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Abstract

Primordial gravitational waves are essential in probing the initial conditions of the early uni-
verse. This dissertation is a self-contained review of primordial gravitational waves generated
during inflation, an evolutionary epoch in which cosmological scales of the universe underwent a
rapid, accelerated expansion driven by negative pressure. By restricting to a flat, homogeneous
and expanding universe described by the Friedmann-Robertson-Walker metric, it addresses the
inconsistencies of cosmological observation with regards to the successful hot Big Bang model.
Thus, a brief overview of inflation is provided with emphasis on the single-field slow-roll approx-
imation model. Within this framework, primordial perturbations are considered by introducing
a tiny perturbative expansion to the metric up to linear order. Using the perturbed metric, the
perturbed Einstein equations are derived in great detail to determine the evolution of scalar and
tensor perturbations during inflation as well as their physical interpretation. Transitioning from
theory to observation, these perturbations are quantised to determine their power spectra and
the spectral indices that characterise them. From these, the consistency condition for a single-
field slow-roll inflationary model is formulated. A brief explanation on their significance with
respect to probing inflation as well as their relation to primordial gravitational wave-detection
is given. Finally, some old and recent development in primordial gravitational wave-detection
are discussed.
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1 Introduction
This section provides background context to the topic of dissertation.

1.1 Gravitational Waves as a Cosmological Probe

1.1.1 A Brief History of General Relativity

It is a historical fact that Einstein’s theory of general relativity (published in 1916) garnered
widespread interest from both the scientific community and general public - common folk mar-
velled at the man who held so much knowledge of the universe while his peers offered their own
interpretation and further study of his work [26]. Developed as an extension to his theory of
special relativity (which was published a decade prior), general relativity introduced to physi-
cists, the notion of gravity as a curvature in spacetime - a jarring exposition to the long-standing
Newtonian establishment - as well as the likes of tensor calculus. Nonetheless, the prospects of
this theory were promising; by utilising the equivalence principle (also formulated by Einstein),
it is shown that general relativity is perfectly consistent with special relativity, where Newto-
nian equations hold. Furthermore, the theory has contributed greatly to our understanding of
the universe by predicting natural occurrences and objects whose lack of observation was due
to technological shortcomings of its time and by clarifying the nuances in observation that were
formerly unexplained.

In a separate publication in 1915, Einstein confirmed that the precession rate of Mercury
about the Sun predicted by his ground-breaking theory accounted for the discrepancy mea-
sured by astronomers [68]. The same result was unattainable in the case of a Newtonian
potential, thus solidifying general relativity as a general theory of gravity1. Later in 1919,
Arthur Eddington and Frank Dyson sought to prove the crux of Einstein’s theory of general
relativity in two-pronged experiments that involved measuring the positions of the Hyades - a
bright cluster of stars - during a total solar eclipse and at night, in the absence of the sun and
the moon [40]. Their findings concluded a light deflection of 1.61 arcseconds during the eclipse,
thus supporting Einstein’s prediction that light bends in the presence of a massive object [24].
The study was not free of controversy - there were doubts concerning the legitimacy of Ed-
dington’s data, which had no concrete resolve as his original photographic plates where the
measurements were taken were permanently lost [22]. Regardless, these experiments granted
Einstein global celebrity status; the story of two English astronomers proving the postulates of
a German theorist in the wake of the war was riveting [40].

1.1.2 The Search for Gravitational Waves

By the end of the 20th century, gravitational waves (GWs) were the last prediction of general
relativity left undiscovered2. By considering a small deviation on a flat metric and its energy-
momentum tensor, Einstein eventually arrived at a description of transverse waves with two
distinct polarisations travelling at the speed of light. Based on his calculations, these ripples in
spacetime would require an aggressively fast-moving or fast-rotating source to reach Earth with
detectable amplitudes. Despite their elusive nature, scientists were determined in their quest
for GWs after a study in 1981 confirmed that the increasing rotation of the binary neutron
star system, PSR B1913+16 was consistent with its predicted GW-emission [70]. Finally, in
2015, detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) observed

1While Einstein has tried to reproduce his calculations for other planets, the results did not match [68].
2The first image of a black hole was produced in 2019 [6], but its first evidence came in the form of X-ray

emission from Cygnus X-1 in 1964 [49].
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Figure 1: The image on the left shows a simple schematic (not to scale) of an Advanced LIGO (aLIGO)
detector used during the detection, whose mechanisms are based off the Michelson interferometer. The image
on the right compares the ringdown of the two black holes with their corresponding separation, velocity and
gravitational wave emission. The peak strain, 1.0 × 10−21 was emitted at the point of merger. Both images
were taken from [1].

signals of GWs emitted by a binary black hole merger - marking the first direct evidence of
GWs since their prediction a century prior [1]. Basing their design (Figure 1) on the Michel-
son interferometer from the infamous Michelson-Morley experiment, LIGO’s highly sensitive
interferometer was able to detect the full frequency range of these signals (30Hz to 250Hz),
with a peak GW-strain of 1.0 × 10−21 [1], seen in Figure 1. The LIGO detection was exciting
because it symbolised a plethora of possibilities beyond. Since the physical establishment of
GWs, there is much hope in using them as probes - the way visible and infrared light have
been used in astronomy - to tell us more about the universe, with various proposals to improve
current detectors and develop new ones to support them.

Of particular interest to cosmologists is their use in probing the initial conditions of the
early universe. Following observations which were deemed inconsistent with the successful hot
Big Bang model, the theory of inflation was introduced to address these anomalies [7, 30, 44].
However, it was also immediately recognised as a fitting mechanism to explain the origins of
primordial perturbations in the universe [13, 31, 32, 64]. The inflationary epoch is described as
a period in which the scale factor (a parameter characterising the expansion of the universe)
undergoes a rapid, accelerated expansion driven by negative pressure due to a plausible scalar
field also named as ‘inflation’ [43]. In theory, the inhomogeneous matter distribution had
induced quantum fluctuations about the metric which are later stretched to cosmic scales [58].
These acted as seeds of the large-scale structure of our universe. Among the perturbed Einstein
equations, the ones due to the tensor perturbations result in wave equations with their solutions
corresponding to GWs [23]. Unlike the GWs observed by LIGO, these primordial gravitational
waves (PGWs) are products of the inhomogeneities of the early universe. Their existence
requires no matter source. By building upon past and current work on GW-detection and
fine-tuning to the primordial case, the goal is to use these observations to gain insight on the
details of inflation.
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1.1.3 Dissertation Objectives

This dissertation aims to:

1. Understand the origins of primordial perturbations in the universe.

2. Link their theoretical framework to research and observations of PGWs.

To achieve the first objective, an overview of the theory of inflation3 is provided in the pro-
ceeding subsection. Then, the primordial perturbations generated in this framework will be
introduced in Section 2. The two subsequent sections following this will focus on the math-
ematical aspects of the perturbations. In Section 3, the Einstein equations perturbed by the
primordial perturbations are derived in full detail under the guide of [23], to provide insight to
their physical interpretation. The second objective is achieved in Sections 4 and 5. In the for-
mer, calculations of the primordial perturbation power spectra and their related quantities are
demonstrated, closely following the working presented in [69], whereas the latter summarises
some recent development on PGW-detection. Lastly, a final conclusion will be given in Section
6.

3The only cosmological theory that successfully accounts for these perturbations.
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1.2 The Theory of Inflation

1.2.1 The Expanding Universe

The main goal of modern cosmology is to develop a theoretical framework of how the universe
came to be which is consistent with observational data leading up to today. The hot Big Bang
model is taken as the standard model of cosmology. The term big-bang was first coined in 1948,
though the theory it encapsulated back then was very different to the one we associate it with
today [67]. Based on the cosmological principle that assumes homogeneity and isotropy of the
universe at large scales, the new and improved hot Big Bang model describes an extremely
hot and dense universe that cools as it expands over time with its expansion characterised by
the scale factor, a(t). The variation of a(t) over cosmic time, t depends on the type of energy
driving the expansion4. Thus, the universe began approximately 13.8 billion years ago, with
a singularity from which space expanded through three successive epochs classified by their
dominating energies; radiation, matter and dark energy5 [23]. In relation to this, the Hubble
rate, H is a useful parameter in quantifying the variation of the scale factor with respect to
energy,

H(t) ≡ ȧ

a
, (1.1)

where ȧ ≡ da
dt

. To determine the Hubble rate for each epoch, one can substitute in the relation
between the scale factor and cosmic time, a ∝ t1/2, a ∝ t2/3, a ∝ exp (H0t) for the radiation-
dominated, matter-dominated and dark-energy-dominated epochs respectively.

The concept of an expanding universe is also consistent with general relativity as its origins
are traced back to early attempts at establishing a relativistic cosmological model. Built on
the foundation of Einstein’s static solution, Aleksandr Friedmann and Georges Lemaître were
the first few to independently derive a non-static model of a universe undergoing a cosmic
expansion [27,41]. By adopting the signature (−+++), in general relativity, a flat, expanding
universe is described by the Friedmann-Robertson-Walker (FRW) metric,

gµν =


−1 0 0 0
0 a2(t) 0 0
0 0 a2(t) 0
0 0 0 a2(t)

 , (1.2)

which is used to form the spacetime interval,

ds2 = −dt2 + a2(t)dxidxj. (1.3)

An equivalent spacetime interval in terms of conformal time, η is

ds2 = a2(η)(−dη2 + dxidxj). (1.4)

One can derive the latter expression from the former, via the relation between conformal time
and cosmic time,

η ≡
∫ t

0

1

a(t′)
dt′. (1.5)

Note that in this relation, the apostrophes are used to distinguish t in the integrand and as an
upper limit of the integration. By applying this metric in the Einstein Field Equations (EFE),
one would arrive at the Friedmann equations - a set of two dynamical equations governing this
cosmological model.

4Expansion of space between two distances.
5Following the observation of 10 accelerating Type Ia supernovae [59], it is likely that the universe is currently

in the dark energy-dominated epoch.
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The first step in deriving the Friedmann equations is to consider the EFE, which are a set of
equations relating the geometry of spacetime (left-hand side or LHS) to its matter distribution
(right-hand side or RHS),

Gµ
ν ≡ gµγ

[
Rγν −

1

2
gγνR

]
=

8πGN

c
T µ
ν , (1.6)

where Gµ
ν is the Einstein tensor expressed as a combination of the Ricci tensor, Rγν and Ricci

scalar, R contracted by the inverse perturbed FRW metric, gγν . GN = 6.67× 10−11Nm2kg−2 is
Newton’s gravitational constant, c is the speed of light and T µ

ν is the energy-momentum tensor
(EMT). To derive the EFE, one needs to determine Rγν , R and T µ

ν . Recall that the Ricci
tensor and Ricci scalar are defined as

Rγν = Γα
γν,α − Γα

γα,ν + Γα
βαΓ

β
γν − Γα

βνΓ
β
γα (1.7)

and
R = gγνRγν (1.8)

respectively. In equation (1.7), Γα
µν is the Christoffel symbol, expressed as

Γα
µν =

1

2
gαγ(gγµ,ν + gγν,µ − gµν,γ), (1.9)

where we swapped the dummy indices γ and µ. Thus, in equation (1.7), Γα
µν,α is the Christoffel

symbol’s derivative with respect to α. The temporal part (µ = ν = 0) of equation (1.6) forms
the first Friedmann equation whereas the second Friedmann equation is the combination of
this temporal part and its spatial counterpart (µ = i, ν = j)6. Before proceeding with the
derivation, it is useful to determine the inverse FRW metric,

gµν =
1

a2(t)


−a2(t) 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

 . (1.10)

To determine all the non-zero Christoffel symbols, the following cases for both α = 0 and
α = k must be considered:

1. µ = ν = 0

2. µ = 0, ν = i

3. µ = i, ν = j.

One would find that the only non-zero Christoffel symbols are

Γ0
ij = δij ȧa and Γi

0j = Γi
j0 = δij

ȧ

a
. (1.11)

Using these values, one can proceed to find the temporal and spatial Ricci tensors,

R00 = −3
ä

a
,

Rij = gij

(
ä

a
+ 2H2

)
,

(1.12)

6The derivation steps used in this dissertation closely resembles that in [61] but modified for the FRW metric.
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where H here is the Hubble rate defined in equation (1.1). By contracting these with their
respective FRW metric components, g00 and gij, we obtain the Ricci scalar,

R = −R00 +
1

a2
Rii

= 6

[
ä

a
+

(
ȧ

a

)2
]

= 6

(
ä

a
+H2

)
,

(1.13)

where Rii comes from eliminating the delta function in gij = δij
1

a2(t)
by setting j = i. Lastly,

one needs to consider the temporal and spatial parts of the energy-momentum tensor, T µ
ν . In

general, T 0
0 is just the energy density, ρ whereas T i

j = δijP , which is the pressure pointing in each
spatial direction. With this last step, one has all the ingredients to compute the Friedmann
equations which are summarised as: (

ȧ

a

)2

=
8πρ

3
, (1.14)

ä

a
= −4π

3
(ρ+ 3P ). (1.15)

Equation (1.14) is the first Friedmann equation and equation (1.15) is the second Friedmann
equation.

Here, the constants GN and c are set to 1. The smooth, expanding universe framework is
widely accepted as it coincides with observational data such as the Cosmic Microwave Back-
ground (CMB) - expected remnants of the Big Bang in the form of blackbody radiation with
a temperature of T = 2.728K [50] - and the measurement of receding velocities of nearby ob-
servable galaxies, which led to the formulation of Hubble’s law [37]. It also provides a detailed
collection of the Big Bang nucleosynthesis which matches the matter composition of the uni-
verse today [65]. Despite the successes of the Hot Big Bang model, there are some subtleties
to be considered.
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1.2.2 The Horizon Problem

One of the nuances related to this model is the Horizon/Homogeneity Problem; it concerns the
causal relationship7 between particles in our universe. Two quantities crucial in the discussion
of this problem are the comoving horizon8, η and the comoving Hubble radius, 1

a(t)H(a)
. The

relation between them is derived by considering equation (1.1) in the definition (1.5):

η ≡
∫ a

0

1

a′
1

a′H(a′)
da′, (1.16)

where the apostrophes are used in a similar fashion to (1.5).

By physical interpretation, η is the "maximum comoving distance travelled by light since the
beginning of the universe" whereas 1

aH
9 is the "distance over which particles can travel in the

course of one expansion time" [23]. Thus, particles separated by η and 1
aH

are not causally-
connected. The only subtle difference is, this condition is fixed for η (nothing is faster than
the speed of light, thus no information can travel beyond this distance), but changeable for
1
aH

[23], as H is a-dependent. In the context of observations, η corresponds to the furthest
distance from which light signals can reach us [63]. CMB observations show that the universe
is homogeneous and isotropic on all scales since the time of recombination10 until today [47].
As light from regions on opposite directions to Earth would take the same amount of time to
reach us (equivalent to the time period since the Big Bang), it is impossible for these regions
to have interacted with one another [63]. This raises the question, how could non-interacting11

regions achieve uniform temperature and appear homogeneous?

A plausible suggestion is that at early times, 1
aH

was much larger than η, hence the dis-
connected regions observed today were actually causally-connected then. Thus, to achieve the
configuration today where η exceeds 1

aH
, the comoving Hubble radius would have had to un-

dergo a period in which it decreased with time. Recalling the relation between the scale factor
and cosmic time, this period could not have occurred during any of the three aforementioned
epochs in the standard model of the universe, as the expansion characterised by a(t) through-
out these epochs would mean that 1

aH
increases with time. The only possible scenario is that

there must be an intermediate evolutionary process between the point of singularity and the
radiation dominated epoch in which the size of the comoving Hubble radius decreased. In
response to this, in 1981, Alan Guth proposed the theory of inflation, a time period preceding
the radiation-dominated epoch, in which the scale factor, a(t) undergoes a rapid, accelerated
expansion.

7Two events are causally-connected if one affects the other and their causal order is preserved.
8Also known as conformal time, as introduced in (1.4). Another term for η is particle horizon.
9The implicit dependence of a on t and H on a is assumed henceforth.

10Recombination refers to the period succeeding nucleosynthesis in which radiation temperatures are well
below the ionisation energy of atoms thus allowing ions and electrons to form neutral hydrogen atoms [71].

11In other words, not causally-connected.
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1.2.3 Inflation: An Overview

The theory of inflation is best understood by looking at its stages independently; pre-inflation,
during inflation, end of inflation and post-inflation, with references to Figure 2.

Figure 2: A visual aid in understanding the evolution of the universe from the inflationary epoch into
the radiation and matter-dominated epochs taken from Modern Cosmology by Dodelson, 2003 [23]. Comoving
distance here is synonym to the comoving Hubble radius, 1

aH . It decreases during the inflation period until it
stops and increases, signifying the end of inflation and the start of the radiation-dominated epoch. Furthermore,
the point at which the slope of the graph declines is when the matter-dominated epoch has started, indicating
a decelerating expansion of the universe. The shaded band represents scales of cosmological interests, with the
darker shades indicating the scales to be within the Hubble radius and the lighter shades, beyond it.

Pre-Inflation While this period is not shown in Figure 2, it is assumed to have taken place
in the very early age of the universe, when all scales of cosmological interests were smaller than
the comoving Hubble radius. Therefore, these scales were causally-connected, thus would have
been able to interact and eventually reach homogeneity during this time.

During Inflation Inflation was suggested as the epoch in which the comoving Hubble radius,
1
aH

decreased in time, taking place about 10−36 seconds into the expansion of the singularity.
For this to happen, aH must increase in time, aH > 0. By considering this evolution, it is
found that the scale factor, a(t) must have undergone an accelerated expansion,

d

dt

[
a
ȧ

a

]
= ä > 0,

leading to the definition of inflation proposed previously in subsubsection 1.1.2. To better
understand the magnitude of this accelerated expansion, consider the energy scale of 1015GeV,
which is taken as the minimum threshold for inflation to occur in most inflationary models [23].
If the universe had remained in the radiation-dominated epoch since the end of inflation, H
would have scaled as a−2, hence a0H0

aeHe
= ae

12 [23]. If the temperature during ae is 1015GeV,
then the scale factor at the end of inflation would have been ae ≃ T0/10

15GeV ≃ 10−28a0. As
the comoving Hubble radius at the start of inflation must be much larger than its size today,
it would have had to shrink by at least 28 orders of magnitude [23]. By solving the differential

12The subscript 0 refers to values of today whereas the subscript e refers to values at the end of inflation.
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equation da/a = Hdt in which we assume a constant H, the expansion is described by the
following exponential equation:

a(t) = ae expH(t− te), (1.17)

where t < te. Hence, for a to have increased by 1028 during inflation, we require a minimum
argument of H(t − te) ≈ 64 for the exponential13. Whilst undergoing this rapid expansion,
the homogeneity achieved among scales within the Hubble radius, 1

aH
pre-inflation is preserved

regardless of the conditions of scales beyond this homogeneous region [47]. Hence, inflation
solves the horizon/homogeneity problem14. In the following subsubsections, we will look at the
driving force behind this expansion and the slow-roll approximation model of inflation.

Figure 3: An intuitive depiction of the accel-
erated expansion undergone by the scale fac-
tor, a during inflation (not to scale) taken
from Modern Cosmology by Dodelson, 2003
[23]. The grids represent the measurement of
a whereas the circles are the comoving Hubble
radius, 1

aH before and after inflation. Where
it held multiple grids pre-inflation, it barely
holds one grid post-inflation.

End of Inflation At the end of inflation, the comoving horizon, η greatly exceeds the Hubble
radius, 1

aH
, as roughly depicted in Figure 3. It is with this relative size between the two that

the universe transitions into the radiation, matter and dark energy-dominated epochs. Hence,
the homogeneous and isotropic CMB observations are explained.

Post-Inflation As seen in Figure 2, after the inflationary epoch ends, the Hubble radius
begins to expand, as per the scale factor-cosmic time relation for each epoch. In the same
figure, the scales of cosmological interest (shaded band) re-enters the horizon around the time
of the matter-dominated epoch. Since it took about 60 e-folds to achieve this, we can infer
that the scales which have entered the horizon today are similar to the ones that left it at the
start of inflation [23]. Therefore, much ongoing work aims to extract information about the
early stage of the universe from today’s measurement of the CMB, especially those related to
the initial conditions of inflation and the primordial perturbations that have contributed to the
large-scale structure of the universe.

13Note that different sources vary in the argument’s exact value. For example, in Mukhanov’s Physical
Foundations of Cosmology, this value is at least 75 [47].

14Apart from the horizon/homogeneity problem, inflation also solves other nuances such as the flatness prob-
lem, the monopole problem and the origin of the large-scale structure problem [65].
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1.2.4 The Driving Force of Inflation

The first step in determining the source of the inflationary epoch is to identify the energy driving
its expansion. By recalling the second Friedmann equation, (1.15) and noting that d2a/dt2 is
positive during inflation, we require an overall minus sign on the RHS of the equation and thus,
−ρ− 3P < 0. After rearranging the terms, we arrive at the following relation:

P < −ρ
3
.

However, since it is impossible for energy densities to be negative, this means that inflation
must be driven by a form of energy with negative pressure, instead. The only known energy
with negative pressure thus far is dark energy, whose links to the early universe was investigated
in 2007 by the Higher-Z Supernova Search Team, which was led by Adam Riess of the Johns
Hopkins University [62]. By observing Type Ia supernovae at very high redshifts, their findings
indicated that dark energy has existed for at least 10 billion years [62], although there was no
hint regarding its candidacy as a driving force of inflation. Since then, more studies have been
done on the explicit link between dark energy and inflation [11,66], however this is beyond the
scope of the dissertation.

Guided by this establishment, various guesses were made regarding the source of inflation
along with the development of their corresponding models. However, the discussion in de-
termining the most accurate inflationary model15 is inconclusive due to lack of observational
evidence to favour either of them [36]. Thus, the true source of inflation is still unknown to this
day. Nonetheless, these models act as useful guides in understanding the details of inflation as
well as predicting plausible observations. This dissertation considers the simplest among these
models - one that assumes a generic scalar field, φ called ‘inflation’ to be the only matter field
existing during the early stages of the universe [66]. This scalar field would possess the negative
pressure driving the inflationary expansion. Note that φ is unrelated to any known physics to
date, as constraints on scalar fields in the Standard Model have ruled them out as possible
candidates. The scalar field is generally inhomogeneous, φ(t, x⃗) = φ(0)(t) + δφ(t, x⃗)16, but we
will only consider its homogeneous part, φ(0) in this section. Its action is written as [42]:

S = −
∫ √

−g
[
1

2
∂µφ∂

µφ+ V (φ)

]
d4x. (1.18)

We can derive its energy density and pressure equations by considering its energy-momentum
tensor,

T
α(0)
β = −gα0 g0β(φ̇(0))2 + gαβ

[
1

2
(φ̇(0))2 − V (φ(0))

]
,

where only the time-dependence of φ is relevant. The temporal and spatial components lead
to the energy density and pressure of φ(0) respectively:

ρ =
1

2
(φ̇(0))2 + V (φ(0)),

P =
1

2
(φ̇(0))2 − V (φ(0)).

(1.19)

By examining the pressure equation in (1.19), it is inferred that φ would possess negative energy
under the condition that its potential energy surpasses its kinetic energy, V (φ) >> φ̇

2
.

15To understand the difference between an inflationary model and an inflationary scenario, refer to subsection
1.3.

16The time and spatial dependence of φ is understood henceforth. Their expressions will be neglected to
avoid cluttering.
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1.2.5 The Slow-Roll Approximation Model

The first suggestion by Guth in accordance with this condition, the model in which φ is sus-
pended in a false vacuum (a local minimum of its potential) for at least 60 e-folds before it
reaches the true vacuum (the global minimum of its potential), was unfeasible as calculations
showed the latter state would never be achieved [33, 35]. In response to this, the slow-roll
approximation model was proposed. It entails φ slowly rolling towards the true ground state
such that it never reaches its destination within the time period of interest.

To determine the evolution equation of φ in this model, we substitute its energy density, ρ
(which in this case, is close to a constant) into the first Friedmann equation and differentiate
it with respect to cosmic time, t. This gives

2
ȧ

a

[
ä

a
−H2

]
=

8πGN

3
[φ̇(0)φ̈(0) + Vφφ̇

(0)], (1.20)

where Vφ = dV
dφ(0) . By substituting the first and second Friedmann equations, the LHS becomes

−8πGNH(ρ+ P ) = −8πGNH(φ̇(0))2.

Equating this with the RHS of equation (1.20) leads to the following evolution equation of
inflation, the scalar field,

φ̈(0) + 3Hφ̇(0) + Vφ = 0, (1.21)

whose equivalent expression using conformal time, η is

φ′′(0) + 2aHφ′(0) + a2Vφ = 0. (1.22)

A notable consequence of φ slowly rolling is that the Hubble rate also changes slowly such
that it is often taken as a constant in calculations. With such an assumption, the conformal
time becomes

η ≡ 1

H

∫ a

ae

1

a′2
da′ ≈ − 1

aH
,

where again, the apostrophe is used to distinguish between the scale factor in the limits of
integration and in the integrand. Here, a is the scale factor during inflation whereas ae is the
scale factor at the end of inflation. Since ae >> a due to the exponential expansion, the overall
term bears a minus sign.

Furthermore, there are two parameters which are used to specifically quantify the slow roll.
They are

ϵ = −d lnH

d ln a
≡ − Ḣ

H2
(1.23)

and
τ =

d ln ϵ

d ln a
≡ ϵ̇H

ϵ
. (1.24)

In this model, these variables are extremely small (<< 1) and in the limit where φ is constant,
they vanish. We will revisit these parameters in Section 4 in our derivation of the power spectra
related to inflation, and in our consideration of how measuring these parameters may hint at the
physics of inflation. This subsubsection marks the end of the preliminary knowledge required
to proceed with the crux of the dissertation - the primordial perturbations generated during
inflation. We begin our voyage on this topic by considering linear perturbations to the metric
in Section 2. Then, subsequent sections will cover some calculations related to these metric
perturbations.
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1.3 Definitions and Notations

We end the introductory section with a compilation of all the scientific definitions and notations
used throughout the dissertation. While they are uniquely introduced at different stages of
the dissertation, this list acts as a reference, mid-reading. The definitions are arranged in
alphabetical order with their notations (if applicable) and page numbers (where first mentioned)
alongside.

Notation Definition Page

Hij A divergenceless traceless symmetric tensor that characterises
the tensor perturbations to the FRW metric which are linked to
PGWs.

21

Θ Anisotropies generated by tensor perturbations from Hij. 41
â†
k⃗

Annihilation operator: an operator that lowers the number of
particles/energy of a quantum-mechanical system

46

N/A Baryogenesis: the process responsible for the excess of baryonic
matter over baryonic antimatter in the universe.

19

N/A Blue-tilted spectrum: a term used to describe when the observed
spectral indices exceed unity

51

Γα
µν Christoffel symbol: a rank-3 tensor that dictates the transforma-

tion of a law in the local intertial frame (LIF) as seen by an external
observer.

8

1
aH

Comoving Hubble radius: the distance over which particles can
travel in the course of one expansion time.

10

R Comoving curvature perturbation: 47
N/A Conformal Newtonian gauge: a gauge choice in which the scalar

functions B = E = 0 thus leading to ϕ = Φ and ψ = Ψ .
21

η Conformal time (Comoving horizon): the maximum comoving
distance travelled by light since the beginning of the universe.

7

r ≈ −8nt Consistency condition for a single-field slow-roll model of inflation. 49
N/A Cosmic Microwave Background (CMB): remnants of the Big

Bang in the form of blackbody radiation with a temperature of T =
2.728K.

9

t Cosmic time (Cosmological time): a time coordinate used in the
Big Bang models of physical cosmology.

7

N/A Cosmological principle: The assumption that the universe is ho-
mogeneous and isotropic at large scales.

7

âk⃗ Creation operator: an operator that raises the number of parti-
cles/energy of a quantum-mechanical system

46

N/A Dark-energy dominated epoch: A cosmological epoch in which
dark energy dominates and causes an accelerated expansion in which
the scale factor varies as a ∝ exp (H0t).

7

N/A Decomposition theorem: a theorem that states the three different
types of metric perturbations are independent of one another [23].

22

Si Fi Divergenceless vectors that characterises the vector perturbations
about the FRW metric which decay very fast.

20

Gµ
ν Einstein Tensor: a rank-2 tensor used to describe spacetime cur-

vature.
8

N/A Einstein field equations: a set of equations relating the geometry
of spacetime to its matter distribution.

7
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Notation Definition Page

ρ Energy density: the amount of energy stored in an arbitrary system
or region of space per unit volume.

9

T µ
ν Energy-momentum tensor: a rank-2 tensor that describes the

density and flux of energy and momentum in spacetime.
8

Hk Expression of H = k
a

at horizon crossing. 45
N/A Friedmann equations: a set of two dynamical equations governing

the hot Big Bang cosmological model.
7

gµν Friedmann-Robertson-Walker (FRW) metric: the metric
which describes a flat and expanding universe.

7

∇ Gradient operator: an operator that calculates the gradient of a
differentiable multi-variable scalar function f .

45

N/A Gravitational waves (GWs): transverse waves with two polarisa-
tions travelling at the speed of light propagating through a gravita-
tional field which are produced by a moving or disturbed source of
gravity.

4

N/A Horizon crossing: the situation where kη = 1. 47
N/A Horizon problem (Homogeneity problem): a cosmological

problem in which the CMB appears homogeneous despite the co-
moving horizon exceeding the comoving Hubble radius.

10

H Hubble rate: a parameter characterising the variation of a with
respect to energy.

7

ϵH and τH Hubble slow-roll parameters: slow-roll parameters written in
terms of the Hubble rate H.

44

H0 Hubble’s constant: the constant of proportionality in Hubble’s
law.

9

v = H0D Hubble’s law: a law that encapsulates the proportional relationship
between the distance of galaxies from Earth and their recessional
velocities.

9

N/A Inflation (cosmic expansion): a period in which the scale factor
undergoes a rapidly accelerated expansion driven by negative pres-
sure.

5

φ Inflation (scalar field): the source object of the inflationary ex-
pansion.

13

dx
dφ

or xφ Inflation derivative: the variation of an arbitrary variable x with
respect to the scalar field inflation φ.

14

N/A Inflationary model: "a physical model which can lead to inflation-
ary solutions" [46].

13

N/A Inflationary scenario: "a description of the universe which involves
a period of inflation" [46].

13

N/A Leptogenesis: the hypothetical process responsible for the excess of
leptons over antileptons in the universe.

19

N/A Matter-dominated epoch: A cosmological epoch in which non-
relativistic matter contributions dominate the energy density and
causes the scale factor to vary as a ∝ t2/3.

7

δgµν Metric perturbations: a small perturbative expansion around the
homogeneous FRW metric at first-order.

19

N/A Mukhanov-Sasaki equation: an equation that takes the form of
a harmonic oscillator with a time-dependent frequency

45
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Notation Definition Page

GN Newton’s gravitational constant with a value of 6.67 ×
10−11Nm2kg−2) and set to 1 for the Friedmann equations.

8

Ψ Newtonian potential: one of the scalar functions contributing to
the scalar perturbations in the FRW metric.

21

N/A Origin of large-scale structure problem: the cosmological prob-
lem regarding the generation of primordial perturbations which later
formed the structure of the universe.

19

Θ0 Perturbations to the distribution function integrated over all
directions which contributes to the energy density of photons and
anisotropic stress.

32

N0 Perturbations to the neutrino distribution which contributes
to the energy density of neutrinos and the anisotropic stress.

32

x = x̄+ δx Perturbed redefinition: a redefinition of arbitrary object x as its
perturbed version with x̄ as its homogeneous expression and δx its
perturbations.

19

mPl Planck mass: mass in terms of Planck units. 44
V (φ) Potential energy of inflation: the potential energy of the inflation

scalar field φ.
13

ϵV and τV Potential slow-roll parameters: slow-roll parameters written in
terms of varphi’s potential V (φ).

44

Pq(k) Power spectrum of an arbitrary observable q in terms of its Fourier
modes k.

46

P Pressure: the force exerted perpendicularly on an object per unit
area of the object’s surface on which it is distributed.

9

N/A Primordial Gravitational waves (PGWs): gravitational waves
produced by primordial tensor perturbations in the metric during
inflation.

5

(
kikj − δij

3

)
Projection operator: an operator which extracts the longitudinal
traceless part of an a tensor.

31

N/A Radiation-dominated epoch: A cosmological epoch in which radi-
ation energy dominates and causes the scale factor to vary as a ∝ t1/2.

7

N/A Red-tilted spectrum a term used to describe when the observed
spectral indices are less than unity

51

f(ηx⃗) Redefined field: a redefinition used in the derivation of φ’s action. 45
h̄ Reduced Planck constant: the reduced Planck constant divided

by 2π and set to 1 throughout the dissertation.
44

MPl Reduced Planck mass: the Planck mass divided by
√
8π. 44

R Ricci scalar: the simplest curvature invariant of a Riemannian man-
ifold which can be derived from contracting both indices in the Ricci
tensor with the metric.

8

Rγν Ricci tensor: a rank-2 tensor that represents the difference between
a volume in curved space and in Euclidean space.

8

αs Running of the scalar spectral index: a parameter that charac-
terises deviations from a scale-invariant spectrum.

51

ϕ ψ B E Scalar functions characterising scalar perturbations about the
FRW metric which are linked to the energy density.

20

ns Scalar spectral index: a parameter characterising energy density
variation with respect to the scale.

47
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Notation Definition Page

a(t) Scale factor: a parameter characterising the expansion of the uni-
verse with cosmic time.

5

N/A Scale-invariant spectrum: a term used to describe when the ob-
served spectral indices equal unity

51

N/A Second quantisation method: the formalism used to describe and
analyse quantum many-body systems

45

N/A Slow-roll approximation model: an inflationary model in which
the scalar field φ rolls slowly down its potential V (φ) such that it
never reaches its true vacuum within the time frame of interest.

14

ϵ and τ Slow-roll parameters: a couple of parameters that characterise the
slow-roll approximation model.

14

ds2 Spacetime interval: an invariant distance in spacetime. 7
Φ Spatial curvature: one of the scalar functions contributing to the

scalar perturbations in the FRW metric.
21

∂x
∂ki
orx,i Spatial derivative (Fourier space): the variation of an arbitrary

variable x with respect to the spatial coordinate in Fourier space ki.
24

N/A Spatially-flat slicing gauge: a gauge choice in which the gij com-
ponents of the FRW metric is unperturbed.

21

c Speed of light with a value of 3× 108ms−1 and set to 1 throughout
the dissertation.

8

N/A Stochastic gravitational waves: a superposition of gravitational
waves from independent sources coming from all directions which are
seen as noise on a gravitational wave-detecor.

56

N/A Sub-horizon scale: the limit where kη << 1. 47
N/A Super-horizon scale: the limit where kη >> 1. 47
N/A Synchronous gauge: a gauge choice that uses "a coordinate system

in which the metric is fitted to a set of imagined geodesically and
irrotationally moving observers" [25].

21

nt Tensor spectral index: a parameter used to characterise the power
spectrum of the tensor perturbations

49

r Tensor-to-scalar ratio: the ratio between the scalar and tensor
power spectra.

49

dx
dη

or x′ Time derivative (conformal time): the variation of an arbitrary
variable x with respect to conformal time η.

20

dx
dt

or ẋ or x,0 Time derivative (cosmic time): the variation of an arbitrary vari-
able x with respect to cosmic time t.

7

W(f ∗
kfk) Wronskian: a determinant used in the study of differential equations

which may have a linear-dependence on a set of solutions
46
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2 Primordial Perturbations during Inflation
This section introduces the primordial perturbations generated during inflation. It starts by
addressing the problem related to the origins of the large-scale structure of the universe using
the theory of inflation followed by introducing the metric perturbations and their classifications.

2.1 Origin of the Large-Scale Structure

Despite the notion of a homogeneous and isotropic universe, there was much scepticism sur-
rounding its consistency with regards to the formation of galaxy clusters making up the struc-
ture of the universe, as the process involves gravitationally-bound overdensities to collapse in an
initial density field [39] during the matter-dominated epoch. Such density imbalance indicates
an inhomogeneous universe instead. In fact, the overdensities that led to such a structure are
suggested to have originated from small density fluctuations which had formed in the same
primordial plasma where baryogenesis17 and leptogenesis18 are thought to have occurred [42].
Measurements of anisotropies in the CMB since its first discovery further support this [12,15].

The problem with the origin of the large-scale structure is that the hot Big Bang model could
not account for the formation of these small density fluctuations at primordial-level. In fact, the
problem is linked to the horizon/homogeneity problem previously explained in subsubsection
1.2.2. Assuming the production of these inhomogeneities require a causal physical process,
they should not appear in the CMB, whose regions are considered causally-disconnected in the
absence of an additional evolutionary epoch [42]. In another approach, one could extrapolate
back in time to the point of singularity and show that these inhomogeneities could not have been
produced in a causal physical process as they would have existed well beyond the horizon [42].

Similarly to the horizon/homogeneity problem, there is much need for an additional physical
process to explain the large-scale structure of the universe. Shortly after its introduction by
works in 1981 and 1982 to address the horizon/homogeneity problem, flatness problem and
monopole problem [7, 30, 44], many realised the theory of inflation to simultaneously solve the
origin of the large-scale structure problem as well19 [13,31,32,64]. In the inflationary scenario,
cosmological scales of interest achieved uniformity in a causal region within the horizon before
expanding at an accelerated rate after which it exceeds the horizon by an order of 1028. Thus,
it is reasonable to propose that the inhomogeneities observed in the CMB were generated in
the same causal region and later stretched to cosmic scales, assuming their amplitudes were
preserved during the expansion.

In this section, we consider the primordial fluctuations as small perturbations expanded
around the homogeneous and isotropic universe introduced in subsection 1.2.1. We do this by
adding perturbations to the FRW metric. Since the observed fluctuations in the CMB are of
the order 10−5, their initial primordial values are predicted to be much smaller. For this reason,
it is sufficient to only consider them at first-order,

gµν = ḡµν + δgµν , (2.1)
17Baryogenesis refers to the process responsible for the excess of baryonic matter over baryonic antimatter in

the universe.
18Leptogenesis refers to the hypothetical process responsible for the excess of leptons over antileptons in the

universe.
19This makes the theory of inflation a cornerstone in modern cosmology.
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where now we relabel the FRW metric in equation (1.2) as ḡµν , redefine gµν as the overall
perturbed FRW metric, and denote δgµν as its first-order perturbation. Note that ḡµν >> δgµν .
The following subsection will specify the perturbations of interest.

2.2 Metric Perturbations during Inflation

2.2.1 Classification of Metric Perturbations

Following the perturbed FRW metric introduced in the previous subsection, its general space-
time interval is given by

ds2 = (ḡµν + δgµν)dx
µdxν . (2.2)

Since symmetry properties of the homogeneous background are invariant under spatial rotations
and translations, they are used to distinguish the perturbations present in the metric [47]. There
are three types of metric perturbations; scalar, vector and tensor. It is useful to explore these
perturbations in conformal time, though their expressions in the conformal Newtonian gauge
will be reverted back to cosmic time to ease the calculations Section 3.

Scalar Perturbations The scalar perturbations are made up of four scalar functions, ϕ, ψ,
B and E, which are generated from energy density inhomogeneities. In their presence, the
spacetime interval in equation (2.2) becomes:

ds2 = a2[−(1 + 2ϕ)dη2 + 2B,idx
idη + {(1 + 2ψ)δij + 2E,ij}dxidxj], (2.3)

where Bi =
∂B
∂xi and similarly, E,ij = ∂E

∂xi∂xj . To simplify this general form, one can consider
their transformations under a change of coordinates, xµ → x̃µ = xµ + ξµ:

ϕ→ ϕ̃ = ϕ− 1

a
(aξ0)′,

ψ → ψ̃ = ψ +
a′

a
ξ0,

B → B̃ = B + ζ ′ − ξ0,

E → Ẽ = E + ζ,

where ζ is a scalar function and the apostrophes indicate derivatives with respect to conformal
time, ie. ζ ′

= dζ
dη

. From these, we have their simplest gauge-invariant linear combinations:

Φ ≡ ϕ− 1

a
[a(B − E ′)]′,

Ψ ≡ ψ +
a′

a
(B − E ′).

(2.4)

Since these functions manifest gravity instability due to their links to the energy density, the
scalar perturbations directly contribute to the formation of the large-scale structure of our
universe.

Vector Perturbations The simplest form of equation (2.2) in terms of vector perturbations
is

ds2 = a2[−dη2 + 2Sidx
idη + (δij + Fi,j + Fj,i)dx

idxj]. (2.5)

In this expression, Si and Fi are both divergenceless vectors related to rotational motions of
fluid that transform as

Si → S̃i = Si + ξ′⊥i,

Fi → F̃i = Fi + ξ⊥i,
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under a change of coordinates. Note that here, ξ⊥i is a divergenceless 3-vector. While one may
form a gauge-invariant linear combination of Si and Fi, a study of these vector perturbations is
uninteresting as they decay very fast and thus play no part in large-scale structure formations.
For this reason, we will not consider them in section 3.

Tensor Perturbations The last type of metric perturbations to consider is the tensor per-
turbations. In this case, equation (2.2) takes the form

ds2 = a2[−dη2 + (δij +Hij)dx
idxj], (2.6)

where Hij is the divergenceless, traceless, symmetric tensor20 representing GWs travelling in
the z-direction:

Hij =

h+ h× 0
h× −h+ 0
0 0 0

 . (2.7)

Its components, h+ and h×, are the degrees of freedom pointing in the x − y plane. Hij itself
is already gauge-invariant, thus the GWs remain the same in all frames of reference. As they
are generated during the primordial epoch, they are the PGWs introduced in subsubsection
1.1.2. To date, much research has been dedicated to detecting traces of PGWs in the CMB
[10,29,38,72].

2.2.2 Choice of Gauge

It is useful to formulate gauge-invariant expressions of these perturbations as cosmologists
adopt different gauge choices (which result in different forms of the FRW metric) for different
tasks. For example, a gauge with spatially flat slicing21 results in simple forms of equations for
these perturbations, thus it is often used when deriving such equations [23]. On the other hand,
cosmologists deploying computational methods in the study of anisotropies and inhomogeneities
would prefer the synchronous gauge22 [23].

This dissertation uses the conformal Newtonian gauge as the derivations of evolution equa-
tions of the metric perturbations in this gauge are quite manageable. Moreover, it caters to
a wider audience as its workings are doable for anyone familiar with general relativity. This
gauge sets B = E = 0, thus from equations in (2.4), we have that ϕ = Φ and ψ = Ψ. Thus,
the spacetime interval involving the scalar-perturbed FRW metric in this gauge is

ds2 = a2[−(1 + 2Φ)dη2 + {δij(1 + 2Ψ)}dxidxj]. (2.8)

Specifically, Ψ corresponds to the Newtonian potential and Φ corresponds to the spatial cur-
vature [23]. To ease the derivation of the EFE for scalar and tensor perturbations in section 3,
the FRW metric components for the scalar and tensor perturbations are rewritten using cosmic
time, separately.

20‘Divergenceless’ and ‘traceless’ here refer to the fact that kiHij = kjHij = 0 since Hij has no components
in the z-direction.

21A gauge with spatially flat slicing refers to a gauge choice in which the gij component of the metric is
unperturbed [23].

22Synchronous gauge refers to a gauge choice that uses "a coordinate system in which the metric is fitted to
a set of imagined geodesically and irrotationally moving observers" [25].
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Scalar-Perturbed FRW Metric The FRW metric perturbed by scalar perturbations is
given by:

g00(t, x⃗) = −1− 2Ψ(t, x⃗),

g0i(t, x⃗) = 0,

gij(t, x⃗) = a2(t)δij[1 + 2Φ(t, x⃗)].

Tensor-Perturbed FRW Metric The FRW metric perturbed by tensor perturbations com-
prises of the components,

g00 = −1,

g0i = 0,

gij = a2(t)[δij +Hij].

2.2.3 The Decomposition Theorem

Despite the metric perturbations being generated in the same epoch, their three different classes
are actually independent of one another, as they obey the decomposition theorem [23]. This
means that while Φ and Ψ are intertwined, they are not affected by Hij [23]. We will assume
this is true for now, but an actual proof of the theorem will be provided in subsection 3.3 once
we have obtained the EFE of the perturbations.
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3 The Perturbed Einstein Equations
To understand the physical interpretation of the metric perturbations introduced in section
2.2.1, this section aims to derive the perturbed Einstein equations23. Since the metric pertur-
bations obey the decomposition theorem stated in subsubsection 2.2.3, the derivation for the
two types of perturbations can be done separately under subsections 3.1 and 3.2.

The set of steps used in these subsections is similar to the ones presented in section 1.2.1:

1. Establish the inverse FRW metric for each case.

2. Calculate the Christoffel symbols, Γα
µν .

3. Compute the Ricci tensors, Rµν .

4. Deduce the Ricci scalar.

5. Determine the Einstein tensor, Gµν using these values.

6. Complete the EFE by considering the energy-momentum tensor, Tµν for each case.

In step 6, we will reinstate GN but maintain c = 1.

Once obtained, the respective perturbed Einstein equations are summarised at the end of the
subsections, along with their physical interpretation. Furthermore, a proof of the decomposition
theorem is given in subsection 3.3 using these equations. Note that all workings in this section
is guided by Chapter 5 of Modern Cosmology by Dodelson, 2003 [23], though elaborated in more
detail. Also note that as per subsection 2.1, the following tensors and scalar are redefined:

Gµ
ν = Ḡµ

ν + δGµ
ν ,

Rγν = R̄γν + δRγν ,

R = R̄+ δR,
T µ
ν = T̄ µ

ν + δT µ
ν ,

(3.1)

where the bars indicate the homogeneous results obtained in subsubsection 1.2.1 and the delta
terms represent contributions from the perturbations.

23This refers to the same EFE derived in subsubsection 1.2.1 but with the inclusion of the metric perturbations
in subsubsection 2.2.2.
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3.1 Scalar Perturbations

This subsection comprises the steps in deriving the Einstein equations perturbed by the scalar
perturbations.

3.1.1 The Inverse Scalar-Perturbed FRW Metric

From the scalar-perturbed FRW metric stated in subsubsection 2.2.2, one can obtain its inverse
form by inverting the components and applying the Taylor series expansion24, 1

1−x
≈ 1 + x +

x2 + x3 + ... where the perturbations are only considered at first-order. Thus, the components
of the inverse FRW metric perturbed by scalar perturbations are

g00(t, x⃗) = −1 + 2Ψ(t, x⃗),

g0i(t, x⃗) = 0,

gij(t, x⃗) =
δij
a2(t)

[1− 2Φ(t, x⃗)].

(3.2)

In the subsequent subsubsections, the temporal and spatial dependence is assumed but their
explicit expressions are dropped to avoid cluttering.

3.1.2 Christoffel Symbols

Recall the formula for the Christoffel symbol in equation (1.9) but with gµν now defining the
scalar-perturbed FRW metric. Firstly, consider Case 1, where α = 0. Equation (1.9) becomes

Γ0
µν =

1

2
g0γ(gγµ,ν + gγν,µ − gµν,γ).

For non-zero values, γ must be 0 and the equation transforms again as

Γ0
µν =

1

2
g00(g0µ,ν + g0ν,µ − gµν,0). (3.3)

Note that the subscript , 0 indicates a derivative with respect to cosmic time, t. Now, apply
the different values of µ and ν.

Case 1.1 When µ = ν = 0, the three terms in the parentheses are g00,0, thus only one
survives. Based on the first line in equation (3.2), g00,0 = −2Ψ,0 and so the Christoffel symbol
becomes

Γ0
00 =

−1 + 2Ψ

2
(−2Ψ,0) = Ψ,0 − 2Ψ,0Ψ.

Case 1.2 Next, consider the values µ = 0, ν = i. The Christoffel symbol becomes

Γ0
0i =

−1 + 2Ψ

2
(g00,i + g0i,0 − g0i,0).

In the parentheses, the last two terms are just zero, leaving only the first term, g00,i = −2Ψ,i.
This gives the result,

Γ0
0i =

−1 + 2Ψ

2
(−2Ψ,i) = Ψ,i − 2Ψ,iΨ = ikiΨ− i2kiΨ

2,

where in the last equality, we switched to Fourier space, Ψ,i =
∂Ψ
∂ki

. Note that the italicised
i labels the spatial component whereas i is the imaginary number possessing the property,
i2 = −1.

24This step is permissible since the metric perturbations are very small.
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Case 1.3 The last values to consider for this case are µ = i and ν = j (or vice versa):

Γ0
ij =

−1 + 2Ψ

2
(g0i,j + g0j,i − gij,0).

The first two terms in the parentheses equal zero, leaving only the third, −gij,0 = −δij ∂
∂t
a2(1+

2Φ). By applying the product rule to both terms,

δij
∂

∂t
a2 = 2δij ȧa,

2δij
∂

∂t
(a2Φ) = 4δij ȧaΦ + 2δija

2Φ,0,

the Christoffel symbol up to first-order is

Γ0
ij = δij ȧa− 2Ψδij ȧa+ 2δij ȧaΦ + δija

2Φ,0.

Using the definition for the Hubble rate, H = ȧ
a
, it can be further simplified into

Γ0
ij = δija

2(H + 2H(Φ−Ψ) + Φ,0).

Next, consider Case 2, when α = i. In this case, equation (1.9) becomes

Γi
µν =

1

2
giγ(gγµ,ν + gγν,µ − gµν,γ).

For non-zero values, γ must be l and the equation transforms again as

Γi
µν =

1

2
gil(glµ,ν + glν,µ − gµν,l). (3.4)

Now, apply the values of µ and ν, as before.

Case 2.1 When µ = ν = 0, the Christoffel symbol becomes

Γi
00 =

1

2
gil(gl0,0 + gl0,0 − g00,l).

From equation (3.2), the first two terms in the parentheses are zero, leaving only −g00,l = 2Ψ,l

in the expression,

Γi
00 =

1

2

[
δil
a2

(1− 2Φ)

]
[2Ψ,l]

=
δil
a2

(Ψ,l − 2ΦΨ,l)

=
iki

a2
Ψ,

where in the last line, l = i and the second-order term was omitted.

Case 2.2 Now, for the case of µ = 0 and ν = j:

Γi
0j =

1

2

[
δil
a2

(1− 2Φ)

]
(gl0,j + glj,0 − g0j,l). (3.5)
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Only the second term in the second parentheses, glj,0 is non-zero, and using the product rule
as per the previous working for Γ0

0i,

glj,0 = 2δlj ȧa+ 4δlj ȧaΦ + 2δlja
2Φ,0.

By setting l = j, the Christoffel symbol becomes

Γi
0j =

δij
a2

[ȧa+ 2ȧaΦ + a2Φ,0 − 2ȧaΦ− 4ȧaΦ2 − 2a2ΦΦ,0].

To first-order, the final result is

Γi
0j = δij

[
ȧ

a
+ Φ,0

]
= δij(H + Φ,0).

Case 2.3 Lastly, consider the values µ = j, ν = k:

Γi
jk =

1

2

[
δil
a2

(1− 2Φ)

]
(glj,k + glk,j − gjk,l).

Since the three terms in the second parentheses are of a similar form, it is enough to work out
one of them and apply the same result to the rest by changing indices. Taking the first term
as an example,

glj,k = a2
∂

∂kk
(δlj + 2δljΦ) = 2δljΦ,k,

and applying the result to the second and third terms, the Christoffel symbol becomes

Γi
jk = δil(1− 2Φ)[δljΦ,k + δlkΦ,j − δjkΦ,l].

After eliminating the delta function outside the parentheses by setting l = i, expanding the
brackets and neglecting the second-order terms, the result is

Γi
jk = iΦ(δijkk + δikkj − δjkki).

Summary To summarise, all the non-zero scalar-perturbed Christoffel symbols up to first-
order are:

Γ0
00 = Ψ,0,

Γ0
0i = ikiΨ,

Γ0
ij = δija

2(H + 2H(Φ−Ψ) + Φ,0),

Γi
00 =

iki

a2
Ψ,

Γi
0j = δij(H + Φ,0),

Γi
jk = iΦ(δijkk + δikkj − δjkki).

(3.6)

With these values, one can proceed to compute the scalar perturbed Ricci tensors, Rγν in the
next subsubsection.
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3.1.3 Ricci Tensors

Recall the definition of the Ricci tensor, Rµν stated in equation (1.7). Finding Rγν is crucial
as it is needed to determine the perturbed Ricci scalar, R and hence, the Einstein tensor,
Gµ

ν . Based on the definition of Gµ
ν in equation (1.6), it is sufficient to determine only R00 and

Rij since g0i = 0 and g0i = 0, therefore its corresponding Einstein tensor will equal to zero.
By substituting in the non-zero Christoffel symbols summarised in equation (3.6), Rγν will
automatically account for the scalar perturbations.

Case 1 When γ = ν = 0, the Ricci tensor takes the form:

R00 = Γα
00,α − Γα

0α,0 + Γα
βαΓ

β
00 − Γα

β0Γ
β
0α. (3.7)

Now, apply the different values of α and later, β.

Case 1.1 When α = 0, R00 = 0 as the four terms cancel each other,

R00 = Γ0
00,0 − Γ0

00,0 + Γ0
β0Γ

β
00 − Γ0

β0Γ
β
00.

Case 1.2 Consider the four terms separately when α = i:

R00 = Γi
00,i − Γi

0i,0 + Γi
βiΓ

β
00 − Γi

β0Γ
β
0i.

The first term is evaluated as:

Γi
00,i =

∂

∂ki

(
iki

a2
Ψ

)
= −k

2

a2
Ψ

The second one involves differentiating two terms, −Γi
0i,0 = −3 ∂

∂t
(H + Φ,0)

25:

∂

∂t
(ȧa−1) =

ä

a
−H2,

∂

∂t
Φ,0 = Φ,00.

Hence, −Γi
0i,0 = −3

(
ä
a
−H2 + Φ,00

)
.

The third term, Γi
βiΓ

β
00, is more complicated as now, one needs to consider the possible values

of β, as well. If β = 0, the term becomes

Γi
0iΓ

0
00 = [3(H + Φ,0)][Ψ,0].

Whereas if β = j, it becomes

Γi
jiΓ

j
00 = [i3kjΦ][

ikj

a2
Ψ].

Since the latter option results in a second-order term, only the former will be considered.

Similarly, the option of β = 0 is ignored for the fourth term as it results in an overall
second-order term. Thus, to first-order, it is

−Γi
j0Γ

j
0i ≡ −3(H2 + 2HΦ,0).

Summary Therefore, the overall temporal Ricci tensor, R00 is given by:

R00 = −3
ä

a
− k2

a2
Ψ− 3Φ,00 + 3H(Ψ,0 − 2Φ,0). (3.8)

25The 3 comes from the implicit sum of δii in Γi
0j,0.
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Case 2 When γ = i and ν = j, the Ricci tensor takes the form:

Rij = Γα
ij,α − Γα

iα,j + Γα
βαΓ

β
ij − Γα

βjΓ
β
iα. (3.9)

Case 2.1 Now, consider α = 0. The above equation becomes

Rij = Γ0
ij,0 − Γ0

i0,j + Γ0
β0Γ

β
ij − Γ0

βjΓ
β
i0. (3.10)

The first term is just a first-order time derivative of Γ0
ij,

Γ0
ij,0 = δij

∂

∂t
[a2H + 2a2HΦ− 2a2HΨ+ a2Φ,0]

= δij(ȧ
2 + äa+ 2ȧ2Φ + 2äaΦ + 2ȧaΦ,0 − 2ȧ2Ψ− 2äaΨ− 2ȧaΨ,0 + 2ȧaΨ,0 + a2Ψ,00).

By reinstating the definition ȧ = Ha, this result is simplified as

Γ0
ij,0 = δij(a

2H2 + aä+ 2a2H2Φ + 2aäΦ + 4a2HΦ,0 − 2a2H2Ψ− 2aäΨ− 2a2HΨ,0 + a2Φ,00).

Similarly, to get the second term, a spatial derivative is operated on −Γ0
i0:

−Γ0
i0,j = − ∂

∂kj
[ikiΨ] = −i2kikjΨ = kikjΨ.

Now, we expand the third term in values of β,

Γ0
β0Γ

β
ij = Γ0

00Γ
0
ij + Γ0

l0Γ
l
ij,

where in the former term, β = 0 and in the latter, β = l. By recalling the non-zero Christoffel
symbols summarised in equation (3.6), we can neglect the β = l term as it contains only
second-order terms. On the other hand, we can work out the β = 0 term by performing the
product,

Γ0
00Γ

0
ij = [Ψ,0][δij(a

2H + 2a2HΦ− 2a2HΨ+ a2Φ,0)].

After only considering up to first-order, the third term in equation (3.10) is just:

Γ0
00Γ

0
ij = δija

2HΨ,0.

We repeat the expansion for the fourth term,

−Γ0
βjΓ

β
i0 = −Γ0

0jΓ
0
i0 − Γ0

ljΓ
l
i0,

where we ignore the β = 0 term as we are only interested in the perturbations up to first-order.
The product in the β = l term is given by

−Γ0
ljΓ

l
i0 = −[δlja

2(H + 2H(Φ−Ψ) + Φ,0)][δli(H + Φ,0)].

Putting aside the second-order terms, the fourth term of equation (3.10) is:

−Γ0
ljΓ

l
i0 = δij(a

2H2 + 2a2H2Φ− 2a2H2Ψ+ 2a2HΦ,0).

Case 2.2 In this case, consider α = k. Equation (3.9) transforms as

Rij = Γk
ij,k − Γk

ik,j + Γk
βkΓ

β
ij − Γk

βjΓ
β
ik. (3.11)

The first term is a derivative of Γk
ij with respect to kk. Performing the derivative gives

Γk
ij,k = −Φ(δkikjkk + δkjkikj − δijkkkk) = δijk

2Φ− 2kikjΦ,

where in the last equality, we set k = i and later, j = i.
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While the second term in equation (3.11) takes a similar form as the first, summing over k
leads to only one term surviving in the bracket of Γk

ik, giving:

−Γk
ik,j = −i3

∂

∂kj
[kiΦ] = 3kikjΦ.

For the third term in equation (3.11), it is sufficient to only consider β = 0, since β = l
results in second-order terms. Thus, we have the following product,

Γ0
0kΓ

0
ij = δkk[H + Φ,0][δij(a

2H + 2a2HΦ− 2a2HΨ+ a2Φ,0)],

whose final result up to first-order is given by

Γk
0kΓ

0
ij = 3δija

2(H2 + 2H2Φ− 2H2Ψ+ 2HΦ,0).

The same is done for the fourth term - setting β = l leads to second-order terms, hence they
are negligible. This leaves us with the β = 0 term,

−Γk
0jΓ

0
ik = −[δkj(H + Φ,0)][δik(a

2H + 2a2HΦ− 2a2HΨ+ a2Φ,0)],

whose answer containing only zero-order and first-order terms, is

−Γk
0jΓ

0
ik = −δija2(H2 + 2H2Φ− 2H2Ψ+ 2HΦ,0).

Summary Putting together all the results we have obtained in Case 2.1 and Case 2.2, the
Ricci tensor perturbed by scalar perturbations, Rij is given by

Rij = δij(2a
2H2+aä+4a2H2Φ−4a2H2Ψ+2aäΦ−2aäΨ+6a2HΦ,0−a2HΨ,0+a

2Φ,00+k
2Φ)+kikj(Φ+Ψ).

This expression is further simplified into:

Rij = δij
[
(2a2H2 + äa)(1 + 2Φ− 2Ψ) + a2H(6Φ,0 −Ψ,0) + a2Φ,00 + k2Φ

]
+ kikj(Φ + Ψ).

(3.12)
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3.1.4 The Ricci Scalar

After computing the Ricci tensors, one can now proceed to deduce the perturbed Ricci scalar,
R. Referring to the definition of R given in equation (1.8), this computation is divided into
two parts.

Part 1

g00R00 = [−1 + 2Ψ]

[
−3

ä

a
− k2

a2
Ψ− 3Φ,00 + 3H(Ψ,0 − 2Φ,0)

]
Part 2

gijRij =

[
1− 2Φ

a2

] [
3{(2a2H2 + äa)(1 + 2Φ− 2Ψ) + a2H(6Φ,0 −Ψ,0) + a2Φ,00 + k2Φ}+ k2(Φ + Ψ)

]
Part 1 consists of 10 terms whereas Part 2 comprises of 24 terms altogether, hence they

are not written explicitly here. Summing the two parts gives the scalar-perturbed Ricci scalar,
R up to first-order:

R = 6

(
ä

a
+H2

)
− 12Ψ

(
ä

a
+H2

)
+ 2

k2

a2
Ψ+ 6Φ,00 − 6H(Ψ,0 − 4Φ,0) + 4

k2

a2
Φ. (3.13)

Note that the first two terms are the zero-order terms, R̄ which match exactly as those found
in the Friedmann equations’ derivation, where scalar perturbations were absent.

3.1.5 The Einstein Tensor

This subsubsection aims to complete Step 5 - determining the Einstein tensor, Gµ
ν defined in

equation (1.6). Using R00, Rij and R, the temporal, G0
0 and spatial, Gi

j parts of the Einstein
tensor are computed separately in the following parts:

Part 1: Temporal Part

G0
0 = g00R00 −

1

2
g00g00R

= (−1 + 2Ψ)R00 −
R
2
.

By only considering up to first-order terms, they consist of:

(−1 + 2Ψ)R00 = 3
ä

a
− 6Ψ

ä

a
+
k2

a2
Ψ+ 3Φ,00 − 3HΨ,0 + 6HΦ,0,

R
2

= −3
ä

a
− 3H2 + 6ΨH2 + 6Ψ

ä

a
− k2

a2
Ψ− 3Φ,00 + 3HΨ,0 − 12HΦ,0 − 2

k2

a2
Φ.

Their total sum gives:

G0
0 = −3H2 + 6ΨH2 − 6HΦ,0 − 2

k2

a2
Φ.
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Part 2: Spatial Part

Gi
j = gikRkj − gikgikR

=
δik(1− 2Φ)

a2
Rkj −

δij
2
R,

where up to first-order,

δik(1− 2Φ)

a2
Rkj =

δij
a2

[{
(2a2H2 + aä)(1 + 2Φ− 2Ψ) + a2H(6Φ,0 −Ψ,0) + a2Φ,00 + k2Φ

}]
+ δij[2Φ(−2a2H2 − aä)] +

kikj(Φ + Ψ)

a2

and

δij
2
R = δij

[
3

(
H2 +

ä

a

)
− 6Ψ

(
H2 +

ä

a

)
+
k2

a2
Ψ+ 3Φ,00 − 3H(Ψ,0 − 4Φ,0) + 2

k2

a2
Φ

]
.

Summing the two together, the spatial part of the Einstein tensor is given by

Gi
j = Aδij +

kikj(Φ + Ψ)

a2
, (3.14)

where A is:

A =
1

a2
[{

(2a2H2 + aä)(1 + 2Φ− 2Ψ) + a2H(6Φ,0 −Ψ,0) + a2Φ,00 + k2Φ
}
− 2Φ(2a2H2 + aä)

]
+ 3

(
−H2 +

ä

a

)
+ 6Ψ

(
H2 − ä

a

)
− k2

a2
Ψ− 3Φ,00 + 3H(Ψ,0 + 4Φ,0)− 2

k2

a2
Φ.

While A contributes to Gi
j, its terms would lead to a very complicated form of the Einstein

equation. A neat trick to simplify the equations is to exclude A by picking out the longitudinal,
traceless part of Gi

j. We do this by operating the projection operator,
(
kikj − δij

3

)
on equation

(3.14) [23]. The projection operator causes to all terms proportional to δij to equal to zero, and
hence: (

kikj −
δij
3

)
Gi

j =

(
kikj −

δij
3

)(
kikj(Φ + Ψ)

a2

)
=

2

3a2
k2(Φ + Ψ).
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3.1.6 The Energy-Momentum Tensor

The last step of the EFE derivation is to consider the EMT, T µ
ν which act as sources to the

Einstein tensor, Gµ
ν .

For G0
0, its corresponding source is T 0

0 . Based on the definition stated in subsection 1.2,
T 0
0 = −ρ26. Thus, T 0

0 is minus the sum of energy densities of all particles in the universe, whose
formula is given by [23]

T 0
0 (x⃗, t) = −

∑
i

gi

∫
d3p

(2π)3
Ei(p)fi(p⃗, x⃗, t), (3.15)

where i labels the particle species, gi is their spin degeneracy, Ei =
√
p2 +m2

i is the energy of
a particle with momentum, p and mass mi. Meanwhile, fi is the distribution function of the
particle species. The particle species considered here are photons, neutrinos, baryons and dark
matter. The details of each species is beyond the scope of this dissertation, hence we will only
state their relevant contributions to the EMT.

Photons The RHS of equation (3.15) for photons is:

T 0
0γ = −ργ[1 + 4Θ0].

Here, Θ0 is the perturbations to the photon distribution function integrated over all directions
[23].

Neutrinos The contribution from the neutrino species in equation (3.15) is summarised as

T 0
0ν = −ρν [1 + 4N0],

where N0 encapsulates perturbations to the neutrino distribution [23].

Baryons and Dark Matter Both baryons and dark matter contribute to the temporal
energy-momentum tensor, T 0

0i as:
T 0
0 = −ρi(1 + δi),

where i labels baryons, b and dark matter, dm.

Summary Summing all these contributions gives the overall T 0
0 that sources G0

0 up to first
order:

T 0
0 = −(ργ + ρν + ρb + ρdm)− (ργ4Θ0 + ρν4N0 + ρbδb + ρdmδdm). (3.16)

Similarly, T i
j acts as a source for Gi

j, however, since only the longitudinal, traceless part of Gi
j

is extracted, the same must be done for T i
j :(

kikj −
δij
3

)
(T i

j ) =
∑
i

gi

∫
d3p

(2π)3
p2µ2 − (1/3)p2

Ei(p)
fi(p). (3.17)

Since µ2−(1/3) = (2/3)P2(µ), the integral extracts only the quadruple part of the distribution,
which is absent in the zero-order of fi [23]. Hence, T i

j is a first-order term contributed only by
photons and neutrinos27,

T i
j =

8

3
(ργΘ0 + ρνN0). (3.18)

26The minus sign comes from the contraction between g00 and T00.
27T i

j is also known as the anisotropic stress.
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3.1.7 The Scalar-Perturbed Einstein Equation

We end this subsection on scalar perturbations by putting together all the preceding results to
finally arrive at the dynamical equations of Ψ and Φ.

The First Evolution Equation of Ψ and Φ

Substituting G0
0 and T 0

0 in G0
0 = 8πGNT

0
0 gives:

−3H2+6ΨH2−6HΦ,0−2
k2

a2
Φ = −8πGN(ργ +ρν +ρb+ρdm+4ργΘ0+4ρνN0+ρbδb+ρdmδdm).

The first-order part of this equation gives the first evolution equation of Ψ and Φ:

3ΨH2 − 3HΦ,0 −
k2

a2
Φ = −4πGN(4ργΘ0 + 4ρνN0 + ρbδb + ρdmδdm). (3.19)

This equation can be re-expressed in terms of conformal time, η by replacing the dots with
apostrophes and adding 1

a
for each cosmic time derivative that appears in the equation:

−3
a′

a2
Φ

′

a
+ 3Ψ

a′2

a4
− k2

a2
Φ = −4πGN(4ργΘ0 + 4ρνN0 + ρbδb + ρdmδdm).

Here, a′ = da
dη

. Thus, in terms of conformal time, this equation is written as:

k2Φ + 3
a′

a

(
Φ′ −Ψ

a′

a

)
= 4πGNa

2(4ργΘ0 + 4ρνN0 + ρbδb + ρdmδdm). (3.20)

The Second Evolution Equation of Ψ and Φ

Since both Gi
j and T i

j consist of only first-order terms, their substitution into Gi
j = 8πGNT

i
j

directly results in the second evolution equation of Ψ and Φ:

k2(Φ + Ψ) = −32πGNa
2(ργΘ0 + ρνN0). (3.21)
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3.2 Tensor Perturbations

This subsection comprises the derivation of the tensor-perturbed Einstein equations. Built
on the intuition developed in the previous scalar perturbation case, the calculations in this
subsection are more straightforward.

3.2.1 The Inverse Tensor-Perturbed FRW Metric

Recall the tensor-perturbed FRW metric established in subsubsection 2.2.2. Using the same
method as in the case for scalar perturbations, the components of the inverse of this metric are
as follows:

g00 = −1,

g0i = 0,

gij =
(δij −Hij)

a2
,

(3.22)

where Hij is the divergenceless, traceless and symmetric tensor defined in equation (2.7).

3.2.2 Christoffel Symbols

Again, recall the formula for the Christoffel symbol given in equation (1.9) but with gµν now
representing the tensor-perturbed FRW metric:

Γα
µν =

1

2
gαγ(gγµ,ν + gγν,µ − gµν,γ). (3.23)

In Case 1 where α = 0, γ must also equal to zero for the equation to give non-zero values.
It transforms into the same form as equation (3.3). This equation is now evaluated for the
different values of µ and ν.

Case 1.1 When µ = ν = 0, only one term in the parentheses survives as the other two cancel
each other,

Γ0
00 =

1

2
g00(g00,0).

However, since g00 has no time-dependence, the overall term becomes zero.

Case 1.2 In this instance, µ = 0 whereas ν = i.

Γ0
0i =

1

2
g00(g00,i + g0i,0 − g0i,0).

Again, the overall term equals to zero, as g0i = 0 and g00 has no spatial-dependence.

Case 1.3 When µ = i and ν = j, only the third term in the bracket remains, as the first two
equal to zero since g0i = g0j = 0. It becomes:

Γ0
ij =

1

2
(−1)(−1)gij,0 =

1

2

[
∂

∂t
(a2δij + a2Hij)

]
.

Performing the time-derivatives gives:

∂

∂t
(a2δij) = 2δij ȧa,

∂

∂t
(a2Hij) = 2ȧaHij + a2Hij,0.

34



Generation of a Primordial Gravitational Wave Background during Inflation

By summing the two results, the Christoffel symbol is obtained,

Γ0
ij =

1

2
[2ȧa(δij +Hij) + a2Hij,0] = Hgij +

a2Hij,0

2
,

where in the second equality, ȧ = Ha was substituted, and the spatial component of the
tensor-perturbed metric, gij = a2(δij +Hij) was used.

In Case 2 where α = i, γ must equal to l for equation (3.23) to give non-zero values. This
equation transforms into the same form as equation (3.4). The different cases of µ and ν are
now considered.

Case 2.1 When µ = ν = 0, the three terms in the parentheses equal to zero as gl0 = 0 and
g00 has no space-dependence:

Γi
00 =

1

2
gil(gl0,0 + gl0,0 − g00,l) = 0.

Case 2.2 For values µ = 0 and ν = j, only the first term remains as the last two are spatial
derivatives of gl0 = 0 and g0j = 0:

Γi
0j =

gil

2
glj,0.

Since the time-derivative of gij was already worked out in Case 1.3, the same result can be
substituted in this case but with i = l,

Γi
0j =

gil

2
(2Hglj + a2Hlj,0) = Hgilglj +

a2gilHlj,0

2
.

By utilising the metric property, gilglj = δij and substituting the spatial component of the
inverse tensor-perturbed metric, gil = (δil−Hil)

a2
, the final result of this case is

Γi
0j = Hδij +

1

2
Hij,0.

Case 2.3 Lastly, when µ = j and ν = k, the Christoffel symbol transforms into

Γi
jk =

(δij −Hij)

2a2
(glj,k + glk,j − gjk,l).

Similar to Case 2.3 for the scalar perturbations, it is sufficient to use the example

glj,k =
∂

∂kk
(a2δlj + a2Hlj) = a2ikkHlj,

and apply the same result to the other terms by exchanging their indices:

Γi
jk =

i

2

(δil −Hil)

a2
a2[kkHlj + kjHlk − klHjk].

After eliminating the delta function outside the parentheses by setting l = i, expanding the
brackets and neglecting the second-order terms, one would arrive at:

Γi
jk =

i

2
(kkHij + kjHik − kiHjk).
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Summary To conclude, all the non-zero tensor-perturbed Christoffel symbols up to first-order
are:

Γ0
ij = Hgij +

a2Hij,0

2
,

Γi
0j = Hδij +

1

2
Hij,0,

Γi
jk =

i

2
(kkHij + kjHik − kiHjk).

(3.24)

With these values, one can proceed to compute the tensor-perturbed Ricci tensors, Rγν in the
next subsubsection.

36



Generation of a Primordial Gravitational Wave Background during Inflation

3.2.3 Ricci Tensors

This subsubsection focuses on computing the tensor-perturbed Ricci tensors, Rγν . As before,
only the temporal and spatial Ricci tensors are considered.

Case 1 For γ = ν = 0, the Ricci tensor formula takes a form identical to equation (3.7).
However, since both Γ0

00 and Γi
00 are zero, only the second and fourth terms survive,

R00 = −Γα
0α,0 − Γα

β0Γ
β
0α.

The next step is to consider the different values of α and β.

Case 1.1 This case considers the value α = 0,

R00 = −Γ0
00,0 − Γ0

β0Γ
β
00 = 0.

The overall term becomes zero as all the Christoffel symbols that make up this term are equal
to zero.

Case 1.2 Next, consider the case where α = i:

R00 = −Γi
0i,0 − Γ0

β0Γ
β
00.

For non-zero values, we must set β = j.
The first term,

−Γi
0i,0 = − ∂

∂t

[
Hδii +

1

2
Hii,0

]
= −3

ä

a
+ 3H2 − Hii,0

2
,

is simplified further by noting that Hii,0 = 0 since Hij is traceless.
The second term,

−Γi
j0Γ

j
0i = −

[
(Hδij +

1

2
Hij,0)(Hδji +

1

2
Hji,0)

]
,

only contains one first-order term as the product of Hij and δij results in a second-order term.
Expanding the brackets gives:

−Γi
j0Γ

j
0i = −

[
H2δijδji +

1

2
HδijHji,0 +

1

2
HδijHji,0 +

1

4
Hij,0Hji,0

]
.

The last three terms are at second-order and thus, neglected. The delta functions in the
remaining term are eliminated by first setting j = i and then noting that δii = 3.

Summary Summing these results gives:

R00 = −3
ä

a
+ 3H2 − 3H2 = −3

ä

a
(3.25)

The expression is identical to the temporal Ricci tensor obtained in the derivation of the
Friedmann equations, which means that at first order, it is not affected by tensor perturbations.
Consequently, its corresponding Einstein equation is unaffected, either [23].
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Case 2 When γ = i and ν = j, the formula is similar to that of equation (3.9). Now, we can
break the derivation into three parts.

Part 1 The first step is to consider the first two terms and expand them by their α values:

Γα
ij,α − Γα

iα,j = Γ0
ij,0 − Γ0

i0,j + Γk
ij,k − Γk

ik,j.

We can ignore the second term since Γ0
i0 = 0, as well as the fourth term since

Γk
ik =

i

2
(kkHki + kiHkk − kkHik) = kiHkk = 0,

due to Hij being traceless.

From the calculation in Case 1.3 of subsubsection 3.2.2, we know that Γ0
ij =

gij,0
2

. Hence,
the first term, Γ0

ij,0 is gij,00
2

. By working out the second-oder time derivative, we have:

Γ0
ij,0 =

1

2

d

dt

[
d

dt
{a2(δij +Hij)}

]
=

1

2

d

dt
[2ȧaδij + 2ȧaHij + a2Hij,0]

=
1

2
[2äa(δij +Hij) + 2ȧ2(δij +Hij) + 4ȧaHij,0 + a2Hij,00].

By substituting the relation gij = a2(δij +Hij) into the first two terms, this result becomes:

Γ0
ij,0 = gij

(
ȧ

a
+H2

)
+ 2a2HHij,0 +

a2Hij,00

2
. (3.26)

Next, the third term, Γk
ij,k is just the spatial derivative of Γk

ij with respect to kk. Its result is
given by

Γk
ij,k =

1

2
[−kikjHjk − kjkkHik + kkkkHji] =

k2

2
Hij, (3.27)

where in the last equality, recall that the wavevector, k⃗ points in the z-direction, and so it
imposes that i = j = 3, which leads to Hjk = H3k and Hik = H3k to be zero. Hence, the result
of Part 1 is just the sum of results (3.26) and (3.27).

Part 2 Next, we look at the third term in Rij, which is −Γα
αβΓ

β
ij. We expand this term twice,

−Γα
αβΓ

β
ij = −Γ0

0βΓ
β
ij − Γk

kβΓ
β
ij

= −Γ0
00Γ

0
ij − Γ0

0lΓ
l
ij − Γk

k0Γ
0
ij − Γk

klΓ
l
ij,

such that in the first line, it is expanded for values α = 0, k and in the second line, the first
line is further expanded in terms of β = 0 and β = l. The first and second terms are zero,
as they consist of Christoffel symbols which are equivalent to zero, whereas the fourth term is
negligible since it would result in second-order terms. Thus, we only need to work out the third
term.
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Recalling the non-zero Christoffel symbols in equation (3.23), this term is given by:

−Γk
k0Γ

0
ij =

[
Hδkk +

Hkk,0

2

] [
Hgij +

a2Hij,0

2

]
.

The first square bracket reduces to 3H since the sum over k results in δkk = 3 and Hkk = 0.
Meanwhile, based on Case 1.3 in subsubsection 3.2.2, the terms in the second square bracket
are equivalent to gij,0

2
. Thus, multiplying the two gives

−Γk
k0Γ

0
ij =

3

2
Hgij,0.

Part 3 The last term in Rij to consider is −Γα
βjΓ

β
iα. Expanding it in terms of its α and β

values gives
−Γα

βjΓ
β
iα = −Γ0

0jΓ
0
i0 − Γ0

ljΓ
l
i0 − Γk

0jΓ
0
ik − Γk

ljΓ
l
ik.

As in Part 2, the first term is zero since its Christoffel symbols are zero, whereas the fourth
term is trivial as it results in second-order terms. By inspection, the second and third terms
have a similar form, hence they are rewritten as a sum of two identical terms after relabelling
their indices:

−2Γ0
kjΓ

k
i0 = −δikHgkj,0 − gkj,0Hik,0.

Again, recall that gkj,0 = 2Hgkj + a2Hkj,0 from subsubsection 3.2.2. By substituting this into
the equation and neglecting the second-order terms, we have

−2Γ0
kjΓ

k
i0 = −2δikH

2gkj − 2HgkjHik,0 = −2H2gij − 2a2HHij,0,

where in the last equality, we set k = i in the first term and substituted gkj into the second
term. The result is only considered up to first-order.

Summary Thus, by summing the results of Part 1, Part 2 and Part 3, we have the tensor-
perturbed spatial Ricci tensor:

Rij = gij

(
ä

a
+ 2H2

)
+

3

2
a2HHij,0 +

a2

a
Hij,00 +

k2

2
Hij. (3.28)
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3.2.4 Ricci Scalar

Similar to the scalar perturbation case, the computation of the Ricci scalar using the tensor-
perturbed Ricci tensors is divided into two parts.

Part 1
g00R00 = (−1)

[
−3

ä

a

]
= 3

ä

a

Part 2

gijRij = gij
[
gij
ä

a
+ 2gijH

2 +
3

2
a2HHij,0 +

a2

a
Hij,00 +

k2

2
Hij

]
By multiplying gij with all the terms in the square bracket, gijRij consists of the terms:

gijgij
ä

a
+ 2gijgijH

2 +
3

2
a2HgijHij,0 +

a2

a
gijHij,00 +

k2

2
gijHij.

After substituting the relation a2gij = (δij − Hij) and neglecting all second-order terms, we
have the result,

gijRij = 3

(
ä

a
+ 2H2

)
,

where the factor of 3 comes from the contraction of gijgij.

Summing the two parts gives the tensor-perturbed Ricci scalar, R:

R = 6

(
ä

a
+H2

)
. (3.29)

By comparing this result to equation (1.13), we deduce that δR = 0. While Rij does contain
tensor perturbations (unlike its temporal counterpart), these perturbations have no contribution
in the final Ricci scalar.
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3.2.5 The Einstein Tensor

As seen in the precedent subsubsections, the Ricci scalar, R and the temporal Ricci tensor,
R00 have no contributions from the tensor perturbations, which are only found in the spatial
Ricci tensor, Rij. This means that only the spatial Einstein tensor, Gi

j is affected by the tensor
perturbations. Therefore, we can immediately dive into the computation of its first-order part,
δGi

j for interesting results. Since δR = 0, δGi
j is just δRi

j.

To get δRi
j we must first perform the contraction, gikRkj. This gives the zero and first-order

parts of Ri
j:

Ri
j = δij

(
ȧ

a
+ 2H2

)
+

3

2
a2gikHHkj,0 +

a2

2
gikHjk,00 +

k2

2
gikHkj.

By using the same gik substitution as in the previous calculations demonstrated in this subsec-
tion and neglecting the second-order terms, we arrive at:

δRi
j =

3

2
δikHHkj,0 +

1

2
δikHjk,00 +

1

2

k2

a2
δikHjk, (3.30)

which is equivalent to δGi
j.

3.2.6 The Energy-Momentum Tensor

As a continuation to subsubsection 3.2.5, only the spatial first-order EMT, δT i
j will be consid-

ered here. Similarly to the scalar perturbation case, this is given by the anisotropies generated
by the tensor perturbations [23].

Tensor perturbations induced by h+ lead to anisotropies in the form of

Θ(µ, ϕ) = (1− µ2) cos(2ϕ)Θ+(µ),

and those induced by h× take the form,

Θ(µ, ϕ) = (1− µ2) sin(2ϕ)Θ×(µ).

However, we can approximate these anisotropies to zero in our calculations since their contri-
butions to the overall evolution of h+ and h× are very trivial. Physically, this means that the
tensor perturbations have no source.
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3.2.7 The Tensor-Perturbed Einstein Equations

This subsection on tensor perturbations is concluded by combining all preceding results to fi-
nally arrive at the dynamical equations of h+ and h×. From equation (3.30), δGi

j is proportional
to Hij as well as its derivatives. Therefore, to find the equations for h+ and h× separately, one
needs to consider their respective positions in Hij.

The Evolution Equation of h+

Note that in Hij, h+ is labelled as H11 and −H22. Using this definition of h+, it is straight-
forward to see that δG1

1 = −δG2
2. Hence,

δG1
1 − δG2

2 =
3

2
HH11,0 +

1

2
H11,00 +

1

2

k2

a2
H11 +

3

2
HH11,0 +

1

2
H11,00 +

1

2

k2

a2
H11,

= 3Hh+,0 + h+,00 +
k2

a2
h+,

where in the last line, we reinstated h+. Since δT 1
1 = δT 2

2 = 0, the evolution equation for h+ is
just

ḧ+ + 3Hḣ+ +
k2

a2
h+ = 0. (3.31)

This can be re-expressed in terms of conformal time, η as

h′′+ + 2
a′

a
h′+ + k2h+ = 0, (3.32)

where the factor of a2 on the LHS is cancelled off by dividing the entire equation by a2.

The Evolution Equation of h×

On the other hand, h× = H12 = H21, thus calculating δG1
2 + δG2

1 and noting that δT 1
2 =

δT 2
1 = 0 leads to an identical evolution equation but with h+ now replaced with h×:

ḧ× + 3Hḣ× +
k2

a2
h× = 0, (3.33)

which, in terms of conformal time, η is written as:

h′′× + 2
a′

a
h′× + k2h× = 0. (3.34)

Summary Generalising equations (3.32) and (3.34) gives:

h′′α + 2
a′

a
h′α + k2hα = 0, (3.35)

where α = +,×. By inspection, this is a wave equation whose solutions are the PGWs we
have introduced in subsubsection 1.1.2. In fact, the form of this equation reaffirms Hij as a
tensor representing the PGWs. Since inflation predicts these PGWs, their detection is crucial
in solidifying the theory as a standard cosmological model.
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3.3 Proving the Decomposition Theorem

Previously, we assumed the notion that scalar and tensor perturbations in the metric evolve
independently. Now that we have the perturbed Einstein equations, we can prove that the
decomposition theorem is indeed obeyed. The steps of the proof follow that of Chapter 5 in
Modern Cosmology by Dodelson, 2003 [23].

The proof itself is rather short and uses deductive reasoning. Since the evolution equations of
Ψ and Φ are obtained from the scalar-perturbed temporal Einstein tensor, G0

0 and the longitudi-
nal, traceless part of its corresponding spatial component,

(
kikj − δij

3

)
Gi

j, we can deduce that
the theorem is true if we show the absence of tensor perturbations in these components [23].
We already know from subsubsection 3.2.5 that tensor perturbations are absent in G0

0, hence
we need only analyse the longitudinal, traceless part of the tensor-perturbed spatial Einstein
tensor, δGi

j:(
kikj −

δij
3

)
δGi

j =

(
kikj −

δij
3

)
×

[
3

2
δikHHkj,0 +

1

2
δikHjk,00 +

1

2

k2

a2
δikHjk

]
.

Since all terms in δGi
j is proportional to δij, when acted on by the projection operator, the

result is null - as predicted by the decomposition theorem. This also indirectly reaffirms GWs
to be transverse. Therefore, sources that induce scalar perturbations do not induce tensor
perturbations. Moreover, the fact that the anisotropic stress is only contributed by scalar
perturbations (since we have seen that it goes to zero for tensor perturbations in subsubsection
3.2.6), is another manifestation of this theorem.
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4 The Perturbation Power Spectra
Following the derivation of the evolution equations of the metric perturbations and understand-
ing their physical interpretation, our treatment of these perturbations will only be complete
by accounting for their quantum nature. Thus, this section aims to quantise the perturbations
and consequently derive their power spectra, spectral indices and the consistency condition of
a single-field inflation model. By the end of the section, the significance of these quantities in
observational work is discussed.

4.1 Quantum-Mechanical Approach

Assuming a classical origin of the primordial inhomogeneities results in a contradiction to
the perturbative approach taken in equation (2.1). In a classical picture, the inflationary
period (which constitutes a minimum of 60 e-folds) dictates energy density fluctuations larger
than its homogeneous background [42]. Thus, violation of perturbation theory by classical
fluctuations necessitates a quantum-mechanical approach as not only are vacuum quantum
fluctuations unaffected by inflation, but they also possess the Gaussian statistics found in the
CMB [45, 55, 56]. The process starts with quantising the action of the inflation scalar field28,
(1.18) as seen in various literature [14, 42, 43, 47, 58, 65, 69]. The derivation in this dissertation
closely follows the concise working in [69], whose simplified form is adequate given the framework
set up in our preceding sections.

4.1.1 The Reduced Planck Mass

Before quantising our perturbations, it is useful to introduce the reduced Planck mass29, MPl =
1√

8πGN
and rewrite our Friedmann equations, (1.14) and (1.15) in terms of this quantity [69]:

H2 =
1

3M2
Pl

ρ,

Ḣ +H2 = − 1

6M2
Pl

(ρ+ 3P ).
(4.1)

We can also re-express the slow-roll parameters in equations (1.23) and (1.24) as:

ϵ ≡ 1

2M2
Pl

φ̇2

H2
≈ ϵV ≡ M2

Pl

2

(
V,φ
V

)2

,

τ ≈ 4ϵV − 2τV ,

(4.2)

where τV ≡M2
Pl

V,φφ

V
. ϵV and τV are the potential slow-roll parameters30.

28An alternate approach involves redefining the perturbations and directly modifying the evolution equations
such that the perturbations behave like simple harmonic oscillators, quantising them and inferring their power
spectra from their quantum variance [23].

29The Planck mass refers to mass in Planck units, mPl =
√

ℏc
GN

where ℏ = c = 1. Dividing this quantity by
√
8π gives the reduced Planck mass.
30We can also rewrite the slow-roll parameters in terms of the Hubble rate, H. Thus, they are called the

Hubble slow-roll prameters.
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4.1.2 Quantising Inflation

Recall the action of inflation (1.18) in its explicit form using conformal time, η:

S =

∫
1

2
a2[φ

′2 − (∇φ)2 − 2a2V (φ)] dηd3x. (4.3)

Next, we replace φ with the redefined field, f(η, x⃗) = a(η)δφ(η, x⃗) and expand the action up
to second order whilst neglecting the metric perturbations:

S(2) =
1

2

∫
a2

[(
f ′

a
− Hf

a

)2

−
(
∇f
a

)2

− a2V,φφ

(
f

a

)2
]
dηd3x

=
1

2

∫
[f

′2 − (∇f)2 −H(f 2)′ + (H2 − a2V,φφ)f
2] dηd3x

=
1

2

∫
[f

′2 − (∇f)2 + (H′ +H2 − a2V,φφ)f
2] dηd3x

=
1

2

∫ [
f

′2 − (∇f)2 +
(
a′′

a
− a2V,φφ

)]
dηd3x,

where the subscript (2) indicates up to second order. We also denoted the comoving Hubble
radius as H = 1

aH
to avoid cluttering31. Furthermore, here V,φφ = ∂2V

∂(φ(0))2
and ∇ is the

gradient operator. From our slow-roll approximations in subsubsections 1.2.4 and 1.2.5, the
first Friedmann equation in (4.1) gives:

a′′

a
≈ 2a2H2 ≈ 2

3τV
a2V,φφ >> a2V,φφ,

where we used a constant H, ρ ≈ V and τ << 1 [69]. This leads to the final result of the
second-order action,

S(2) =

∫
1

2

[
f

′2 − (∇f)2 + a′′

a
f 2

]
dηd3x, (4.4)

from which the following Lagrangian, L can be extracted [69]:

L =
1

2

[
f

′2 − (∇f)2 + a′′

a
f 2

]
. (4.5)

The Euler-Lagrange equation corresponding to L is the Mukhanov-Sasaki equation, written as:

f ′′ −∇2f − a′′

a
f 2 = 0. (4.6)

To quantise f(η, x⃗), we apply the second quantisation method where we promote it as an
operator, f̂(η, x⃗). The same is done to its conjugate momentum, π̂(η, x⃗) where π(η, x⃗) = ∂L

∂f ′ ≡
f ′. The two operators obey the equal-time commutation relations (ETCR):

[f̂(η, x⃗), f̂(η, y⃗)] = 0,

[π̂(η, x⃗), π̂(η, y⃗)] = 0,

[f̂(η, x⃗), π̂(η, y⃗)] = iδ(x⃗− y⃗).

(4.7)

31This notation is only introduced now to avoid confusion with the Hubble rate, H in previous sections.
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In Fourier space, f̂(η, x⃗) and π̂(η, y⃗)32 are written in terms of the time-independent creation
operator, âk⃗ and annihilation operator, â†

k⃗
,

f̂(η, x⃗) =

∫
d3k

(2π)3/2
(f ∗

k â
†
k⃗
e−ik⃗·x⃗ + fkâk⃗e

ik⃗·x⃗),

π̂(η, y⃗) =

∫
d3k

(2π)3/2
(f

′∗
k â

†
k⃗
e−ik⃗·x⃗ + f ′

kâk⃗e
ik⃗·x⃗),

(4.8)

which satisfy: [
âk⃗, âk⃗′

]
= 0,[

â†
k⃗
, â†

k⃗′

]
= 0,[

âk⃗, â
†
k⃗′

]
= δ(k⃗ − k⃗′).

(4.9)

In (4.8), fk is the solution to the Mukhanov-Sasaki equation in Fourier space,

f ′′
k + ω2

k(η)fk = 0, (4.10)

where ω2
k(η) = k2 − a′′

a
≡ |⃗k|. Recalling our definition of conformal time, η given a constant H

in (1.16), ω2
k(η) = k2 − 2

η2
, thus the exact solution to equation (4.10) is:

fk(η) = A
e−ikη

√
2k

(
1− i

kη

)
+B

eikη√
2k

(
1 +

i

kη

)
.

However, since the ETCR, (4.7) and operator relations (4.9) dictate that the Wronskian be

W(f ∗
k , fk) ≡ f ∗

kf
′
k − fkf

∗′
k = −i, (4.11)

we can neglect the second term and conclude the solution to be

fk(η) = A
e−ikη

√
2k

(
1− i

kη

)
. (4.12)

Moreover, this simplification fulfils the condition âk|0⟩ = 0, ie. the vacuum state of a quantum
system is the ground state of the Hamiltonian [14].

4.1.3 Power Spectrum of Inflation

With these machinery, we can finally formulate the power spectrum, Pq for a general observable,
q via the quantum variance,

⟨q(k⃗)q∗(k⃗′)⟩ ≡ 2π2

k3
Pq(k)δ(k⃗ − k⃗′). (4.13)

By substituting f̂(η, x⃗) and its complex conjugate f̂ †(η, y⃗) at x⃗ = y⃗ = 0, we obtain the zero-
point fluctuation,

⟨0|f̂(η, 0)f̂ †(η, 0)|0⟩ =
∫

d3k

(2π)3/2
d3k′

(2π)3/2
fkf

∗
k ⟨0|[âk⃗, â

†
k⃗′
]|0⟩

=

∫
d ln k

k3

2π2
|fk|2.

32The use of y⃗ for π̂ is a deliberate choice and is perfectly acceptable as it has no effect on the ETCR.
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Using (4.13), we can extract the power spectrum of fk to be Pf = k3

2π2 |fk|2. From the
definition of f(η, x⃗) in subsubsection 4.1.2, we have the relation Pδφ = a−2Pf , thus the power
spectrum of inflation is

Pδφ(k) = (−Hη)2 k
3

2π2

1

2k

[
1 +

1

(kη)2

]
=

(
H

2π

)2(
1 +

k2

a2H2

)
.

(4.14)

At super-horizon scales33 where kη >> 1, it is obvious that Pδφ(k) →
(
H
2π

)2. Nonetheless, since
the Hubble rate, H varies so slowly in the slow-roll approximation model, we can assume the
power spectrum, Pδφ(k) takes a similar form but with H = k

a
≡ Hk at horizon crossing, when

kη = 1 [69].

4.1.4 Power Spectrum of Curvature Perturbations

In determining the power spectrum of the scalar perturbations, it is best to use the comoving
curvature perturbation, R, as it is gauge-invariant, unlike the curvature perturbation, Ψ. The
two quantities are related via:

R = Ψ+H
δφ

φ̇(0)
.

R received its name from the fact that on comoving hypersurfaces34 where δφ = 0, R = Ψ [60].
In observations, R is a crucial parameter as it remains constant well after it leaves the horizon
for all scales [65], thus it encodes information regarding inflation. Furthermore, since Ψ grows
after inflation, it is preferable to probe the power spectrum of the scalar perturbations through
R. Thus, measurement of its spectrum will hope to give the curvature perturbation amplitude
of different modes of scales re-entering the horizon during the matter-dominated epoch [65], as
mentioned in subsubsection 1.2.3.

For our calculation, it is useful to adopt its definition in the spatially-flat gauge [69],

R = −H δφ

φ̇(0)
, (4.15)

as we can easily relate it to δφ to obtain its power spectrum:

PR(k) =
1

2M2
Plϵ

(
k

2πa

)2

. (4.16)

In addition to this, the scalar spectral index, ns characterises the variation of energy densities
with respect to the scale. It is defined as:

ns = 1 +
d lnPR(k)

d ln k
. (4.17)

Thus, using this quantity, we can build an approximate power law for the power spectrum of
the curvature perturbation,

PR(k) = As(k∗)

(
k

k∗

)ns−1

, (4.18)

where k∗ is denoted as a reference scale.
33Contrarily, sub-horizon scales refer to kη << 1.
34A hypersurface refers to an (n− 1)-dimensional surface which is embedded in an n-dimensional space.
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4.1.5 Power Spectrum of Tensor Perturbations

The first step in deriving the power spectrum for the tensor perturbations is to express Hij in
terms of its Fourier modes:

Hij =
∑

α=+,×

∫
d3k

(2π)2/3
H(α)

ij (η, k⃗)eik⃗·x⃗, (4.19)

where H(α)
ij (η, k⃗) represents the components of Hij and is written as:

H(α)
ij (η, k⃗) =

1√
2
m

(α)
ij (

ˆ⃗
k)h(α)(η, k⃗). (4.20)

Here, m(α)
ij comes from the set of basis tensors,

m(α)(ˆ⃗z) =
1

2
(ˆ⃗x± iˆ⃗y)⊗ (ˆ⃗x± iˆ⃗y) (4.21)

that satisfy the orthogonality and reality conditions [69]:

m
(α)
ij (

ˆ⃗
k)[m(β)ij(

ˆ⃗
k)]∗ = δαβ

[m
(α)
ij (

ˆ⃗
k)]∗ = m

(−α)
ij (

ˆ⃗
k) = m

(α)
ij (−ˆ⃗

k).
(4.22)

By expanding the summed Einstien-Hilbert and matter action up to second order, we have
the second-order action associated to the tensor perturbations [69]:

S(2) =
M2

Pl

8

∫
a2(H′

ijH
′ij − ∂iHjk∂

iHjk) dηd3x. (4.23)

By incorporating equations (4.19), (4.20) and (4.22) into S(2), we can express its first term as∫
H′

ijH
′ij d3x =

∑
α,β=+,×

∫
d3k

(2π)2/3
d3k′

(2π)2/3
1

2
h

′(α)(η, k⃗)h
′(β)(η, k⃗′)m

(α)
ij (

ˆ⃗
k)m(β)ij(

ˆ⃗
k′)

∫
d3xei(k⃗+k⃗′)·x

=
1

2

∑
α,β=+,×

∫
d3k

(2π)2/3
d3k′

(2π)2/3
h

′(α)(η, k⃗)h
′(β)(η, k⃗′)m

(α)
ij (

ˆ⃗
k)m(β)ij(

ˆ⃗
k′)(2π)3δ(k⃗ + k⃗′)

=
1

2

∑
α=+,×

∫
d3k [h

′(α)(η, k⃗)]2,

where the apostrophe in k is used to distinguished between different modes and not to be
confused with the apostrophe in Hij which is its derivative with respect to conformal time, η.
Likewise, the second term is given by:∫

∂iHjk∂
iHjk d3x = −1

2

∑
α=+,×

∫
d3k k2[h(α)(η, k⃗)]2.

Thus, the second-order tensor perturbation action is simplified as:

S(2) =
M2

Pl

16

∑
α=+,×

∫
a2[{h′(α)}2 + k2{h(α)}2] dηd3x. (4.24)

By inspecting this action and its similarities to the second-order inflation action, (4.3), we
can quantise it following the method laid out in subsubsection 4.1.2 using the redefinition
δφ = MPl√

8
h(α) [69].
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Finally, its power spectrum is inferred from the tensor-perturbation quantum variance,

⟨h(α)(k⃗)[h(α)(k⃗′)]∗⟩ ≡ 2π2

k3
Ph(k)δ(k⃗ − k⃗′). (4.25)

At horizon crossing (kη = 1), the power spectrum takes the form [69]:

Ph(k) =
8

M2
Pl

(
Hk

2π

)2

. (4.26)

The tensor spectral index, nt which serves a similar purpose to its scalar counterpart, is defined
as:

nt =
d lnPh(k)

d ln k
. (4.27)

From this, we can formulate an approximate power law for the power spectrum of the tensor
perturbation, analogous to (4.18):

Ph(k) = At(k∗)

(
k

k∗

)nt

. (4.28)

4.1.6 The Consistency Condition

Now that we have the scalar and tensor power spectra as well as their corresponding spectral
indices and approximate power laws, we can use them to determine the consistency condition
for the single-field slow-roll inflation [69].

We start by defining the tensor-to-scalar ratio as

r =
At

As

= 16ϵ, (4.29)

using equations (4.16), (4.26), (4.18) and (4.28). However, if we recall the tensor spectral index
in equation (4.27) and substitute in the slow-roll parameters (1.23), (1.24) as well as the tensor
perturbation power spectrum, (4.26) we will find that

nt =
d lnPh

d ln a

d ln a

d ln k

= 2
d lnH

d ln a

(
d ln k

d ln a

)−1 ∣∣∣∣
k=aH

= −2ϵ(1− ϵ)−1

≈ −2ϵ,

where d ln k
d ln a

= 1 − ϵ comes from the fact that ln k = ln a + lnH at horizon crossing [69]. Thus,
by substituting this result into equation (4.29), we conclude the consistency condition to be:

r ≈ −8nt. (4.30)

4.1.7 Computational Methods

We spent the preceding subsubsections deriving the primordial perturbation power spectra and
their related quantities analytically, however one could perform these calculations numerically
as well. The computational method involves solving highly oscillatory ordinary differential
equations (ODEs) whose details are beyond the scope of this dissertation. For interested readers,
some literature relevant to this topic include [4, 5, 34,71].
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4.2 Important Results

Here, we summarise the important quantities derived in subsection 4.1.

Power Spectrum of Inflation

Pδφ(k) =

(
H

2π

)2 ∣∣∣∣
k=aH

≡
(
Hk

2π

)2

Power Spectrum of Curvature Perturbation

PR(k) =
1

2M2
Plϵ

(
k

2πa

)2

Scalar Spectral Index

ns = 1 +
d lnPR(k)

d ln k

Power-Law Approximation of Curvature Perturbation

PR(k) = As(k∗)

(
k

k∗

)ns−1

Power Spectrum of Tensor Perturbation

Ph(k) =
8

M2
Pl

(
Hk

2π

)2

Tensor Spectral Index

nt =
d lnPh(k)

d ln k

Power-Law Approximation of Tensor Perturbation

Ph(k) = At(k∗)

(
k

k∗

)nt

Tensor-to-Scalar Ratio
r =

At

As

= 16ϵ

Consistency Condition for a Single-Field Slow-Roll Inflation

r ≈ −8nt
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4.3 Significance of Power Spectra Quantities

The quantities derived in subsection 4.2 are crucial in our understanding of primordial per-
turbations as they act as a bridge between theory and observation. Thus, in this subsection,
we will highlight their significance in observation and their ability to unveil the mysteries of
inflation.

Firstly, the power spectrum is a crucial parameter which discerns the contribution of per-
turbation modes to the total variance. Hence, one of the goals of observation is to determine
the shape of the primordial spectra, as these set the initial conditions of inflation [51]. For
such a task, the approximate power-laws are preferred. In these power laws, the primordial
perturbation power spectra are characterised by the scalar spectral index, ns:

ns < 1 : red− tilted,

ns = 1 : scale− invariant,

ns > 1 : blue− tilted.

The scale-invariant spectrum is also known as the Harrison-Zel’dovich-Peebles spectrum. Any
deviations from this is either indicated by the red and blue tilts or by the running of the scalar
spectral index [69],

αs =
dns

d ln k
. (4.31)

The indices are measured on scales probed by the CMB. According to the slow-roll approxi-
mation model, αs has typically low values as it contains second-order slow-roll parameters [18].
A αs = 0 detection by instruments incapable of reaching second-order levels of sensitivity
agrees with this prediction, however it is worth noting its negative mean values [18]. As for
the scalar spectral index, observations favour a slightly red-tilted spectrum, which points to
a negative curvature of the potential, V,φφ < 0 [69]. Similarly, a single-field slow-roll model
predicts a red tilt in the tensor spectral index, nt, though some scenarios may benefit from a
blue-tilt measurement of this quantity. Unlike the scalar modes, the tensor modes have yet to
be detected.

It is worth noting that in 2003, a study was done on the possibility of a running scalar
spectral index 35, a case in which the scalar spectral index value varies with the scale on which it
is measured36 [21]. Motivated by the Wilkinson Microwave Anisotropy Probe (WMAP) data at
the time [16], the study predicted a blue-tilted spectrum at small k and a red-tilted spectrum
at large k. Despite the interesting premise of this study, the notion of a running scalar spectral
index provided some challenges:

1. It dictates a large third field derivative whilst maintaining the current small first and
second field derivatives in most slow-roll models.

2. Its related calculations result in a shorter period of inflation, thus the 60 e-folds are not
sustained.

3. It requires a locally-flat region of the inflation potential, V (φ).

As the paper concludes, several adjustments would have to be made for this running scalar
spectral index to fit with our current understanding of inflation. This depicts the importance
of the power spectra and spectral indices in determining the most reliable models of inflation.

35Not to be confused with the running of the scalar spectral index, αs previously introduced.
36Long-length scales correspond to small k-values whereas short-length scales correspond to large k-values.
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Additionally, the consistency condition helps to rule out inflationary models that are not
compatible with observational data. In [69], the single-field slow roll, generic single-field and
multi-field inflationary models are discussed, with their respective consistency conditions sum-
marised in the table37 below.

Table 1: Consistency conditions of different inflationary models.

Inflationary Model Consistency Condition

Single-field slow-roll r = −8nt

Generic single-field r = −8ntcs
Multifield r = −8nt sin

2 Λ

In Table 1, cs is the speed of sound and sin2 Λ characterises the ratio between the power
spectrum as they leave the horizon during inflation and the observed power spectrum [69]. By
inspection, a common factor among the different consistency conditions is the tensor spectral
index, nt. Hence, PGW-detection is paramount to our understanding of inflation. In fact, the
detected tensor spectral index relates to the inflationary model constraints via [69]:

ns − 1 = 2τV − 6ϵV ,

nt = −2ϵV .
(4.32)

Ultimately, the primordial perturbation power spectra, scalar and tensor spectral indices
as well as the consistency condition are important parameters in decoding inflation. These
quantities constrain the initial conditions of inflation and control the shape of the potential,
V (φ), thus they act as a bridge between theory and observation. One could apply a particular
ansatz of the scalar spectral index such as the Harrison-Zel’dovich-Peebles spectrum to predict
prospective observables, or compare observational data to existing inflationary models to pin-
point the one which is most consistent with the chronology of epochs that took place during
the early age of the universe. In the following section, we shall summarise some interesting
development on PGW-detection.

37This table was reproduced from [69].
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5 Discussion: Primordial Gravitational-Wave Detection
This section provides a brief, qualitative discussion of effort in detecting PGWs, that starts with
the motivation behind this field of research (which is essentially an expansion of subsubsection
1.1.2), followed by some description of PGW-detection works via the CMB and stochastic
GW-backgrounds.

5.1 Motivations for Detection

There are many motivations behind cosmologists’ search for PGWs. These include:

1. Establishing the theory of inflation as a standard model of cosmology. Despite
the theory’s successes in solving puzzles related to the hot Big Bang model as elaborated
in subsubsection 1.2.2 and subsection 2.1, it lacks solid proof. Moreover, compared to its
rival theories, inflation is the only one that successfully explains a smooth transition into
the Big Bang model and predicts the existence of PGWs [69]. Thus, discovery of these
PGWs is crucial in granting its legitimacy as a concrete cosmological model.

2. Filtering and testing inflationary models. While this dissertation solely focuses on
the slow-roll approximation model of inflation, various alternative models exist. There-
fore, detecting the amplitudes and spectral index of PGWs puts constraints on inflation-
ary models and determines any violation of the consistency condition, which will in turn
narrow down the inflationary model most accurate with our observed universe.

3. Extracting information about the early universe and making better predic-
tions. Data obtained from measured PGWs could be extrapolated to determine the
energy scale as well as initial conditions of inflation and thus, that of the early universe.
To date, the energy scales and initial conditions used in inflationary models have been
mere estimates, hence such models could further benefit from improvements made us-
ing their actual values. In fact, these newly-enhanced models would also better predict
observables of the theory, thus improving observational methods and instruments.

4. Understanding the physics behind inflation and beyond the standard model.
There is much speculation regarding the fundamental theories behind inflation including
string theory, which is closely linked to quantum gravity and supersymmetry [69]. Thus,
PGW-detection along with any information about inflation obtained from it may hint at
how these fundamental theories could add on to the standard model of particle physics.
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5.2 PGW Traces in the CMB

The CMB radiation observed today is essentially a snapshot of photons that last scattered off
electrons at the time of recombination, thus contains information on various properties of the
primordial universe [18]. The radiation possesses a blackbody spectrum with a temperature
of approximately 2.728K [50]. Its properties were first predicted by Alpher and Hermann
in their works in 1948 and 1949 [8, 9] but only discovered in 1965 by Penzias and Wilson
[52, 53], who stumbled upon the radiation whilst looking for neutral hydrogen. 27 years later,
anisotropies in the radiation were finally detected by the Cosmic Background Explorer (COBE)
Differential Microwave Radiometers (DMR) [69] following scepticism regarding its homogeneity
and isotropy. The suggested link between these anisotropies and primordial perturbations
generated during inflation has motivated cosmologists to study them for clues of inflation,
particularly PGWs. There are two intrinsic properties to take note when observing the CMB -
temperature anisotropy and polarisation.

Figure 4: Anisotropies of the CMB in the form of temperature fluctuations which correspond to patches of
different densities captured by Planck. Credit: ESA and the Planck Collaboration.

5.2.1 Temperature Anisotropy

Both scalar and tensor perturbations contribute to the temperature anisotropy of the CMB,
however only the scalar modes have been detected thus far. There are two types of spectral
distortions in the CMB: µ- and y-types. In 2014, a study demonstrated the use of Silk damping
effects to distinguish between µ distortions produced by scalar perturbations and tensor per-
turbations [48]. In relation to this, a new mechanism of µ-type distortion generated by tensor
perturbations was proposed and compared to the established mechanism for scalar perturba-
tions. The results show that while µ distortions from scalar perturbations were mostly created
at the Silk damping scale, tensor perturbations produce these distortions through Thomson
scattering, which occurs at much larger scales than Silk damping [48]. By restricting the
tensor-to-scalar ratio and the tensor spectral index, nt to scale-invariance, the µ distortion
coming from PGWs was found to be very tiny (≈ 10−13). In fact, the value would only be sig-
nificant for a blue-tilted nt [48]. Regardless, by identifying the sources of µ distortion through
their scale-dependence, one could obtain indirect evidence for PGWs.
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5.2.2 B-Mode Polarisation

The polarisation of the CMB is split into E-modes and B-modes. Since scalar perturbations
produce the former whereas tensor perturbations produce both, the B-mode polarisation is
preferred when searching for PGWs in the CMB. It is worthy to note that PGWs are not the sole
contributor to B-mode polarisation in the CMB. In fact, other phenomena that could result in
the polarisation include topological effects, global phase transition, primordial inhomogeneities
magnetic fields and gravitational lensing [69]. Nonetheless, these barely hinder PGW-detection
as they are either trivial compared to the PGW contribution, or easily distinguishable due to
their non-Gaussinity properties and presence of the Faraday effect [69]. The major obstacle in
detecting the B-modes is their small magnitude which are one order of magnitude smaller than
that of E-modes [69] and made weaker in the presence of astrophysical foreground. In fact,
the only significant detection of B-mode polarisation - which was done by a CMB polarimeter
from the BICEP2 experiment in the South Pole [3] - was revealed to be emitted from dust in
the Milky Way after cross analysis with data recorded by the Planck satellite [2]. Thus, to
move forward in B-mode polarisation detection, it is crucial to improve sensitivity of existing
detectors and develop better techniques to filter the foreground signals. For example, [54]
introduces a new metamaterial that could potentially improve such detections as it operates
over a wide microwave frequency range.
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5.3 PGW-Extraction from Stochastic GWs

While the CMB radiation is arguably the best probe we have of the early universe, it did not
deter researchers from investigating alternative methods. One such alternative is to extract
PGW-signals from a background of directly-detected stochastic GWs. Stochastic GWs refers to
a superposition of gravitational waves from independent sources coming from all directions [20].
A GW-analogue of the CMB, they appear as noise on a GW-detector [20]. Thus, to extract
any PGW-signal, the detected background must be cross-analysed between different detectors.

In 1999, Polarski tested the possibility of this method in the framework of a Lambda-Cold
Dark Matter (ΛCDM) broken-scale-invariant (BSI) models. He found that, with the BSI mod-
els, the instrumental sensitivity required to measure PGWs is one magnitude lower than the
initial sensitivity needed for single-field slow-roll models [57]. In fact, for a BSI inflation model
that matches observation in particular, there would be less constraints on PGW detection
should the slow-roll approximation be more lenient [57]. However, despite his rather positive
findings, Polarski was doubtful these sensitivities would be reached in the near future. Seven
years later, numerical work was published on the prospects of directly-detecting PGWs for
single-field inflationary models.

Motivated by the fact that prior studies on stochastic GW-background were always reliant on
the form of inflationary potential (as energy scales of inflation are unknown), the pair of authors
sought to make more generic predictions with regards to PGW-detection [19]. The paper
concluded a rather pessimistic outlook on direct-detection of PGWs from slow-roll inflation
models, however offered compensation by listing down other possible cosmological sources that
would produce PGWs available in the frequency range of current and upcoming direct-detection
experiments such as Advanced LIGO, the Laser Interferometer Space Antenna (LISA), NASA’s
Big Bang Observer (BBO), Japan’s DECi-hertz Interferometer Gravitational Wave Observatory
(DECIGO) and Ultimate DECIGO [19]. Apart from this paper, in [20], Christensen also
elaborates on the different cosmological and astrophysical sources of GWs one could find in a
stochastic background, including PGWs produced during inflation, as well as the methods to
constrain them. While his evaluation was strictly focused on Advanced LIGO and Advanced
Virgo, the author hoped that the upcoming launch of LISA will bring tremendous insight into
stochastic GW-backgrounds [20].

Two years after the publication of Christensen’s paper, a team of researches from the US and
Australia had published a paper in which they pointed out one major flaw of extracting PGW
signals from a stochastic GW background - there would be astrophysical GW-foreground coming
from far-away mergers whose signals are just as faint as those predicted to come from PGWs [17].
Such signals would be hard to distinguish from PGW-signals, thus jeopardising the accuracy of
data. This piece of information seem to be overlooked by most literature discussing stochastic
GW-detection. The team proposed an alternate method - rather than relying on established
constraints, they emphasised on simulating GW-pattern from astrophysical mergers [17]. They
believe that familiarity with the patterns would allow for more accurate classification of every
astrophysical signal present in the stochastic GW-background, and thus better removal of these
signals to find the PGW pattern.
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In the paper, they recall analysing 404s seconds of simulated astrophysical GW-pattern
injected with a faint signal analogous to the ‘persistent hum’ of PGWs [17]. In their application
of the method, they had to analyse the data over various simulation runs with different sets
of initial conditions. Eventually, they were able to successfully extract the simulated PGW
signals. The fact that PGWs maintain a similar pattern on any two detectors in contrast to
astrophysical GWs which behave uniquely to the detector [17] means that cross-analysis between
data from different detectors would ease the extraction process tremendously. It is their hope
that the methods established in this paper would be adopted once currently-proposed GW
detectors go online. In fact, they ambition that initial conditions of the early universe may also
be determined, by comparison with the initial conditions required for the simulation to produce
similar PGW patterns. This is by far one of the most innovative work I have encountered on
stochastic GW-detection.

Despite the flaw related to extracting PGW signals from stochastic GW backgrounds men-
tioned in the above paper, perhaps it was too early to rule out possible improvements. Early this
year, the detection prospects of stochastic GWs using the upcoming LISA were summarised [28].
The study had found a key feature that would differentiate between stochastic GW-background
created during inflation and those created after inflation. The secret lies in the frequency profile
of the signal - oscillations from the former appear on the ultraviolet (UV) tail of its spectrum
whereas the latter’s oscillations modulate the peak of its GW spectrum [28]. This means that
GWs produced after inflation would peak at different frequencies while PGWs would generally
have much higher peaks. This would allow accurate extraction of PGW signals despite their
amplitude having the same magnitude as other astrophysical mergers. The results of this paper
have proven that at small scales, one could target the frequency profiles of stochastic GWs to
determine the legitimacy of the inflation theory [28].

With the upcoming launch of many GW detectors in place for the next decade, it will be
interesting to see if such PGW-detection prospects are realised.

57



Generation of a Primordial Gravitational Wave Background during Inflation

6 Conclusion
Our standard model of cosmology is incomplete without addressing the problems arising from
inconsistencies between the established hot Big Bang model and observational data. While
the hot Big Bang model successfully describes the mechanisms by which our universe expands
and its matter content is produced, it fails to explain why the universe is homogeneous at large
scales and how small density fluctuations could have existed to form the galaxy clusters and stars
we observe today. Thus, additional mechanisms are required to solve these anomalies whilst
still maintaining the successes of the hot Big Bang model. The theory of inflation is a leading
candidate in this race as its premises simultaneously solve both problems, as well as the flatness
problem and the monopole problem, which were not covered in this dissertation. By introducing
an epoch of a rapid, accelerated expansion which took place before the radiation-dominated
epoch, the theory proposed that the ‘causally-disconnected’ regions of the universe had achieved
uniform temperature back when they were within one small, causal patch. Likewise, the large-
scale structure of the universe was thought to have formed from vacuum quantum fluctuations
which were later stretched to cosmic scales due to inflation.

To account for these fluctuations, linear perturbations were added to the metric in terms of
scalar functions, Ψ and Φ and the divergenceless, traceless and symmetric tensor Hij. Using this
perturbed metric to derive the perturbed Einstein equations, we arrived at a set of evolution
equations for the scalar perturbations and the tensor perturbations. The former illustrates
dynamics that depends on the matter distribution of the universe, hence indicating that scalar
perturbations directly contribute to the formation of the large-scale structure. The latter, on
the other hand, takes the form of a wave equation with no source, thus implying that inflation
predicts the existence of PGWs. By quantising the perturbations, their power-spectra power
laws and spectral indices were formulated. These, along with the consistency condition of a
particular inflationary model38, are used to constrain the initial conditions and shape of the
potential of inflation, V (φ). Such constraints are hoped to distinguish inflationary models that
best describe our universe. To achieve this, PGW-detection is essential. In the wake of a
direct GW-detection by LIGO, much research has been done to develop better computational
methods and detectors specialised for PGW-detection.

To put the timeline into perspective, the theory of inflation was first published in 1981, and
within the first few years of its formation, the mathematics behind its primordial perturbations
were also formulated, including the prediction of PGWs. While methods to detect PGWs
to prove the legitimacy of the theory were developed as early as in the 90’s, it is only in
the 21st century that we are able to see these plans unfold39. If there is one takeaway from
this, it is that our ideas and exploration of the universe around us are only limited by the
technological limitations of our time. While it is a shame to know that we may not live to
witness future generations materialising our own theoretical predictions40, as scientists, we
shall do our best with the tools that we have, to honour the theories that came before us.
With recent advancements in technological instruments as well as artificial intelligence (AI)
and machine learning (ML) algorithms, it is undoubtedly an exciting time to be working on
GW and PGW-detection, and just in science, generally.

38In this dissertation, we focused on the single-field slow-roll approximation model.
39The same can be said about GWs from astrophysical mergers that were predicted in Einstein’s theory of

general relativity.
40Much like Einstein never got to experience the Advanced LIGO detection.
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