpinning theory of quantum gravity. This is not proven, and is
contested by many. However, our understanding that quantum field theories are man-
ifestly unitary provide strong evidence that, at least to semi-classical approximation,

any black hole system involving quantum fields would need to evolve unitarily.

3.4 The AMPS Paradox

An important aspect of the black hole information paradox was the AMPS paradox.
This paradox was proposed in 2012 by Almbheiri, Marolf, Polchinski, and Sully (AMPS)
[1]. Generally, they stated that the fact that Hawking radiation is in a pure state vio-

lates the principle of black hole complementarity.

Black hole complementarity was a concept first conceived by Susskind, Thorlacius,
and Uglum in 1993 [46]. The concept is the combination of three postulates that are
widely accepted about black hole systems:

1. Black holes evolve unitarily.

2. At some finite distance away from the event horizon, we may consider the space-

time in a semi-classical approximation.

3. Distant observers view the black hole as a quantum system with discrete energy

modes.

In addition, there is another statement that is not as strong, but for our purposes can

be viewed as an additional postulate of black hole complementarity:
4. Free-falling observers experience nothing special when crossing the event horizon.
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AMPS assert that postulates 1., 2., and 4. cannot all hold at the same time if we take
any of our previous discussion of Hawking radiation to be true. This is what is known

as the AMPS paradox.

A resolution to the paradox presented by AMPS suggested the entanglement between
ingoing and outgoing Hawking partners must be broken immediately, releasing large
amounts of energy and creating a black hole “firewall”. However, this violates the

equivalence principle of general relativity, and so has been widely contested [11].
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Chapter 4

The AdS/CFT Correspondence

4.1 The Holographic Principle

The holographic principle is the principle that all information on the volume enclosed
by a surface is encoded on the boundary of the surface. First suggested by Gerard
't Hooft [25], the principle was applied to theories of quantum gravity by Leonard
Susskind, who conjectured that any true theory of quantum gravity for some volume
of space should admit a full description based purely on the lower-dimensional bound-
ary of the space [45]. Originally formulated due to the the two-dimensional nature
of entropy of black holes by Hawking and Bekenstein, the principle proved to have

far-reaching consequences beyond this.

The most developed example of the holographic principle to date is the AdS/CFT
correspondence. First conjectured by Juan Maldacena in 1997 [32] as a duality be-
tween N = 4 Super Yang-Mills in 4 dimensions and type IIB string theory on AdSsx S®
space. It has since been generalised to many other CFTs and AdS spaces. Before dis-
cussing the correspondence in more depth, it is worth reiterating that the AdS/CFT
duality is to date still conjecture. However, since its conception in 1997, there has
been overwhelming evidence to support its arguments. This dissertation will assume
the correspondence holds, and will make use of its arguments on the basis of this

assumption.
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4.2 Conformal Field Theory

Conformal field theories are quantum field theories that are invariant under conformal
transformations. A conformal transformation is a coordinate transformation z# —

x'*(x#) which transforms the metric as

G () = Q*(2) gy (),
or a transformation which rescales lengths but preserves angled between vectors. The
group of transformations which satisfy this condition is the conformal group. Confor-
mal transformations are a notable “loophole” to the Coleman-Mandula no-go theorem
(the other being Supersymmetry). Restricting to D-dimensional Minkowski space, we
can now identify subgroups of the conformal group. It can be seen that for D = 2 the
conformal group is infinite-dimensional, since, after Euclidean continuation, all holo-
morphic functions on a plane satisfy the above condition (a property used extensively
in string theory). However, for D # 2 the solutions are at most quadratic in x. Hence,

the most general infinitessimal conformal transformation is given by
), =y + 0y = Ty + ay + Wy + Ay + (b — 2x,bx).

Here, we notice the second and third terms to correspond to translations (generated by
P,) and Lorentz transforms (generated by J,, ) respectively, which together form the
Poincare group. The fourth term corresponds to scale transformations of the metric,
known as dilatations (generated by D). This indicates that all conformal fields must
be scale invariant. This scale invariance means that CFTs do not allow for the notions
of massive excitations or length scales, and so scattering is no longer relevant. The
final term corresponds to a less obvious subgroup, known as the special conformal
transformations (generated by K,). Finite special conformal transformations are of

the form
x, + 0’
w7 5-
1+ 2cx + (cx)
Given we have already seen that the Poincare group is a subgroup of the conformal

T

group, we can begin with the Poincare algebra and find commutation relations with
generators of dilatations and special conformal transformations to construct a full con-
formal algebra. Given the dilatation and special conformal transformation generators

act on a function f(x) as

Df(z) = iz"0,f(x), (4.1)
Kof(@) = —i(20,2°0, — 2°0,)f(2) (42)
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we can explicitly calculate the commutation relations to get the full algebra:

[Jovs ool = i(updve + Moodup — Muodup = Mopdyo)s (4.3)
[Jows o] = i(up Py — 1up L), (4.4)
(S K] = i(0up I — MK, (4.5)
[P K] = 2i(Ju +1uD), (4.6)
[Py, D] = —ib,, (4.7)
K, D] = iK,, (4.8)

with all other commutators vanishing [35]. It can be shown that this algebra is iso-

morphic to SO(2, D) [49].

Considering how the dilatation generator D acts on scalar ¢(x), we must account
for the possibility that the field itself has some intrinsic scale. We denote this using
the scaling dimension, A. Hence, under some dilatation transformation z# — Ax*, the

field transforms as

P(z) = Mo(\x). (4.9)

Using the algebra given in (4.3 - 4.8), one can show that correlation functions of
operators are constrained by conformal invariance. For example, the 2-point correlator

of a conformally invariant scalar ¢ is given by

(0l p(z)¢(y) [0) o (4.10)

1
(x —y)?2’

where both ¢(z) and ¢(y) are required to have the same conformal dimension A for

there to exist a non-vanishing correlation function.

An important property of conformal field theories is their effect on the stress-energy
tensor. It can be shown that conformal invariance restricts the stress-energy tensor to
be traceless, i.e. T = (0. This restriction is purely classical. Introducing some curva-
ture to the manifold gives a conformal anomaly. A simple example of the conformal
anomaly is seen in bosonic string theory, where for a 2-dimensional quantum field the-
ory on a generally curved background, the expectation value becomes <Tﬁ) = —5R,

where R is the Ricci scalar and c¢ is the central charge [47].
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4.3 Anti de-Sitter Space

Let us now turn to the other side of the duality.

The n-dimensional Anti de-Sitter Space, AdS,, is the maximally symmetric solution
to Einstein’s equations in n dimensions with negative cosmological constant A (we
will set this to -1). It is best thought of as the Lorentzian analogy to the Euclidean
hyperboloid manifold,

U? + V2 - XX =% (4.11)

where ¢ = 1,...,n — 1 and ¢ is the radius of the hyperboloid. Here we are embedding

AdS,, in n + 1 dimensional Euclidean space with signature R?"~1,
ds® = —dU? — dV? + dX'dX", (4.12)

where we have 2 timelike dimensions and n — 1 spatial dimensions. Upon inspecting

(4.12) it can be seen that AdS,, has an SO(2,n — 1) isometry group.

A peculiar feature of (4.11) is that it has closed timelike curves for X' = constant,
which is generally a problem for causality of dynamical spacetimes. An approach
to dealing with this problem is to unwrap the closed timelike curves and obtain a
“universal cover” for them. We do this by reparametrising the surface in terms of

dimensionless coordinates p and 7:

U = Lcosh(p) cos(T), (4.13)
V' = Ll cosh(p) sin(T), (4.14)
X; = Csinh(p) §2, (4.15)

where (2; is the surface for which Y, ¢? = 1. It can be shown that p € R" and
7 € [0, 27| cover the manifold exactly once, though still admit closed timelike curves.
Hence we take the universal cover where 7 € R, and generally refer to this as AdS,,.

The metric is now
ds* = 0% [—cosh?(p)dr?® + dp® + sinh?(p)dS2; _,] . (4.16)
We may now consider some limits of this metric. We can deduce that as p — oo,
ds* = 07 [e*P(—dr* + dQ2_,) + dp?] . (4.17)
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Conformally compactifying this metric in the usual way with conformal factor Z = e™*,

we have
2

l
ds® — 77 [—dr® +dQ2_, +dZ?] . (4.18)
We see that the conformal boundary metric has topology R x S"~2. This AdS boundary

is where we may locate the CFT. The topology of AdS spacetime is schematically

D

shown in Fig. 4.1.

S d-1
time AdS /
d+1
Boundary
(a) (b)

Figure 4.1: Diagram of AdS spacetime. The boundary is a solid cylinder.
Timelike geodesics (solid line) and null geodesics (dashed line) are shown in

(b). Image source: [31]

Setting r = ¢ sinh(p) and ¢t = {1 gives us

ds* = —f(r)dt* + £~ (r)dr?* + r?dQ2_,, (4.19)
where we have defined ,
r

We see that in the limits » — 0 or £ — oo, the metric is Minkowski space. If we

transform ¢ to Euclidean time, tg = it, we have the Euclidean AdS metric,

ds® = f(r)dtQE + f_l(r)dr2 + r2dQ?

n—2

(4.20)
where we now have the identification

tg ~ 1t + 5,

where ( is the inverse temperature. This identification is worth considering further.

From quantum field theory, we know that Euclidean path integrals with identification
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tp ~ tg + [ make the field thermal. So in the above case Euclidean path integrals on
Euclidean thermal AdS makes fields on the Lorentzian AdS thermal.

An alternative coordinate chart used to consider AdS is the Poincare chart {V, X*, U} —
{t,z% Z}:

U = g {1 + % (2 + (2% — tQ)} , (4.21)
Vo= gt, (4.22)
X = éma, (4.23)
Xt = g {1 - % (02— (2 + tQ)] : (4.24)

where a = 1,...,n — 2. This chart covers half of the hyperboloid; it is not a global
coordinate chart. For this chart, the induced metric is given by

2

ds® —dt* + dz*da® + dZ?) (4.25)

:ﬁ(

which is the n — 1 dimensional Minkowski metric on the conformal boundary. The
Poincare chart makes manifest a group of isometries of the metric: the Poincare group,
the group of dilatations, and the special conformal group. It becomes clear that the
isometries of the metric are isomorphic to the conformal group described in the previous

section.

4.4 The AdS/CFT Correspondence

Having addressed both sides of the duality, we can now state it explicitly. The
AdS/CFT correspondence states that any spacetime that is asymptotically AdS,, that
can be described by some theory of quantum gravity is dual to (i.e. physically equiva-

lent to) an n — 1 dimensional conformal field theory living on the conformal boundary

of the AdS, bulk, which has topology R x S"~2,

The correspondence initially seems very specific, and it might be reasonable to ques-
tion its practical utility. After all, most field theories we know of in nature are not
conformal, and there is no evidence to suggest that we live on an asymptotically AdS

universe. Instead, the correspondence can be viewed as an extremely powerful tool.
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The nature of the correspondence means that where there is a strongly interacting
theory on one side of the duality, the other side is necessarily weakly interacting.
This “dictionary” is extremely useful for studying strongly interacting QFTs, as well
as strongly interacting gravitational theories, since the correspondence means we need
only consider weakly interacting QFTs and gravitational theories respectively to study
them. As we will later see, the holographic nature of the correspondence (i.e. the cor-
respondence between theories of different dimensions) provides a promising avenue to

understand the fine-grained entropy of black holes.

4.5 AdS/CFT at Finite Temperature

Now we have given a rough overview of AAS/CFT, it is worth looking at the AdS
black hole. This is a black hole solution which is asymptotically AdS as opposed
to the usual asymptotically flat black holes. For n > 4, we have a uniquely defined

spherically symmetric solution to the Einstein equations with negative vacuum energy,

given by
ds? = —h(r)dt* + h=1(r)dr?® + r2dQ2_,, (4.26)
where
Wy =21 C 4.27
() =r*+1- o (4.27)

for constant C' proportional to the AdS version of the ADM mass [16]. Using (3.56),

the temperature of this black hole is computed to be

4mr,

=TT @ (4.28)

This is the second time we are seeing thermal properties of metrics in AdS - recall
that the Euclidean AdS metric has identification with period [, and Euclidean path
integrals in this space give thermal fields. In 1983, Hawking and Page showed using
Euclidean path integrals that the stability of AdS black holes depends on the tem-
perature [21]. For temperatures below some critical temperature, T' < T, the black
hole solution is unstable, and so generally the metric of the spacetime is the thermal
AdS solution given in (4.20). At T¢ there is a first order phase transition, such that
for T' > T the AdS black hole solution becomes stable, and is in thermal equilibrium
with Hawking radiation. This transition is known as the Hawking-Page transition.

An interesting difference to asymptotically flat metrics is that black holes here have
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positive heat capacity, so become more massive as their temperature increases.

In the context of the AdS/CFT correspondence, a useful point is that any AdS black
holes are dual to CFT states. The fact that we have quantum gravity in AdS dual to
a unitary quantum field theory means that we may identify the temperature and en-
tropy of AdS black holes with the temperature of the CFT and the number of excited
CFT states at said temperature, respectively [28]. This unlocks many possibilities for

further study of AdS black holes.
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Chapter 5

A Gravitational Description of

Entropy

We now have the toolset to begin working towards recovering the Page curve. Let us

begin by looking at gravitational formulations of entropy.

5.1 Ryu-Takayanagi Formula

The idea of a gravitational approach to fine-grained entropy was first formalised by Ryu
and Takayanagi in 2006 [42, 43]. Using the AdS/CFT correspondence, they related
the entanglement entropy of an n dimensional CFT on the conformal boundary of
AdS, .1 spacetime with an extremal surface on the AdS, ,; dual. Restricting to a
static spacetime, Ryu and Takayanagi restrict to static AdS spacetimes, and think
about some subsystem A of both the CFT conformal boundary of AdS,, ;1 and of the
AdS, .1 bulk. A is required to be a Cauchy surface. Ryu and Takanagi then propose
that in order to find the entanglement entropy of this subsystem, S, one must find
the minimal area surface v4 which extends into the bulk with boundary dv4 = 0A,
the boundary of the subsystem. Then the holographic entanglement entropy (HEE)

is given by Area(ra)
_ Area(ya
4Gy

where Gy is an n 4+ 1 dimensional form of Newton’s gravitational constant. This is

Sa (5.1)

known as the Ryu-Takayanagi (RT) formula for HEE. We may note that A and 4 are

n — 1 dimensional, and the boundary 0A is n — 2 dimensional.
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In 2013, the RT formula was proven by Lewkowycz and Maldacena [29] using ar-
guments of gravitational path integrals. The derivation is non-trivial, so is omitted

from this dissertation.

5.1.1 Application to AdS;/CFT,

Though presented as conjecture, Ryu and Takanagi calculated the HEE for the example
of AdS3/CFTs;, a case for which the entanglement entropy was already known. Let us
follow this calculation. For the case of AdS;/CFT,, the 1+ 1 dimensional field theory

has central charge given by

3¢
c=3 an (5.2)
In AdSs, referring to (4.16), we have metric given by
ds® = —cosh?(p)dr* + dp* + sinh®(p)df?, (5.3)

where we have p > 0 and 6 periodic with period 27. Since this metric is divergent in
the limit p — oo, we introduce some cutoff py and restrict our spacetime to p < po
to regulate the physics. This corresponds to the introduction of a UV cutoff in the
corresponding CFT. In the AdS, we have the circumference of the cylinder given by
L, corresponding to the length of the CF'T system. Since our CFT is divergent in the
continuum limit, we also introduce a the lattice spacing of the CF'T system as a way
of regularizing this divergence. We can now start to see the emergent relation between

UV cutoff, length and lattice spacing of the CFT given as
e’ ~ Lfa. (5.4)

The region of subsystem A with length r, is restricted to 0 < 0 < 27r/L, where we
have set d¢p = 0. Our extremal surface v4 for some time slice ¢ is then simply the
geodesic travelling through the AdS bulk which connects § = 0 to § = 27r/L. We can
find the HEE by finding the length of this geodesic, L,,. Taking our UV cutoff p, into

account, we can calculate this geometrically.
In general, geodesics in AdS,, are given by the intersection of 2 dimensional hyper-

planes and AdS,, in the surrounding R*"~!, with the hyperplanes orientated such that

such that they include the normal vector at points of intersection.
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For the case of AdS; we may embed the space into Euclidean space with signature
R22. For this case, we have the minimum surface as a spacelike geodesic constrained to
the hypersurface. In our action, this takes the usual form but we apply the constraint

with the inclusion of a Lagrange multiplier. Hence our action is

I
S = 5/ dA [gm,x'“:t” +n (g,wx“x” + 62)} , (5.5)
Ao
where A is some generally non-affine parameter, 7 is the Lagrange multiplier, 2# = df; ,

and A\g and \; are the boundaries of the geodesic. Varying this action we eventually
obtain the equation of motion

it — xti? = 0. (5.6)

Since our parameter A is not, in general, affinely parametrised, we are free to transform

it such that we have the condition 4% = 1, which allows for us to define the length of

L, = /ds = /d)\ =M\ — o (5.7)

Our equation of motion is then reduced to a simple differential equation, and is gen-

the geodesic as

erally solved by
at = AreMt 4 BreME (5.8)

with constants A* and B* which are constrained by A2 = B> =0 and 2A - B = —{?

[9]. A useful expression we may gain from this form of the equation of motion:

L L
(o) - x(A1) = 2A - Bcosh (%) = —(*cosh (%) (5.9)
In AdS3 the universal cover can be expressed as

=l cosh(p) cos(T) (
= (cosh(p) sin(T), (
= ( sinh(p) cos(0), (5.12
= ( sinh(p) sin(0). (
Here we have p and 6 are spatial coordinates and 7 is a temporal coordinate. Specifi-
cally, p is a polar coordinate of the two spatial dimensions as a function of the param-
eter A, such that the curve has endpoints at 6(\g) = 0 and 6(\;) = 27r/L. Taking
some constant time slice 79 and plugging these coordinates into our expression (5.9)

above, we get the expression

L, r
cosh <7> =1+ 2 sinh®(po)sin® ( 7 ) . (5.14)
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For some large UV cutoff e’ > 1, we may plug the above length of the minimal
surface into (5.1) to get the holographic entanglement entropy,

- syl ()] =l (D). o

where we have used the central charge given in (5.2). Noting (5.4), we recover the

Sa

CFT entanglement entropy that was calculated by Cardy and Calabrese in 2004 [8].

A similar analysis can be done using the AdS metric in Poincare chart.

5.1.2 Recovering Strong Subadditivity

After the proposal of the Ryu-Takayanagi formula, a natural next step was to recover
the strong subadditivity condition from it. First proven by Hirata and Takayanagi
[24], the arguments were greatly simplified by Headrick and Takayanagi in 2007 [23].
Let us now follow Headrick and Takayanagi’s derivation. Noting that the proofs of

(2.9) and (2.10) follow very similar arguments, we will focus on recovering (2.9).

We begin by redefining the subsystem configuration from (2.9). Consider two over-
lapping subsystems, A and B, with AN B = C. We may then express (2.9) in the
form

S(A)+ S(B) > S(AUB) + S(AN B) (5.16)

For some AdS spacetime, we now consider two overlapping regions of the boundary,
A and B. We then have two minimal generally overlapping hypersurfaces in the bulk
m4 and mpg enclosing regions 74 and rp respectively, intersecting the boundary at 0A
and 0B respectively. Hence we have Ory = AU my4 and Org = B Ump. Defining
raug = raUrg and ranp = r4 Nrp, we may show that by cutting m 4 and mpg up into

new surfaces m,p and manp, we have

aTAuB = (AUB)UmAuB, (517)
aTAmB = (AmB)UmAmB (518)

These relations can be interpreted as showing that m s p intersects the boundary at
J(AU B). However, there is no information about whether it is the minimal hypersur-
face with this boundary, and so it can be presented as an upper bound on the area of
the minimal hypersurface, and hence on the holographic entanglement entropy. Sim-

ilar arguments follow for m ng We see that the combined areas of mng and maup
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Figure 5.1: Diagram of two overlapping regions A and B on the boundary,
with minimal surfaces in the bulk m,4 enclosing region r4 and mpg enclosing

region rp respectively. Image source: [23]

are equal to the combined areas of m4 and mp. Hence (5.16) has been proven, and
the strong subadditivity condition has been recovered from geometric arguments that

follow from the RT formula.

5.2 Generalised Holographic Entanglement Entropy

In 2007, Hubeny, Rangamani, and Takayanagi (HRT) provided a covariant generali-
sation to the RT formulation of HEE [26]. This formulation removes the restriction
to stationary spacetimes present in the RT formulation, replacing the minimal area
surface v4 with a more general extremal surface ¥ 4. In general, ¥ 4 is not the shortest
distance between spatial points, but additionally requires variation in time so results
in a spacelike geodesic. The boundaries of v4 and ¥ 4 are the same. There are various
approaches to finding 4. One intuitive approach, known as the maximin method,
was proposed by Engelhart and Wall in 2014 [12]. This roughly works as follows. One
begins by choosing some Cauchy surface, and varying to find the minimal surface on
the boundary 0A. This is repeated for many different Cauchy surfaces. Finally, of
these minimal surfaces, the one with the maximum surface area is chosen. The max-

imin method greatly simplifies the process of finding extremal surfaces for many cases.
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However, the HRT prescription is only part of the picture of HEE, and is insuffi-
cient for the purposes of reproducing the Page curve. In 2013, Faulkner, Lewkowycz
and Maldacena (FLM) recognised that the RT and HRT descriptions give only a lead-
ing order saddle-point term as part of a more general expansion [13]. They propose
that quantum corrections should be added to this expression to account for quantum
mechanical effects in the bulk, most notably the coupling of quantum fields to the
spacetime. Accounting for quantum processes in the bulk is of great importance when
considering Hawking radiation, so these quantum corrections are of great value when
working to recover the page curve. If we treat the bulk theory as some perturbative
quantum theory of gravity with expansion in G, FLM showed the most general HEE

expansion is of the form:
Sa = S5+ 5,7 + O(Gy) (5.19)

The natural issue now concerns where these quantum corrections might come from.
FLM proposed that S, '° is given by

d(Area)

Sl—loop _
4G N

A - Sbulk—ent + + <ASW—lik’e> + Sc.t.- (520)

The first term corresponds to the bulk entanglement entropy between the region en-
closed by the minimal surface and the rest of the bulk. The next two terms give a much
smaller contribution, and correspond to contributions from quantum fluctuations in
the background metric and fields. The final term accounts for counter-terms required
to make S}L‘_lw” finite. Of these, only the first term obeys the strong subadditivity
condition. This, combined with the small contribution of the second and third terms,
means that to O(G%,) we only require the bulk entropy term and counter-terms. FLM
considered only systems in a pure state, and so in this case the bulk entropy is the
entropy of the spacetime outside the minimal surface, which is treated semi-classically
so we label it S,.. Neglecting our counter-terms, we have for some extremal Cauchy

surface X 4: Area(S,)
rea(X

4Gy

This expression looks very similar to the generalised second law, with black hole area

Syen = + S (5.21)

begin replaced by the area of the extremal Cauchy surface 4.

The FLM proposal was extended by Engelhardt and Wall (EW) in 2014 [12] to higher

order corrections. EW noted that the FLM formulation ignores graviton fluctuations,
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and that the semi-classical approximation only holds in their case because they re-
strict to considering terms up to O(GY%). They introduced the notion of the minimal
quantum extremal surface (QES), a sort of quantum corrected version of an RT/HRT
surface. The minimal QES is defined as the surface with minimal extremal generalised
entropy. For some set of QESs (2, the generalised entropy is given by

Syen(R) = min {extQ [%‘S}) + SSC(EQ)} } : (5.22)

where Yq is the region bound by the QES 2 and boundary R. The mechanics of
this formula are almost exactly the same as done for our HRT prescription, with
the exception that we are now considering QESs instead of Cauchy slices, and in the
process are taking the quantum nature of the spacetime into account. We note that the
maximin method can also be applied to the above formula to find the minimal QES.
We will now interchangably refer to the minimal QES as the quantum RT surface, as

it is referred to in the majority of the literature.

5.3 The Entanglement Wedge

The notion of the entanglement wedge is central to reconciling our understanding of
generalised HEE with the AdS/CFT framework. So far, we have been considering
how we might extremise some surface in the AdS bulk with a given surface on the
boundary to get the generalised entropy of the system. In extremising a surface in the
bulk, this methodology has for the most part been considering the AdS side of the
AdS/CFT correspondence. We know from the nature of the AdS/CFT correspondence
that any information in the AdS bulk can be equivalently reconstructed on the CF'T
boundary, so a natural line of inquiry might be to question how one might reconstruct
the bulk operators given some data on the boundary. A promising solution is given

by introducing the entanglement wedge.

Let us first recall that the domain of dependence of some Cauchy slice ¥ on a man-
ifold M, D(X), is the set of all points p € M for which there exists some timelike
curve beginning or ending at p that intersects >. Then for some boundary region B
and some region X bound by QES €2 and B , the entanglement wedge is given by
D(B) N Xq. In other words, the entanglement wedge is the domain of dependence of

the boundary region, bounded by and homologous to the QES in the bulk [2, 39].
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Chapter 6
Recovering the Page Curve

Let us now consider how our treatment of gravitational descriptions of entropy thus

far can be applied to our understanding of black hole entropy.

6.1 Entropy of the Evaporating Black Hole

We consider a black hole in an asymptotically flat universe, with a cutoff surface at a
suitable distance away from the event horizon that beyond the cutoff surface we may

stop thinking of the black hole as a quantum system.

Our first consideration of the system is the time at which the black hole has just
been formed from a collapsing shell of matter in a pure state, before any evaporation
has begun. In this case, the only QES is of zero size; no deformation of the QES
towards the event horizon produces any other extremization, so this is taken to be the
minimal QES. Hence it is immediately apparent that the fine-grained entropy of the

system at this stage is zero.

As the black hole starts evaporating, the system stays in a pure state since the outgo-
ing Hawking radiation and its ingoing partner are both enclosed by the cutoff surface.
Once the outgoing Hawking radiation escapes the cutoff surface, the Sy, term in (5.22)
begins to increase, but the area term does not increase since the quantum RT surface

has not changed through the evaporation process.

Soon after the evaporation process begins, there appears another QES. It has al-
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ready been shown that by definition the entanglement wedge of a QES is causal, so it
is easy to argue that any non-vanishing QES must lie inside the event horizon of the
black hole. Penington showed in 2019 that the non-vanishing QES lies inside the black
hole close to the event horizon [39]. The argument is that as the black hole radiates,
the size of the non-vanishing QES shrinks. At the Page time, the generalised entropy
of the non-vanishing QES becomes smaller than that of the vanishing QES, so the
non-vanishing QES is the new quantum R-T surface, and so the entropy of the system

follows that of the non-vanishing QES.

Sgen Of non-vanishing surface

Sgené of vanishing surface

Figure 6.1: Carter-Penrose diagram of the black hole evaporation process
with cutoff surface (purple) shown, alongside a graph showing the change in
generalised entropy of the vanishing (orange) and non-vanishing (green) QES

regimes. The Page curve is shown in black. Image source: [2]

In ingoing Eddington-Finkelstein coordinates, the non-vanishing QES lies at infalling
time

v =~ tog(Sp) + 0O(5), (6.1)

where [ is the inverse temperature of the black hole. The leading order term here is
known as the scrambling time, which was first recovered by Hayden and Preskill in 2007
as part of their proposed Hayden-Preskill decoding criterion [22]. Derived based on
principles of quantum information and assuming unitary black hole dynamics, Hayden
and Preskill proposed that a diary thrown into a black hole before the Page time can
be recovered assuming we have sufficient information about the state of the black hole.

In addition, any diary thrown after the Page time can be recovered a scrambling time
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after the diary is thrown. Penington shows that the Hayden-Preskill decoding criterion
comes naturally from the QES formulation. Before the Page time, the vanishing QES is
the RT surface. Any information thrown into the black hole is immediately enclosed by
its entanglement wedge, and so its information is recoverable on the boundary. After
the Page time, the non-vanishing QES is the RT surface. Any information thrown into
the black hole is not immediately recoverable - time must elapse until the information
is enclosed by this non-vanishing QES, which lies a scrambling time inside the event

horizon.

6.2 Entropy of Hawking Radiation

In the previous section, we introduced a new framework for how we might consider the
fine-grained entropy of black holes to recover the Page curve. However, we have yet
to consider a key aspect of the black hole information paradox: the entropy growth of
Hawking radiation. We have so far restricted our discussion to the region enclosed by
the cutoff surface, ignoring that there is an increasing entropy of Hawking radiation ac-
cumulating outside it. By some finite time after the black hole has fully evaporated, we
may consider all of the Hawking radiation to be outside of this cutoff surface. From
the way the cutoff surface was constructed, we may assume that there is negligible
gravity and hence can approximate a static spacetime. However, since our radiation
has been obtained through gravitational treatment of fine-grained entropy in (5.22),

we may not describe the entropy of this radiation in terms of the usual density matrix.

Our quantum extremal surfaces description of the HEE in (5.22) has until now been
used for black hole spacetimes. However, this prescription is formulated more gen-
erally - there is no requirement for the presence of black holes for the formula to be
valid. The notion of a minimal QES holds for any general spacetime. In addition, we
previously only considered connected minimal QESs, since disconnected surfaces by
their nature have a larger area, increasing their entropy. However, in the case that
Sse(3q) decreases, one can see that disconnected QESs could plausibly be minimal.
Indeed, since Hawking radiation is entangled to the black hole interior, if we include
a portion of the black hole interior in our S,.(3q) such that the decrease in Ss.(Xq)
is more than the increase in the area term, then we have a new QES. This portion of

the black hole interior can be many different disconnected regions, which are known
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as islands. Hence our formula for the full entropy of Hawking radiation is given by

Area(S2)

Srad = MIN {extg [ N

+ Ssc<2rad U 2island):| } 3 (62)

known as the island rule. Here ¥,,4 is the region outside the cutoff surface out to
infinity and 2 is now the boundary surface of the island. The relation to our QES
formalism in (5.22) is evident. We are still extremising and minimising, except now
we are considering disconnected QESs and we are no longer restricting to the interior

of the cutoff surface.

Now that we have a proposed framework for thinking about the entropy of Hawk-
ing radiation, let us try to understand how black hole evaporation and the Page curve

fit into it.

One possibility that is allowed by (6.2) is to have no islands. This formulation gives
the same result as Hawking’s original calculation: the entropy of radiation increases
linearly as the black hole evaporates due to the increasing mixed state of the outgoing

Hawking radiation.

Sgen With island

~

™
without island

NS

to 1 to s

Figure 6.2: (left) Carter-Penrose diagram of the black hole evaporation process
for the case of one island. ;44,4 is represented by blue curves and X,.4 is
represented by black curves. (right) Graph showing the change in generalised
entropy of the regime with islands (orange) and without islands (green). The

Page curve is shown in black. Image source: [2]

The other possibility is non-vanishing islands. A non-vanishing island that gives some
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contribution to (6.2) appears at some finite time after the evaporation process begins.
For this case, the area term in (6.2) dominates, and is roughly equal to our Bekenstein-
Hawking entropy. The semi-classical entropy term remains small since it is assumed
that most of the outgoing Hawking radiation in »,,4 has its ingoing partner in ¥;4un4,

so is purified and so gives trivial contribution to the semi-classical entropy.

The minimising function in (6.2) means that we take the minimum of the regimes

with vanishing and non-vanishing islands. This accurately reproduces the Page curve.

6.3 Returning to Entanglement Wedge Reconstruc-
tion

So far we have looked at two different ways of thinking about the quantum information
of black hole evaporation: the quantum extremal surfaces prescription for the entropy
of black holes, and the the island rule for the entropy of Hawking radiation. We have
seen that both reproduce the Page curve accurately, and both come from some extrem-
isation of surfaces while exercising the holographic principle. A useful way to consider
the interaction of these two principles in the context of the system as a whole is using

entanglement wedge reconstruction, introduced earlier.

Fig. 6.3 schematically shows the three cases and the entanglement wedges in each
case. Before the Page time, looking at black hole entropy the vanishing QES inside
the cutoff surface is the quantum RT surface. Looking at the Hawking radiation
entropy the minimal surface does not have any island, so the semi-classical entropy
contribution is from 3,,4. After the Page time before the black hole has completely
evaporated, the non-vanishing QES that lies a scrambling time behind the event hori-
zon is the minimal QES. In addition, we now have minimal contribution coming from
a surface with a non-vanishing island. Finally, after the black hole has fully evapo-
rated, we assume the cutoff surface is just flat space. The entanglement wedge of the
radiation now includes the whole black hole interior, and the entanglement wedge of

the black hole vanishes [39].

This picture has important implications for our consideration of the degrees of freedom
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Island

t < tPage ' t > tPage ' t > tEvap

(a) (0) ()

Figure 6.3: Carter-Penrose diagrams showing the entanglement wedges of the
black hole (green) and Hawking radiation (blue) systems in the black hole

evaporation process. Image source: [2]

in black holes. The entanglement wedges combined should provide a full picture about
the information of the original black hole, before evaporation begun. An important
insight here is that the “black hole degrees of freedom”, shown by the green regions,
are usually only given by a section of the black hole interior. This section changes in
size, shape, and location as the black hole evaporates. Eventually all the degrees of
freedom of the system are transferred to the radiation, but the island rule means that
by the end of the evaporation process a large proportion of the radiation degrees of
freedom are contained in the original black hole interior. Another key takeaway from
this prescription is the effect that causality has on which parts of our surfaces are to

be considered.

6.4 Resolving the AMPS Paradox

In our formulation of the black hole information paradox, we introduced the related
AMPS paradox. The paradox has one important assumption: that the decrees of
freedom of the black hole are described by the entire black hole interior, and no other
region. However, the HEE picture views the degrees of freedom of black holes entirely
differently. As illustrated in Fig. 6.3, this picture presents the degrees of freedom

of the black hole system as much more fluid. The black hole’s degrees of freedom

44



are dependent on causal structure in the form of entanglement wedges, and Hawking
radiation is considered to be able to contain degrees of freedom. The HEE picture
hence contradicts an assumption of the AMPS paradox, which in turn means that the

paradox needs not be considered for this formulation.
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Chapter 7

Conclusion

We have now shown how a holographic consideration of entanglement entropy is a step
towards a solution to the black hole information paradox. As the quantum extremal
surfaces formulation is still in its early stages, there are many avenues for further
exploration. This dissertation has omitted calculations of QESs for specific cases.
For example, the holographic entanglement entropy of the toy model of 2-dimensional
Jackiw-Teitelbohm (JT) gravity has been computed explicitly [38]. This theory is a
specific case of AdS3/CFT, in which 1 + 1 dimensional dilaton gravity is coupled to
a C'F'Ty. Although unphysical, this model provides a good continuation of Ryu and
Takayanagi’s derivation of the classical HEE for AdSs;/CFT, as recovered in (5.15).
A key issue with this model, as well as all models for which Page curve computations
have thus far been carried out, is that they include massive gravitons [15]. In physical
situations, gravitons are massless. Hence in order to begin working towards computing

Page curves for astrophysical black holes, the theory will need some major modification.

The QES and island formulations of HEE have some problems and limitations which

present avenues for further research. We will now present a few of them.

Firstly, it is important to note that this formulation treats gravity as an effective
field theory which has an action that may be expanded perturbatively. In order to
get an exact picture of QESs and islands, one would require a full theory of quantum
gravity.

Another point, mentioned by Almbheiri et al. [2], is that the cutoff surface with which
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we encapsulate our black hole system is ambiguous in its nature. It is unclear where
the spacetime begins to be static, or indeed from where we may stop considering the
quantum nature of the black hole system, if anywhere. Almheiri et al. [2] posit that
a full understanding of this picture would require a formulation for a fully dynamical

spacetime, a feature of a theory of quantum gravity.

A central problem of this formulation of HEE is that although able to recreate the
Page curve and give a unitary description of the fine-grained entropy of Hawking ra-
diation, it does not provide density operators. This is an active field of research, and
work is being done to align ideas about replica wormholes as a way of considering

entanglement with the QES and island prescription.

An active avenue of further work is in considering whether the HEE prescription
can be applied to cosmological horizons. Hawking and Gibbons showed in 1977 that
flat spacetimes expanding with positive Hubble parameter have cosmological hori-
zons which radiate analogous to Hawking radiation from black hole event horizons
[18]. They extended the analogy and posited the Gibbons-Hawking entropy for cos-
mological horizons. It is very possible that the geometric and quantum considerations
used by the QES and island formulation could be of use in computing a fine-grained
Gibbons-Hawking entropy for cosmological horizons. However, the nature of cosmo-
logical horizons is not as well understood as that of black hole event horizons. The
field of quantum cosmology is also still in its early stages of research, and so it is un-
clear whether the consideration of cosmological horizons as quantum systems is valid,
or indeed useful. However, by beginning to consider cosmological horizons in these
terms there may be some interesting insights to help develop our understanding of the

quantum nature of these systems.
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