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Abstract

The possibility for quantum field theories to possess unstable vacua in flat, curved

and gravitational cases are investigated. The state of higher energy density becomes

unstable due to barrier penetration and thus permits a transition to the lower energy

density state. In the limit of small ℏ it is possible to reduce the gravitational system

to a set of coupled ordinary differential equations solved using a Runge-Kutta method.
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Humanity’s deepest desire for

knowledge is justification enough for

our continuing quest. And our goal

is nothing less than a complete

description of the universe we live in.

Stephen Hawking (ABHOT)
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Introduction

Motivation for this Report

Scalar fields are ubiquitous in physics from the inflaton field which is a candidate for

the root cause of cosmological inflation, to the nature of the Higgs field [14; 19] by

which particles acquire masses, to dilatons in Kaluza-Klein models. The second case

here is of vital importance and is the main motivation for this report. An interesting

exercise is when the potential of this scalar field possesses a false minimum. Due to

the renormalisation group running coupling of the effective Higgs potential the masses

of the Higgs scalar and the top quark (mH = 125.18±0.16 GeV, mt = 173.1±0.9 GeV

respectively [33]) place the Standard Model in a metastable state. As a result, there

is a lower vacuum energy state that the electroweak vacuum can decay into [10].

False Vacuum Decay is the study of systems with classically stable states being rendered

metastable under quantum fluctuations. One could consider a potential in a scalar

field configuration with two non-degenerate minima. The minimum that is not global

is called the false vacuum. If a system such as a scalar field is resting within this false

vacuum, then in the classical case, it will remain unperturbed in this state. However,

if one considers quantum fluctuations, the system will eventually seek the true vacuum

(global minimum of the potential) in order to achieve equilibrium. This process is

often likened to the nucleation of bubbles within the boiling process of super-heated

liquids. Consider a homogeneous liquid within a container which is free of defects. This

frees up the container from nucleation sites for vapour bubbles to form. This system

exhibits two phases - a liquid phase and a vapour phase. Thermal fluctuations in the

liquid cause bubbles of vapour to materialise in the fluid phase. If the volume of the

bubble is too small, then the loss in surface tension does not compensate for the gain

in volume. If the bubble is sufficiently large, then it will expand until the entire liquid

5
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is converted to vapour.

The study of false vacuum decay has been of great interest since the early 1970s, with

the seminal work of Voloshin, Kobrazev and Okun [21] and Coleman and Callan [4; 8]

building on the work of Banks, Bender and Wu [1]. It was found, as in the analogy,

that the phenomenon of barrier penetration results in a rapidly expanding bubble of

true vacuum accelerating to the speed of light. As the bubble expands, it converts false

vacuum to true vacuum. Notably, Coleman found that the solution to such a problem

boils down to finding a classical solution to the Euclidean equations of motion, called

the bounce. In doing so, one can calculate the action, B, of such a process occurring

and thus the probability of decay rate per unit volume, Γ/V .

The inclusion of thermal as well as quantum fluctuations is also a huge area of interest

in the literature and many fascinating analyses namely by Garriga [11] and Linde

[23] tackle the same problem but in finite temperature. Their results will often be

mentioned without proof, as the main focus of this report will be on the limit of zero

temperature, however, the results of these papers are too irresistible to not include.

Structure of this Report

In Chapter 1 Theory Toolbox, we will develop the tools required to solve the problem

of false vacuum decay such as the action principle and the path integral. In Chapter 2

Quantum Tunnelling will introduce the problem of WKB tunnelling and tunnelling in

the heat kernel formalism and show how these are two sides of the same coin. We shall

further introduce the notion of a metastable state as well as solving some heat kernels

for simple systems such as the Single-Well Potential and the Double-Well Potential.

In Chapter 3 Instantons in Quantum Field Theory, we will apply our new skills to the

study of a scalar field in a potential with a non-degenerate set of minima and show how

the state with higher energy is rendered metastable due to barrier penetration. We then

proceed to Chapter 4 Numerical Results in Minkowski Spacetime wherein we shall solve

the scalar field equation using the Runge-Kutta method, shooting method and Newton-

Raphson root-finding method to confirm the validity of the thin-wall approximation.



CONTENTS 7

In Chapter 5 Instantons in de Sitter Space, we will introduce scalar dynamics on de

Sitter space and solve the new equation of motion in Chapter 6 Numerical Problem in

Fixed de Sitter Space. We also introduce the Hawking-Moss instanton and the pesky

oscillating instantons as well as the sought after Coleman-de Luccia instanton in 6.2

Types of Solutions. We determine whether or not these solutions are important to

consider.

Finally, in Chapter 7 Gravitational Instantons, we use a Friedmann-Robertson-Walker

ansatz for the metric to solve the Friedmann equation coupled to the scalar field equa-

tion and show that the resulting spacetime is a de Sitter space. In Chapter 8 Numeri-

cal Results with Gravity we also introduce the Fixed Background approximation and

show that under certain conditions that Coleman-de Luccia solutions cease and only

the Hawking-Moss solution contributes. In this limit, the resulting spacetime is a static

de Sitter spacetime.



Chapter 1

Theory Toolbox

In this section, many of the theoretical concepts, useful to our discussion, are intro-

duced. At times we will be precise on derivations of the tools we require and at others

we shall be terse when the tools are considered trivial.

1.1 Classical Fields in Flat Space

Consider the space-time dependent fields Φi(xµ), the action is defined as a functional

of these fields. The Lagrangian density, L, is a function of the fields, Φi(xµ), and

their derivatives, ∂µΦ
i. Integrating the density over a spatial volume element gives the

Lagrangian, L,

L =

∫
d3xL(Φi, ∂µΦ

i), (1.1.1)

so the action for a classical field is,

S =

∫
dtL =

∫
d4xL(Φi, ∂µΦ

i). (1.1.2)

The Euler-Lagrange equations come from stationary action upon application of the

arbitrary variations,

Φi → Φi + δΦi

∂µΦ
i → ∂µΦ

i + δ(∂µΦ
i) = ∂µΦ

i + ∂µ(δΦ
i).

8
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Since δΦi is assumed to be small, we can Taylor expand the Lagrangian,

L(Φi + δΦi, ∂µΦ
i + ∂(δΦi)) = L(Φi, ∂µΦ

i) +
∂L
∂Φi

δΦi +
∂L

∂(∂µΦi)
∂µ(δΦ

i) + ...

The corresponding action transforms as S → S + δS with,

δS =

∫
d4x

(
∂L
∂Φi

δΦi +
∂L

∂(∂µΦi)
∂µ(δΦ

i)

)
.

The second term can be integrated by Stokes’ Theorem and by dropping boundary

terms (as δΦ(±∞) → 0) we are left with the Euler-Lagrange equation for a field,

δS

δΦi
=

∂L
∂Φi

− ∂µ

(
∂L

∂(∂µΦi)

)
= 0. (1.1.3)

The simplest field we could describe would be a real scalar field which takes space-time

coordinates and maps them onto the real numbers,

ϕ : M4 7−→ R. (1.1.4)

A typical scalar field is the temperature variation in a room. At every point in the room,

we assign a single temperature, and the temperature of the entire room is described

by the scalar distribution. In quantum field theory, scalar fields give rise to spin-less

particles, such as the π0-meson or the Higgs field [3]. The Lagrangian must contain

terms dependent on ϕ and ∂µϕ. The relativistically covariant Lagrangian of a scalar

field is,

L =
1

2
ηµν∂µϕ∂νϕ− U(ϕ). (1.1.5)

The equation of motion for this field is simply,

∂µ∂
µϕ+ U ′(ϕ) = 0. (1.1.6)

Using the Taylor expansion of U(ϕ) about a local minimum ϕ0, we can write,

U(ϕ− ϕ0) = U(ϕ0) +
1

2!
U ′′(ϕ0)(ϕ− ϕ0)

2 + ...

We are free to add a constant to the potential, so we can redefine the vacuum state to

have vanishing potential, U(ϕ− ϕ0) ≃ 1
2
U ′′(ϕ0)(ϕ− ϕ0)

2. If U ′′(ϕ0) = m2 and ϕ0 = 0,
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Figure 1.1.1: Here is a potential which has two degenerate minima, one at ϕ0. If we expand the
potential about the ϕ0, we see that very close to the minimum, the potential is approximated as a
parabola (in red). Expanding the potential will give the particle a mass.

we have U(ϕ) = 1
2
m2ϕ2 as we see in Figure 1.1.1.

Applying this approximate potential to the equation of motion, we obtain the Klein-

Gordon Equation,

∂µ∂
µϕ+m2ϕ = 0. (1.1.7)

If we expand ϕ(x) in terms of Fourier modes, where kµ = (E, ki) we have

∫
d4k

(2π)4
ϕ̃(k)[∂µ∂µ +m2]eikµx

µ

= 0

−kµkµ +m2 = −E2 + |k|2 +m2 = 0

and so we obtain the Einstein Energy-Momentum Relation E2 = m2+ |k|2 of a particle

with rest-mass m.

Another central construction in Field Theory and General Relativity is the energy-

momentum tensor Tµν . We proceed to derive this tensor using the symmetries of the

Lagrangian under a spacetime translation of the scalar field by a vector aµ,

ϕ(xµ) → ϕ(x′) = ϕ(xµ + aµ)

= ϕ(x) + aµ∂µϕ+ ...

Under these translations, the change induced on the scalar field to leading order is
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δϕ = aµ∂µϕ. How does the Lagrangian change under translations? Well, it is a function

of ϕ, but also a function of space-time position, so its change is two-fold. Let’s first

deal with changes with respect to ϕ

δL =
∂L
∂ϕ

δϕ+
∂L

∂(∂µϕ)
∂µδϕ (1.1.8)

Using the Euler-Lagrange equations (1.1.3), we can replace the first term and combine

the two terms by the Leibniz product rule,

δL = ∂µ

(
∂L

∂(∂µϕ)

)
δϕ+

∂L
∂(∂µϕ)

∂µδϕ = ∂µ

(
∂L

∂(∂µϕ)
δϕ

)
. (1.1.9)

Moreover, as L is a scalar function depending on xµ [28] another way to write this is,

δL = aµ∂µL. (1.1.10)

Combining (1.1.9) and (1.1.10), we have the continuity equation,

∂µj
µ = aν∂µ (∂

µϕ∂νϕ− δµνL) = 0, (1.1.11)

jµ is the conserved Nöther current and is given by,

jµ = aν (∂µϕ∂νϕ− δµνL) = aνT µ
ν , (1.1.12)

and finally, we have the energy-momentum tensor of the scalar field theory,

Tµν = ∂µϕ∂νϕ− ηµνL. (1.1.13)

1.2 Action Principle For General Relativity

The energy-momentum tensor appears in the Einstein Field Equations (EFEs) which

are the dynamical equations of motion given by,

Gµν = 8πGN Tµν , (1.2.1)

where GN is Newton’s Universal Gravitational constant, Gµν = Rµν − 1
2
Rgµν is the

Einstein tensor. Rµν and R are the Ricci tensor and scalar respectively [3]. The con-
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struction of Tµν is slightly different in curved spaces, though the formula is essentially

the same but with appropriate replacements for the metric. These variables are all

dependent on the metric tensor gµν through the Christoffel connection, Γ µ
ρσ , [31; 3]

and its derivatives, ∂νΓ
µ

ρσ ,

Γ µ
ρσ =

1

2
gµν (∂σgρν + ∂ρgσν − ∂νgρσ) . (1.2.2)

This is the unique connection which is both metric-compatible (the covariant derivative

of the metric vanishes,∇ρgνµ = 0) and torsion-free (Γ µ
ρσ = Γ µ

σρ ). The Riemann Tensor

is determined by,

Rµ
νρσ = ∂ρΓ

µ
νσ − ∂σΓ

µ
νρ + Γ µ

ρλ Γ λ
νσ − Γ µ

σλ Γ λ
νρ . (1.2.3)

Once we know the Riemann Tensor, the Ricci tensor is easily determined,

Rµν = Rρ
µρν , (1.2.4)

then we can obtain the Ricci Scalar by calculating the trace of Rµν ,

R = gµνRµν . (1.2.5)

So, of the dynamical equations of motion of general relativity, we see that the most

fundamental degree of freedom is the gµν as each of the participants of (1.2.1) all

explicitly depend on it. Tµν contains the information about the matter in the universe

(spinors and tensors). In the action for the metric, we must treat gµν(x) as a classical

field (dynamical variable). We introduce the Lagrangian Density over a manifold M.

For a general classical field Φi on a d-dimensional pseudo-Riemannian (Lorentzian)

manifold covered by an appropriate coordinate chart {xµ}, the Lagrangian density

L = L(Φi, ∂Φi) is a local function defined as,

L =

∫
dd−1x

√
|g|L(Φi, ∂Φi), (1.2.6)

where, L is the Lagrangian of the system. From this, the action can be written in

terms of the Lagrangian density (hereby Lagrangian),
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S[Φi] =

∫
M

dt dd−1x
√

|g|L(Φi, ∂Φi) =

∫
M

ddx
√
|g|L(Φi, ∂Φi) (1.2.7)

where
∫
M denotes integration over the entire manifold and g is the metric determi-

nant. This action must be diffeomorphism invariant. A diffeomorphism is a bijective1

homeomorphism over a manifold M to another manifold N in the following sense,

f : M 7−→ N = f(M),

p −→ p′ = f(p).
(1.2.8)

We see that a diffeomorphism is a smooth re-labelling of points on M. By far the

simplest action to write is the Einstein-Hilbert Action, SEH. In d-dimensions, this is

nothing but,

SEH[g
µν ] =

1

2
M2

p

∫
ddx
√

|g|R, (1.2.9)

where Mp = (8πG)−
1
2 is the reduced Planck Mass in natural units. The dynamical

variable is in fact gµν and so we must make the variations gµν → gµν + δgµν to obtain

the vacuum EFEs,

Gµν = 0. (1.2.10)

To summarise, we need the actions to have the following simple properties, that the

Lagrangian:

1. is a local functional in our tensor fields. Tensor also refers to scalar fields as a

scalar field f(x) ∈ J 0
0 ,

2. must be invariant under group symmetries of the fields (if a function f(x) is Z2

invariant, the action must respect this),

3. must be a scalar function under diffeomorphism (differential analogue of space-

time Lorentz invariance)

That’s the beauty of the action principle. It allows us to intuitively build theories from

the blocks outlined above.

1Bijective means one-to-one and onto - essentially means, p ∈ M is mapped to one and one point
only f(p) ∈ N . So the inverse mapping f−1 is well-defined.
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We can now easily incorporate a scalar field, ϕ(x), in a potential U(ϕ) along with the

SEH,

S[ϕ, gµν ] =

∫
ddx
√

|g|
(
1

2
gµν∇µϕ∇νϕ− U(ϕ) +

1

2
M2

pR

)
. (1.2.11)

We can see that the scalar field Lagrangian is that of the Klein-Gordon scalar but with

obvious replacements, ηµν → gµν and ∂µ → ∇µ. The variations required to obtain the

EFEs are gµν → gµν + δgµν and will give us Gµν = M−2
p Tµν , where the stress-energy

tensor Tµν , can be calculated as a functional derivative of the ϕ part of S,

Tµν =
2√
|g|

δSϕ

δgµν
. (1.2.12)

This derivation is very different from that of the energy-momentum tensor (1.1.13),

however the calculation leads us to the following form of the energy-momentum tensor,

Tµν = ∇µϕ∇νϕ− gµνL, (1.2.13)

which is exactly the same as the flat case we discussed. Effectively, this demonstrates

Einstein’s Equivalence Principle. Variations in ϕ → ϕ + δϕ, will give us the Klein-

Gordon Equation on a curved space-time,

1√
|g|
∂µ

[√
|g|gµν∂νϕ

]
= −dU

dϕ
. (1.2.14)

Since this is a tensorial equation, we can consider (1.2.14) in a local inertial frame

gµν → ηµν for which we will obtain (1.1.6). We will focus on the Euclidean analogue

of (1.2.11) in the section on instantons in gravitational fields.

1.3 The Path Integral

1.3.1 The Free Propagator

The purpose of the path integral is to establish an action principle to quantum mechan-

ics and particularly to quantum field theory (where the action principle is absolutely

necessary). We consider the possible set of trajectories of a particle between two points

q and q0. Hamilton’s principle allows us to throw away all the trajectories, except the

one that extremises the action S. So the classical particle has a predetermined and
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unique trajectory which depends on its initial position and velocity. This is of course

not possible in quantum mechanics as we have lost determinism of the absolute state

of a particle. Naturally, we could consider every possible trajectory a particle can take

and see what happens. Starting with the wave function, we can write,

ψ(q, t) = ⟨q| exp(−iĤt) |ψ(0)⟩ , (1.3.1)

[28; 26]. We then introduce the completeness relation in terms of the set of position

eigenstates at initial time t0, {|q0⟩} given by 1 =
∫
dq0 |q0⟩ ⟨q0|. For instance, in the case

of a free particle moving in one-dimension, between positions x0 to x the Hamiltonian

is quite simply,

Ĥ =
p̂2

2m
,

and our free propagator is,

D0(x, x0; t) = ⟨x|e−i p̂2

2m
t|x0⟩ . (1.3.2)

We are of course always free to introduce a set of basis eigenstates, since our Hamil-

tonian is dependent only on p̂, let us introduce its eigenstates as a complete set such

that 1 =
∫

dp
2π

|p⟩ ⟨p|,

D0(x, x0; t) =
1

2π

∫
dp ⟨x| e−i p̂2

2m
t |p⟩ ⟨p|x0⟩ ,

=
1

2π

∫
dpe−i p2

2m
t ⟨x|p⟩ ⟨p|x0⟩ .

Here, we can use ⟨x|p⟩ = eipx,

D0(x, x0; t) =
1

2π

∫
dpe−i p2

2m
t+ip(x−x0),

we can write,

D0(x, x0; t) =
1

2π
exp

[
im(x− x0)

2

2t

] ∫ ∞

−∞
dp exp

[
−it
2m

(
p− m(x− x0)

t

)2
]
, (1.3.3)
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which is a Gaussian integral but with an imaginary exponent. Using the routine in

Appendix A Gaussian Integrals, we can evaluate the integral,

D0(x, x0; t) =

√
m

2πit
exp

(
im(x− x0)

2

2t

)
. (1.3.4)

There are factors of i in both the exponent and in the prefactor, which make this object

hard to visualise. However, if we analytically continue this solution by Wick rotation,

t→ −iτ , we have,

D0(x, x0;−iτ) =
√

m

2πτ
exp

(
−m(x− x0)

2

2τ

)
. (1.3.5)

This describes a distribution that is a δ-function at τ = 0 which spreads out over time

with a Gaussian profile. This is the Green’s Function of the heat equation [31],

∂u(x, t)

∂t
= κ

∂2u(x, t)

∂x2
. (1.3.6)

Interestingly, if we look at the Schödinger equation and perform a Wick rotation, we

obtain a heat equation
∂ψ(x, τ)

∂τ
= κ

∂2ψ(x, τ)

∂x2
. (1.3.7)

with the thermal diffusivity coefficient κ = ℏ
2m

. So Wick rotation transforms the

propagator of the Schrödinger equation into a Green’s function of the heat equation.

For this reason, (1.3.5) is often called the heat kernel of Ĥ, which we define as,

D(x, x0;−iτ) = ⟨x|e−Ĥτ |x0⟩ . (1.3.8)

1.3.2 The Particle in a Potential Case

In the case of the particle in non-zero potential V (q) we have actually done most of the

work already. We follow the derivation found in [26]. Looking closely at the exponential

factor for small δt, we have,

e−iĤδt = e−i( 1
2m

p̂2+V (q))δt = e−i 1
2m

p̂2δte−iV (q)δt[1 +O(δt2)],

we should note that the extra terms comes from the commutators in the Baker-

Campbell-Hausdorff (BCH) formula for operators. This is because for non-commuting
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operators Â and B̂,

exp(Â) exp(B̂) = exp

(
Â+ B̂ +

1

2
[Â, B̂] + ...

)
̸= exp

(
Â+ B̂

)
,

but for a small δt factor in the exponent,

exp(Âδt) exp(B̂δt) = exp

(
Âδt+ B̂δt+

1

2
δt2[Â, B̂] + ...

)
≈ exp

(
(Â+ B̂)δt

)
.

Now the key to this is to calculate as before using the same technique for the free case.

So to leading order, our amplitude is given by,

⟨qr+1| exp(−iĤδt) |qr⟩ = ⟨qr+1| e−
i

2m
p̂2e−iV (q̂)δt |qr⟩ ,

= e−iV (q)δt ⟨qr+1| e−i p̂2

2m
δt |qr⟩ ,

and what remains to be evaluated is the free propagator from (1.3.4),

⟨qr+1| exp(−iĤδt) |qr⟩ =
√

m

2πiδt
exp

(
i

[
1

2
m

(
qr+1 − qr

δt

)2

− V (qr)

]
δt

)
, (1.3.9)

and now returning to the propagator D(q, q0;T ) we have,

D(q, q0;T ) =
( m

2πiδt

) 1
2
(n+1)

∫ n∏
r=1

dqr exp

(
i

n∑
r=0

[
1

2
m

(
qr+1 − qr

δt

)2

− V (qr)

]
δt

)
.

(1.3.10)

The exponent here is of course a discrete-lattice form of the action of our system

S[q] =
∫
dt
(
1
2
mq̇2 − V (q)

)
=
∫
dtL(q, q̇), where L(q, q̇) is of course the Lagrangian as

we have become so acquainted with. Usually, L(q, q̇) = T (q̇) − V (q), where T and V

are, respectively, the kinetic and potential energy of the system. In the limit as δt→ 0,

we have,

D(q, q0;T ) = ⟨q| exp(−iĤt) |q0⟩ =
∫
[dq]eiS[q], (1.3.11)

where in the limit that δt→ 0,√
m

2πiδt

n∏
r=1

√
m

2πiδt
dqr → [dq], (1.3.12)
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is the functional integration measure. The great thing about the right hand side of

(1.3.10) is that we have eliminated any trace of operators. We have a purely algebraic

construction.



Chapter 2

Quantum Tunnelling

Now that we have introduced the path integral in this section we discuss the process of

tunnelling first in the Wentzel–Kramers–Brillouin (WKB) approximation. The WKB

approximation was independently developed and used by Gregor Wentzel, Hendrik

Kramers and Léon Brillouin in 1926 to solve certain wave-mechanical problems, is of

paramount importance for approximations made in quantum mechanics. This is one

of several instances in mathematical physics where many individuals develop the same

tool but the common name refers to only a few of them for brevity. These methods

were also studied in depth by Harold Jeffreys in 1923 and as far back as the first half of

the nineteenth century by George Green. A more pedagogical discussion of the results

of the WKB approximation can be found in texts such as [31] and for a more quantum

tunnelling focused approach [13]. It will be seen that the tunnelling in the path integral

regime agrees with that of the WKB approximation.

2.1 WKB Tunnelling

For a particle moving in a rectangular potential barrier with height, U , and width, a,

given as

V (x) =

U 0 ≤ x ≤ a,

0 otherwise.

Thus the Schödinger equation for this one-dimensional system is given by,

d2ψ

dx2
− 2m

ℏ2
[V (x)− E]ψ(x). (2.1.1)

19
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Figure 2.1.1: Bumpy-topped potential barrier.

In the case that, E < V (x), in the non-classical region (0 ≤ x ≤ a) The transmission

coefficient, T (E), can be readily determined as a function of the particle energy, E, as,

T (E)−1 = 1 +
U2

4E(U − E)
sinh2

(a
ℏ
√

2m(U − E)
)
. (2.1.2)

However, if we have a more complicated potential, Figure (2.1.1) we may not be able to

obtain an exact closed-form solution for T (E). Fortunately, we have the WKB solution

to give us a semi-classical approximation for T , [13]. The power of the WKB solution

is that it can deal with situations where, E < V (x) and so p(x) will be imaginary

p(x) = i
√
2m(V (x)− E), as is the requirement for tunnelling. The corresponding

solution of the Schrödinger equation will be,

ψ(x) =
A√
|p(x)|

exp

(
±1

ℏ

∫
|p(x)| dx

)
. (2.1.3)

Now we consider the bumpy-topped potential in Figure (2.1.1).

• To the left, (x < −a) the solution of the time-independent Schrödinger equation

is,

ψ(x < −a) = Aeikx +Be−ikx,

where A is the incident wave amplitude and B is the reflected wave amplitude

and k =
√

2mE/ℏ.
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• To the right (x > a) the solution is,

ψ(x > a) = Feikx,

There is no e−ikx term here because, we are assuming that the source of the par-

ticles is on the left of the potential. The transmission coefficient is the modulus-

square of the ratio of the transmitted wave amplitude and the incident wave

amplitude,

T =
|F |2

|A|2
.

• Inside the non-classical region (−a < x < a) we have,

ψ(−a < x < a) =
C√
|p(x)|

exp

(
+
1

ℏ

∫ a

−a

|p(x)| dx
)
+

D√
|p(x)|

exp

(
−1

ℏ

∫ a

−a

|p(x)| dx
)
.

Within the non-classical region we can see that if the barrier is very high or broad,

that the coefficient C, must be very small (zero for an infinitely broad barrier). The

relative amplitude of the incident and transmitted waves is determined by the total

decrease of the exponential over the non-classical region,

|F |
|A|

∝ exp

(
−1

ℏ

∫ a

−a

|p(x)| dx
)
,

so that,

T = A′ exp

(
−2

ℏ

∫ a

−a

|p(x)| dx
)
, (2.1.4)

which is the tunnelling coefficient for some generally-shaped potential barrier provided

ℏ is small.

2.2 Tunnelling using the Path Integral

Now we would like to translate tunnelling in terms the path integral formulation and

we will see that there is an alternative approach which yields the same results as the

WKB approach [7]. Consider for now some general potential V (x). If we consider the

amplitude of the particle moving from x0 to x within time T , the path integral is given
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by,

⟨x| e−iĤT/ℏ |x0⟩ =
∫
[dx]e+

i
ℏS[x]. (2.2.1)

Note that we have reinstated ℏ as we want a semiclassical1 approximation expanded in

orders of ℏ. When we usually calculate path integrals, we would like to expand about

the classical trajectory of the particle such as,

x(t) = xc(t) + f(t), (2.2.2)

where xc(t) is the classical trajectory obeying the same boundary conditions as the

general x(t). The function f(t) vanishes on the boundary. This is the same prescription

that we established when deriving the Euler-Lagrange equations. However if E < V (x)

in some region, then the classical equation of motion has no well-defined solution.

Fortunately, we have Wick rotation t = −iτ which allows us to soldier on through this

conundrum [36]. τ is known as the Euclidean time and all other affected quantities

have the prefix Euclidean attached to them. For example, the total energy of a particle

in this system is given by,

E =
1

2
m

(
dx

dt

)2

+ V (x), (2.2.3)

once we perform Wick rotation, we obtain the total Euclidean energy,

EE = −1

2
m

(
dx

dτ

)2

+ V (x). (2.2.4)

The Euler-Lagrange equation under Wick rotation gives the condition for the classical

path,

−md2xc
dτ 2

+ V ′(xc) = 0. (2.2.5)

This is a funny sort of version of Newton’s Second Law, but with the potential inverted.

So if we have a potential barrier which is larger that the total energy of the particle,

under Wick rotation, tunnelling becomes a particle moving on the inverted version of

1Semiclassical refers to a regime for which the momenta in our problem are larger that ℏ.
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the potential barrier. Next, we focus on the effect on the action S[x],

S[x] =

∫ T/2

−T/2

dt

[
1

2
m

(
dx

dt

)2

− V (x)

]
= i

∫
dτ

[
1

2
m

(
dx

dτ

)2

+ V (x)

]
. (2.2.6)

This new quantity is called the Euclidean action SE [4; 6; 7; 8],

SE =

∫
dτ

[
1

2
m

(
dx

dτ

)2

+ V (x)

]
. (2.2.7)

We can perform a change of variables as 1
2
m
(
dx
dτ

)2
= V (x) and we can rewrite SE as,

SE =

∫ x

x0

dx
√

2mV (x), (2.2.8)

and so the path integral is now from x0 at Euclidean time −T
2
to x at Euclidean time

T
2
,

⟨x| eĤT/ℏ |x0⟩ = A exp

(
−1

ℏ

∫ x

x0

dx
√

2mV (x)

)
. (2.2.9)

This is recognised as the heat kernel of Ĥ. The tunnelling coefficient T is,

T = A exp

(
−2

ℏ

∫ x

x0

dx
√

2mV (x)

)
, (2.2.10)

which agrees with the exponential suppression from WKB approximation (2.1.4) with

E = 0.

2.3 Heating up the Kernels

We will now consider a more detailed derivation of (2.2.9). Consider the heat kernel

of a general Ĥ,

⟨xf | e−ĤT/ℏ |xi⟩ = N

∫
[dx]e−S[x]/ℏ, (2.3.1)

where N is a normalisation factor which is required since the Euclidean continuation is

different from the usual path integral. |xi⟩ and |xf⟩ are the eigenstates of the position

operator. In order to understand this expression a bit better we can introduce the
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complete set of eigenstates of Ĥ, such that Ĥ |n⟩ = En |n⟩, so the left side of (2.3.1)

becomes,

⟨xf | e−ĤT/ℏ |xi⟩ =
∑
n

e−EnT/ℏ ⟨xf |n⟩ ⟨n|xi⟩
T→∞
===== e−E0T/ℏ ⟨xf |0⟩ ⟨0|xi⟩ . (2.3.2)

We see that the vacuum state |0⟩ dominates at large T [8]. In the case of the right

side, S is the Euclidean action,

S =

∫ T
2

−T
2

dτ

[
1

2
m

(
dx

dτ

)2

+ V (x)

]
, (2.3.3)

the [dx] measure is of course an integration over all functions x(τ) which obey the

boundary conditions x (−T/2) = xi and x (+T/2) = xf .

We define xc as the classical Euclidean trajectory that minimises the action S and

obeys the boundary conditions. We introduce a complete set of orthonormal functions,

{xn(τ)}, which vanish on the boundary, xn(±T/2) = 0. Thus a general path, x(τ)

between τ = ±T/2 can be written as,

x(τ) = xc(τ) +
∞∑
n=1

cnxn(τ), (2.3.4)

where the cn indicate the weight of each xn that appears in the infinite sum. Orthonor-

mality implies that
∫ T

2

−T
2

dτ xn(τ)xm(τ) = δnm. With these considerations we can now

define the measure of integration,

[dx] =
∏
n

(2πℏ)−
1
2 dcn. (2.3.5)

Taking the functional derivative of S evaluated at the classical path gives,

δS

δxc
= −d2xc

dτ 2
+ V ′(xc) = 0. (2.3.6)

The second variational derivative of the action S can be determined easily by applying
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the fluctuations xc → xc +
∑

n cnxn(τ) and then Taylor Expanding,

δ2S

δx2c
= − d2

dτ 2

[
xc +

∑
n

cnxn(τ)

]
+ V ′

(
xc +

∑
n

cnxn(τ)

)
,

=

[
−d2xc

dτ 2
+ V ′ (xc)

]
+
∑
n

[
−d2xn

dτ 2
+ V ′′ (xc)xn(τ)

]
,

(2.3.7)

whereby, the first term vanishes due to (2.3.6). Thus the second variational derivative

of the action with respect to xc is given by,

δ2S

δx2c
=

∞∑
n=1

[
−d2xn

dτ 2
+ V ′′(xc)xn

]
=

∞∑
n=1

λnxn,

−d2xn
dτ 2

+ V ′′(xc)xn = λnxn. (2.3.8)

As the differential operator (2.3.8) is in Sturm-Liouville form [31],

− d

dτ

[
p(τ)

dxn
dτ

]
+ q(τ)xn = λnw(τ)xn, (2.3.9)

we have chosen the orthonormal set {xn(τ)} to be eigenfunctions of (2.3.8). Thus

(2.3.8) is expressed as an eigenvalue equation.

Putting all of this together, the heat kernel is written,

⟨xf | e−ĤT/ℏ |xi⟩ =

N

∫ ∏
n

dcn√
2πℏ

e−Sc/ℏ exp

(
− 1

2ℏ

∫ T
2

−T
2

dτ ′
∑
n,m

cncmxm(τ
′) [ẍn(τ

′) + V ′′(xc)xn(τ
′)] + ...

)
,

= N

∫ ∏
n

dcn√
2πℏ

e−Sc/ℏ exp

(∑
n

−λn
2ℏ
c2n

)
[1 +O(ℏ)],

= N
∏
n

λ
− 1

2
n e−Sc/ℏ[1 +O(ℏ)],

where the action has been expanded about the classical solution. We shall drop the

[1+O(ℏ)] factor from here on, but the reader should implicitly account for its presence.

The final equality can be written more explicitly in terms of a functional determinant,
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Figure 2.3.1: The single well potential becomes inverted in the mechanical analogy under Wick
rotation.

⟨xf | e−ĤT/ℏ |xi⟩ = Ne−Sc/ℏ[det(−∂2τ + V ′′(xc))]
− 1

2 , (2.3.10)

A major roadblock of these calculations is evaluating functional determinants, but it

depends purely on the nature of the potential V (xc), so this is a natural stopping point.

2.3.1 Single-Well Potential

Consider the single well potential in Figure 2.3.1 which we can write to leading order

as V (x) ≈ 1
2
ω2x2. We are free to redefine V (0) = 0 by adding a constant, we will

not be afforded the same leniency when in curved spaces, we may as well make use of

this invariance here. The classical trajectory of the particle is when xi = xf = 0. The

only well behaved solution that does not instantly become singular is the one where

xc(τ) = 0. The heat kernel of interest is,

⟨x = 0| e−ĤT/ℏ |x = 0⟩ = N [det(−∂2τ + ω2)]−
1
2 . (2.3.11)
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Figure 2.3.2: The double well potential becomes inverted in the mechanical analogy under Wick
rotation.

We employ the method of evaluating functional determinants in Appendix B Functional

Determinants to write,

⟨x = 0| e−ĤT/ℏ |x = 0⟩ T→∞
=====

( ω
πℏ

) 1
2
e−

1
2
ωT . (2.3.12)

Using (2.3.2), we can determine the ground state energy in the limit T → ∞,

e−E0T/ℏ| ⟨x = 0|n = 0⟩ |2 =
( ω
πℏ

) 1
2
e−

1
2
ωT , (2.3.13)

so the ground state energy is E0 = 1
2
ℏω and the probability of the particle being at

the origin is | ⟨x = 0|n = 0⟩ |2 = (ω/πℏ)
1
2 as expected from standard calculations in

quantum mechanics for a particle with unit mass [7].

2.3.2 Double-Well Potential

A less trivial example of tunnelling is of a symmetric potential V (x) with two vacua

placed at ±a, such that V (±a) = 0. This configuration complicates things slightly, as

the vacuum is not unique.
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Figure 2.3.3: The instanton, which is a smooth curve connecting the particle with boundary con-
ditions x(±T/2) = ±a (a is normalised to 1). The anti-instanton is the time-reversal of this which
smoothly connects the boundary values of x.

For instance, we must calculate the amplitudes,

⟨a| e−ĤT |a⟩ = ⟨−a| e−ĤT |−a⟩ , (2.3.14)

⟨a| e−ĤT |−a⟩ = ⟨−a| e−ĤT |a⟩ . (2.3.15)

Clearly, this complicates matters somewhat. Two obvious examples are where the

particle remains at x = ±a. Though these are solutions by right, there is a more

interesting solution which starts at x = −a at −T/2 and ends at x = a at T/2 seen

in Figure 3.1.1. The solution being when we push T → ∞. The classical equation of

motion can be obtained by considering the total energy E = 0 which gives us,

dx

dτ
=
√

2V (x), (2.3.16)

(2.3.16) is can be integrated to give,

τ = τ1 +

∫ x

0

dx′[2V (x′)]−
1
2 . (2.3.17)

The solution (2.3.17) is aptly named the instanton centred at τ1. The instanton is a

particle-like solution to the classical equation of motion but it exists in time (hence

instant-). It has a localised structure, much like solitons (or classical lumps). We can

construct an identical solution to the instanton but played backwards in time, called
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Figure 2.3.4: Several kinks over a large time period

the anti-instanton which takes our particle from x = a at −T/2 to x = −a at T/2.

There is also a more general solution which connects instanton to anti-instanton (called

the kink solution).

The action of these objects S0 is given by,

S0 =

∫
dτ

[
1

2

(
dx

dτ

)2

+ V (x)

]
=

∫
dτ

(
dx

dτ

)2

=

∫ a

−a

dx
√

2V (x), (2.3.18)

which is our usual barrier penetration factor.

About a classical turning point of the potential, (2.3.16) becomes,

dx

dτ
∝ ω(a− x), (2.3.19)

(a− x) ∝ e−ωτ/2, (2.3.20)

which shows that the width of the instanton is of O( 1
ω
). Assuming that ω is huge,

this makes the instanton very narrow in width and so highly localised. Hence, it

is possible within the time T , to fit a set of instantons followed by anti-instantons

widely separated with respect to the width 1
ω
. These are approximate solutions of the

equations of motion and have approximately stationary action [7].

Suppose we have n of these objects connected to each other, we require the following

facts for our solution:



2.3. HEATING UP THE KERNELS 30

1. if the action of one of these objects is S0, then the action for n widely-separated

objects is nS0.

2. evaluation of the functional determinant requires us to split the time interval T

into −T/2 = τ0 < τ1 < ... < τn−1 < τn = T/2. If the instanton was very large,

then the particle would spend a longer time around x = 0 and so V ′′ = ω2. The

small width of these objects stops this from being the case, however, if it were,

then the functional determinant would become that for the single well,√
ω

πℏ
e−ωT/2.

Thus we attach a simple correction K which pertains to a single (anti-)instanton,

giving us, √
ω

πℏ
e−ωT/2Kn. (2.3.21)

3. the integration over time can be evaluated by integration over the centres of our

objects τi, ∫ T/2

−T/2

dτ1

∫ τ1

−T/2

dτ2...

∫ τn−1

−T/2

dτn ≡ T n

n!
.

Assembling the solution therefore is simple as we put these ingredients together,

⟨−a|e−ĤT | − a⟩ =
√

ω

πℏ
e−ωT/2

∑
even n

(Ke−S0/ℏT )n

n!
, (2.3.22)

and,

⟨a|e−ĤT | − a⟩ =
√

ω

πℏ
e−ωT/2

∑
odd n

(Ke−S0/ℏT )n

n!
. (2.3.23)

We can generalise both of these formulae into one,

⟨± a|e−ĤT | − a⟩ =
√

ω

πℏ
e−ωT/21

2

[
exp(Ke−S0/ℏT )∓ exp(−Ke−S0/ℏT )

]
. (2.3.24)

The ground state energy is,

E± =
1

2
ℏω ± ℏKe−S0/ℏ. (2.3.25)

This is interesting as we see the barrier-penetration factor e−S0/ℏ from the WKB ap-
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proximation. Essentially, the wavefunction is smeared over the classical turning points.

(2.3.25) is slightly disingenuous as the second term is smaller than the O(ℏ2) correc-
tions of the first term, so we do not have the right to keep it in our formula, [7; 8].

However, it is the leading order contribution to ∆E = E+ − E− = 2ℏKe−S0/ℏ, so we

ought to keep it.

Now we shall evaluate K - the correction to a single instanton. If we take the first

derivative of the equation of motion (2.3.6), we have,

− d2

dτ 2
ẋc + V ′′(xc)ẋc = 0. (2.3.26)

Comparing this to the eigenvalue equation (2.3.8) we can see that (2.3.26) is alluding

to an eigenfunction, x1, of the differential operator with eigenvalue zero. By one-

to-one comparison, we see that x1 = S
−1/2
0 ẋc. The normalisation is achieved by the

action (2.3.18). In order to evaluate the functional determinants, we integrate over

the expansion coefficients. However, if we did integrate over the c1 coefficient, our

functional determinant would be hopelessly divergent. If we instead change the centre

of the instanton infinitesimally, dτ1, then the change in the solution is,

dx = (dxc/ dτ) dτ1, (2.3.27)

and the induced change in the expansion coefficient is,

dx = x1 dc1. (2.3.28)

Thus we have the infinitesimal change in the expansion coefficient, dc1, to be,

(2πℏ)−1/2 dc1 = (S0/2πℏ)−1/2 dτ1. (2.3.29)

We that in evaluating the functional determinant, we do not include the integration

over the zero eigenvalue. But we ought to include a factor of (S0/2πℏ)−1/2. Therefore,

the contribution from one instanton is going to be,

⟨a| eĤT |−a⟩ = NT (S0/2πℏ)1/2 e−S0/ℏ
(
d̃et[∂2τ + V ′′(xc)]

)−1/2

, (2.3.30)

where d̃et refers to the functional determinant excluding the zero eigenvalue. The value
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of K is therefore,

K = (S0/2πℏ)1/2
∣∣∣∣∣ det[−∂2τ + ω2]

d̃et[−∂2τ + V ′′(xc)]

∣∣∣∣∣
1
2

. (2.3.31)

The detailed derivation of this expression was originally formulated by Coleman and

Callan, [8; 7]. We have assumed that all of the eigenvalues are positive, except for

the one zero mode x1. This is not a baseless assumption as from the one-dimensional

Schrödinger equation, the eigenfunction of lowest eigenvalue has no nodes. The next

eigenfunction has one node. Since the instanton, xc, is a monotonically increasing

function, its first derivative (and so the zero mode) is nodeless. Therefore, x1, is the

only zero mode and all other eigenvalues λn>1 are positive .

2.3.3 Metastable States

Suppose now, that we have the potential in Figure 2.3.5. If we neglect barrier pene-

tration, in the semiclassical limit, V (x) has an energy eigenstate at the bottom of the

well at x = 0 (E = 1
2
ℏω + ...). We would like to calculate the corrections to E due

to barrier penetration. Under Wick rotation, we observe that the classical equation of

motion has a solution in which the particle begins at x = 0, bounces off x = ς and

then returns to x = 0. Computing the transition matrix element, from x = 0 to x = 0,

by summing over this configuration (as before), we have,

⟨0| e−ĤT/ℏ |0⟩ =
√

ω

πℏ
e−ωT/2 exp(−KTe−S0/ℏ). (2.3.32)

The ground state energy for this process is given by,

E0 =
1

2
ℏω + ℏKe−S0ℏ. (2.3.33)

Now, from the description of this motion, the solution xc(τ) has a maximum (unlike

the instanton from before). Therefore, the zero mode, x1 which is proportional to ẋc

has a node.
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Figure 2.3.5: (a) An example of an unstable potential with a vacuum state at x = 0 however it
is no the global minimum of V since there exist regions in the domain of x such that V (x) < V (0),
therefore, (b) this vacuum state is unstable. A method of understanding this instability is the fact that
when the particle reaches ς, it achieves rest since V (ς) = 0, however, this is not a classical stationary
point of the potential.

Figure 2.3.6: The classical solution to the unstable potential has a node at τ = 0, therefore, the
zero mode ∝ dx/ dτ has one node at τ = 0. This means that there must be a negative mode which
has no nodes.

Thus, there is mode with a negative eigenvalue. Recalling that K is constructed by the

inverse square root of the eigenvalue product and thus is imaginary. But this eigenvalue

is not within the spectrum of eigenvalues of Ĥ. We conclude that a metastable state

has an imaginary energy contribution and thus we define,

Γ = ℏ|K|e−S0/ℏ, (2.3.34)

where |K| is the modulus of the functional determinant contributions. Γ is noticed as
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the imaginary part of the energy in (2.3.33) provided K is an imaginary number. A

more elegant formulation of this calculation was performed by Coleman and Callan in

[8]. This Γ factor is associated to the rate of decay of an unstable state. Γ is a measure

of the instability of the vacuum state and allows permits tunnelling. The heat kernel

obtains a further exponential suppression which remains after Wick rotation.



Chapter 3

Instantons in Quantum Field

Theory

We are now ready to apply what we have learned but extending to the case of a field

with an unstable vacuum state. What follow are essentially the same steps as the quan-

tum mechanical case, however, field theories present their own sets of idiosyncrasies

and complications. In this section, we will describe the relevant calculations for a sin-

gle scalar field in an metastable potential as well as discuss the issues of regularisation

and renormalisation in order to deal with ultraviolet divergences that quantum field

theories so often possess.

3.1 The False Vacuum

Consider the scalar field ϕ(x) in a potential U(ϕ). The potential contains a set of

minima ϕfv and ϕtv, for now which may or may not be degenerate. The action for this

system in the (+−−−) signature is,

S[ϕ] =

∫
d4x

(
1

2
∂µϕ∂

µϕ− U(ϕ)

)
. (3.1.1)

We always have the freedom to add a constant to U such that U(ϕfv) = 0. ϕfv is

rendered unstable by barrier penetration under quantum fluctuations.

Our aim is not to compute Γ, the probability of decay per unit time, but rather Γ/V

which is the probability of decay per unit time-volume, which is the Γ that in a given

35
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Figure 3.1.1: (a) Shows the scalar field resting in a potential at the false vacuum ϕfv. Classically,
ϕfv is a stable minimum point of the potential - small oscillations of the scalar about ϕfv are stable.
Under quantum fluctuations this minimum is rendered unstable, due to barrier penetration and it is
possible for the scalar field to tunnel into the true vacuum ϕtv. (b) Under Wick Rotation t = −iτ ,
we effectively flip the potential and the barrier penetration problem becomes a particle rolling in
Euclidean space-time.

spatial volume V that a critical bubble will form is proportional to the volume (if the

bubble is very large). It should be noted that the calculation is performed at absolute

zero. Were it not for cosmology, this question would be pointless. An infinitely old

universe would necessarily be in the true vacuum, no matter the instability of U . But

the universe is not infinitely old, therefore it is possible that at the time of the Big

Bang, that the ϕ settled near ϕfv and as the universe cooled, its fate was sealed to lie

in the false vacuum.

Suppose that the scalar field initially rests in the state |ϕfv⟩ and we would like for the

particle to move to the state |ϕtv⟩. We are interested in a solution which smoothly

connects these vacua together. The amplitude of ϕ given these conditions will be,

⟨ϕtv| e−iĤT |ϕfv⟩ =
∫

[dϕ]eiS[ϕ]/ℏ. (3.1.2)

The Wick rotation procedure is identical to the case of quantum mechanics, and the
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Euclidean action is,

SE[ϕ] =

∫
d4x

[
1

2

(
∂ϕ

∂τ

)2

+
1

2
(∂iϕ)

2 + U(ϕ)

]
=

∫ ∞

−∞
dτLE, (3.1.3)

where ∂i indicates the derivatives with respect to x, y and z. The heat kernel for a

scalar field is given by,

⟨ϕtv| e−iĤT |ϕfv⟩ = N

∫
[dϕ]e−SE [ϕ]/ℏ. (3.1.4)

Again we have included the normalisation N because the fundamental evaluation of

this path integral is different to Feynman’s sum over histories. The Euclidean equation

of motion are obtained by taking the variations of SE with respect to ϕ,

δSE

δϕ
=

dU

dϕ
− ∂2ϕ

∂τ 2
−∇2ϕ = 0,

∂2ϕ

∂τ 2
+∇2ϕ =

dU

dϕ
. (3.1.5)

For the solution described above, we have the following boundary condition,

ϕ(τ,+∞) = ϕ(+∞, x⃗) = ϕfv, (3.1.6)

This is an appropriate boundary condition because, if this tunnelling process occurs at

some point in space and time, then far away from that point, the field should rest in

the ϕfv state undisturbed [4; 7]. Once we have this solution called the bounce, ϕc, we

can compute Γ/V as,
Γ

V
= Ke−S0/ℏ, (3.1.7)

where S0 = S[ϕc].

What kind of solutions are we interested in? The solution must have minimum station-

ary action, as they are the dominant contribution [9]. The constant solution ϕ(x) = ϕfv

is of no interest to us as it has no negative eigenvalues. The second variation of SE
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leads to an eigenvalue equation for fluctuations δϕ of a constant ϕfv solution gives,

−∂µ∂µδϕ+ U ′′(ϕfv)δϕ = λnδϕ. (3.1.8)

Choosing δϕ = T (τ)X(x)Y (y)Z(z) allows the equation to become separable. The

equation for each of the components T , X, Y and Z are identical. Let’s consider the

equation for the T component,

−d2T

dτ 2
+ U ′′(ϕfv)T = λ(τ)n T. (3.1.9)

λ
(τ)
n are the eigenvalues of the time components of the fluctuations. This solves to

T (τ) = A sin(ϵnτ) + B cos(ϵnτ), and we obtain eigenvalues for the time-component of

the fluctuations about ϕfv to be,

λτn = ϵn + U ′′(ϕfv). (3.1.10)

ϵn > 0 and U ′′(ϕfv) > 0 then λτn is always positive. The same analysis follows for all

other components X, Y and Z. It then follows that the functional derivative of the

constant false vacuum solution is always real, thus it provides no contribution to the

amplitude of tunnelling.

If we embed the bounce solution ϕc into a one-parameter family of functions (by a

re-scaling of spacetime by a parameter, ζ),

ϕζ = ϕc(x/ζ), (3.1.11)

then we can write the action S as,

S[ϕζ ] =
1

2
ζ2
∫

d4x(∂µϕc)
2 + ζ4

∫
d4xU(ϕc). (3.1.12)

This must be stationary at ζ = 1. Computing the derivative of S[ϕζ ] with respect to

ζ evaluated at ζ = 1, we find that the action of the bounce is,

S0 =
1

4

∫
d4x(∂µϕc)

2 > 0, (3.1.13)

which is promising as it is positive. However, since U(ϕc) is somewhere negative, we
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may have worried that S0 < 0, but we have eliminated this possibility. Moreover,

d2S

dζ2
= −1

2

∫
d4x(∂µϕc)

2 < 0 (3.1.14)

Therefore, at ϕc, δ
2S/δϕ2 has at least one negative eigenvalue. So ϕc contributes to

Γ/V .

3.2 Constructing the Bounce

The boundary conditions in (3.1.6) clearly allude to a solution (which at least at the

boundary) is O(4)-invariant. Had we considered finite temperatures, this bounce would

be O(3)-invariant as the phase transitions are dominated by thermal hopping [11]. This

O(4)-symmetry was extended to the entire solution by [9]. Under this assumption, we

can parameterise the field in terms of the Euclidean distance, ρ, of some point from the

origin, ρ =
√
τ 2 + |x⃗|2. We see a considerable simplification of the Euclidean action

for ϕ = ϕ(ρ),

SE[ϕ] = 2π2

∫
dρ ρ3

[
1

2

(
dϕ

dρ

)2

+ U(ϕ)

]
, (3.2.1)

and by taking variations δϕ of S[ϕ], we find the equations of motion,

δSE

δϕ
= − d

dρ

(
ρ3

dϕ

dρ

)
+ ρ3

dU

dϕ
= 0, (3.2.2)

d2ϕ

dρ2
+

3

ρ

dϕ

dρ
=

dU

dϕ
, (3.2.3)

which is a non-linear second order ordinary differential equation with boundary condi-

tions ϕ̇(0) = 0 and ϕ̇(+∞) = 0.

This is excellent because we have transformed a problem of multi-dimensional tun-

nelling into a problem of solving this equation with the boundary conditions (3.1.6).

The problem is that we cannot exactly solve this equation analytically. We can perform

numerical approximations, which are the subject of the next section, however, let us

analyse the equation of motion a bit further and see where it takes us.

From a slightly different perspective, (3.2.2), seems to be nothing but Newton’s Second
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Law. If we make the replacements ϕ→ x and ρ→ t, we have,

d2x

dt2
+ γ(t)

dx

dt
= −d(−U)

dx
. (3.2.4)

This clearly describes the dynamics of a particle in a potential −U with a curious time-

dependent drag term, γ(t) = 3
t
, diminishing over time. Using this mechanical analogy,

we can see what happens to the energy E, of this system. For a particle in a potential

−U(x), the total energy is E = 1
2

(
dx
dt

)2 − U(x), then from (3.2.2), we see that

dE

dt
= −γ(t)dx

dt
(3.2.5)

As the drag term decreases monotonically over time, it facilitates in the removal of the

energy of the particle as expected. This motivates the existence of a solution which

starts close to ϕtv at ρ = 0 but does not reach ϕfv at ρ = ∞. Instead, the particle

oscillates to the minimum of the inverted potential and settles down to rest, we call

this solution an undershoot. There exist a set of initial conditions ϕ(0) for which this

is the case. As we move ϕ(0) closer to ϕtv, then maxρ(ϕ) will approach ϕfv. However, if

we move too close to ϕtv, then the particle will overshoot. To demonstrate this requires

some work. If we expand the potential about ϕtv, as U
′(ϕ) = U ′(ϕtv) + U ′′(ϕtv)(ϕ −

ϕtv) +O ((ϕ− ϕtv)
2), therefore, the differential equation simplifies to

(
d2

dρ2
+

3

ρ

d

dρ
− µ2

)
(ϕ− ϕtv) = 0 (3.2.6)

where U ′′(ϕtv) = µ2. When the initial condition of the particle is sufficiently close to

ϕtv, then the particle will remain stationary for very large ρ. For this, the drag term

is vanishes, therefore, (
d2

dρ2
− µ2

)
(ϕ− ϕtv) = 0 (3.2.7)

which can be approximated to be ϕ(ρ) ≃ |ϕtv| (eµρ − 1). This solution is not bounded

by a maximum value and thus it overshoots the value ϕ = ϕfv.

By continuity, we conclude that there exists a solution which obeys exactly the bound-

ary conditions of the problem called the bounce, which appears in Figure 3.1.1.
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3.3 Thin-Wall Approximation

We will proceed to find an analytical closed-form solution to both the bounce (in-

stanton) and the Euclidean action B = SE[ϕc] − SE[ϕfv]. Consider again the one-

dimensional equation of motion

d2ϕ

dρ2
+

3

ρ

dϕ

dρ
=

dU

dϕ
, (3.3.1)

We can denote the symmetric double-well potential with minima at ±a as U+(ϕ) =
λ
8
(ϕ2 − a2)

2
. Here, ϕfv = +a and ϕtv = −a. We can break the Z2−symmetry of the

vacua by introducing a term linear in ε,

U(ϕ) = U+(ϕ) +
ε

2a
(ϕ− a). (3.3.2)

As we shall recall, the initial condition of ϕ is that the particle must remain at the ϕtv

for very large ρ = R, in this regime, the drag term in negligible. If the drag term is

not contributing, we require that ε be very small. This is the thin-wall approximation

introduced in [4]. As a result of this approximation, we have simplified the equation

to,

d2ϕ

dρ2
=

dU+

dϕ

The beauty of this equation is that the solution is nothing but the instanton (2.3.17)

described in the section 2.3.2 Double-Well Potential,

ρ = R +±
∫ ϕ1

0

dϕ√
2U+(ϕ)

, (3.3.3)

which is an instanton centred about R. By taking the negative branch of the square-

root, this is solved to be ϕ(ρ) = a tanh(1
2
µρ), where µ = a

√
λ. Excellent, we have

found a solution which obeys the boundary conditions. We would now like to calculate

some quantities associated to this ϕ, such as SE = B and the centre of this instanton
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R. We can split our solution into three segments,

ϕ(ρ) =


−a ρ≪ R

a tanh
(
1
2
µ(ρ−R)

)
ρ ≈ R

a ρ≫ R.

This can be thought of as the true vacuum inside a very thin-walled bubble of radius

approximately R surrounded by a sea of false vacuum.

The action integral is simply split up into the three cases

SE = 2π2

∫
dρ ρ3

[
1

2

(
dϕ

dρ

)2

+ U+(ϕ)

]
(3.3.4)

= Sinterior
E + Swall

E + Sexterior
E (3.3.5)

Now the Sexterior
E contribution vanishes, because U(+a) = 0 as well as ϕ̇ = 0, therefore,

SE = 2π2

∫ R

0

dρ ρ3(−ε) + 2π2

∫
dρ R3

[
1

2
ϕ̇2 + U+(ϕ)

]
,

= 2π2

{
−1

4
R4ε+R3S1

}
, (3.3.6)

where we define the surface tension of the bubble, S1, to be,

S1 =

∣∣∣∣∫ a

−a

dϕ[2U+(ϕ)]
1/2

∣∣∣∣ = 2µ3

3λ
. (3.3.7)

In order to calculate the radius of this bubble, we can find the minimum of SE,

dSE

dR
= 2π2

[
−R3ε+ 3R2S1

]
= 0. (3.3.8)

Solving for R, gives,

R =
3S1

ε
, (3.3.9)

and substituting this back into (3.3.4), one finds a closed form solution for B,

B =
27π2S4

1

2ε3
. (3.3.10)
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Therefore, Γ/V is given by,

Γ

V
= K exp

(
−27π2S4

1

2ε3ℏ

)
[1 +O(ℏ)]. (3.3.11)

Here, K contains the functional determinant which we still need to take care of.

3.4 Analytic Continuation to Minkowski

Analytic continuation into Minkowski space-time leads to interesting repercussions.

Once the particle tunnels through the potential, it then propagates classically in

Minkowski space-time as the momentum becomes real again. The shift can be per-

formed by rotating time in the equation of motion. The classical field jumps (at t = 0)

to a state defined by,

ϕ(t = 0,x) = ϕ(τ = 0,x),

∂

∂t
ϕ(t = 0,x) = 0,

afterwards, the field evolves according to,

− ∂2ϕ

∂t2
+∇2ϕ = U ′(ϕ). (3.4.1)

As the Minkowski field equation (3.4.1) is an analytical continuation of that of Eu-

clidean field, the solution of (3.4.1) is just the analytical continuation for the bounce,

ϕ(t,x) = ϕ
(
ρ = (|x|2 − t2)

1
2

)
= a tanh

[
1

2
µ
(√

−xµxµ −R
)]
. (3.4.2)

We can draw some interesting conclusions from this:

• The O(4)-invariant bounce becomes an O(3, 1)-invariant bubble meaning it is

Lorentz-invariant. This implies the growth of the bubble after materialization

looks the same to every Lorentz observer.

• In the case of small ε, there is a thin-wall localized at ρ = R, separating the false

and true vacua. As the bubble expands, this wall traces out a hyperboloid,

|x|2 − t2 = R2. (3.4.3)
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Figure 3.4.1: The space-time diagram of the classical growth of the bubble of true vacuum after
materialization. We see that R is the radius of the bubble in Minkowski spacetime. The hyperbola is
the path traced out by the bubble wall. The observer, O, only receives warning of the bubble after
they cross the light-cone, W .

A section of the bubble wall carries rest energy per unit area, S1, so the wall expanding

with velocity, v, carries energy, S1(1−v2) per area. Thus, if the radius of the expanding
bubble is, |x|, the surface energy of the bubble, Ewall is simply,

Ewall = 4π|x|2S1(1− v2)
1
2 . (3.4.4)

As v = d|x|
dt

= (|x|2−R2)
1
2

|x| so,

Ewall = 4π|x|2S1

(
1− |x|2 −R2

|x|2

)− 1
2

= 4π|x|3S1

R
, (3.4.5)

but from (3.3.9) we may simplify this into,

Ewall =
4

3
πε|x|3 = Evol. (3.4.6)

Under the thin-wall approximation, all the energy released by converting the false

vacuum to true vacuum goes to accelerate the expansion of the bubble only. This is

possibly the most efficient way to destroy the Universe.
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3.5 Functional Determinant for Field Theory

The evaluation of K is essentially the same as the case of quantum mechanics but with

few technical difficulties.

Vanishing Eigenvalues

As we have four dimensions, we have four possible directions to infinitesimally translate

and therefore, we have four possible eigenfunctions with zero eigenvalues proportional

to ∂µϕ. We can determine their normalisations by considering their orthogonality,∫
d4x(∂µϕc)(∂νϕc) =

1

4
δµν

∫
d4x(∂σϕc)

2,

= δµνS0, (3.5.1)

where S0 is defined as in (3.1.13). Thus for the case of zero eigenvalues, the only

difference is that instead of one factor of (S0/2π)
1/2, we have four such factors. Thus

K will become,

K =
S2
0

4π2

∣∣∣∣∣ d̃et [−∂µ∂µ + U ′′(ϕc)]

det [−∂µ∂µ + U ′′(ϕfv)]

∣∣∣∣∣
− 1

2

, (3.5.2)

where d̃et is the functional determinant ignoring the zero eigenvalues.

Renormalisation

Our dynamics are in terms of non-renormalised quantities. It is an interesting exercise

to discuss the renormalised form of Γ/V . For instance, the action of the particle, can be

defined as the renormalised action SR plus the standard renormalisation counterterms

from the n-loop diagrams [7; 8],

S = SR +
∞∑
n=1

ℏnS(n) ≃ SR + S(1), (3.5.3)

where the last equality is first achieved under the semiclassical limit (small ℏ), and
then ℏ set to unity. The renormalisation counterterms remove ultraviolet divergences

from the one-particle irreducible diagrams generated by the effective action,

exp(γ[ϕ]) = exp(SR[ϕ] + S(1)[ϕ])
√

det (−∂µ∂µ + U ′′(ϕ)).
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But we want to remove the golden nugget that is SR from the divergences S(n). We

shall move forward by introducing the following definitions for renormalised quantities:

• ϕ - renormalised field,

• U(ϕ) - potential appearing in SR,

• ϕ̄ - bounce computed from SR,

• S0 = SR[ϕ̄].

Now, let’s compute Γ/V , term by term by treating SR as the total action. Then

taking into account the renormalisation counter-terms perturbatively. The counter-

terms might ruin the convention S[ϕfv] = 0, thus we subtract this off the bounce action

S0,

S0 → S0 − S[ϕfv]. (3.5.4)

Furthermore, adding terms to SR will change the stationary points of S, thus changing

the bounce. If we determine the difference by perturbing the bounce by δϕ̄,

S[ϕ̄] → S0 +

∫
d4x

δSR

δϕ̄
δϕ̄+ S(1)[ϕ̄] + .... (3.5.5)

However, ϕ̄ is a stationary point of SR, thus δSR/δϕ̄ = 0 so we have,

S[ϕ̄] → S0 + S(1)[ϕ̄]. (3.5.6)

Similarly,

S[ϕfv] = S0[ϕfv] + S(1)[ϕfv] = S(1)[ϕfv]. (3.5.7)

Thus, we conclude that SR = S[ϕ̄] − S[ϕfv] = S0 + S(1)[ϕ̄] − S[ϕfv], leading to a

renormalised expression for Γ/V ,

Γ

V
=

S2
0

4π2
exp

(
−S0 − S(1)[ϕ̄] + S(1)[ϕfv]

) ∣∣∣∣∣ d̃et
[
−∂µ∂µ + U ′′(ϕ̄)

]
det [−∂µ∂µ + U ′′(ϕfv)]

∣∣∣∣∣
− 1

2

. (3.5.8)

The purpose of this demonstration is certainly not to show the computational ease

or beauty of the obtained equation. It is simply to demonstrate that we can achieve

the fully renormalised version of Γ/V using the standard techniques. Though for the

remainder of our discussion, we will forgo the problem of renormalisation.



Chapter 4

Numerical Results in Minkowski

Spacetime

In this section, we will describe the numerical solution to the classical equation of

motion. We are searching for an O(4)-symmetric solution to the classical equation of

motion as they are the solutions which minimise the Euclidean action. Other solutions

do exist, however, they are usually of higher Euclidean action and so are less likely to

contribute to the decay rate, Γ.

4.1 Setting up the Numerical Problem

A natural starting point, is the action of the scalar field in the metastable potential.

As we are interested in an O(4)-symmetric solution, we define ϕ = ϕ(ρ). We again

define this by including the S3 measure

SE[ϕ] = 2π2

∫
dρρ3

(
1

2

(
dϕ

dρ

)2

+
λ

8

(
ϕ2 − a2

)2
+

ε

2a
(ϕ− a)

)
. (4.1.1)

There are several parameters in (4.1.1) (a, ε, λ). We could set them all to unity,

however, this will only solve a particular case of our problem. Instead, we re-define the

variables in terms of new units. If we make the following re-definitions

ϕ→ ax, ε→ 2λa4E, ρ→ t

a
√
λ

(4.1.2)

47
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where x and t are variables and E is a parameter which encapsulates the energy density

difference between the false and true vacua. Equivalently, the action is written

B =
2π2

λ

∫ ∞

0

dt t3

[
1

2

(
dx

dt

)2

+
1

8

(
x2 − 1

)2
+ E(x− 1)

]
=
B̃

λ
. (4.1.3)

The first differential equation to introduce is the derivative of (4.1.3) with respect to t

dB̃

dt
= 2π2t3

[
1

2

(
dx

dt

)2

+
1

8

(
x2 − 1

)2
+ E(x− 1)

]
(4.1.4)

The solution of this differential equation will give us an exact form of the B coefficient.

Using the Euler-Lagrange equation, we can derive the equation of motion we need to

solve
d2x

dt2
+

3

t

dx

dt
=

1

2
x(x2 − 1) + E (4.1.5)

The strength of redefining the parameters in (4.1.2) is that the different solutions

correspond to different values of E only. We can obtain solutions for different values

of the other parameters by implementing the re-definitions above. In order to solve

(4.1.5) using a Runge-Kutta method we begin by defining a system of first order ODEs,

v =
dx

dt
, (4.1.6)

then (4.1.5) becomes,
dv

dt
= −3

t
v +

1

2
x(x2 − 1) + E. (4.1.7)

This is a boundary value problem (BVP) and no BVP is complete without boundary

conditions. However, we lack knowledge of the x(0) initial condition which results

in the bounce. Although we know that v(0) = 0. Therefore, we employ a shooting

method. Shooting methods turn BVPs into initial value problems (IVP). We know that

we require the bounce to have vanishing gradient, v, at infinity. We define overshoots

have v(∞) > 0 and undershoots have v(∞) < 0, thus by continuity, we can conclude

that there must be a solution which has a vanishing v(∞) at the boundary of these

classes of curves.

Suppose that we manage to find an undershoot x1 and an overshoot x2. We would like

to know what the behaviour of the mid-point of these initial conditions, thus we define
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Figure 4.1.1: The interval bisection scheme. x1 and x3 are undershoots and x2 and x4 are overshoots.

x3 =
1
2
(x1 + x2). If x3 results in an undershoot, then we know the between x1 and x3,

we only have undershoots and not the bounce that we are looking for. Therefore, we

will continue to find the mid-point between x2 and x3 as in this region, we will certainly

have our bounce. If now the mid-point x4 =
1
2
(x2 + x3) is an overshoot, then we know

that the region between x2 and x4 contains only overshoots, and so this region does not

contain the bounce. Then we know that the bounce is in the region between x4 and x3.

This interval bisection scheme will quickly converge onto the bounce initial condition

x(0) as in Figure 4.1.1. This method is also known as the wag-the-dog method in [13].

Furthermore, we clearly see that the t = 0 is a regular singular point of (4.1.7), so

instead, we begin integration at ρ of O(10−15).

Additionally, we need to make a correction to the potential. For different values of E,

we want the potential to vanish at their respective xfv values. We can use the Newton-

Raphson method [31] to locate the minimum of the potential around x = 1. Once we

find the value of xfv, we can correct the potential by subtracting off the contributions

to the false vacuum, so that we have,

Ũcorrected(x) =
1

8
(x2 − 1)2 + E(x− 1)− Ũ(xfv) (4.1.8)
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Figure 4.1.2: The corrected potential for various E = [0.03− 0.10]. In the thin-wall approximation,
we would like to keep E very small.

We can see that this correction indeed results in several potentials with varying E such

that Ũ(xfv) = 0 in Figure 4.1.2. The purpose of this correction is that in the calculation

of B, we require the bounce to have vanishing potential and kinetic energies outside

the bubble. Additionally, it helps with keeping B finite.

4.2 Verifying the Thin-Wall Approximation

The interpretation of the instanton solution in Euclidean space-time is that of a bubble

of true-vacuum (ϕtv) in a sea of false vacuum (ϕfv) separated by a thin-wall. As the

wall is thin, the bubble radius, R̃, can therefore be approximated as the solution of

x(t = R̃) = 0. From Figure 4.2.1, we know that the x(t) is a monotonically increasing

function which is initially negative and becomes positive, implying that x(t) crosses

the t-axis only once. The radius of the bubble, R̃, is somewhat arbitrary but it is

approximated as the point of intersection of the instanton with the x(t) = 0 line.

Arguably the more important quantity is B, which is calculated by integrating (4.1.4)

by numerical integration over t. The trapezium rule was used to integrate this function

which has errors associated with it. The results of R̃ and B̃ can be seen in Figure

4.2.2 as compared with the thin-wall approximation. Recalling that in the Thin-Wall
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Figure 4.2.1: Several bounces plotted of different values of ε.

Figure 4.2.2: Plots for the action B and the radius R of the bubble on a logarithmic y−axis obtained
from cumulative trapezium rule integration. For larger values of E = ε/2λa4, we see that the thin-wall
results diverge from the numerical calculation.
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Approximation, the dependence of R and B on ε are

R =
3S1

ε
, B =

27π2S4
1

2ε3
(4.2.1)

By substitution of S1 into these expressions and removing dimensions, we find that

they simplify into the following form,

R̃ =
1

E
, B̃ =

π2

3E3
(4.2.2)

Taking the logarithm on either side of the equations, we have,

ln(R̃) = − ln(E) + k1, ln(B̃) = −3 ln(E) + k2, (4.2.3)

where k1 = 0 and k2 = ln(π2/3). The average slopes of the data shown in Figure 4.2.2

were found to be ⟨∆B
∆ε

⟩ = −3.208 and ⟨∆R
∆ε

⟩ = −1.031. This is in agreement with [4]

within a small region of values of E as required by the thin-wall approximation. This

shows that at least within this small range, that the thin-wall approximation is quite

valid. Although at large enough values of E, the calculation is bound to diverge from

the thin-wall results.

In these dimensions, it is also possible to estimate the intersection points k1 and k2.

For example, under the thin-wall approximation, the numerical calculation of k1 was

found to be knum1 = −0.097455. Likewise, the numerical value of k2 was found to be

knum2 = 0.485521. Though we find considerable deviations for the numerical calculations

than we have here. Although our numerical calculation shows that there is considerable

agreement for small values of E, we see that the thin-wall approximation breaks down

for values ε = 0.1λa4 (E = 0.05, the factor of 2 comes from introducing the dimensions

again).

Although, we have not developed a method for solving this problem in a very thin-

wall regime, it could be the case that for ε < 0.01λa4 that there is further divergence

and the thin-wall approximation is only valid in a small region of the values of ε.

This breakdown limit is the reason for the discrepancy between the numerical and

predicted values of k1 and k2. Consider the (4.2.3), E = ek1 = e is the value for which

ln(R̃) vanishes, corresponding to ε = 5.44λa4. The numerical prediction for this E is
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Enum = e−0.097455 = 0.91, which corresponds to ε = 1.82λa4 ≫ 0.1λa4. This is beyond

the range at which the approximation breaks down, thus the deviation in k1 is expected.

Furthermore, we have E = e3k2 = (π2/3)3, for which ln(B̃) vanishes, which correspond

to ε = 35.62λa4. The numerical prediction of this limit is ε = 8.58λa4 ≫ 0.1λa4.

This is again beyond the thin-wall-limit, therefore, deviations are expected between

the thin-wall limit and our numerical results.

4.3 Limitations of the Solution

In this section we will summarise the limitation of our numerical calculations. There

are two main limitations that we can identify with this solution which can be fixed.

The first is the choice of the potential. For the calculation to work, we require that the

potential has two stable minima separated by a barrier. However, we can see in Figure

4.3.1 that as E is increased, the second derivative Ũ ′′(ϕfv/a) decreases. Eventually,

we reach a point E = 0.193 where the second derivative vanishes after which the false

vacuum is ill-defined. At this point, tunnelling ceases.

Figure 4.3.1: Plot of the value of the second derivative Ũ ′′ evaluated at the false vacuum ϕfv/a as
a function of ε/2λa4.

We can see in Figure 4.3.2 that for the case of E = 0.193 that the false vacuum ceases
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is no longer a minimum point of the potential.

Figure 4.3.2: Plot of the potential as a function x. Of interest is the curve for which E = 0.193
where the domain surrounding the false vacuum x ≃ 1 is no longer a well but becomes a point of
inflection.

Within the problem, we have stored all numerical values of the initial condition ϕ(0)/a

as float64 objects in Spyder IDE. As we increase the value of E, the difference between

the initial condition required for the bounce ϕ(0) and ϕfv is of order O(10−5). We can

see this in Figure 4.3.3.
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Figure 4.3.3: Plot of (ϕtv − ϕ(0))/a against E. As E is increased, the difference between ϕ(0)/a
and ϕtv/a decreases.

This poses another issue for us as the maximum precision for double-precision floating-

point objects (float64 in Spyder) is of O(10−18) [20]. Thus, there is a point at which the

difference is less than this maximum float precision and thus our numerical methods can

no longer delineate between ϕ(0)/a or ϕtv/a. This is not a limitation by the physics of

the problem. A possible solution is to store the numerical values of ϕ(0)/a in quadruple-

precision floating-point format [18] which are float128. This format minimises round-off

and overflow errors which in turn would increase the precision of the initial condition of

our problem and further calculations that depend on its precision such as the calculation

of B and R.

The combination of these two factors limits the precision to which we can calculate the

initial condition and to obtain the bounce for larger values of E.



Chapter 5

Instantons in de Sitter Space

5.1 Welcome to de Sitter Space

de Sitter spaces (dSD) are examples of a maximally symmetric spaces with constant

positive curvature. They are also solutions to the vacuum EFEs (1.2.10). We would

like to describe tunnelling phenomena on a curved manifold. We consider de Sitter

space, our ultimate goal in this report is to describe the transition between universes

with constant and positive energy densities facilitated by scalar field tunnelling. de

Sitter spaces fit this bill, and thus we consider the case of scalar tunnelling in a fixed

de Sitter background.

In General Relativity (GR), we define curved manifolds intrinsically, not extrinsically.

Suppose that the Earth is our potentially curved manifold. We have Alice on the

Earth. Bob in a rocket orbiting far away from the Earth, enough that he can see the

entire Earth.

From Bob’s perspective, the Earth is curved and very similar to a 2-sphere. Bob’s

perspective describes the idea of extrinsic curvature. What does Alice have to say

about this? Unfortunately, Alice is on the Earth and she cannot immediately tell

whether she is on a curved space or not (as an m-sphere is locally Rm). However,

Alice remembers from her Differential Geometry notes that she can determine if she’s

on a curved space by parallel transporting a vector along different paths between the

same two points. We use the Christoffel connection definition of parallel transport. In

Figure 5.1.1 we see that she can take the vector along a path ABC. If she then takes

56
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Figure 5.1.1: A diagram demonstrating the parallel transport of a vector at A to C by two different
paths. The vector transported along the path ABC points in a different direction than the transport
along the path AC. This is due to definition of the Christoffel connection.

the vector along the path AC and compares to her previous result, she will find that

the transported vectors will not be of the same orientation. Thus concluding that the

space she lives on is not flat. This notion of curvature is intrinsic.

Unfortunately, in the case of a manifold in GR, we have the great misfortune of always

having to be Alice. Thus our notion of curvature is defined by how the manifold induces

a change in orientation over tensors. Effectively, the curvature of space-time is always

intrinsic. Having said that, there is a very nice extrinsic visualisation of what exactly

dSD is.

Figure 5.1.2: A three-dimensional one-branch hyperboloid is the same as dS2
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D-dimensional de Sitter space-time can be viewed as time-like one-branch (connected)

hyperbola in D + 1 Minkowski space-time [16]. The metric in the embedding space

R1,D is,

− ds2embedded = − dX2
0 + dX2

1 + ...+ dX2
D, (5.1.1)

where the equation for the hyperboloid is given by,

−XµX
µ = α2. (5.1.2)

We can cover this hyperboloid with a global coordinate chart. For example, in D = 4,

we have,

X0 = α sinh(t/α),

X1 = α cos(t/α) cosψ,

X2 = α cosh(t/α) sinψ cos θ,

X3 = α cosh(t/α) sinψ sin θ cosφ,

X4 = α cosh(t/α) sinψ sin θ sinφ. (5.1.3)

ψ, θ, φ define an angular coordinate chart over a 3−sphere. The metric in these

coordinates is,

− ds2 = − dt2 + α cosh2(t/α) dΩ2
3, (5.1.4)

where dΩ2
3 is the metric on S3. Under Wick rotation (t = −iξ − απ/2), the Euclidean

metric is simply,

ds2 = dξ2 + α2 sin2(ξ/α) dΩ2
3, (5.1.5)

where ξ ∈ (0, απ). ξ = 0 and ξ = απ are coordinate singularities of the manifold. The

extra π/2 shift allows us to represent the metric in the standard form of a 4-sphere

and also defines the North and South poles as the start and limits of integration. The

parameter α will hereby be called the de Sitter radius. Thus, under Wick rotation dS3

is S4. The Euclidean Ricci Scalar, RE, has a closed form,

RE =
12

α2
(5.1.6)
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5.2 Scalar Dynamics in de Sitter Space

Over the de Sitter space, the Euclidean action is given by,

SE[ϕ] = 2π2α3

∫ απ

0

dξ sin3(ξ/α)

[
1

2

(
dϕ

dξ

)2

+ U(ϕ)

]
. (5.2.1)

The Euler-Lagrange equation will give,

d2ϕ

dξ2
+

3

α
cot

(
ξ

α

)
dϕ

dξ
=

dU

dϕ
. (5.2.2)

This is not too dissimilar to the equation of motion in the flat case (3.3.1), only the

drag term is different. The boundary conditions for the bounce are given by,

ϕ̇(0) = ϕ̇(απ) = 0. (5.2.3)

For large α we notice by Taylor expansion,

cot(ξ/α) =
1

tan(ξ/α)
→ α/ξ. (5.2.4)

The equation of motion thus simplifies as,

ϕ̈+
3

ξ
ϕ̇ =

dU

dϕ
(5.2.5)

which is identical to the equation of motion of the scalar field in the flat case (replacing

ξ → ρ). We should expect this because as we increase α, we expect the curvature of the

space-time (5.1.6) to decrease. Then under the thin-wall approximation, for large ξ, we

expect that the results for R and B for flat space to be the leading order contribution.

We might expect an α-dependent correction to the radius of the bubble and the action.



Chapter 6

Numerical Problem in Fixed de

Sitter Space

6.1 Setting up the Numerical Problem

Firstly, we will define the Euclidean action of the scalar field in curved spacetime with

the potential U(ϕ). In the (ξ, ψ, θ, φ) coordinates, we would like a solution which is

symmetric with respect to the transformations in (ψ, θ, φ) - an O(4)−transformation,

thus the solution is only dependent on ξ. For a de Sitter spacetime with a radius, α,

the Euclidean action is given by,

SE[ϕ] = 2π2α3

∫ απ

0

dξ sin3(ξ/α)

[(
dϕ

dξ

)2

+
λ

8
(ϕ2 − a2)2 +

ε

2a
(ϕ− a)

]
. (6.1.1)

We have two coordinate singularities at the boundary of our spacetime, so we require

say ξ0 = 10−15 and ξmax = α(π − ξ0), where ξmax is the endpoint of integration. In the

mechanical analogy, see that the coefficient of ϕ̇ changes sign at ξ = π/2. This means

that the drag term accelerates the particle instead of decelerating it. We can see this

as,

d2ϕ

dξ2
= − 3

α
cot

(
ξ

α

)
dϕ

dξ
+

dU

dϕ
. (6.1.2)

If the left-hand side is interpreted as acceleration in our mechanical analogy, we can

see that the ϕ̇ term becomes less negative as ξ → απ/2. Once ξ crosses this limit, the
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sign of this term changes,

d2ϕ

dξ2
= +

3

α

∣∣∣∣cot( ξα
)∣∣∣∣ dϕdξ +

dU

dϕ
, (6.1.3)

and the term strictly increases monotonically, leading to the inevitable acceleration of

the particle. Thus, we require that as ξ → απ/2, ϕ̇ is vanishing. If this condition is not

met, then the resulting solution is pathological and unbounded. Additionally, due to

the driving term, at long times the particle does not settle down to the minimum of the

inverted barrier. It will instead reach a final position ϕ(ξmax) ≪ ϕtv or ϕ(ξmax) ≫ ϕfv,

which are both pathological end points.

To simplify parameter dependence of this problem, we shall again, remove the dimen-

sions from the action above, by making the following, transformations

ϕ→ ax, ε→ 2λa4E, ξ → t

a
√
λ
, α→ α̃

a
√
λ
. (6.1.4)

The ratio ξ/α = t/α̃, thus this simplifies the argument of the integration measure,

sin3(ξ/α). With these considerations, we have,

SE[ϕ] =
2π2α̃3

λ

∫ α̃π

0

dt sin3(t/α̃)

[
1

2

(
dx

dt

)2

+
1

8
(x2 − 1)2 + E(x− 1)

]
=
S̃

λ
. (6.1.5)

Effectively, we have reduced the problem to more familiar terms as in (4.1.3), however,

this integral is taken over a compact manifold. Our first differential equation to consider

is then,

dS̃

dt
= 2π2α̃3 sin3(t/α̃)

[
1

2

(
dx

dt

)2

+
1

8
(x2 − 1)2 + E(x− 1)

]
(6.1.6)

In order to solve this, we need the bounce x̄, which is obtained by the Euler-Lagrange

equation,

d2x̄

dt2
+

3

α̃
cot

(
t

α̃

)
dx̄

dt
=

dŨ

dx̄
. (6.1.7)

Again, we would like to turn this into a system of two first order ODEs by defining,

v =
dx

dt
. (6.1.8)
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Thus, the other differential equation becomes,

dv

dt
= − 3

α̃
cot

(
t

α̃

)
v +

dŨ

dx
, (6.1.9)

with boundary conditions,

v(0) = v(α̃π) = 0. (6.1.10)

From here on, the analysis and discussion of the undershoot and overshoot method is

effectively identical.

Of course, we would like to begin our integration from t = 0. However, we have a

singularity at t = 0, thus we will start at t0 ≃ 10−15. Similarly, t = α̃π is another

singularity of our drag term, thus we terminate the integration at tend = α̃(π − t0).

In order to determine B̃, we will have to integrate (6.1.6). However, we also need to

determine S̃ for a constant false vacuum solution. The actual value of the corrected

action is given by,

B̃ = S̃[x̄]− S̃[xfv]. (6.1.11)

This is a more correct way to calculate B̃. In the flat case, we defined a corrected

potential, however, we were always free to do this, so it was best to exploit this.

6.2 Types of Solutions

6.2.1 Trivial Solutions

ϕ = ϕtv and ϕ = ϕfv

The most obvious class of solutions which obey the boundary conditions are the ones

that occur on the minima of the potential ϕtv and ϕfv. However, these are not very

interesting solutions.

Hawking-Moss Instanton

In 1982, Hawking and Moss proposed a transition from the false vacuum to the top of

the barrier [17] called the Hawking-Moss instanton shown in Figure 6.2.1. This is a

solution for which ϕ = ϕtop = ϕHM, where ϕtop is a local maximum of U(ϕ). To verify
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Figure 6.2.1: The Hawking-Moss Instanton, ϕHM, plotted with the gradient, ϕ̇HM = 0, and Ḃ.

that this is a solution, we see that,

dU

dϕ

∣∣∣∣
ϕ=ϕHM

= 0

d2ϕHM

dξ2
+

3

α
cot

(
ξ

α

)
dϕHM

dξ
= 0. (6.2.1)

We can also calculate the action of this configuration,

BHM = 2π2α3

∫ απ

0

dξ sin3(ξ/α) [U(ϕHM)− U(ϕfv)]

=
8π2

3
α3∆U

∫ απ

0

dξ sin3(ξ/α)

=
16

3

(
π2

2
α4

)
∆U

=
16

3
V4(α)∆U. (6.2.2)

where ∆U = U(ϕHM) − U(ϕfv) and V4(α) is the 4−measure (4−volume) of S4. Note

that we did not consider this type of solution in the flat case precisely because its
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contribution to B is proportional to the volume of space-time (the volume of flat space

is infinite) and so the contribution is vanishing. However, since Euclidean de Sitter

space is a compact, we might believe that there is a finite contribution to Γ/V from

the Hawking-Moss instanton.

Eigenvalue Decomposition of Trivial Solutions

The ϕtv, ϕfv and ϕHM solutions all describe constant configurations of the scalar field.

So why are ϕtv and ϕfv solutions uninteresting as opposed to the ϕHM instanton? The

secret lies in the calculation of the spectrum of eigenvalues of the second-order varia-

tion of our Euclidean action. Recall, that the condition for barrier penetration, is that

our eigenvalue spectrum contains only one negative mode. This means that the func-

tional determinant of our operator, will be imaginary, leading to an imaginary energy

eigenvalue and thus, Γ/V . We can continue this analysis for a constant solution by

investigating the spectrum of eigenvalues of the perturbations δϕ about these constant

solutions,

−∇µ∇µδϕ+ U ′′(ϕ)δϕ = 0, (6.2.3)

where U ′′(ϕ) is defined for the constant solutions mentioned as,

U ′′(ϕ) =


U ′′(ϕtv) for ϕ = ϕtv,

U ′′(ϕfv) for ϕ = ϕfv,

U ′′(ϕHM) for ϕ = ϕHM.

In principle, we should consider the variations in the metric as well, however, it is

possible choose a gauge in which it is only relevant to consider δϕ in computing the

eigenvalue spectrum, [12]. The radial part of (6.2.3) can be teased out by applying

the standard separation techniques (as in solving the Hydrogen atom), δϕ(ξ, ψ, φ, θ) =

R(ξ)Ψ(ψ)Φ(φ)Θ(θ). The radial part of the equation is given by,

d2Rnl

dξ2
+ 3ω cot(ωξ)

dRnl

dξ
− ω2

sin2(ωξ)
l(l + 2)Rnl − [U ′′(ϕ)− λ]Rnl = 0, (6.2.4)

where ω2 is given by,
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ω2 =


ω2
tv = U(ϕtv)/3M

2
p for ϕ = ϕtv

ω2
fv = U(ϕfv)/3M

2
p for ϕ = ϕfv

ω2
HM = U(ϕHM)/3M

2
p for ϕ = ϕHM

Provided that n+ l =M [29], the full spectrum of the eigenvalues for ϕtv and ϕfv, are

given by,

λM =

U ′′(ϕtv) +M(M + 3)ω2
tv for ϕ = ϕtv

U ′′(ϕfv) +M(M + 3)ω2
fv for ϕ = ϕfv

However, U ′′ > 0 for local minima. So for all values of M for ϕtv and ϕfv, the eigen-

value spectrum is always positive, thus these configurations do not describe legitimate

tunnelling phenomena.

On the other hand, the spectrum of the eigenvalues for Hawking Moss is given by,

λM = −|U ′′(ϕHM)|+M(M + 3)ω2
HM. (6.2.5)

The absolute value is here because U ′′(ϕHM) < 0. The M = 0 mode of Hawking-Moss

is negative, λ0 < 0. This of course gives the imaginary energy contribution leading to

vacuum instability so it describes tunnelling

Of further interest is the M = 1 eigenvalue of Hawking-Moss,

λ1 = −|U ′′(ϕHM)|+ 4ω2
HM. (6.2.6)

This is negative when,
|U ′′(ϕHM)|

4
<
U(ϕHM)

3M2
p

. (6.2.7)

Thus under the condition (6.2.7), it is possible for the Hawking-Moss instanton to pos-

sess more than one negative eigenvalue [29] and the tunnelling contribution is obsolete.

After analytically continuing back to a Lorentzian signature in the metric, the Hawking-

Moss transition represents a de Sitter space, with a constant varnish of ϕHM over

it. This is problematic as it does not respect the causal structure of the Lorentzian
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space-time. It is possible to conclude that the Hawking-Moss instanton surely does

not contribute to Γ/V if (6.2.7) condition is met. However, its true relevance and

interpretation is not fully understood.

6.2.2 Coleman de Luccia Solution

The key class of solutions we are interested in are the Coleman de Luccia (CdL)

bounces. The CdL solution is the analogue of the O(4)-symmetric solutions in flat

spacetime but in curved space-time. They are monotonically increasing functions

which cross the barrier once between ϕ(0) and ϕ(ξmax). They are found by the un-

dershoot/overshoot method as in section 4.1 Setting up the Numerical Problem. In

Figure 6.2.2 we see the resulting CdL bounces at α̃ = 3 which is an interesting case,

because the initial state and final state are considerably further away from the true

and false vacuum than in the flat case. Figure 6.2.3 shows another set of CdL bounces

but at α̃ = 10. We can see that for larger α̃, that the initial condition for the CdL

bounce is much closer to the true vacuum and the overall shape of these instantons are

more similar to the Minkowski instantons shown in Figure 4.2.1.

Figure 6.2.2: The Coleman de Luccia bounce for α̃ = 10 for E = [0.01− 0.08] in steps of 0.01.
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Figure 6.2.3: The Coleman de Luccia bounce for α̃ = 10 for E = [0.01− 0.08] in steps of 0.01.

Numerical Determination of the CdL Bounce

Having discussed the CdL bounce in the theoretical framework, we can see in Figure

6.2.3 that the qualitative nature of the solution is very similar to the flat case analogue,

as in Figure 4.2.1. Indeed we see that the plots shown for several values of E in Figure

6.2.3. However, we also see that the CdL bounces are qualitatively different to those

shown for the flat case in Figure 4.2.1. In the flat case, the initial condition for all

cases are very close to the true vacuum. However, in the case of the fixed de Sitter

solution, for small E, the initial condition is initially quite far from the true vacuum.

However, the same effect is seen in terms of the initial conditions x(0) coming closer

to xtv as E increases.

6.2.3 Oscillating Solutions

The final class of solutions obeying the boundary conditions,

ϕ̇(0) = ϕ̇(απ) = 0, (6.2.8)

that are present in de Sitter spacetime are the oscillating solutions. There is no flat case

analogue of these solutions. Their existence here is due to the compactness of de Sitter
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Figure 6.2.4: Plots showing the bounce solutions for potential with non-degenerate vacua for
α/a−1λ−1/2 = 10 and ε/2λa4 = 0.01. In general for even N , we should have true-true transitions
whereas for odd N , we have true-false transitions. Furthermore, we see that the N = 1 bounce is just
Coleman-de Luccia.

space after Wick rotation which results in the fact that we can smoothly deform an

instanton with N oscillations (N is called the order of the instanton) into ones with a

fewer number of oscillations. Moreover, the effect of spacetime on the space of solutions

produces an alternating pattern of overshoots and undershoots. Between each of these

sets, we expect to find instantons of different N , but also possibly more Coleman de

Luccia bounces. These solutions may in principle contribute to the vacuum decay rate

as indicated by Vincentini [34].

Furthermore, recent developments show evidence indicating that a solution of order

N has N negative eigenvalues in its spectrum of fluctuations [22]. The condition for

Γ/V to be defined is such that the product of eigenvalues is overall negative, so that∏
n λ

−1/2
n is overall imaginary. We can see in Figure 6.2.4 that the transitions with

even N are transitions which take the particle from true-vacuum to true-vacuum. It

was argued by Coleman [5], that bounces with multiple negative eigenvalues push the

action of such solutions away from the minimum of the stationary action - effectively,

the actions of these solutions correspond to saddle points and maxima. It was later

corroborated by Brown and Weinberg [2] that this is also the case in de Sitter space,
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however, the interpretation of the bounce is of thermally-assisted tunnelling. Thus, it

is possible for us to ignore these solutions in the calculations of the decay rate.

6.3 Filtering Hawking-Moss and Oscillating Solu-

tions

If we were to näıvely solve the problem, for different values of α̃ and E, we find that

the oscillating solutions will not be filtered out by this method. This is because all of

these solutions obey the boundary conditions in (6.1.10). However, we have shown that

oscillating bounces have several negative eigenvalues and so they must be filtered out.

Moreover, under the condition provided in (6.2.7), Hawking-Moss is also a questionable

contribution. This is where the order, N , of the instanton is important. The way to

determine the order of the solution is to check for sign changes, m, in the array of v(t).

A Coleman-de Luccia bounce monotonically increases, thus we have no sign change

sign changes in v(t). This alludes to an order of m + 1 for a particular solution. We

can also use this to filter through solutions of a particular order. For instance, if we

wanted to analyse the action B for higher N contributions.

6.4 Action and Radius of the CdL Bounce

We can see in Figure 6.4.1 increasing values of α̃, the curves converge on the numerical

and thin-wall curves for the flat case. This is as expected from the approximation

performed and leading to (5.2.5). However, due to the effect of the initial conditions

collapsing on the true vacuum for large α̃, there is another computational constraint

placed on the limit of α̃ we can determine these results for. The root cause of this issue

is from the use of double-precision floating point numbers. This can in principle be

solved by increasing to quadruple-precision floats as mentioned in 4.3 Limitations of

the Solution. Even better, would be to perform these calculations on a supercomputer.

The issue is that however precise we make the storage of our initial conditions whether

in double-, quadruple- or octuple-precision floating point numbers, we would never reach

close enough to obtain results that sufficiently converge on the flat results. So we pause

in satisfaction having obtained a solution.
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Figure 6.4.1: Plots showing the variations of B and R for several values of ε and α =
5/a

√
λ, 10/a

√
λ, 12/a

√
λ.

However, by from the R̃ − E graph it is quite clear that the resulting bubble on the

de Sitter space is of the same order as α̃. In the graphs α̃ and R̃ are expressed in the

same units. So we are describing true vacuum bubbles which are of the same order

of magnitude as the radius of S4. Ideally, these calculations should be performed at

higher precision.



Chapter 7

Gravitational Instantons

Having described the case of tunnelling in a curved spacetime, we now focus our atten-

tion on the case of adding a minimal-coupling of the scalar field to the Einstein-Hilbert

action.

7.1 Friedmann-Robertson-Walker Ansatz

In order to incorporate dynamical gravity, we make a further abstraction by generalising

the metric. We assume the following Euclidean metric ansatz,

ds2 = dξ2 + ρ2(ξ) dΩ2
3, (7.1.1)

which is in the form of a Friedmann-Robertson-Walker (FRW) metric [3]. We now

treat the metric as a dynamical variable and its dynamics as encapsulated within the

scale factor, ρ. The form of the action now includes the Einstein-Hilbert Action in the

non-minimal coupling regime is [27],

SE[ϕ] =

∫
d4x
√

|g|
[
1

2
gµν∇µ∇νϕ+ U(ϕ) +

1

2
ςϕ2RE − 1

2
M2

pRE

]
. (7.1.2)

Non-minimal coupling implies that there is a direct coupling, ς, between Ricci scalar,

RE, and ϕ which is non-zero [24]. Minimal coupling switches off the interaction of ϕ

with RE,

ς = 0, (7.1.3)
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whereas conformal coupling has a standard form in D-dimensions,

ς =
(D − 2)

4(D − 1)
, (7.1.4)

so in D = 4 we have ς = 1/6. We work in the minimal coupling regime in this report,

although instanton calculations with the non-minimal coupling term is still an active

area of research in physics beyond the Standard Model [30]. The Ricci scalar in the

Euclidean signature, RE, is given by,

RE =
6(1− ρ̇2)

ρ2
− 6ρ̈

ρ
, (7.1.5)

[3; 29]. From the Einstein tensor, we can obtain the Friedmann equation, by computing

the µν = ξξ component of Gµν ,

Gξξ = Rξξ −
1

2
RE = −3

ρ̈

ρ
− 3

[
1

ρ2
− ρ̈

ρ
−
(
ρ̇

ρ

)2
]
,

= 3

(
ρ̇

ρ

)2

− 3

ρ2
. (7.1.6)

Of course by the Einstein field equations, we have to equate this to the corresponding

component of Tµν , (
ρ̇

ρ

)2

− 1

ρ2
=

1

3M2
p

Tξξ. (7.1.7)

From quantum field theory, we know that this component of the energy momentum

tensor is the Hamiltonian density, ϱ, of the constituent matter fields in our particular

theory. Effectively, we can write Tξξ = ϱ = 1
2
ϕ̇2 − U(ϕ). Moreover, we now define the

Hubble parameter H = ρ̇/ρ. Thus we have the Friedmann Equation,

H2 =

(
ρ̇

ρ

)2

=
1

3M2
p

ϱ+
1

ρ2
. (7.1.8)

7.2 Instanton Equations and The Corrected Action

For a scalar field ϕ, the covariant derivative, ∇µϕ = ∂µϕ is the usual gradient operator.

Noting again that scalar field is invariant under O(4)−transformations of (ψ, φ, θ)

coordinates, thus we assume ϕ only has ξ-dependence. The Euclidean action simplifies
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to,

SE = 2π2

∫
dξ

[
ρ3(ξ)

(
1

2
ϕ̇2 + U(ϕ)

)
+ 3M2

p

(
ρ2ρ̈+ ρρ̇2 − ρ

)]
. (7.2.1)

Here the gravitational contribution also receives a Euclidean treatment. From here on

ḟ = df
dξ
. The first step is to integrate the ρ2ρ̈ term by parts,

SE = 2π2

∫
dξ

[
ρ3(ξ)

(
1

2
ϕ̇2 + U(ϕ)

)
− 3M2

pρ(ρ̇
2 + 1)

]
. (7.2.2)

Since we are only interested in action difference between solutions which agree at spatial

infinity, thus the corrected action for a particular solution is given by,

B = SE[ϕ]− SE[ϕfv]. (7.2.3)

(Note: this was performed implicitly in the case of flat space by including a correction

such that for different values of ε, that U(ϕfv) ≡ 0 (4.1.8)). We expect this surface

term in (7.2.2) to vanish as a result of this convention.

We also have the instanton equation of the scalar field ϕ as before,

d2ϕ

dξ2
+ 3

ρ̇

ρ

dϕ

dξ
=

dU

dϕ
, (7.2.4)

with the boundary conditions ϕ̇(0) = ϕ̇(ξmax) = 0. This equation is equivalent to

(3.2.2), however, it is different in two ways. First, the independent variable is ξ as

opposed to ρ = ρ(ξ). Second, the drag term is proportional to ρ̇. These changes are

essentially cosmetic. There is a neat shortcut to obtain the Friedmann equation by

applying the conserved quantity of energy-type from particle mechanics,

E =
∂L
∂ϕ̇

ϕ̇+
∂L
∂ρ̇
ρ̇− L = 0, (7.2.5)

where L = ρ3(1
2
ϕ̇2 + U(ϕ))− 3M2

pρ(ρ̇
2 + 1). From this we obtain,

(
ρ̇

ρ

)2

= H2 =
1

ρ2
+

1

3M2
p

(
1

2
ϕ̇2 − U

)
, (7.2.6)
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ρ̇2 = 1 +
ρ2

3M2
p

(
1

2
ϕ̇2 − U

)
. (7.2.7)

For numerical calculations, this is a problem, since the second term becomes sufficiently

negative, then ρ̇ becomes imaginary. This is easily fixed if we take the derivative with

respect to ξ of (7.2.7), for which we obtain the second instanton equation for ρ,

ρ̈ = − ρ

3M2
p

(
ϕ̇2 + U

)
, (7.2.8)

as pointed out in [29]. This corresponds to Friedmann’s Second Equation.

The boundary condition for this differential equation is chosen to be ρ̇(0) = 1 and

ρ(0) = 0. These boundary conditions help us to avoid the singularity at ξmax, where

ξmax is to be determined. In the limit of large ξ, we have ϕ̇ = 0, and U ≃ U(ϕfv). In

this limit, (7.2.8) has approximate form,

ρ̈ ≃ − ρ

3M2
p

U(ϕfv). (7.2.9)

This is the equation of a simple harmonic oscillator with constant frequency, thus in

the limit of large ξ, we expect ρ̈ and thus ρ to approach another zero, ξmax. ξmax is

determined by the position of this second zero of ρ. This can be used to determine the

length over the manifold between ξ = 0 and ξ = απ, where α = ξmax/π. α is analogous

to the radius of the de Sitter spacetime as we defined in (5.1.2).

Another point of interest in this problem has to do with the addition of a constant

to the potential. In Minkowski space and in de Sitter space, we were always free

to add a constant to the potential U(ϕ). However, due to the equations of motion,

this constant was differentiated off, and so in our problem, we had only cared about

the potential differences, as opposed to the absolute potential values. In the case of

gravitation however, the differentiation of the constant still occurs in (7.2.4). Although,

there is a contribution from this constant to the drag term through the calculation of

(7.2.8). Subtracting off the contributions due to ϕfv via (7.2.3) (which indeed has a

gravitational contribution) takes care of gravitational back-reactions from the action

of the uniform false vacuum solution and results in a vanishing B outside the bubble

of the true vacuum over the space.



Chapter 8

Numerical Results with Gravity

8.1 Numerical Problem in Dynamical Gravity

As before, we start with the action of the scalar field minimally-coupled to the Einstein-

Hilbert action,

SE = 2π2

∫
dξ

[
ρ3
(
1

2
ϕ̇2 + U

)
− 3M2

pρ(ρ̇
2 + 1)

]
. (8.1.1)

As before we shall simplify the parameter dependence of the action,

ϕ→ ax, ξ → t

a
√
λ
, ε→ 2λa4E. (8.1.2)

But we also have the parameters,

Mp → aM̃p, ρ→ ρ

a
√
λ
. (8.1.3)

In this manner, we see that,

ρ̇ =
dρ

dξ
=

dρ̃

dt
= ˙̃ρ, (8.1.4)
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is dimensionless. Putting this all together, we have the following form of the re-defined

action,

SE = 2π2

∫
dt

a
√
λ

[
λa4ρ̃3

a3λ
3
2

(
1

2
ẋ2 + Ũ

)
− 3

a2M̃2
p

a
√
λ
ρ̃
(
˙̃ρ
2
+ 1
)]

= 2π2

∫
dt

a
√
λ

(
a√
λ

)[
ρ̃3

1

2

(
ẋ2 + Ũ

)
− 3M̃2

p ρ̃
(
˙̃ρ
2
+ 1
)]

(8.1.5)

=
1

λ

{
2π2

∫
dt

[
ρ̃3

1

2

(
ẋ2 + Ũ

)
− 3M̃2

p ρ̃
(
˙̃ρ
2
+ 1
)]}

=
S̃

λ

which has the same form as before (4.1.3). Furthermore, we have the following re-

definitions of the instanton equations,

d2x

dt2
= −3

˙̃ρ

ρ̃

dx

dt
+

dŨ

dx,

d2ρ̃

dt2
= − ρ̃

3M̃2
p

(
ẋ2 − Ũ

)
. (8.1.6)

Now, our problem is to solve these equations but using the Runge-Kutta method as

before. But first we transform the equations by defining, v = ẋ and w = ˙̃ρ. We have a

system of four coupled differential equations,

dv

dt
= −3

˙̃ρ

ρ̃
v +

dŨ

dx
, v =

dx

dt
, (8.1.7)

dw

dt
= − ρ̃

3M̃2
p

(
ẋ2 − Ũ

)
, w =

dρ̃

dt
. (8.1.8)

With these equations solved, we can then integrate,

dS̃

dt
= 2π2

[
ρ̃3

1

2

(
ẋ2 + Ũ

)
− 3M̃2

p ρ̃
(
˙̃ρ
2
+ 1
)]

. (8.1.9)

If x̄ is a particular bounce (without discrimination of the order of the instanton), and

xfv is the constant false vacuum configuration, then the action of a particular bounce

is given by,

B = S̃[x̄]− S̃[xfv], (8.1.10)
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as required by (7.2.3).

Furthermore, we can determine the Ricci scalar for the spacetime over the course of

the transition. In units of M̃2
p = 1 (which we adopt from here on), the Ricci scalar

(7.1.5) transforms as RE → λa2R̃E, thus we have,

R̃E = 6

[
1− w2

ρ̃2
− 1

3

(
v2 − Ũ

)]
. (8.1.11)

8.2 Scale Factor for Hawking-Moss

The Hawking-Moss instanton again provides a good example of when we can solve the

instanton equations analytically. The equation of the Hawking-Moss scale factor, ρ,

(7.2.8) becomes,

ρ̈ = −U(ϕHM)

3M2
p

ρ, (8.2.1)

provided U(ϕHM) > 0, we have the equation of a simple harmonic oscillator. Under

the boundary conditions for a compact manifold with ξmax as the period of ξ, ρ(0) =

ρ(ξmax) = 0. For ω2
HM = U(ϕHM)/3M

2
p , the scale factor is,

ρHM(ξ) = ω−1
HM sin(ωHMξ). (8.2.2)

For this particular case, the radius of the resulting 4-sphere can be determined. The

value of ξmax = ω−1
HMπ, thus the radius of the 4-sphere is nothing but,

αHM = ω−1
HM, (8.2.3)

thus,

ρHM(ξ) = αHM sin2 (ξ/αHM) . (8.2.4)

Thus the metric of the resulting spacetime from the ansatz (7.1.1) is nothing but,

ds2 = dξ2 + α2
HM sin2 (ξ/αHM) dΩ

2
3. (8.2.5)

Which is identical to (5.1.5).

The Hawking-Moss transition leads to a de Sitter space (5.1.5). Next, we consider the
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Figure 8.2.1: The Hawking-Moss Instanton, ϕHM, plotted with the gradient, ϕ̇HM = 0, and Ḃ.

action for the Hawking-Moss instanton, BHM. Ḃ for the Hawking-Moss instanton is

shown in Figure 8.2.1. An approximate solution of the decay coefficient, B is,

BHM = 24π2M4
p

[
1

U(ϕfv)
− 1

U(ϕHM)

]
. (8.2.6)

We have taken care to subtract off the action S[ϕfv] which is where the term contain-

ing U(ϕfv) comes from. This solution describes a universe dominated by a constant

potential U(ϕHM). Let V0 = U(ϕfv), in the limit V0 − U(ϕHM) ≪ V0, then we can

approximate U(ϕHM) ≃ U(ϕfv) and approximate BHM to be,

BHM ≃ 4π

3
α3
HM

∆U

TGH

, (8.2.7)

where theGibbons-Hawking temperature, TGH, associated with the horizon of this space-

time,

TGH =
ωHM

2π
. (8.2.8)

The action is given as a ratio of energy density, ∆U , integrated over a 2-sphere of

radius αHM, divided by TGH. Thus the energy of this solution is EHM = 4π
3
α3
HM∆U .

We see this by calculating Γ/V ,
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Γ

V
= exp

(
−EGH

TGH

)
, (8.2.9)

which is a Boltzmann factor. So we conclude that the Hawking-Moss instanton is a

thermal transition. With the scale factor ρ as in (8.2.2), the Hubble rate, H = ρ̇/ρ is

given by,

H =
ρ̇HM

ρHM

= ωHM cot(ωHMξ). (8.2.10)

Both the scale factor and the Hubble rate obtain from numerical calculations are shown

in Figure 8.2.2, the profiles of which clearly agree with the predictions from the calcu-

lations of (8.2.2) and (8.2.10). This is seen through the normalisation of the axes in

Figure 8.2.2. For instance, we see that from (8.2.2) that if we represent the Hawking-

Moss instanton in units of ωHM, then we are left with ρHM(ξ) = sin(ωHMξ). Thus we

expect that when ωHMξ = π/2, then the scale factor ρHM, should peak at 1 as seen in

Figure 8.2.2. Moreover, the Hubble rate H is clearly a cotangent function, as predicted

in (8.2.10) which is vanishing at ωHMξ = π/2.

Figure 8.2.2: The evolution of the Euclidean scale factor, ρ(ξ), and the Euclidean Hubble parameter,
H = ρ̇/ρ.
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8.3 Coleman-de Luccia Analytical Solution

In order to calculate the B for the CdL bounce, we ought to calculate the correction

SE[ϕfv]. The correction to the bounce is due to a constant ϕ = ϕfv solution, so that,

SE[ϕfv] = 2π2

∫
dξ
[
ρ3U(ϕfv)− 3M2

pρ(ρ̇
2 + 1)

]
. (8.3.1)

Now we want to solve for ρ in this case, the simplest way to do this is to solve (7.2.8),

so that,

ρ̈ = −U(ϕfv)

3M2
p

ρ, (8.3.2)

which has a solution,

ρ(ξ) = ω−1
fv sin(ωfvξ), (8.3.3)

where ω2
fv = U(ϕfv)/3M

2
p . Then, by substituting into SE[ϕfv], we find,

SE[ϕfv] = −
24π2M4

p

U(ϕfv)
. (8.3.4)

The Euclidean action is obtained by substituting (7.2.7) into (7.2.2) and so we have,

SE = 2π2

∫
dξ

[
ρ3
(
1

2
ϕ̇2 + U

)
− 6M2

pρ− ρ3
(
1

2
ϕ̇2 − U

)]
,

= 4π2

∫
dξ
[
ρ3U(ϕ)− 3M2

pρ
]
. (8.3.5)

Using this simplified action, we can again split the action into parts as we did in (3.3.4)

• Outside the bubble, ϕ = ϕfv, the action reduces to,

Boutside ≃ 0. (8.3.6)

• Within the wall we can approximate ρ to be constant, ρ̄ and so,

Bwall = 2π2ρ̄3S1, (8.3.7)

where S1 =
∫
dϕ [U(ϕ)− U(ϕfv)].

• Inside the wall, ϕ̇ = 0 and U = U(ϕtv) we need to perform a change of variables
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dξ = dρ
[
1− ρ2

(
U(ϕtv)/3M

2
p

)]−1/2
,

Binside = −12π2M4
p

∫ ρ̄

0

dρρ3
[
1− ρ2U(ϕtv)/3M

2
p

] 1
2 − (ϕtv → ϕfv), (8.3.8)

where (ϕtv → ϕfv) refers to the first term but all instances of ϕtv are replaced by

ϕfv. Solving this integral leads to the following,

Binside = 12π2M4
pU(ϕtv)

−1
{[

1− ρ̄2U(ϕtv)/3M
2
p

] 3
2 − 1

}
− (ϕtv → ϕfv). (8.3.9)

• Overall the decay coefficient is given by,

B = Binside +Bwall +Boutside, (8.3.10)

= 2π2ρ̄3S1 + 12π2M4
pU(ϕtv)

−1
{[

1− ρ̄2U(ϕtv)/3M
2
p

] 3
2 − 1

}
− (ϕtv → ϕfv).

It was argued in [6] that there are essentially two cases that are of critical importance

plotted on Figure 8.3.1. The idea being that the energy density difference between us

and that of the state we are living in is always zero, as we cannot directly measure the

vacuum energy density of space-time.

The case of interest to us displayed in Figure 8.3.1 (b), where U(ϕtv) = 0 and U(ϕfv) =

ε. This describes the case for which the transition of spacetime is from de Sitter space

(with a positive cosmological constant) to another de Sitter space with a (different

positive cosmological constant). In order to determine B and R for this case, we need

to use the result obtained from l’Hôpital’s rule,

lim
U(ϕtv)→0

12π2M4
p

U(ϕtv)

[
(1− ρ̄2U(ϕtv/3M

2
p )

3
2 )− 1

]
= − ρ̄2

2M2
p

. (8.3.11)

Then we can substitute this into (8.3.10), and take the derivative with respect to ρ̄ so

we have,

B = 2π2ρ̄3S1 − 6π2M2
p ρ̄

2 −
12π2M4

p

ε

[
(1− ρ̄2ε/3M2

p )
3
2 )− 1

]
dB

dρ̄
= 6π2ρ̄2S1 − 12π2M2

p ρ̄+ 12π2M2
p ρ̄
[
(1− ρ̄2ε/3M2

p )
1
2 − 1

]
= 0[

ρ̄S1 − 2M2
p

]2
= 4M2

p

[
1− ερ̄2/3M2

p

]
.
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Figure 8.3.1: (a) This case is appropriate if we are living in a universe in the false vacuum state
(U(ϕfv) = 0 and U(ϕtv) = −ε). This configuration describes a transition from dS to Anti-de Sitter
spacetime (AdS). (b) This case is appropriate if the false vacuum decay has already occurred in the
past (U(ϕfv) = +ε and U(ϕtv) = 0). This is the same potential as the flat, curved and gravitational
cases. This configuration describes a transition from dS to dS of different energy density.

On re-arrangement of this for ρ̄, the value of the bubble radius is given in terms of that

of the flat case R0,

ρ̄ =
R0

1 + (R0/2Λ)2
, (8.3.12)

where Λ = (ε/3M2
p )

−1/2 = ω−1
fv is the cosmological horizon of de Sitter space. This

is equally the Schwarzschild radius of a sphere of energy density ε and R0 = 3S1/ε

is equivalent to (3.3.9). Substituting ρ̄ into the action again and performing some

algebra, we have an expression for the action B,

B =
B0

[1 + (R0/2Λ)2]2
(8.3.13)

where B0 is the action in the flat case as in (3.3.10). Thus we expect that the radius

and the action in the gravitational case is much smaller that that in the flat case.

8.4 Numerical Results for Coleman-de Luccia Bounce

After filtering out the bounces with order, m ̸= 1, we are left with the CdL bounce, as

shown in Figure 8.4.1.
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Figure 8.4.1: A plot showing the CdL bounces obtained for E = [0.01, 0.09].

Furthermore, in Figure 8.4.2, we see plots showing the corresponding scale factor as

a result of solving (7.2.8). The form of ρ and H in Figure 8.4.3 are in considerable

agreement with those obtained for the Hawking-Moss instanton in Figure 8.2.2.

Figure 8.4.2: A plot showing the scale factors and Hubble parameter for the corresponding CdL
bounces for E = [0.01− 0.09].
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In Figure 8.4.3, we show one CdL scale factor and Hubble rate for E = 0.05 along with

the corresponding scale factor and Hubble rate for the Hawking-Moss instanton. We

see that when the ξ-axis is scaled so that the corresponding solution is defined between

ξ = 0 and ξ = π. Then the only difference between the curves of the scale factors is the

peak of the curves. The Hubble rates for the different configurations also significantly

agree with one another.

Figure 8.4.3: A plot showing the scale factors and Hubble parameter for the corresponding CdL
bounces for E = [0.01− 0.09].

Having confirmed the solutions of the instanton equations, we now turn our attention

to the action of the CdL solutions.
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Figure 8.4.4: A plot showing the action and radius of the CdL bounces in the gravitational case
(shown in red and dashed), compared to the previous results of de Sitter space and flat case.

The results shown are pretty interesting, as we see that the action for the CdL bounce

with gravity is much smaller than say the action for a CdL bounce in a de Sitter space

with α̃ = 3. Thus we see that in our particular case, that gravitation makes the bubble

materialization more likely, but the resulting bubbles are quite large compared to the

bubble produced at α̃ = 3. This is just as expected for the case of tunnelling from a

positive false vacuum to a zero false vacuum as described in [6]. Although the size of

the resulting bubbles are smaller than all cases expected for α̃ = 5, 10, 12

8.5 The Fixed Background Approximation

Consider our usual potential with non-degenerate vacuum states. Previously, we had

altered the energy density difference between ϕtv and ϕfv by shifting the value of ε.

However, if we now add a constant parameter U0 to the potential, so that we have

U(ϕ) = U0 + UF (ϕ) = U0 +
λ

8

(
ϕ2 − a2

)2
+

ε

2a
(ϕ− a) (8.5.1)
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this will change the geometry of the spacetime for different values of U0. Previously, in

the Minkowski spacetime this would not have made any difference, as only the deriva-

tive of the potential appears in the equations of motion. However, in the gravitational

case, this extra degree of freedom contributes a back-reaction on the dynamics of the

scalar. However let us consider the instanton equations in the limit ε≪ U0,

ϕ̈ +
3ρ̇

ρ
ϕ̇ =

dU

dϕ
, (8.5.2)

ρ̈ = − ρ

3M2
p

(
1

2
ϕ̇2 − U(ϕ)

)
. (8.5.3)

In the limit of large U0, the term in linear ε is vanishing. Furthermore, the term linear

in λ, is small with respect to U0 between the true and false vacuum. This is relevant as

this is the region over which the all transitions occur. Thus in this limit the potential

is approximately constant.

The equation of ρ̈ is approximately,

ρ̈ ≃ ρ

3M2
p

(
1

2
ϕ̇2 + U0

)
≃ − U0

3M2
p

ρ, (8.5.4)

in the limit of ϕ̇≪ 1. Thus the equation of the scale factor is solved easily to be,

ρ(ξ) = α sin (ξ/α) , (8.5.5)

with α = (U0/3M
2
p )

1
2 . Our metric ansatz (7.1.1) becomes,

ds2 = dξ2 + α2 sin2 (ξ/α) dΩ2
3, (8.5.6)

which we have seen before as the de Sitter metric (5.1.5). Furthermore, the Ricci scalar

of de Sitter space is given by,

R =
12

α2
, (8.5.7)

which is standard in D = 4 dimensions [3] and a constant.

The equation of motion in the fixed background approximation is given by,

d2ϕ

dξ2
+

3

α
cot

(
ξ

α

)
dϕ

dξ
=

dUF

dϕ
, (8.5.8)
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and since, the leading order contribution, U0, to U(ϕ) is differentiated off on the right

side of the above, dUF/ dϕ is the leading order contribution to the right-hand side of

(8.5.8). This was considered by Rajantie and Stopyra in [29] though for a different

potential with an additional ϕ6 term. In their particular set up, it was found that as

U0 is increased, the shape of the CdL bounce is smoothly deformed into the Hawking-

Moss solution beyond a critical shift U0crit. This will also be a point of investigation in

the next part of this report.

8.6 Confirming the Fixed Background Approxima-

tion

Consider the potential,

Ũ(x) =
1

8
(x2 − 1)2 + E(x− 1) + Ũ0. (8.6.1)

We previously discussed in the limit that ε ≪ U0 that the calculations should fall to

those of a fixed de Sitter background). Translating this relation into our dimensions,

we have, E ≪ Ũ0/2. Given this condition, we should expect to approach the limit of a

fixed background. We consider solving the equations (8.1.7) and (8.1.8) in this limit.

We see in Figure 8.6.1 that for E = 0.05 as Ũ0 is increased, the Coleman-de Luccia

bounce flattens. The solution never reaches the false vacuum and it becomes more

difficult for a transition to the true vacuum to occur. For Ũ0 > 0.184 the transition

achieves a perfect relaxation on the Hawking-Moss instanton. Beyond this point, the

CdL bounce does not exist. This is interpreted as thermal effects becoming more

important compared to the effects of quantum tunnelling [2; 29].

We can determine the effects on the Ricci scalar under the limit of increasing U0

Figure 8.6.2. It is apparent that R̃E becomes constant over a greater range of ξ as U0

is increased. The interpretation here is that the Coleman-de Luccia type instantons

deform the spacetime around the region of transition as a wave travelling up the 4-

sphere. As this wave travels, it induces a change in curvature over the manifold.

In the example of U0 = 0.1, we have an approximate CdL configuration. For this

configuration, at approximately the centre of the instanton, we see the greatest change

in curvature on the manifold due to the transition from true to false vacuum. As the
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Figure 8.6.1: The bounces for Ũ0 = [0.01 − 0.19] for E = 0.05. We see that what are initially
Coleman-de Luccia bounces deform into the Hawking-Moss instanton for this potential. The ξ-axis is
normalised to the corresponding value of radius of the 4−sphere, α = ξmax/π of each bounce.

value of Ũ0 is increased, the Ricci scalar R̃E tends to homogeneity over the entire 4-

sphere. Thus we have a manifold with constant positive curvature leading to a fixed

de Sitter background.

However, at the poles of the 4−sphere (ξ = 0 and ξ = π normalised for the radius

of the particular sphere), we see that the scalar is rather singular. It is possible to

show that this is an artefact of the size of the integration step chosen in the Runge-

Kutta calculation. In particular, in the Figure 8.6.2, the size of the integration step is

dξ̃ = 0.001. It was found that if the size of the step is decreased to dξ̃ ≪ 0.01, the

Ricci scalar becomes flatter over a larger domain of ξ̃. In Figure 8.6.3, we see that

the smaller integration step results in a spatially-homogeneous Ricci scalar curvature.

Furthermore, we can see that as the integration step is decreased, the R̃E converges

on the predicted value of the Ricci scalar as in (8.5.7) for a universe dominated by a

spatially-homogeneous scalar field configuration of the Hawking-Moss instanton.
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Figure 8.6.2: Plots showing the Ricci scalar, R̃E as a function of ξ. With increasing values of U0,
we see that the Ricci scalar becomes flatter and flatter. The integration time-step for the bold lines
is dξ̃ = 0.01

Figure 8.6.3: Plot showing the calculation of the bounce at the critical potential shift Ũ0crit = 0.184

An improved calculation of Figure 8.6.2 with a better time-step of dξ = 0.001, is shown

in Figure 8.6.4, showing that indeed the issue with the calculations is the size of dξ.
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Figure 8.6.4: Plots showing the improved calculation of R̃E using smaller step size of dξ̃ = 0.001.

This confirms that in the limit of increasing U0, the Ricci scalar becomes homogeneous

over the domain of ξ. Thus the FRW ansatz (7.1.1) is a true de Sitter space with a

constant scalar curvature and is thus fixed.



Chapter 9

Concluding Remarks

In our journey through the aspects of false vacuum decay, we first developed the formal-

ism of the bounce and demonstrated that it agreed with the standard WKB formalism

for tunnelling in quantum mechanics. We then defined the metastable state and showed

the spectrum of eigenvalues of the second variation of the action contained a negative

eigenvalue which was the root cause of the metastability. This paved the way for us to

perform similar calculations in the case of a scalar field with self-interaction potential

with two non-degenerate minima in Minkowski space. It was found the we were to cal-

culate the decay rate per unit time per unit volume and showed the fully renormalised

expression for this amplitude. What followed was a numerical demonstration of the

solutions as well as the determination of the action of the bounce, B, and the centre

of the instanton, R.

We then introduced de Sitter space, an example of a maximally-symmetric spacetime

which is a vacuum solution to the Einstein Field Equations and showed that the space

of solutions is more flavourful than the flat case. We showed that the case of Euclidean

de Sitter space, that the monotonic bounce is not a unique solution with the specified

boundary conditions and we have a more complicated space of solutions with constant

configurations (Hawking-Moss instanton) and the oscillating bounces of order N . We

confirmed via the calculation of eigenvalues that the only relevant contribution to

the tunnelling amplitude was the Coleman-de Luccia instanton. In terms of numerical

results, we showed that the curves for the radius and action converge on the Minkowski

space results for large de Sitter radius. The reason for this was that the curvature of

spacetime decreases with larger de Sitter radius.
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Dissatisfied with the exclusion of General Relativity, we introduced the corresponding

calculation in the presence of gravitation by coupling the scalar field to the Einstein-

Hilbert action in the minimal-coupling regime. We found that the action of the bubbles

formed through tunnelling were easier to form if the transition was from dS-dS as

opposed to dS-AdS. It was also found that for a small energy density difference between

the true and false vacuum, shifting the false vacuum zero to positive values eventually

leads to the transition deforms the Coleman-de Luccia instantons into Hawking-Moss

instantons which results in a spacetime with constant positive curvature - a true de

Sitter spacetime.

There are many aspects of the theory of vacuum decay that we have ignored in this

report. Such as the inclusion of a finite temperature or in the case of gravity, inclusion

of the non-minimal coupling term for the Ricci Scalar. Though these are fascinating

aspects of the theory that the author would have included given more time, they were

nonetheless, beyond the scope of the goals of this project. Though they are interesting

additions which would surely improve our understanding of the language and origins

of the Universe we live in.
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Appendix A

Gaussian Integrals

A.1 Contour Integration

Figure A.1.1: Contour of Integration.

When we discussed the path integral, it was mentioned that the Gaussian integrals

were simply a mathematical nuance that we would take to be identities. Here, we will

discuss the precise solution of Gaussian integrals with purely imaginary arguments in

their exponent. The integration procedure is described in [25].

Consider the following integral with positive and real a with real variable p,

I =

∫ ∞

−∞
dp exp

(
−iap2

)
. (A.1.1)
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If we replace p with a complex variable z and consider the integral over the closed

contour γ, we can write also,

J =

∮
γ

dz exp
(
−iaz2

)
, (A.1.2)

where the contour γ is shown in Figure A.1.1 and integration along the real axis

corresponds to the integral in (A.1.1). We note that the integral can be split up as∮
γ
=
∑4

i=1

∫
ci
. By Cauchy’s Theorem, (A.1.4) vanishes as no poles are enclosed by the

contour. So algebraically, we can write
∫
c1
= −

∫
c2
−
∫
c3
−
∫
c4
. Dealing with integration

over c2 (and c4 as they are essentially the same),∫
c2

dze−iaz2 = iR

∫ −π
4

0

dθeiθe−iaR2(cos(θ)+i sin(θ))2 ,

= iR

∫ −π
4

0

dθeiθe−iaR2(cos(2θ)+i sin(2θ)),

= iR

∫ −π
4

0

dθeiθe−iaR2 cos(2θ)eaR
2 sin(2θ),

Now if we transform the integral θ → −θ in which we exploit the parity properties of

sin θ and cos θ, ∫
c2

dze−iaz2 = −iR
∫ π

4

0

dθe−iθe−iaR2 cos(2θ)e−aR2 sin(2θ).

We now employ the triangle inequality,∣∣∣∣∫ b

a

f(z) dz

∣∣∣∣ ≤ ∫ b

a

|f(z)| dz,

∣∣∣∣∫
c2

dze−iaz2
∣∣∣∣ ≤ R

∫ π
4

0

dθe−aR2 sin(2θ).

If we define β = 2θ, we can write,∣∣∣∣∫
c2

dze−iaz2
∣∣∣∣ ≤ R

2

∫ π
2

0

dβe−aR2 sin(β).
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Using Jordan’s Inequality for 0 ≤ β ≤ π
2
,

2β

π
≤ sin β ≤ β,

we have, ∣∣∣∣∫
c2

dze−iaz2
∣∣∣∣ ≤ R

2

∫ π
2

0

dβe−aR2 sin(β),

≤ R

2

∫ π
2

0

dβe−2aR2β/π, (A.1.3)

≤ π

4aR

(
1− e−aR2

)
.

Since the LHS of (A.1.3) is real and positive it must vanish in the limit R → ∞. The

integral over c4 vanishes using similar arguments. Now we are left with the integration

along c3 which is a rotated contour of the real variable x. We can write this as z =

(1− i)x, so we are left with,∫ ∞

−∞
dp exp

(
−iap2

)
= (1− i)

∫ ∞

−∞
dx exp

(
−2ax2

)
,

= e−iπ
4

√
π

2a
=

√
π

ia
.

Indeed the näıve integration agrees with a more sophisticated analysis in complex

analysis.



Appendix B

Functional Determinants

B.1 Evaluating Functional Determinants

How do we evaluate functional determinants? We can borrow from linear algebra

that for some matrix M with eigenvalues λn, then detM =
∏

n λn. Suppose ψ is

eigenfunction of the differential operator such that

(−∂2τ +W )ψ = λψ (B.1.1)

whereW is some function of τ . We can label the eigenfunctions by the eigenvalues such

as ψλ(τ) which obey the boundary conditions ψλ(T/2) = 0 and ∂τψλ(T/2) = 1 which

obeys the eigenvalue equation (B.1.1). Now we define two such potentials W (1) and

W (2), each of whom have corresponding solutions ψ
(1,2)
λ (τ). Now we construct some

function

det

[
−∂2τ +W (1) − λ(1)

−∂2τ +W (2) − λ(2)

]
(B.1.2)

This is a meromorphic function which has a zero at λ(1) and a simple pole at λ(2).

A meromorphic function is holomorphic (complex differentiable) in some open subset

U ⊂ C except at some points which are simple poles. As a result of Liouville’s Theorem

from complex analysis, two meromorphic functions with the same poles and zeros are

proportional to one another. So we can construct a function

ψ
(1)
λ (T/2)

ψ
(2)
λ (T/2)

(B.1.3)
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where this function also has the same zero and pole. We can separate out the parts

that correspond to the same λ and choose to deal with the λ = 0 solution

det [−∂2τ +W ]

ψ0(T/2)
= πℏN2 (B.1.4)

where the right hand side is a convenient choice of normalisation. We can rearrange

the (B.1.4) into

N(det[−∂2τ + ω2])−
1
2 = (πℏψ0(T/2))

− 1
2 . (B.1.5)

Effectively, we are solving the differential equation

−d2ψ0

dτ 2
+ ω2ψ0 = 0 (B.1.6)

together with the boundary conditions the solution is

ψ0(τ) = ω−1 sinh [ω (τ + T/2)] (B.1.7)

so ψ0(T/2) = ω−1 sinh(ωT ) so N det[∂2τ + ω2]−
1
2 = [πℏω−1 sinh(ωT )]

− 1
2



Appendix C

Variations in the Einstein Hilbert

Action

C.1 Variation of
√
−g

There are only two real barriers to solve obtaining Einstein’s Equations, δ
√
−g and

δRµν . Let’s deal with δ
√
−g, we can simply write,

δ
√
−g = 1

2
√
−g

δg. (C.1.1)

In order to make progress, let’s look at,

gµσg
µρ = δρσ

δgµσg
µρ + gµσδg

µρ = 0

δgµσg
µρ = −gµσδgµρ

δgνσ = −gρνgµσδgµρ (C.1.2)

This relation will turn variations of the metric into variations of the inverse metric. For

a non-singular matrix M we have, ln(det(M)) = Tr(ln(M)), now we take the variation

to obtain the identity,

1

detM
δ(detM) = Tr(M−1δM). (C.1.3)
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we have used the cyclic property of the trace to ignore the the fact that M and δM do

not commute in general. Using detM = g, we can write (C.1.3) as,

δg

g
= gµνδgµν .

However, we would like this in terms of δgµν , so we can use our formula derived in

(C.1.2), to write

δg = −g(gµνδgµν). (C.1.4)

This is just what we need to write the correct form of (C.1.1),

δ
√
−g = −1

2

√
−ggµνδgµν , (C.1.5)

which completes the proof.
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