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“The substance of the universe
is obedient and compliant; and the reason which governs it has in itself no cause for doing
evil, for it has no malice, nor does it do evil to anything, nor is anything harmed by it. But
all things are made and perfected according to this reason.”

– Ch. 6, Meditations, Marcus Aurelius
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Abstract

The field of cosmology is at an inflection point today. The standard hot Big Bang
description is known to have problems that make it incongruous with the nearly ho-
mogeneous, isotropic and flat Universe that we observe. The paradigm of inflation
was originally proposed to solve these problems, starting from any generic initial state.
While it has been remarkably successful in resolving the horizon, flatness and large-
scale structure formation problems, other issues have also come to light in recent years
regarding its viability, especially regarding the level of fine-tuning that is expected to
occur in order for inflation to begin and be able to explain the state of our Universe.
Multiple alternative models have been proposed to explain the known problems of hot
Big Bang cosmology as successfully as inflation, but with fewer drawbacks. In this dis-
sertation, we review the mechanisms by which inflation solves the horizon and flatness
problems, as well as that of large-scale structure formation through perturbations in
the scalar sector. We also show how perturbations in the tensor sector lead to pre-
dictions of primordial gravitational waves. After presenting an example of embedding
inflation within a fundamental string setup (i.e. boundary inflation), we discuss the
issues faced by the paradigm. We then introduce bouncing cosmologies, with a focus
on the cyclic/phoenix model of Turok, Steinhardt et. al. Specifically, we review the
background dynamics and show how this model explains large-scale structure formation
through the two-scalar entropic/isocurvature mechanism; we also contrast the predic-
tion of a negligible spectrum of primordial gravitational waves with the corresponding
prediction from inflation. We utilise problems faced by the older models as motivation
for investigating nonsingular bounces, such as those found in the new cyclic model of
Ijjas and Steinhardt. We consider a resolution of the background instability arising
from the isocurvature mechanism, by way of a non-linear sigma model-type coupling
between the two scalar fields, and examine the nonsingular bouncing phase. This nec-
essarily involves a violation of the null energy condition and is realised using a modified
gravity theory (which, in this specific case, is generalised Galileon/Horndeski theory).
In particular, we pay attention to the expected constraints placed by perturbative uni-
tarity during a period of NEC violation within a Horndeski model. We conclude by
considering open questions in this model and avenues for future research.
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1
Introduction

1.1 The Question of Cosmic Evolution

Since time immemorial, man has looked to the heavens and thought most deeply about two
questions – where did we come from and where are we going? While modern science has
provided some rational direction to this line of thought, numerous civilizations from ancient
times have come up with their own (albeit largely philosophical) ideas with respect to these
questions. As an exemplar of the Ancient Greeks, Plato laid out in the Timaeus that the
Universe was created by a supreme divine being, whose generation of order in the form of
a static, eternal cosmos from pre-existing chaos was a direct product of intellect (thereby
imposing mathematical order) and benevolence.

However, the notion of a cyclic Universe has been presented in ancient times as well.
Hindu scriptures point to the holy trinity of Brahma (the Creator), Vishnu (the Preserver)
and Shiva (the Destroyer) as architects of each epoch of the Universe’s lifetime. Each deity’s
actions serve to create, preserve and destroy the Universe in turn, and the cycle repeats
infinitely many times. In this sense, the question of the Universe having a singular beginning
or end is rendered meaningless.

While the Greeks were among the first to attempt to understand the movement of heav-
enly bodies using mathematics, their ideas of the evolution of the Universe as a whole still
called upon mythological elements. With Newton came the advent of the modern scientific
age, and it was then that, for the first time, these questions could be seriously explored using
mathematical rigour. Newton nevertheless also postulated a static, eternal Universe and this
line of thought was continued by Einstein even in the framework of General Relativity, in
the hope that one could avoid the question of a moment of Creation (along with its other
myriad metaphysical implications). To ensure this, Einstein inserted into the field equations
of General Relativity what he famously termed “his biggest blunder” – the cosmological con-
stant. This so came to be known with the discoveries of Lemaître and Hubble of the recession
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of galaxies, which implied an expanding Universe. It was at that point that hot Big Bang
cosmology, as we know it today, came to be born and with it, the issues that inflationary
and alternative models seek to address.

To provide some context, let us consider the development of events from a historical
perspective. The horizon, large-scale structure and flatness problems (as described in the
next section) were known to be major roadblocks to a successful description of the Universe
as far back as 1956 and 1969, with Rindler [1] and Dicke [2] making the first concrete
formulations respectively. In order to solve these problems, the original idea of inflation was
presented by Guth [3], where the primordial Universe was trapped in a false vacuum. Bubbles
of true vacuum would appear and expand at the speed of light, and bubble nucleation would
lead to the Universe decaying into a state of the true vacuum. However, amongst others,
Guth himself realised that his model would not yield a transition to radiation domination
and would not result in the required properties of homogeneity and isotropy [4]. The model
of ‘new inflation’ was proposed by Linde [5], and independently by Albrecht and Steinhardt
[6]. Here, the Universe would undergo approximately 60 e-folds of expansion as the inflaton
scalar field rolled slowly down a potential hill. Then the decay of the scalar field from a false
vacuum to the true minimum, i.e. from a state with non-zero energy density to one with zero
energy density, would signal the end of the inflationary period and would lead to the (largely)
homogeneous and flat universe we observe today. Furthermore, quantum-level perturbations
in the scalar field would give rise to the density perturbations that eventually led to the
formation of galaxies and other large-scale structures [7, 8]. The evidence of a near-scale
invariant spectrum of density perturbations, provided by observational data [9], is seen as
one of the crowning jewels of inflation’s predictive power. This, together with the possibility
that the inflaton could be identified with the Higgs particle [4] in an SU(5) Grand Unified
Theory picture [10], made inflation an extremely attractive proposal from both a theoretic
and a cosmological point of view. However, with respect to this last point, the amplitude
of the false vacuum would be much higher than a naïve GUT scale [11] and a non-minimal
coupling of the Standard Model Higgs field to gravity (implying non-renormalisability and
a forced interpretation as an effective field theory) would present possible issues concerning
unitarity violation, although work is being done to explore this further (see for example [12]).

New inflation mandated that the driving potential would have to be exceptionally flat
[13] and would only take place if certain initial conditions were satisfied [14]. To combat this,
‘chaotic inflation’ was proposed by Linde [15], wherein the initial conditions could be satisfied
rather naturally and the fine-tuning problem would be resolved. However, the value of the
inflaton field would have to be large, thereby preventing an effective field theory description
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[16] and requiring a setup within a more fundamental picture, such as string theory. One
would then have to consider the effect of non-renormalisable terms on the extent of inflation.

Since the question of the identity and origin of the inflaton scalar is still open, one may
look to theories where scalar fields naturally arise and ask how inflation could be embedded
within these theories. In particular, string theory provides instances where the origin of
scalars can in fact be explained (rather than their presence being taken for granted). For
example, we will consider cosmology in the setting of Hor̆ava-Witten theory, which represents
M-theory on the orbifold S1/Z2 (as initially proposed by Waldram et. al. [17, 18, 19]). The
5-dimensional effective theory arises by reducing the full 11-dimensional theory on a Calabi-
Yau 3-fold, and has the geometrical structure M5 = S1/Z2 ×M4. The vacuum state is a
BPS double 3-brane boundary wall solution, with each of the 3-branes identified as orbifold
planes. Reducing from 5 to 4 dimensions yields an N = 1 supergravity theory and the visible
Universe can be thought of as living on one of these orbifold planes (the other plane contains
the hidden fields in the model). In this case, a scalar field can arise as the volume modulus of
the internal Calabi-Yau space and scalars can also be identified as partners of matter fields
living on the orbifold boundary planes. This construction is of particular interest as the
latter ‘boundary scalars’ ϕi can be used to drive inflation (the former ‘bulk scalar’ ϕ can also
be used, but the setup we will consider does not explore this). A rigorous treatment of this
subject, especially from an M-theory point of view, is beyond the scope of this dissertation,
and we will only present the essential points required to visualise how inflation may arise
from the fundamental theory.

Despite its seeming successes, the inflationary paradigm appears to have some key prob-
lems (which we will discuss in detail in Chapter 2), and the recognition of these was amidst
the driving factors that led to constructions of alternative models [20]. Prime among these
was the ekpyrotic/cyclic model of Turok, Steinhardt et. al. which, interestingly, utilised the
same underlying theoretic construction as the boundary inflation proposal in [19], i.e. a
BPS double 3-brane vacuum state in Hŏrava-Witten theory with each of the 3-branes cor-
responding to an orbifold plane on which we have the visible Universe and hidden sector
respectively. In the original ekpyrotic scenario [21], a bulk brane peeled away from the hid-
den brane spontaneously and moved slowly towards the visible brane. The collision of the
bulk and visible branes was identified with the creation of the Universe in the hot Big Bang
phase at a finite temperature. An evolution of this model was the cyclic Universe [22, 23],
in which the visible and hidden branes move towards each other along the (orbifold) extra
dimension. The brane collision is associated with the Big Bang, after which they move apart
again until the potential turns slightly positive, causing a transition to contraction. This
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cycle repeats eternally, from which the model derives its name. Note that one distinction
from the boundary inflation scenario that we will consider is that the scalar field driving
the cosmic evolution is the bulk scalar (rather than the boundary scalar/s). Furthermore,
in contrast to inflation, where large-scale structure formation is explained by the growth of
perturbations in the inflaton scalar field (after the Big Bang), the density perturbations are
generated in the cyclic Universe during the contracting phase. To understand the problem
of generating these perturbations and matching to perturbations in the expanding phase, see
for example [24, 25, 26, 27] and references therein. The role of dark energy is of especial sig-
nificance in this cyclic model – in contrast to the standard Λ-CDM model cosmology, where
dark energy is an ad hoc insertion, it is in fact the bulk scalar ϕ that serves as the source of
the accelerated expansion in the present epoch. The transition to contraction occurs when
ϕ rolls in the negative direction, passes the point of zero total energy and continues towards
−∞ (which signifies the Big Crunch-Big Bang transition).

Note that the model described is not the only version of a bouncing cosmology – the
matter bounce scenario uses the duality of the cosmological fluctuations in a contracting
and an expanding phase to posit a bounce of the Universe, whereas the pre-Big Bang model
uses superstring theory to connect contracting and expanding solutions for the scale factor.
For completeness, we note that a model of string gas cosmology has also been proposed as
an alternative to inflation [28]; however, we will not consider this here as it does not solve
the flatness problem by itself. We will discuss the matter bounce and pre-Big Bang models
briefly in Chapter 3; see [29] for an introductory review.

These developments bring us to the mid 2010s. Up to this point, the successful al-
ternatives to inflation involved borrowing ingredients from M-theory or extra dimensions
etc., which come with their own set of foundational issues1. A radically different concept
of a cyclic Universe was presented in [31], where the Hubble parameter oscillates between
large negative and large positive (but finite and sub-Planckian) values, while the scale factor
a(t) undergoes a net de Sitter phase globally. This is achieved by combining an ekpyrotic
phase with General Relativity, with the bounce phase realised in the context of a cubic
Galileon/Horndeski theory [32, 33, 34]. In essence, this implies that the evolution of the
Universe could be classical at all points in this model and the bounce would shield it from a
singularity. We will undertake a detailed exploration of this model in Chapter 4, and contrast
it with the successes and failures of inflation, as well as those of its cyclic predecessors. Given
the classical nature of this model, it will be interesting to see how quantum requirements

1An anamorphic cosmological model was also put forth in 2015 [30], but we will not consider this here.
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affect it or the underlying theory. Specifically, we will consider whether unitarity is brought
into question at tree level, and if any assumptions (beyond those already taken) are required
to enforce it.

1.2 Outline

The aim of this dissertation is to present advances in early Universe cosmology in light of
modern theoretical physics. We introduce the questions presented by the hot Big Bang
Model of cosmology and proceed to answer them using two distinct paradigms – cosmic
inflation and cyclic theory. We will also discuss open questions relating to each of these two
models. This work is aimed at a reader with a background in general relativity and quantum
field theory, and some familiarity with string theory. For detailed derivations of advanced
concepts relating to the latter, we will direct the reader to the appropriate references.

The outline of this dissertation is as follows – in Chapter 2, we start from the state of
the hot Big Bang model and examine its implications for the early Universe. Specifically, we
deduce the need for a mechanism to explain why the Universe appears the way it does in the
present day. We then present cosmic inflation and the means by which it proposes answers
to the aforementioned questions. The dynamics of the single-field slow-roll mechanism are
presented. The power spectrum and spectral index for scalar and tensor perturbations are
calculated in the basic set-up, and essential roadblocks are discussed. Given these roadblocks,
brane inflation is presented as a potential way to embed inflation in a UV-complete theory of
gravity. We then discuss the major problems facing inflation and the reasons for considering
alternative models of early Universe cosmology.

In Chapter 3, we consider cyclic models of cosmic evolution, with particular emphasis on
the construction of Turok, Steinhardt et. al. It will be shown that the underlying theoretical
set-up for the brane inflation scenario presented in Chapter 2 is essentially the same as
that used for this cyclic mechanism. As in Chapter 2, the power spectrum and spectral
index for scalar and tensor perturbations are calculated, and this is presented as a means of
observationally distinguishing the two models. Finally, we will discuss the issues plaguing
these ‘older’ cyclic models, which leaves room for considering advances in this direction.

Chapter 4 presents the newest iteration of a cyclic mechanism (postulated by Ijjas and
Steinhardt) and one of the most intriguing, as it is defined entirely in terms of a classical
framework (as opposed to a string/M-theory construction for the models discussed in Chapter
3). We will show how this ‘new’ cyclic model addresses each of the problems with the older
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models. In particular, this model will be seen to have particular appeal vis a vis inflation
as it provides a unified view of cosmic evolution (by describing a link between the early
Universe and the observed accelerated expansion in the present epoch, a feature it shares
with the model of Turok and Steinhardt). We explore the question of unitarity in the regime
of the non-singular bounce, which we present as a proof of concept of new work relating to
this construction (and hope to investigate more fully in the future). We close the chapter
by discussing various open questions that remain.

We conclude with Chapter 5, where we reiterate the key results of this dissertation, and
show possible avenues that we hope to explore in the future.

Throughout this dissertation, we will work in reduced Planck units, with ℏ = c = 1 and
1/M2

pl = 8πG = 1 2. The metric signature we choose is the mostly-plus convention (−+++).

2Except in specific sections, where we re-introduce Mpl to make certain quantities manifestly dimension-
less.
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2
The Inflationary Paradigm

2.1 The Problems of Hot Big Bang Cosmology

It is well-established from observational data that the large scale Universe today can be
described by the Friedmann-Lemaître-Robertson-Walker (FLRW) metric

ds2 = −dt2 + a(t)2
(

dr2

1− kr2
+ r2 dΩ2

)
, (2.1.1)

where a(t) is the scale factor, k is the spatial curvature and dΩ2 = r2(dθ2 + sin2 θ dϕ2).
Present data points to the Universe being spatially flat, i.e. k = 0, and we will hence restrict
our focus to this case in the rest of this dissertation. The evolution of the scale factor
is described by the first and second Friedmann equations (the latter is also known as the
Raychaudhuri equation) [35, 36]

H2 ≡
(
ȧ

a

)2

=
ρ

3
, (2.1.2)

ä

a
= −1

2

(ρ
3
+ P

)
, (2.1.3)

where H ≡ ȧ
a

is the Hubble parameter, ρ is the total contribution of pressure-free matter
(dust) and P is the total contribution of radiation to the stress-energy tensor Tµν 1. These two
equations can be straightforwardly derived by substituting the FLRW metric and the stress-
energy tensor for a perfect fluid into the tt and ij components of Einstein’s field equations
of gravitation. Moreover, one can combine them to yield the conservation equation

ρ̇+ 3
ȧ

a
(ρ+ P ) = 0. (2.1.4)

1Dots refer to derivatives with respect to coordinate time, ȧ = ∂ta.



The Inflationary Paradigm

Tracing the evolution of the scale factor backwards in time, we can infer that there must
have a point in the history of the Universe at which it was infinitesimally small (a→ 0) and
infinitely hot (since T ∼ 1/a). This origin from a singularity gives rise to the hot Big Bang
model. However, reconciling the presently-observed form of the Universe with a singular
origin leads us to some well-known problems:

Horizon Problem

The observation of the Cosmic Microwave Background (CMB) at a temperature of 2.728 K
(with a root mean square (rms) deviation of 1.8×10−5 K [37]) implies that greatly separated
regions of space appear to have the same physical properties. However, we consider the
following: the greatest comoving distance from which a signal (travelling at the speed of
light) can be received by an observer is given by the comoving particle horizon [38]

dph(τ) = τ − τi =
∫ t

ti

dt

a(t)
, (2.1.5)

where τ refers to conformal time and the initial Big Bang singularity is at τi = ti = 0.
One can deduce that the conformal time elapsed between the singularity and the time when
the CMB radiation formed (known as the time of recombination or last scattering) is much
smaller than the conformal age of the Universe (τrec ≪ τ0), and so we would expect there to
be causally disconnected patches in the sky, since a signal travelling at the speed of light from
one region could not possibly reach the other. The full extent of this problem is presented
when we realise that the CMB comprises more than 4 × 105 causally disconnected regions
[38]. This poses the question of how the temperature came to be so uniform when there
was no possible way these regions could have interacted. This is known as the horizon or
homogeneity problem.

Flatness Problem

As pointed out at the beginning of the section, the present Universe is nearly flat, and k = 0

can be used in (2.1.1) at a high confidence level. Considering the critical density ρc = 3H2

8π
,

this means that the average density of the Universe must be very close to ρc (as any small
deviation in ρ would cause a deviation in k, which in turn would grow as the Universe
expands). In fact, WMAP (Wilkinson Microwave Anisotropy Probe) data [9] constrains the
ratio Ω = ρ/ρc to be 1 today, with the tightest bound on the deviation to be |Ω−1| = 0.011.

8



The Problems of Hot Big Bang Cosmology

One can relate Ω today to that at some earlier time using (2.1.2), so that

(Ω(t)− 1) = (Ω0 − 1)
(a0H0)

2

(aH)2
, (2.1.6)

where the subscript 0 refers to the values of the various parameters today. Then by consider-
ing that a(t) ∝ t1/2 during radiation domination and a(t) ∝ t2/3 during matter domination,
we can deduce that the deviation |Ω− 1| would have had to have been at the order of 10−60

just after the Big Bang. This implies an incredible level of fine-tuning, and is known as the
flatness problem.

Formation of Large-Scale Structure

This is related to the horizon problem discussed above. Specifically, galaxies and galaxy
clusters are found to have correlations which are nontrivial [39], on scales comparable to the
time of matter-radiation equality [40] (recalling that c = 1). Assuming that the fluctuations
in density were generated much before this time, these correlations cannot be reconciled with
causality [41]. Hence, modern (standard) cosmology presents the problem of what generated
the initial density perturbations, and what causes these non-random correlations.

Origin of the Universe

The initial singularity representing the origin of the known Universe is one of the major
outstanding questions in cosmology today. A mechanism that can explain generation of
the cosmos is hitherto unknown, although attempts have been made at finding solutions or
circumventing the problem altogether. For example, Vilenkin proposed a model [42, 43] in
which the Universe could be created by quantum tunneling from ‘nothing’, thereby solving
the singularity issue. Alternatively, as introduced in Chapter 1, Steinhardt and Ijjas have
postulated a non-singular bounce within a cyclic model [31] where the Hubble parameter
(and hence the energy scale, which goes as ∼ H2) transitions from large and negative to
large and positive (i.e., that representing a contracting Universe to an expanding Universe)
at sub-Planckian values. We will explore this idea, as an alternative to the inflationary
paradigm, in greater detail in Chapter 4.

9
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2.2 The Inflationary Paradigm

Inflation relies on the Universe undergoing a period of accelerated expansion between the
initial singularity and the following radiation-dominated epoch. This period can be approx-
imated as a de Sitter phase, and is realised by the driving fluid having an equation of state
w ≃ −1. We can visualise inflation as representing a period of reducing Hubble radius

d

dt
(aH)−1 < 0, (2.2.1)

so that the Hubble radius would have been greater than the particle horizon (2.1.5). It is also
immediately evident that (2.2.1) represents accelerated expansion of the scale factor, ä > 0.
In fact, using this interpretation, one can show that the singularity gets pushed to τ → −∞
in terms of conformal time. This means that |τe − τi| ≫ τ0 − τrec, where τi, τe, τrec and τ0
mark the conformal times corresponding to the start of inflation, end of inflation, time of
recombination and present time respectively. As a result, the light cones of greatly separated
patches of space intersect in the past and there is no issue with causality, thus solving the
horizon problem. If we assume that the Universe had some nonzero spatial curvature k to
start with, the Friedmann equation implies that this would have been diluted away by a
factor of a−2 during the inflationary period, thereby resolving the flatness problem as well.

The large-scale structure formation problem is resolved through the following – the den-
sity fluctuations in the CMB were formed through quantum perturbations in the scalar field
driving inflation, which were frozen out as super-horizon correlations as the Hubble radius
shrank. As inflation ended and the Hubble radius expanded, they re-entered the horizon as
classical fluctuations. The modes grew and formed the large-scale structures such as galaxies
that we observe today.

By relating the reheating temperature (the maximum temperature at the start of the hot
Big Bang phase) to that today and using the condition that the Hubble radius was shrinking
during inflation, we can show that the minimum number of e-folds required for inflation to
solve the problems of hot Big Bang cosmology is [38]

N = ln

(
ae
ai

)
> 64 + ln

(
TR

1015 GeV

)
, (2.2.2)

where TR is the reheating temperature and 1015 GeV is the reference value introduced for
TR. We infer from this that the Universe must have undergone approximately 60 e-folds of
expansion during inflation.

10
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2.3 Scalar Field Dynamics

Recall that the action for a scalar field in a potential (minimally coupled to a general curved
spacetime) [38] is

Sϕ =

∫
d4x
√
−g
[
−1

2
gµν∂µϕ ∂νϕ− V (ϕ)

]
(2.3.1)

Then varying with respect to the metric yields the energy-momentum tensor for the scalar
field

Tµν = −
2√
−g

δSϕ
δgµν

= ∂µϕ ∂νϕ− gµν
(
1

2
gρσ∂ρϕ ∂σϕ+ V (ϕ)

)
(2.3.2)

Now, taking that gµν is the FLRW metric (2.1.1) and the scalar field is homogeneous ϕ(t,x) =
ϕ(t), we have that ϕ can be approximated as a perfect fluid and Tµν = diag(ρ, P, P, P ). Then
the energy density and pressure induced are given by the tt and ij components of the energy-
momentum tensor respectively

ρϕ = Ttt =
1

2
ϕ̇2 + V (ϕ),

Tij = Pϕ γij → Pϕ =
1

2
ϕ̇2 − V (ϕ),

(2.3.3)

where γij is the spatial part of the metric. Then the equation of state is

w =
Pϕ
ρϕ

=
1
2
ϕ̇2 − V (ϕ)

1
2
ϕ̇2 + V (ϕ)

= −1 if V ≫ ϕ̇2, (2.3.4)

as required for an accelerating expansion of the Universe. Furthermore, varying the action
(2.3.1) with respect to the scalar ϕ yields its equation of motion

δSϕ
δϕ

= 0 → ϕ̈+ 3Hϕ̇+
∂V

∂ϕ
= 0 (2.3.5)

This can also be obtained as the ν = t component of the (covariant) conservation of the
energy-momentum tensor, ∇µT

µν = 0.
Let us define the parameter

ε ≡ − Ḣ

H2
=

1
2
ϕ̇2

M2
plH

2
= −d lnH

dN
(2.3.6)

From the fact that the Hubble radius is reducing during inflation,

d

dt

(
(aH)−1

)
= − 1

(aH)2

(
ȧH + aḢ

)
= −1

a
(1− ε) < 0 → ε < 1 (2.3.7)

11
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Then inflation will take place if the kinetic term 1
2
ϕ̇2 only has a small contribution to the

total energy ρϕ = 3H2

8π
= 3M2

plH
2. This is referred to as slow-roll inflation. In order for this

condition to remain true during the entire period of inflation, the acceleration of the scalar
field should remain small. Let us define a second parameter to quantify this,

δ ≡ − ϕ̈

Hϕ̇
(2.3.8)

By taking the time derivative of ε

ε̇ =
ϕ̇ϕ̈

M2
plH

2
− ϕ̇2Ḣ

M2
plH

3
,

and inserting into η ≡ dlnε
dN

= ε̇
Hε

, we obtain

η =
ε̇

Hε
= 2

ϕ̈

Hϕ̇
− 2

Ḣ

H2
= 2(ε− δ) (2.3.9)

Then the slow-roll approximation amounts to {ε, |δ|} ≪ 1 → {ε, |η|} ≪ 1.

2.4 Spectrum of Scalar Perturbations

As mentioned previously, inflation solves the problem of large-scale structure formation by
quantum perturbations in the inflaton scalar field generating a scale-invariant power spec-
trum. Working to linear order, we will now see how this comes about. We perturb the metric
and scalar field about their homogeneous background solutions

ϕ(t,x) = ϕ̄(t) + δϕ(t,x), gµν(t,x) = ḡµν(t) + δgµν(t,x) (2.4.1)

Under a scalar-vector-tensor (SVT) decomposition, the metric becomes

ds2 = −(1 + 2Φ) dt2 + 2aBi dx
i dt+ a2 [(1− 2Ψ)δij + Eij] dx

i dxj, (2.4.2)

where
Bi ≡ ∂iB − Si, ∂iS

i = 0

and
Eij ≡ 2∂ijE + 2∂(iFj) + hij, ∂iF

i = 0, hii = ∂ihij = 0

12
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The vector perturbations can be neglected since they will decay away during the inflationary
period. If we take the gauge transformations

t→ t+ α, xi → δij∂jβ, (2.4.3)

then the scalar components of the metric perturbations transform as

Φ→ Φ− α̇, Ψ→ Ψ+Hα

B → B + a−1α− aβ̇, E → E − β
(2.4.4)

Meanwhile, the tensor components are gauge-invariant. On the right-hand side of the Ein-
stein equations, the components of the energy-momentum tensor become

T 0
0 = −(ρ̄+ δρ), T 0

i = (ρ̄+ P̄ ) a vi

T i0 = −
1

a
(ρ̄+ P̄ )

(
vi −Bi

)
, T ij = δij(P̄ + δP ) + Σi

j

(2.4.5)

Taking the momentum density as ∂i(δq) ≡ (ρ̄+ P̄ )vi, the transformations are –

δρ→ δρ− ˙̄ρα, δP → δP − ˙̄Pα, δq → δq + (ρ̄+ P̄ )α (2.4.6)

As with the tensor components for the SVT decomposition of the metric, the anisotropic
stress Σi

j is gauge-invariant. Finding gauge-invariant combinations of the metric and energy-
momentum (i.e. matter) perturbations [44] ensures that the gauge choice does not affect the
conclusions. One of these is the curvature perturbation on hypersurfaces of uniform density
[45]

−ζ ≡ Ψ+
H
˙̄ρ
δρ (2.4.7)

A geometrical interpretation of this quantity is that it is a measure of the spatial curvature of
hypersurfaces with constant density, R(3) = 4∇2Ψ/a2. Using the required transfer functions,
we can relate (2.4.7) to an expression in terms of the perturbation of the inflaton scalar field

−ζ ≈ Ψ+
H
˙̄ϕ
δϕ (2.4.8)

We also have the comoving curvature perturbation

R ≡ Ψ− H

ρ̄+ P̄
δq (2.4.9)

13
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Using T 0
i = − ˙̄ϕ∂iδϕ during inflation [46], this becomes

R = Ψ+
H
˙̄ϕ
δϕ (2.4.10)

Geometrically, R is a measure of the spatial curvature of comoving hypersurfaces (i.e. with
constant ϕ), and the perturbation in R is related to the spatially-varying time delay for the
end of inflation δt(x), which is caused by δϕ. Using the linearised Einstein equations (see
Appendix A of [46]), we can find a relation between these two gauge-invariant quantities

−ζ = R+
k2

(aH)2
2ρ̄

3(ρ̄+ P̄ )
ΨB, (2.4.11)

where

ΨB ≡ Ψ+ a2H

(
Ė − B

a

)
(2.4.12)

is one of the Bardeen potentials. Both ζ and R are conserved in the late-time limit. In fact
they are equal in this limit, as well as during slow-roll inflation.

For completeness, we mention that there is a third gauge-invariant quantity, which is the
inflaton perturbation on spatially flat slices

Q ≡ δϕ+
˙̄ϕ

H
Ψ (2.4.13)

In the following calculation, we will find the power spectrum of the comoving curvature
perturbations, which (as mentioned above) is related to the spectrum of scalar perturbations.
Our starting point is the action for gravity with a minimally-coupled scalar field

S = SEH + Sϕ =

∫
d4x
√
−g
(
1

2
R− 1

2
gµν∂µϕ ∂νϕ− V (ϕ)

)
, (2.4.14)

where g = det(gµν) and R is the Ricci scalar.
We fix temporal and spatial reparameterisations using the (comoving) gauge choices [47]

δϕ = 0, gij = a2 [(1− 2R)δij + hij] , ∂ihij = hii = 0, (2.4.15)

where ϕ is unperturbed and all scalar degrees of freedom are parameterised by the metric
fluctuation R(t,x). One significant point to note is that R remains constant outside the
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horizon, so the region of interest can be restricted to horizon crossing. Expanding the action
(2.4.14) to second order in R (Appendix B of [46]), we obtain

S(2) =
1

2

∫
d4x a3

ϕ̇2

H2

[
Ṙ2 − a−2 (∂iR)2

]
(2.4.16)

We now define the Mukhanov variable v by

v ≡ zR, z2 ≡ a2
ϕ̇2

H2
= 2a2ε (2.4.17)

Then, by explicitly bringing out the time-dependence and moving from coordinate time t to
conformal time τ , the second-order action S(2) becomes (after integration by parts)

S(2) =
1

2

∫
dτ d3x

[
(v′)2 − (∂iv)

2 +
z′′

z
v2
]
, (2.4.18)

where a prime refers to a derivative with respect to conformal time, v′ = ∂τv. By defining
the Fourier transform of the Mukhanov variable as

v(τ,x) =

∫
d3k

(2π)3
vk(τ) e

ik·x (2.4.19)

and varying the action with respect to vk, we obtain the Mukhanov-Sasaki equation

v′′k +

(
k2 − z′′

z

)
vk = 0 (2.4.20)

We proceed to canonically quantise the theory by promoting the field v and its conjugate
momentum to operators. Specifically,

v → v̂ =

∫
d3k

(2π)3

[
vk(τ)âk e

ik·x + v∗k(τ)â
†
k e

−ik·x
]

(2.4.21)

Equivalently, we could take

vk → v̂k = vk(τ) âk + v∗−k(τ) â
†
−k

The ladder operators obey the usual commutation relations[
âk, â

†
k̃

]
= (2π)3 δ(3)(k− k̃) (2.4.22)
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iff the mode functions are normalised as

⟨vk, vk⟩ ≡ i
(
v∗kv

′
k − v∗

′

k vk

)
= 1 (2.4.23)

We must now choose a vacuum state for these modes. Following [46], we take the stan-
dard choice of the Minkowski vacuum for a comoving observer in the far past, with τ →
−∞, |kτ | ≫ 1, k ≫ aH. In this limit, the Mukhanov-Sasaki equation reduces to

v′′k + k2vk = 0

A unique solution then exists if the vacuum is the minimum energy state, so we impose the
following initial condition

lim
τ→−∞

vk =
e−ikτ√
2k

(2.4.24)

By solving the Mukhanov-Sasaki equation using this initial condition, we obtain the Bunch-
Davies mode function

vk(τ) =
1√
2k

(
1− i

kτ

)
e−ikτ (2.4.25)

Then the corresponding state is the vacuum state of the theory, and is known as the Bunch-
Davies vacuum. The initial condition (2.4.24) and the normalisation condition (2.4.23) are
then the two boundary conditions which fix the mode functions for all scales.

We will now calculate the power spectrum of curvature perturbations to first order in the
slow-roll approximation. By differentiating z with respect to conformal time, we can show
that

z′

z
= H

(
1 +

η

2

)
(2.4.26)

exactly and
z′′

z
≈ H2

(
2− ε+ 3

2
η

)
(2.4.27)

to first order in the slow-roll approximation, where H = a′/a is the conformal Hubble
parameter. Then, since ε is approximately constant during inflation, we can integrate ε =

1− H′

H2 to obtain

H = −1

τ
(1 + ε) (2.4.28)

Using this expression in (2.4.27) yields

z′′

z
=

1

τ 2

[
2 + 3

(
ε+

η

2

)]
(2.4.29)
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Then the Mukhanov-Sasaki equation (2.4.20) becomes

v′′k +

(
k2 − ν2 − 1/4

τ 2

)
vk = 0, (2.4.30)

where ν ≡ 3
2
+ ε+ η

2
. Using the boundary conditions (2.4.23) and (2.4.24), this has the the

solution

vk(τ) =

√
π

2

√
−τ H(1)

ν (−kτ), (2.4.31)

where H(1)
ν is a Hankel function of the first kind, which behaves as

lim
kτ→−∞

|H(1)
ν (−kτ)| =

√
2

π

1

−kτ
e−ikτ (2.4.32)

at early times and

lim
kτ→0
|H(1)

ν (−kτ)|2 = 22νΓ(ν)2

π2
(−kτ)−2ν ≈ 2

π
(−kτ)−2ν (2.4.33)

at late times. Before finding the power spectrum of R = −vk/z, we require z = z(τ). We
substitute (2.4.28) into (2.4.26) and integrate to obtain

z(τ) = z∗

(
τ

τ∗

)1/2−ν

, (2.4.34)

where τ∗ is some reference conformal time. For convenience, we will take τ∗ = −k−1
∗ , which

is the conformal time corresponding to the moment of horizon crossing for a mode with
wavenumber k∗. We are now able to find the power spectrum of R as

∆2
R(k) =

k3

2π2

1

z2(τ)
|vk(τ)|2

=
k3

2π2

1

2ε∗a2∗
(−k∗τ)2ν−1 π

4
(−τ)|H(1)

ν (−kτ)|2 (2.4.35)

By taking k∗ = a∗H∗, using the late-time limit of the Hankel function (2.4.33) and explicitly
replacing 1/M2

pl, we obtain

∆2
R(k) =

1

8π2ε∗

H2
∗

M2
pl

(
k

k∗

)3−2ν

= As

(
k

k∗

)3−2ν

, (2.4.36)

17



The Inflationary Paradigm

where As is the amplitude of the spectrum. The scalar spectral index is defined as

ns − 1 ≡ d ln∆2
R(k)

d ln k
(2.4.37)

Using k = aH, this becomes

ns − 1 =
d ln∆2

R
d ln(aH)

≈ d ln∆2
R

d ln a

=
d ln∆2

R
H dt

=
2d lnH

H dt
− d ln ε

H dt

= 2
Ḣ

H2
− ε̇

Hε
= −2ε− η (2.4.38)

Then using the definition of ν above, we have that the exponent in (2.4.36) is

3− 2ν = −2ε− η = ns − 1

Hence, we find that the power spectrum of the curvature perturbations follows a power law

∆2
R(k) = As

(
k

k∗

)ns−1

(2.4.39)

Since ns ≈ 1 up to slow-roll parameters, it follows that the power spectrum is (nearly) scale-
invariant. This was a significant prediction of inflation that was confirmed by observational
data from the COBE and WMAP experiments. Conversely, this also ruled out competing
models based on cosmic strings that had been proposed around the same time [48], but that
were incompatible with scale-invariance. We note here that, since this is a result that is
on solid empirical ground, any alternatives to inflation (some of which we explore in the
following chapters) must necessarily also lead to (near) scale-invariance of the spectrum of
curvature perturbations.

2.5 Spectrum of Tensor Perturbations – Primordial
Gravitational Waves

Inflation predicts that tensor perturbations in the spatial metric

ds2 = a2(τ)
(
−dτ 2 + (δij + hij) dx

i dxj
)

(2.5.1)
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should result in the generation of primordial gravitational waves. Recall that the perturba-
tions satisfy ∂ihij = 0, hii = 0. If we expand the Einstein-Hilbert action to second order in
the perturbations [38, 46], we obtain

S(2) =
M2

pl

8

∫
d3x dτ a2

[(
h′ij
)2 − (∂lhij)

2
]
, (2.5.2)

where, in comparison to the previous section, we have re-introduced M2
pl to ensure that hij

is explicitly dimensionless. We see here that this is equivalent to the action for a massless
scalar field in an FLRW universe, up to a normalisation factor. As before, we introduce the
Fourier transform of the perturbations

hij =

∫
d3k

(2π)3

∑
s=+,×

ϵsij(k)h
s
k(τ)e

ik·x, (2.5.3)

where ϵii = kiϵij = 0, ϵsij(k) ϵ
s̃
ij(k) = 2δss̃, and +, × are the two polarisation modes of the

gravitational waves. Then the action (2.5.2) becomes

S(2) =
M2

pl

4

∑
s=+,×

∫
dτ d3k a2

[
hs

′

kh
s′

k − k2hskhsk
]

(2.5.4)

By defining the (canonically normalised) field

vsk ≡
a

2
Mpl h

s
k, (2.5.5)

we find that
S(2) =

1

2

∑
s=+,×

∫
dτ d3k

[(
vs

′

k

)2
−
(
k2 − a′′

a

)
(vsk)

2

]
(2.5.6)

By comparing to (2.4.18), we are able to recognise this as essentially being two copies of
the action for the (canonically normalised) scalar. Varying this as usual, the equations of
motion for the mode functions are

vs
′′

k +

(
k2 − a′′

a

)
vsk = 0, (2.5.7)

where the index s runs over the polarisation modes +, ×. Using the same method as before,
we find that

a′′

a
=
ν2 − 1/4

τ 2
, (2.5.8)
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where, in this case, ν ≈ 3
2
+ ε to first order in the slow-roll approximation and the Bunch-

Davies vacuum is the same as before. Taking into account the two polarisations, the power
spectrum of tensor fluctuations in the late-time limit is given by

∆2
t (k) = 2 ·∆2

h(k) = 2 ·
(

2

aMpl

)2

lim
kτ→0

k3

2π2
|vsk(τ)|2

=
2

π2

H2
∗

M2
pl

(
k

k∗

)3−2ν

= At

(
k

k∗

)3−2ν

, (2.5.9)

where At is the amplitude of the spectrum and the subscript ∗ has the same meaning as
before. The tensor spectral index is defined as

nt ≡
d ln∆2

h

d ln k
=

d ln∆2
h

d ln (aH)

≈ d ln∆2
h

d ln a
=

d ln∆2
h

H dt
= 2

Ḣ

H2
= −2ε (2.5.10)

Using the definition of ν, the exponent in (2.5.9) becomes 3 − 2ν = −2ε = nt. Therefore,
the power spectrum of tensor perturbations also follows a power law

∆2
t (k) = At

(
k

k∗

)nt

(2.5.11)

As we shall see when making a comparison to cyclic models in Chapter 3, the prediction
of primordial gravitational waves is something of a smoking gun for inflation. In terms of
relating theoretical predictions to observations, the tensor-to-scalar ratio is usually taken

r ≡ ∆2
t (k)

∆2
R(k)

=
At
As

= 16ε (2.5.12)

Using the direct relation between the tensor spectral index and the slow-roll parameter ε
(2.5.10), we find the consistency relation for single-field slow-roll inflation models

r = −8nt (2.5.13)

Strictly speaking, this should be derived after relating the slow-roll parameters with respect
to the potential V to those with respect to the Hubble parameter (which we used here), but
the final consistency relation obtained is the same (for details, see e.g. [38]).

20



Embedding the Model within a Fundamental Theory – Brane Inflation

2.6 Embedding the Model within a Fundamental
Theory – Brane Inflation

While inflation provides a plausible explanation for the horizon, large-scale structure and
flatness problems of modern standard cosmology, it assumes the presence of a scalar field in a
(flat) potential within its setup. It does not actually explain its origin from the perspective of
a fundamental theory. To do this, we require input from a (possibly UV-complete) theory. As
mentioned in the introduction, this is especially significant since chaotic inflation is a large-
field picture, which prevents its interpretation as an effective field theory at lower energies.
A prime candidate for this approach is string theory – specifically, we will consider M-theory,
which has been postulated as the overarching description that unifies the 5 major superstring
theories: N = 1 Type I, N = 2 Type IIA and IIB, SO(32) and E8 × E8 (the latter two are
heterotic, i.e. theories of closed strings where the left-moving excitations of the string are
bosonic in 26 dimensions and the right-moving ones are superstrings in 10 dimensions [49]).
A rigorous treatment of this subject is beyond the scope of this dissertation (and would
perhaps entail a thesis in itself); our approach will be to present the construction by which
the 4-dimensional visible Universe is embedded within the 11-dimensional theory, as well
as a possible means by which inflation may arise in this theory. This section may appear
somewhat heuristic, but we hope to impart to the reader a ‘visualisation’ of the underlying
mechanism, and direct his/her attention to the references for further details. In particular,
we will follow the path laid out in [17, 18, 19].

Hor̆ava and Witten showed in [50, 51] that the strongly coupled E8×E8 heterotic string
coincides with 11-dimensional supergravity; specifically, the D = 11 limit of M-theory which
is compactified on an S1/Z2 orbifold, with E8 gauge fields living on each of the two D = 10

orbifold fixed planes. Furthermore, Witten also demonstrated in [52] that this limit of M-
theory can be compactified (without introducing phenomenological issues) on a deformed
Calabi-Yau (CY) 3-fold, thereby resulting in an N = 1 supersymmetric theory in D = 4. It
was also found, by matching to the gravitational and Grand Unified Theory (GUT) couplings
at tree level, that the orbifold must be larger than the CY radius (which itself is of the order
of the D = 11 Planck length) by a factor of ∼ 10 [18]. This then implies that there exists
a regime where the Universe looks 5-dimensional. Upon reduction from D = 11 to D = 5

on the CY manifold, it is found that flat space is not a solution of the effective theory
without also leading to a decompactification of the CY space. This would present questions
about why a fifth extended dimension has not been observed at lower energies. However,
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the vacuum state that does lead to (an acceptable) N = 1 supersymmetric D = 4 space is
a 3-brane domain wall (with the CY space remaining compact): then the observed D = 4

spacetime can be identified with the worldvolume of the 3-brane. The matter and gauge
fields are restricted to the 3-brane, while gravity is allowed to propagate in the bulk as well.

Massive representations of an extended SUSY algebra have mass equal to the SUSY
central charge Z (BPS states). If we take linear combinations of the original generators,
half the algebra reduces to the anticommutator being zero (due to the condition satisfied
by definition by a BPS state, M =

√
2Z). Then the other half of the supersymmetries are

preserved. Witten’s original background in D = 5 preserved 4 supercharges, whereas the
required number of preserved supercharges in N = 1, D = 5 minimal supergravity is 8.
Hence, finding Witten’s background (which was derived only to the first non-trivial order in
an expansion of Newton’s constant in 11 dimensions) as a particular solution of the effective
D = 5 bulk theory of [17] means that deformations of the CY background (corresponding to
Witten’s theory) should break half the supersymmetries and preserve the other half (while
also preserving Poincaré invariance in D = 4 for obvious reasons), thereby taking the number
of preserved supercharges from 8 to 4. As a result, the appropriate exact vacuum solution
(i.e. the solution that provides the appropriate background for reduction to D = 4) is a BPS
state.

One may ask why we cannot simply reduce the theory directly from 11 to 4 dimensions.
The reason that a 2-step reduction, first from 11 to 5 and then from 5 to 4 dimensions,
is performed is two-fold: the scale of the fifth (orbifold) dimension is larger than that of
the Calabi-Yau manifold and while the theory can be reduced from 11 to 5 dimensions à la
Kaluza-Klein and the massive CY modes can be set to zero without requiring higher-order
corrections, the 5- to 4-dimensional reduction involves taking into account and integrating
out the non-trivial D = 5 modes. This yields higher-order corrections which may produce
phenomenological signatures.

Witten’s ‘deformed’ Calabi-Yau solution is interpreted [17] as a collection of 5-branes
wrapped on 2-cycles and lying in the fixed orbifold planes. In the D = 5 picture, these
become 3-branes which span the fixed planes of the compact orbifold. Hence, this background
is identified with a pair of parallel 3-branes, with theD = 4 observed spacetime corresponding
to one of these and a ‘hidden’ sector corresponding to the other. From the point of view of
the bulk, we could have had multiple 3-brane solutions with any number of parallel branes
along the x11 direction. However, these brane solutions have singularities at the locations of
the branes and are hence required to be supported by source terms, for which the immediate
choices are boundary actions. Keeping in mind the requirements imposed by cancellation of
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quantun anomalies, the possible solutions get restricted to those representing just a pair of
parallel 3-branes, i.e. the orbifold planes.

The discussion up to this point has revolved around how we may derive a worldvolume
corresponding to our D = 4 visible Universe from the fundamental D = 11 M-theory. We
now turn our attention to the cosmology of this solution – recall that this is a vacuum
and has no matter/energy content, but will be used as a basis for the expected cosmology
that we hope to find from this theory. From [17], the reduction of the theory from 11 to 5
dimensions necessitates the presence of a non-zero field strength, which is a 4-form in the
internal Calabi-Yau directions. This leads to a gauged supergravity with a potential term
(that was unseen prior to the publication of that paper) and includes boundary potentials
which project the bulk scalar field onto the orbifold planes. One point of particular interest is
that the presence of boundary sources means that solutions of the theory are inhomogeneous
in the orbifold direction (also known as the radion), and so flat space cannot be a solution
in D = 5.

An ideal cosmological solution [18] that satisfies this requirement would involve the 6-
dimensional Calabi-Yau space and the orbifold undergoing some evolution for a short period
in time and then settling down to their phenomenological values in the ‘static’ limit at late
times, while the observed extended spatial dimensions continue to expand. Then, in this
static limit, the theory is effectively 4-dimensional and realistic solutions would be expected
to reduce either to the domain wall solution or some modification of it where the remaining
N = 1 supersymmetry is broken. As a result, the expected solutions would depend on the
orbifold coordinate as well as on time.

In [53, 54], the authors demonstrated the method by which a general class of cosmolog-
ical solutions could be derived in superstring and M-theories defined in spacetimes without
boundary. This was achieved exchanging the time and radial coordinates, and this approach
can be utilised in Hor̆ava-Witten theory as well if the radial coordinate is not oriented in the
orbifold direction. However, this method cannot be applied to the fundamental 3-brane do-
main wall solution since it is undesirable for the time and radial coordinates to be exchanged
in the vacuum state. Also, the radial direction is aligned in the orbifold direction. Instead,
the domain wall itself is made time-dependent so the solutions depend on both the time and
orbifold coordinates. The coupled partial differential equations (PDEs) that result from this
can be solved by separation of variables under certain constraints.

The most realistic scenario found in the case of the vacuum solution [18] corresponds to
the domain wall with 2 of the 3 moduli being time-dependent. These moduli measure the
separation of the two walls of the 3-brane and the size of its worldvolume (i.e. the size of
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the visible Universe). In this case, starting with the ansätz

ds25 = −N(t, y)2 dt2 + a(t, y)2ηmn dx
m dxn + b(t, y)2 dy2

V = V (t, y)
(2.6.1)

one can use separation of variables to solve the equations of motion

N(t, y) = n(t)a(y), a(t, y) = α(t)a(y)

b(t, y) = β(t)b(y), V (t, y) = γ(t)V (y)
(2.6.2)

which only works if β ∝ γ (one can take β = γ without loss of generality). The solution
obtained is

α = A|t− t0|p, β = γ = B|t− t0|q, (2.6.3)

where p = 3
11

(
1∓ 4

3
√
3

)
, q = 2

11

(
1± 2

√
3
)
. Then using the notation −→α = (α̂, β̂, γ̂)T , where

α = eα̂, β = eβ̂, γ = e6γ̂, the authors of [18] find that the conformal Hubble parameter (which
they define purely as the time derivative with respect to conformal time) takes the form

−→
H ≡ d−→α

dτ
=
−→p

τ − τ0
, (2.6.4)

where −→p = (p, q, q/6)T and τ0 is the conformal time corresponding to a future curvature
singularity. Then there exist two (conformal) time ranges: τ < τ0, identified as the (−)
branch and τ > τ0, identified as the (+) branch. There are also two options p↑ and p↓
corresponding to the two signs of p and q. In the 5-dimensional as well as in the 4-dimensional
Einstein frames, the authors of [18] arrive at the conclusion that, in the (+) branch, taking
the choice of p↓, the worldvolume of the 3-brane expands while the orbifold contracts. This
is recognised as giving the closest description to inflation. Note, however, that this solution
describes a vacuum and hence contains no matter or radiation.

This ‘skeleton’ is built upon in [19], which introduces boundary inflation as a (potentially
realistic) means of actualising inflation within M-theory. The setting is now gravity and a
scalar field ϕ (which is the volume modulus of the 6-dimensional internal Calabi-Yau space)
with a potential of non-peturbative origin residing in the bulk, and a scalar field ϕi with a
potential V4i and the other Standard Model gauge and matter fields on each orbifold plane
(i.e. the boundaries). In the M-theory description, the boundary scalars arise naturally as
scalar partners of the matter fields living on the boundary planes. The 5-dimensional theory
then has the geometrical structureM5 = S1/Z2 ×M4, with the two 4-dimensional orbifold
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Embedding the Model within a Fundamental Theory – Brane Inflation

planesMi
4, i = 1, 2, as the boundaries. The visible Universe is on one of these planes while a

‘hidden’ sector is on the other. Boundary inflation in this case means that inflation is driven
by the boundary potentials and the scalars ϕi are the inflatons, whereas the bulk potential
V (ϕ) is (close to) zero for all values of the bulk scalar ϕ during inflation. Consider the action
presented in [19]

S5 =
1

2κ25

{∫
M5

√
−g
[
R− 1

2
∂αϕ∂

αϕ− U(ϕ)
]
−

2∑
i=1

∫
Mi

4

√
−g
[
1

2
∂µϕi∂

µϕi + Ui(ϕi, ϕ)

]}
,

U(ϕ) =
1

3
v2e−2ϕ + V (ϕ), Ui(ϕi, ϕ) = ∓2

√
2ve−ϕ + Vi(ϕi, ϕ),

(2.6.5)
where κ5 is 5-dimensional Newton’s constant, R is the Ricci scalar, α = 0, 1, 2, 3, 5 labels the
coordinates for M5, µ = 0, 1, 2, 3 labels the coordinates for M4 and y = x5 parameterises
the orbifold. In particular, we should note that there is an explicit part of the boundary
potential that depends on the projection of the bulk scalar ϕ onto the orbifold planes. The
origin of this projection is Hor̆ava-Witten theory, and it supports the 3-brane domain wall
solution of the 5-dimensional theory. The height of this ‘domain wall potential’ is denoted
by v.

As noted above, boundary inflation must be inhomogeneous in the extra dimension, and
so excites Kaluza-Klein modes, the magnitude of which is determined by the dimensionless
parameter

ϵi ≡
V4iR

M3
5

, (2.6.6)

where R is the separation of the orbifold planes (or the size of the fifth dimension) and M5

is the fundamental scale of the 5-dimensional theory. Given this parameter, one can divide
the theory into two regimes – for |ϵi| ≪ 1, the excitations can be described using linearised
gravity, whereas the full nonlinear theory must be used for |ϵi| ≫ 1. Taking a decomposition
of the bulk fields gµν and ϕ into the orbifold average plus an orbifold-dependent variation

gαβ = ḡαβ + g̃αβ, ϕ = ϕ̄+ ϕ̃, (2.6.7)

where the averages of the variations in the orbifold direction vanish

⟨g̃αβ⟩5 = 0, ⟨ϕ̃⟩5 = 0, (2.6.8)
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one can find boundary-picture solutions to the equations of motion for the variations. In-
serting the boundary energy-momentum tensor into these solutions shows that

ds25 = (ḡαβ + g̃αβ)dx
α dxβ =

(
1 +

1

3
ϕ̃

)
e−β̄g4µνdx

µ dxν +

(
1 +

4

3
ϕ̃

)
e2β̄dy2,

ϕ̃ = −2eβ̄−ϕ̄ϵDW
(
z − 1

2

)
,

(2.6.9)

where e2β̄ = ḡ55 and z = y
R
∈ [0, 1] is the normalised orbifold coordinate. Then we see that the

size of the corrections is proportional to ϵDW = −vR/
√
2 and the condition for the linearised

regime is identified as ϵDW ≪ 1. Looking similarly at the general linearised solutions for
the bulk fields in the boundary picture yields the condition ϵi ≪ 1 for the linearised regime
(see Sections 2, 3 of [19] for details). Since the volume of the internal Calabi-Yau space
and the orbifold radius could have taken different values in the early Universe (compared
to their present-day values), the authors suggest that there is no way of knowing a priori
whether inflation took place in the linear or in the nonlinear regime, and so both situations
are discussed.

In the linear regime, a generic inflating solution in D = 4 is lifted up to one in D = 5.
Then the 5-dimensional solution represents a pair of inflating domain wall 3-branes with
inhomogeneities in the extra (orbifold) dimension caused by the boundary potentials2. On
the other hand, initial inhomogeneities that are not generated by boundary sources are
damped away. In this scenario, the positive tension 3-brane contains the corresponds to
the visible sector and recedes away along the the orbifold (i.e. the extra dimension), while
the negative tension brane sits at the bulk singularity [55, 56]. However, as shown in [57],
the negative tension brane collapses in such a setup. This implies that the 5-dimensional
spacetime is not stable during the inflationary era, and the 4-dimensional effective theory
breaks down. Hence, we conclude that boundary inflation in the linearised regime suffers
from critical problems which prevent its realisation.

In the nonlinear case, the authors of [19] assume that the bulk scalar ϕ is stabilised by its
potential at a point with V (ϕ) = 0 and that the boundary potentials admit the possibility
of slow roll for the boundary scalars ϕi. Then one can find a solution to the equations of
motion by separation of variables. Both boundaries exhibit de Sitter-like expansion, with
the Hubble parameters related to the potentials as Hi ∼ |V4i|/M3

5 . In this case, the physical

2This is made explicit by the boundary conditions for the equations of motion, c.f. eqs. (2.26)–(2.28) of
[19].
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size of the orbifold is constant in time and fixed in terms of the boundary potentials as

Rphys = 12

(
1

V1
+

1

V2

)
, (2.6.10)

where Vi = V4i/M
3
5 . For solutions without horizon, V41 + V42 < 0 and signals between

boundaries reach in a finite time interval (also, every signal emitted in the bulk will reach
one of the boundaries). For solutions with horizon, V4i > 0 for i = 1, 2 and the two
boundaries are causally decoupled.

A second approach is also taken for the nonlinear case in [19], where separation of variables
is not assumed. The result of the first approach is then recovered if a particular continuous
parameter (which is denoted k) in this general solution is set to zero. For all other values, the
solution is non-inflating and involves a collapsing orbifold, so the 5-dimensional spacetime
is unstable here as well. There is also a periodic function p(x±) = p(t ± y) that appears
in the expression for the scale factor in the general solution, so the only plausible stable
configuration that remains is that for which k = 0 and p(x±) does not have a large impact
on the scale factor (this can be arranged by ensuring that p(x±) has a small maximum
amplitude, which implies p(x±) ≃ const., thereby reducing to the aforementioned separating
solution).

However, we are presented with two distinct problems – firstly, the separating solution
represents an extremely particular choice of initial conditions, with k = 0 or k ≪ 1 required
for inflation to be maintained and the 5-dimensional solution to remain stable. A small
perturbation in this parameter could cause the Universe to collapse; it is postulated that
this fine-tuning issue is related to the problem of stabilisation of the orbifold, and represents
a major roadblock.

Second is the presence of the periodic function p(x±), which encodes information about
the initial inhomogeneity in the orbifold direction. It is then implied that this information
survives the inflationary era – this appears to contradict the expectation of the paradigm that
inflation should dilute out any initial information. Using boundary inflation as an example,
it is therefore clear that, while the mechanism of inflation is able to explain the problems
of modern FLRW cosmology, its realisation from a fundamental theory (which is inevitably
required), while not entirely unattainable, is certainly far from iron-clad.
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2.7 Problems with Inflation and Open Questions

In the preceding sections, we have shown how the paradigm of inflation can be used to solve
the problems of hot Big Bang cosmology introduced in Chapter 1. However, much of its
appeal rested on the expectation that a period of inflation would be able to take place and
result in a picture that matches present-day observations, irrespective of the initial state
of the early Universe. We will now discuss the extent to which this is actually true, and
present some of the major problems facing inflation today. We will consider the problems
that were known to plague the simplest models [41, 58], such as power-law inflation, as well
as those that have been brought to light [59, 60, 61] in recent times by experiments such as
Planck2013 [62] and Planck2015 [63].

Initial Conditions

A serious problem with the paradigm takes shape in the form of the initial conditions required
for inflation to even begin. The original view was that inflation would be initiated for the
Universe emerging from the original singularity with generic initial conditions. However,
it was realised that the scalar field having large kinetic energy and gradient contributions
would prevent this from occurring. The assumption used to resolve this was then that, after
the Big Bang, all forms of energy would be of the same order. The potential would then
quickly come to dominate over the kinetic terms and slow-roll inflation would hence be made
possible.

However, as we shall see below, plateau-like models are now favoured against power-law
ones, which means that the potential density of the plateau must have an upper bound,
M4

I < 10−12M4
pl, so that the predicted density fluctuations could match observations. Hence,

the kinetic and gradient terms would dominate over the potential and inflation could not
have been triggered. The net result of this is that, for inflation to have even started and
been a viable explanation, the Universe emerging from the singularity must have contained a
region that stayed homogeneous until the beginning of the inflationary phase. By comparing
the relative value of the potential with respect to the Planck mass, it follows that the size
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of this region would have to have been [59]

r3(tpl) ≳

[
a(tpl)

∫ tI

tpl

dt

a

]3
∼
[
a(tpl)H(tpl)

a(tI)H(tI)
H−1(tpl)

]3
> 109

(
1016 GeV
MI

)3

H−3(tpl) (2.7.1)

Therefore, the Universe would have been required to be exceptionally homogeneous and
isotropic in order for inflation to begin. Meanwhile, inflation itself has been set forth as an
explanation for the observed homogeneity and isotropy of the Universe today, thus manifest-
ing the conceptual magnitude of the problem.

Fine-Tuning Problems – Fluctuations and Effective Cosmological
Constant

In Section 2.2, we showed how inflation explains the origin of large-scale structure through
amplification of density fluctuations, which are generated by quantum perturbations in the
scalar sector. However, the primordial density fluctuations are required to be of the order
of δρ/ρ ∼ 10−5 [61]. However, using a simple example of power-law inflation with V (ϕ) =
1
4
λϕ4, the mass fluctuations are predicted to be at the order of 102λ1/2, which would require
λ ∼ 10−14. At present, there seem to be no solid theoretical arguments that can provide a
justification for a level of fine-tuning that involves nearly 15 orders of magnitude.

The inflaton scalar in its potential acts as an effective cosmological constant in that it
also causes a phase of accelerated expansion of the scale factor. A constraint can be found
on the size of this effective constant [41]

Λeff
M4

pl

≤ 10−122, (2.7.2)

which leads to another fine-tuning problem for inflation – that of explaining the extremely
small magnitude of Λeff .

Trans-Planckian Physics Problem

If we look at the (Lorentz-invariant) scalar curvature and extrapolate its evolution backwards
in time, it appears to be on Planckian scales at the beginning of inflation [41, 64]. By doing
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this, we are implicitly assuming that General Relativity and the perturbation theory we use
to calculate the spectrum of curvature fluctuations, for example, remain valid to arbitrarily
high energies and are not particularly sensitive to UV-level (or Planck-scale) physics. This
is a risky assumption to make, especially since the model of chaotic inflation that we used
to illuminate the predictions of the paradigm requires the scalar field to take large values
as it is, which puts it at loggerheads with the former. Furthermore, it has been shown in
[65] that, taking an infinitesimally small de Sitter space as the initial state, and treating the
background scale factor and primordial tensor perturbations quantum mechanically (using
a path integral setup) leads to a breakdown of quantum field theory in curved spacetime.
As a result, the background and (more crucially) the Bunch-Davies mode functions must be
input by hand to prevent instability of the fluctuations. Hence, a pre-inflationary phase is
required to ensure that the Universe is sufficiently flat, of high enough energy and quantum
mechanically stable so that inflation can actually occur and explain current observations.
This implies that inflation is certainly sensitive to the quantum initial state of the Universe
and new physics is required to provide a full explanation.

Entropy and the Second Law

As shown by Penrose in [58, 66], extrapolating the second law of thermodynamics (i.e.
increasing entropy in the Universe) backwards in time leads us to the problem of the dis-
tribution of entropy. From the initial state of a Big Bang, we should expect that the total
entropy at the time of recombination should be nearly maximal, and equally partitioned
between the matter-radiation and gravitational sectors. The latter is quantified by the Weyl
tensor Cµνρσ, which gives the curvature due to pure gravitational field, and so should be
exceedingly large. On the other hand, the observed pattern shows that the total entropy is
much smaller than its maximum allowed value, with the partition being near-maximum in
the matter-radiation sector and negligible in the gravitational sector. This means that, con-
trary to the naïve expectation, the Weyl tensor is infinitesimally small. This problem is made
worse by assuming an inflationary mechanism in the early Universe, since the initial state
would have had to be dominated by a nearly-uniform field, with all other components being
negligible. This reduces the value of the initial entropy even further below the maximum, so
the problem of fine-tuning entropy is further exacerbated.
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Unlikeliness Problem

Observational data from Planck 2013 [62] and Planck2015 [63] showed that the density per-
turbations have negligible non-Gaussianity and are nearly scale-invariant (ns ≈ 1). More-
over, the spectrum of primordial gravitational waves should correspond to a tensor-to-scalar
ratio of r < 0.1. These results preclude most of the simple single-field inflationary mod-
els, such as power-law inflation (e.g. V (ϕ) = 1

4
λϕ4), and favour plateau-like models (e.g.

V (ϕ) = 1
4
λ (ϕ2 − ϕ2

0)
2). However, somewhat counter-intuitively, the latter require more fine-

tuning, occur for more special initial conditions and generate much less inflation than the
former [59, 61]. As a result, the probability that slow-roll down a plateau-like potential led
to the current Universe becomes infinitesimally small. This has been termed the unlikeliness
problem.

Multiverse Problem

Classical inflation is predicted to come to a smooth end when the scalar field reaches the
bottom of its potential. However, quantum perturbations can cause the scalar to be ‘kicked’
far uphill, where it undergoes more inflation (which amplifies the quantum fluctuations
further) – this is called ‘eternal inflation’ [67] and has been shown to be generic [43]. Since
inflation amplifies volume exponentially, volume is then selected as the natural measure but
the fact that our Universe is not inflating today (and other regions of space should be) means
that the probability of its existence is diminished by a factor of 10−1055 [59, 61]. Moreover,
using volume-weighting as the measure, it is found that the simple models (like power-law
inflation) are exponentially favoured over plateau-like models [60], even though the data
implies that the likelihood is the other way round. This presents a serious problem for the
choice of measure and further augments the multiverse issue.

2.8 Discussion

In this chapter, we have presented the mechanism by which inflation solves the horizon,
flatness and large-scale structure problems. We used the dynamics of the scalar field to
show how the slow-roll approximation is obtained, and used linear perturbation theory to
derive the power spectrum of curvature fluctuations (which are related to the spectrum
of scalar parturbations) and tensor perturbations (which represent primordial gravitational
waves). We also provided an overview of how inflation could be visualised as fitting into a
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fundamental M-theory picture, through the construction of boundary inflation. Finally, we
presented some of the problems facing the inflationary paradigm today, both those that have
been known for 20-30 years and those that were found in light of recent observational data.

With respect to the latter, a shift in thought to ‘postmodern inflation’ [60, 68] has been
proposed, wherein the measure is selected a posteriori to fit the observations. This would
clearly mean that there is no straightforward means by which the paradigm as a whole can
be proven or disproven, which brings along its own set of challenges.

There are still two more issues that have not been presented, since inflation does not
attempt to answer them. The first is (as mentioned in Section 2.1) the origin of the Universe
and the initial singularity, and the second is the position of dark energy in a ‘complete’ model
of cosmology. In the standard Λ-CDM model, dark energy (represented by Λ) is an ad hoc
insertion, and the theory would be on just as sure a footing without it. It is through issues
like these that we find motivation to search for alternatives to inflation.
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Bouncing Cosmology – A Plausible Alternative?

In Chapter 2, we presented the means by which inflation resolves the problems of hot Big
Bang cosmology, and also discussed the problems it faces as a paradigm. In this chapter,
we will show how the latter yields motivation for considering alternative frameworks but we
must first make sure that the original problems are indeed resolved by bouncing cosmologies.

All bouncing models immediately solve the horizon problem without difficulty, since
coordinate time does not ‘begin’ at the singularity t = 0, but is extended arbitrarily far back
into the past, t → −∞. Hence regions of space which may not seem casually connected
at the time of recombination were in fact connected in the contracting phase prior to the
bounce.

Resolution of the flatness problem is model-dependent – in the ekpyrotic/cyclic models
that most of this chapter is based on, the spatial curvature decreases faster in the contracting
phase than it does in the expanding phase [29]. In particular, the scale factor decreases slowly
while the magnitude of the Hubble parameter increases rapidly, so (2.1.6) becomes

(Ω(tf )− 1) ≈ (Ω(ti)− 1)
H2
i

H2
f

, (3.0.1)

where the subscripts i and f refer to the beginning and end of the period of contraction
respectively. Then the ratio Ω(tf )−1

Ω(ti)−1
is exceedingly small at the end of contraction (and hence

at the bounce), and does not significantly increase through the expanding phase. A similar
result is found in the pre-Big Bang model [69]. In the matter bounce scenario [70], the
bounce is symmetric so the flatness problem is still resolved since the curvature decreases by
the same amount during contraction that it expands by during expansion.

For the large-scale structure formation problem, curvature perturbations in a single-field
ekpyrotic/cyclic model produce a spectrum that is strongly tilted towards the blue, so this
mechanism is incompatible with observations [71, 72]. A two-field approach employing the
isocurvature/entropic mechanism is used instead to generate the required scale-invariant
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spectrum of curvature perturbations. Note that it is sub-horizon fluctuations generated in
the contracting phase that become larger than the horizon as the Universe approaches the
bounce, and continue as super-horizon fluctuations in the expanding phase [34]. The matter-
bounce model utilises the duality of the canonical fluctuation variables in inflation and in a
matter-dominated contracting Universe, so the structure-formation problem is resolved here
in broadly the same manner as in inflation, i.e. through perturbations in the scalar field.

The question of the origin of the Universe, insofar as it refers to the problem of initial
conditions, is resolved in bouncing cosmologies by imposing the initial conditions as far back
in the past as possible, and so this problem is removed from the problem of the singularity
at t = 0. For the latter, string-based or string-motivated cosmologies still assume that t = 0

refers to a singular transition, so a satisfactory UV-complete theory of gravity incorporat-
ing Planck-scale physics is needed. However, the actual singularity is made milder in the
ekpyrotic model, since it corresponds to a collision of the visible and hidden branes, and a
brief collapse of only the orbifold dimension (c.f. Section 2.4), rather than the full space-
time experiencing a singularity. On the other hand, models involving non-singular bounces
have also been proposed, in which case their validity is not necessarily dependent on a full
quantum theory of gravity. We will explore one such model in detail in Chapter 4.

Before we delve into the ekpyrotic/cyclic realisation of a bouncing cosmology, let us
consider the motivations for searching for alternatives to inflation. Firstly, bouncing models
avoid the problem of trans-Planckian physics since (fluctuations in) the scalar curvature
remain(s) at a scale that is multiple orders below the Planck scale [29]. Secondly, the
unlikeliness and multiverse problems, as discussed in Chapter 2, represent a departure from
predictability and some use the anthropic principle to justify the choice of measure and
weighting. This certainly leaves something to be desired from the perspective of science.
The predictability of a scientific theory makes it unique, and this should not be sacrificed
for the sake of a particular model.

The entropy problem also presents an outstanding issue that is yet to be resolved from
the perspective of inflation. By contrast, in the cyclic picture, a natural resolution is found
in that causality limits the size of a black hole to the Hubble radius at the time of collision.
Relating the entropy generated at collision to the number of Hubble volumes inside the
comoving Hubble volume today and the total mass inside the Hubble radius at collision, one
finds that [20]

Scollision
Smax

<
T0

Tcollision
. (3.0.2)

Then, if the collision temperature lies between 105 GeV and 1019 GeV, the collision entropy
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has an upper limit of 10−20 to 10−30 of the maximum possible entropy.
Finally, we have the puzzle of dark energy, which has been introduced into the Λ-CDM

model of cosmology after its discovery, but is certainly not required by any stretch of imag-
ination, in order for inflation to work. This leads us to wonder whether we could find an
overarching model of cosmological evolution that incorporates the presence of dark energy;
we will show in this chapter that it does indeed play a significant role in the ekpyrotic/cyclic
model of the Universe.

3.1 Background Dynamics

The cyclic model involves the same theoretical setting as that presented in Section 2.4, i.e.
11-dimensional M-theory compactified on an S1/Z2 orbifold, which is reduced to 5 dimensions
on the Calabi-Yau manifold. The original ekpyrotic model [21] involved a bulk brane peeling
away from the hidden brane and spontaneously moving towards the visible brane, with the
resulting collision being identified as the hot Big Bang. The cyclic Universe that this model
evolved into, consists of the visible and hidden branes periodically moving towards each
other along the orbifold dimension, with the collisions recognised as Big Crunch/Big Bang
transitions. As a starting point for ekpyrotic contraction, we consider the action

S =

∫
d4x
√
−g
(
1

2
R− 1

2
∂µϕ ∂

µϕ− V (ϕ)

)
(3.1.1)

where, as before, R is the (effective 4-dimensional) Ricci scalar. Noting that a cyclic Universe
involves a non-singular transition from expansion to contraction [73], we require that the
Hubble parameter must go from positive to negative. This can be realised through a negative
potential which cancels the positive kinetic energy of matter. Then one possible form of the
potential is

V (ϕ) = −V0 e−cϕ, (3.1.2)

where V0 and c are constants. Using the equation of state (2.3.4), this implies that wϕ > 1.
If we consider the generalisation of the first Friedmann equation (2.1.2) to include matter,
radiation, anisotropy and scalars

H2 =
1

3

(
−3κ
a2

+
ρm
a3

+
ρr
a4

+
σ2

a6
+ · · ·+ ρϕ

a3(1+wϕ)

)
, (3.1.3)

where κ is the spatial curvature, ρm is the density of matter, ρr is the density of radiation
and σ2 is the density of anistropies in the curvature, then we find that w > 1 implies that
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the scalar will dominate the evolution in a contracting phase. The equations of motion that
result from varying (3.1.1) are

H2 =
1

3

[
1

2
ϕ̇2 + V (ϕ)

]
(3.1.4)

ä

a
= −1

3

[
ϕ̇2 − V (ϕ)

]
(3.1.5)

ϕ̈+ 3Hϕ̇+
∂V

∂ϕ
= 0 (3.1.6)

One relation that will prove useful is

Ḣ = −1

2
ϕ̇2 (3.1.7)

If c≫ 1, then we obtain the following scaling solution

a(t) = (−t)p, ϕ =
2

c
ln

(
−
√
c2V0
2t

)
, p =

2

c2
(3.1.8)

Hence, a slowly contracting Universe has the equation of state

w =
2

3p
− 1≫ 1 (3.1.9)

In fact, the condition (3.1.9) can be taken to define the ekpyrotic phase.
The cyclic Universe uses a slight modification of (3.1.1) [22]

S =

∫
d4x
√
−g
(
1

2
R− 1

2
∂µϕ ∂

µϕ− V (ϕ) + β4(ϕ)(ρm + ρr)

)
, (3.1.10)

where β(ϕ) represents the coupling between the scalar ϕ and matter/radiation. This is
especially significant as it ensures that the densities ρm, ρr are finite at the bounce. The
equations of motion that we obtain are

H2 =
1

3

(
1

2
ϕ̇2 + V (ϕ) + β4ρm + β4ρr

)
(3.1.11)

ä

a
= −1

3

(
ϕ̇2 − V (ϕ) +

1

2
β4ρm + β4ρr

)
(3.1.12)
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ϕ̈+ 3Hϕ̇+
∂V

∂ϕ
+
∂β

∂ϕ
β3ρm = 0 (3.1.13)

For matter or radiation, the fluid equation of motion that we obtain is

â
∂ρi
∂ρ̂

= a
∂ρi
∂a

+
β

β,ϕ

∂ρi
∂ϕ

= −3(ρi + Pi), (3.1.14)

where â = aβ(ϕ), i represents matter or radiation and Pi is the pressure of the fluid with
density ρi. The potential is required to satisfy the following properties

• V (ϕ) rapidly as ϕ→ −∞ at the bounce

• V (ϕ) < 0 for intermediate ϕ, i.e. for ekpyrotic contraction

• As ϕ increases, V rises to a shallow plateau with V0 > 0, representing the current
period of accelerated expansion

To ensure this, we take the exemplar potential

V (ϕ) = V0
(
1− e−cϕ

)
F (ϕ), (3.1.15)

where F (ϕ) is used to ensure compatibility with the first condition, and can be taken as
unity to the right of the potential minimum without loss of generality. We also require a
matching rule to connect from the Big Crunch to the Big Bang. Since the brane collision
is predicted to be partially inelastic, some fraction of the kinetic energy of the scalar field
is converted to matter and radiation, and production of a finite density of particles occurs
[74, 75]. The rule is

ϕ̇ e
√

3/2ϕ → −(1 + χ) ϕ̇ e
√

3/2ϕ, (3.1.16)

where the parameter χ measures the efficiency of radiation production at the bounce.
At this point, let us consider the picture of cosmological evolution in the cyclic Universe

[22]. We start our journey in the present epoch, when the radiation- and matter-dominated
eras have concluded. The potential energy dominates, causing a period of accelerated expan-
sion that lasts for hundreds of e-folds. Note here that one can attribute the density of dark
energy to the value of V0 in the potential, rather than simply adding the former as an ad hoc
insertion (as in the consensus picture). Thus, the scalar field in its potential V (ϕ) provides
motivation for dark energy as well as the reasoning for the the Universe being homogeneous,
isotropic and flat before the bounce. The potential causes the scalar ϕ to roll in the negative
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direction, and this stage continues until ϕ reaches the point of zero potential energy. At
this point, the kinetic energy of the scalar dominates but the expansion damps its motion.
Ultimately, we reach a point when the total energy is zero; using the equations of motion
(3.1.11) and (3.1.12), the Hubble parameter is briefly zero and the scale factor is contracting,
ä < 0. As gravitational energy is converted into kinetic energy of ϕ, the field goes past the
minimum of its potential and continues on towards −∞, which represents the moment of the
Big Crunch/Big Bang transition. During this time, the Universe is increasingly dominated
by scalar kinetic energy. After the bounce, radiation is produced and expansion begins again,
thereby completing the cycle. Note that, in the kinetic-energy dominated phase right before
the bounce, the equations of motion become [73]

3H2 =
1

2
ϕ̇2 = −Ḣ, ϕ̈+ 3Hϕ̇ = 0, (3.1.17)

which yield a ∝ eϕ/
√
6 and are solved by

a = a0(−t)1/3, ϕ =

√
2

3
ln(−t) + ϕ0, (3.1.18)

where a0 and ϕ0 are integration constants.
However, the single field mechanism in this cyclic model generates a power spectrum

of curvature perturbations that is not scale-invariant. Then, foreshadowing the fact that
this model will require two scalar fields in order to generate the correct spectrum through
the entropic/isocurvature mechanism (which we discuss in the next section), we identify
these as the radion field that determines the distance between the branes along the orbifold
dimension and the volume modulus of the internal Calabi-Yau manifold [73]. However, this
presents another issue – the classical trajectory followed by the two scalar fields down the
potential ends up being unstable to quantum fluctuations in the transverse direction [76]
and the majority of the Universe does not survive. However, if the period of accelerated
expansion dominated by dark energy lasts at least 600 billion years, then a sufficiently large
region survives the evolution and completes the cycle [77]. This region grows in size and
corresponds to the visible Universe today (in the present cycle, for example). The repeated
‘destruction’ and ‘rebirth’ of the Universe from the ashes prompted Lehners and Steinhardt
to term this version of the cyclic model ‘the phoenix Universe’, in a nod to the mythical
creature of lore (and recalling somewhat of a parallel to Lemaître’s construction [78]). At this
point, note that the role of dark energy becomes significant, in that it ensures the evolution of
the Universe completes the cycle in addition to making it sufficiently homogeneous, isotropic
and flat.
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For the phoenix Universe, we can use the same action (3.1.10), generalised to 2 scalars
so that

S =

∫
d4x
√
−g

(
1

2
R− 1

2

2∑
i=1

(∂ϕi)
2 − V (ϕ1, ϕ2)

)
(3.1.19)

Then the equations of motion that we obtain are

3H2 =
1

2

(
ϕ̇2
1 + ϕ̇2

2

)
+ V (ϕi) + β4

+(ϕi) ρ+ + β4
−(ϕi) ρ− (3.1.20)

3
ä

a
= −

(
ϕ̇2
1 + ϕ̇2

2

)
+ V (ϕi)− β4

+(ϕi) ρ+ − β4
−(ϕi) ρ− (3.1.21)

ϕ̈i + 3Hϕ̇i +
∂V

∂ϕi
= 0, (3.1.22)

where the relevant degrees of freedom aside from the scalars are radiation with densities ρ±
on the positive/negative tension branes. Recall our useful relation (3.1.7), which becomes

Ḣ = −1

2

2∑
i=1

ϕ̇2
i (3.1.23)

The equations of motion form a closed system, subject to the continuity equation

∂

∂t

(
β4
±ρ±

)
+ 4Hβ4

±ρ± = 0→ β4
+ρ+ + β4

−ρ− =
ρ0
a4

(3.1.24)

This implies that all radiation can be treated as one. The potential in the effective 4-
dimensional theory is V = Vek(ϕ1, ϕ2) + Vrep(ϕ2), where the repulsive part Vrep emphasises
the existence of a boundary to scalar field space at ϕ2 = 0. This corresponds to the negative
tension brane being repelled by a naked singularity in the bulk (in the higher-dimensional
theory). Following [77], we can take Vrep ∝ ϕ−2

2 . Meanwhile, the ekpyrotic part of the
potential takes the generalised form of the potential presented earlier

Vek = −V1 e−c1ϕ1 − V2 e−c2ϕ2 + V0 (3.1.25)

In the ekpyrotic phase, the background trajectory follows the scaling solution

a = (−t)1/ϵ, ϕi =
2

ci
ln

(
−
√
c2iVi
2t

)
, (3.1.26)
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where 1
ϵ
= 2

c21
+ 2

c22
≪ 1 is the equivalent of the slow-roll parameter ε for inflation. In

particular, the parameter ϵ here is related to the equation of state as ϵ = 3
2
(1 + w)≫ 1.

It will be natural to consider the dynamics of the background in terms of the combina-
tions of scalars in the parallel (σ) and transverse (s) directions, particularly as curvature
perturbations in the latter will yield the scale-invariant power spectrum that we require [79].
The parallel and transverse combinations of the scalars are

σ =
ϕ̇1ϕ1 + ϕ̇2ϕ2

σ̇
, s =

ϕ̇1ϕ2 − ϕ̇2ϕ1

σ̇
, (3.1.27)

where σ̇ =
(
ϕ̇2
1 + ϕ̇2

2

)1/2
. The angle of the trajectory followed by the scalars in field space is

given by

cos θ =
ϕ̇1

σ̇
, sin θ =

ϕ̇2

σ̇
(3.1.28)

Then the potential becomes

V = −V0 e
√
2ϵσ

[
1 + ϵs2 +

κ3
3!
ϵ3/2s3 +

κ4

4!
ϵ2s4 + . . .

]
(3.1.29)

If the ekpyrotic part of the potential has the exact form (3.1.25), then

κ3 =
2
√
2 (c21 − c22)
|c1c2|

, κ4 =
4 (c61 + c62)

c21c
2
2 (c

2
1 + c22)

(3.1.30)

The classical ekpyrotic trajectory is stable through σ and unstable through s = 0; this
implies that there is a ridge at s = 0, the evolution along which is given by the scaling
solution

a(t) = (−t)1/ϵ, σ = −
√

2

ϵ
ln
(
−
√
ϵV0t

)
, s = 0 (3.1.31)

3.2 Spectrum of Curvature Perturbations

We now consider the generation of a nearly scale-invariant spectrum of curvature perturba-
tions through the entropic/isocurvature mechanism. To ensure that the spectrum is approx-
imately (rather than exactly) scale-invariant, and hence compatible with observations, we
take the potential (3.1.25) as [80]

Vek = −V1 e−
∫
c1 dϕ1 − V2 e−

∫
c2 dϕ2 , (3.2.1)
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where c1 = c1(ϕ1), c2 = c2(ϕ2) and V1, V2 > 0. In the conformal Newtonian gauge, scalar
perturbations of a flat FLRW metric are given by

ds2 = −(1 + 2Φ) dt2 + a2(t)(1− 2Ψ) dx2 (3.2.2)

and the lack of anisotropic stress means that Φ = Ψ. The most general gauge transformation
that preserves this metric (up to spatial gradients) is

δt =
α1(x)

a
− α2(x)

a

∫ t

dt′ a(t′), δxi = α2(x)x
i, (3.2.3)

where the constant coefficients are replaced by the functions α1 (a local time delay to/from
the singularity) and α2 (a local dilatation or curvature perturbation). Then the Newtonian
potential becomes

Φ = α1(x)
ȧ

a2
+ α2(x)

(
1− ȧ

a2

∫ t

dt′ a(t′)

)
(3.2.4)

In an expanding Universe, the first term is decaying and the second term is growing, and
vice versa in a contracting Universe.

In particular, we will consider the entropy perturbation, which is the relative fluctuation
in the fields given by

δs ≡ ϕ̇1δϕ2 − ϕ̇2δϕ1√
ϕ̇2
1 + ϕ̇2

2

(3.2.5)

Under a linearised coordinate transformation, this is a gauge-invariant quantity so we ex-
pect that it should remain unscathed with only Planck-suppressed corrections, even in the
presence of gravity. Then the entropic perturbation equation is [81]

δs̈+ 3Hδṡ+

(
k2

a2
+ Vss + 3θ̇2

)
δs =

4k2θ̇

a2
√
ϕ̇2
1 + ϕ̇2

2

, (3.2.6)

where

Vss =
ϕ̇2
2V,ϕ1ϕ1 − 2ϕ̇1ϕ̇2V,ϕ1ϕ2 + ϕ̇2

1V,ϕ2ϕ2

ϕ̇2
1 + ϕ̇2

2

(3.2.7)

and

θ̇ =
ϕ̇2V,ϕ1 − ϕ̇1V,ϕ2

ϕ̇2
1 + ϕ̇2

2

(3.2.8)
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Since we will focus only on straight-line trajectories in the scalar field space, θ̇ = 0 so the
right-hand side of (3.2.6) is equal to zero. We assume that the background solution obeys
scaling symmetry, so that

ϕ̇2 = γϕ̇1, ϕ1 = ϕ, (3.2.9)

where γ is a constant. Let us consider the rescaled entropy field δS = a(τ) δs, where τ is (as
before) the conformal time, so that (3.2.6) becomes

δS ′′ +

(
k2 − a′′

a
+ a2V,ϕϕ

)
δS = 0 (3.2.10)

As before, primes denote derivatives with respect to conformal time. At this point, we can
make use of our previous calculation for inflation from Section 2.2. Specifically, we write the
significant second term of (3.2.10) in a manner suggestive of that in (2.4.30)

τ 2
(
a′′

a
− a2V,ϕϕ

)
= ν2s −

1

4
(3.2.11)

When this term is approximately equal to 2, we obtain nearly scale-invariant perturbations.
We recall the parameter ϵ as

ϵ ≡ 3

2
(1 + w) ≡ ϕ̇2

1 + ϕ̇2
2

2H2
=

(1 + γ2)ϕ̇2

2H2
= − Ḣ

H2
, (3.2.12)

where we have used (3.1.23) to make the connection to the last equality. In the background
scaling solution, we have that ϵ = c2

2(1+γ2)
.

We now expand (3.2.11) in inverse powers of ϵ and its derivatives with respect to N =

ln(a/aend), where aend is the value of the scale factor at the end of ekpyrosis. N decreases
as the fields roll downhill and the contraction progresses. Differentiating the expression
(3.1.23), the first term is

a′′

a
= 2H2a2

(
1− 1

2
ϵ

)
(3.2.13)

We obtain the second term by differentiating ϵ twice with respect to the coordinate time t,
and using the background equations and the definition of N to yield

a2V,ϕϕ = −a2H2

(
2ϵ2 − 6ϵ− 5

2
ϵ,N

)
+O(ϵ2) (3.2.14)
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Now we require the conformal Hubble parameter H = a′

a
= aH in terms of conformal time.

From (3.2.13), we obtain H′ = H2(1− ϵ). Integrating this yields1

H−1 =

∫ τ̃

0

dτ (ϵ− 1) (3.2.15)

Then taking 1 = dτ
dτ

and integrating by parts,

H−1 = ϵτ

(
1− 1

ϵ
− (ϵτ)−1

∫ τ̃

0

dτ ϵ′τ

)
(3.2.16)

Repeating this trick, we obtain

(ϵτ)−1

∫ τ̃

0

dτ ϵ′τ =
ϵ′τ

ϵ
− (ϵτ)−1

∫ τ̃

0

dτ
d

dτ
(ϵ′τ)τ (3.2.17)

Using ϵ′ = Hϵ,N and the fact that, to leading order in 1/ϵ, H can be replaced by Hτ = ϵ−1

(from the scaling solution), the second term on the right-hand side of (3.2.17) becomes

−(ϵτ)−1

∫ τ̃

0

dτ
d

dτ
(ϵ′τ)τ = (−ϵτ)−1

∫ τ̃

0

dτ
1

ϵ

(ϵ,N
ϵ

)
,N

(3.2.18)

Then this term is of the order O(1/ϵ2), and so can be neglected. Hence,

H−1 =

∫ τ̃

0

dτ (ϵ− 1) ≈ ϵτ

(
1− 1

ϵ
− ϵ,N

ϵ2

)
(3.2.19)

Finally, (3.2.11) becomes

τ 2
(
a′′

a
− a2V,ϕϕ

)
= 2

(
1− 3

2ϵ
+

3

4

ϵ,N
ϵ2

)
= ν2s −

1

4
(3.2.20)

which implies that

νs ≈
3

2
− 3

ϵ
+

1

2

ϵ,N
ϵ2

(3.2.21)

Using the same line of reasoning as in Section 2.2, we find that the spectral index is given
by

ns − 1 =
2

ϵ
− ϵ,N

ϵ2
(3.2.22)

1To prevent confusion between the integration variable and the limit of integration, we take a tilde on
the latter and then replace τ̃ → τ after the integration.
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However, the story is only half-complete at this stage; we need to find the power spectrum
of curvature perturbations, and so need a mechanism to convert the entropy perturbations
into curvature ones. To do this, we follow the method outlined in [80, 81]. Taking (as for
inflation) R to be the curvature perturbation on comoving spatial slices, for N scalar fields
with general Kähler metric gij(ϕ) in scalar field space, the linearised Einstein-scalar field
equations yield

Ṙ = −H
Ḣ

(
gij

D2ϕi

Dt2
sj − k2

a2
Ψ

)
(3.2.23)

where the (N − 1) entropy perturbations

si = δϕi − ϕ̇i gjk(ϕ)ϕ̇
jδϕk

glm(ϕ)ϕ̇lϕ̇m
(3.2.24)

are the transverse components of δϕi with respect to the backgroiund trajectory, and D2

Dt2
is

the geodesic operator on scalar field space. In the scenario we have under consideration, the
scalar field space is flat so gij = δij and D

Dt
= ∂

∂t
. Since we have two scalar fields,

s1 = − ϕ̇2 δs√
ϕ̇2
1 + ϕ̇2

2

, s2 = +
ϕ̇2 δs√
ϕ̇2
1 + ϕ̇2

2

(3.2.25)

Using a straight line trajectory in field space, the right-hand side of (3.2.24) vanishes even
if the entropy perturbations are non-zero. If the trajectory differs from geodesic motion, the
entropy perturbation directly yields the curvature perturbation. This occurs when scalar
potentials are present, and is expected to happen in general when the ekpyrotic potentials
switch off. The bending of the scalar field trajectory that is caused is dependent on the
actual model chosen.

However, if say ϕ2 reflects off a boundary (at ϕ2 = 0, for example) at some time tb, then
we have a model-independent contribution. Assume the bounce occurs after the ekpyrotic
potentials turn off, so the Universe is dominated by the kinetic energy of the scalar field in
the 4-dimensional effective theory. The scalar field trajectory is

ϕ̇2 =

{
−γ̃ϕ̇1, t < tb

+γ̃ϕ̇1, t > tb
, (3.2.26)

where ϕ̇1 = const. < 0 around the point of the bounce. The bounce itself results in a delta
function on the right-hand side of (3.2.23),

D2ϕ2

Dt2
= δ(t− tb) 2ϕ̇2(t

+
b ) (3.2.27)
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If the spectrum of entropic perturbations is already scale-invariant by the time tb, then
the bounce results in an immediate conversion into curvature perturbations with the same
spectrum at long wavelengths. The ekpyrotic contracting phase ends at a time tend, which
corresponds approximately to |Vmin| = 2

c2t2end
. After tend, δs obeys

δs̈+
1

t
δṡ = 0→ δs = A+B ln(−t) (3.2.28)

Matching this to the growing mode solution t−1 in the contracting phase, the entropy grows
by an extra factor of 1 + ln(tend/tb) by the time of the bounce. By making use of the first
Friedmann equation to relate ϕ̇2 = γ̃ϕ̇1 to H and explicitly restoring Mpl, we find that

⟨R2⟩ = c2|Vmin|
3π2M2

pl

γ̃2

(1 + γ̃2)2

(
1 + ln

(
tend
tb

))2 ∫
dk

k
≡
∫

dk

k
∆2

R(k) (3.2.29)

which yields the amplitude of the power spectrum of curvature perturbations, as required.
Specifically, the observed value of ∆2

R(k) constrains c |Vmin|1/2 ≈ 10−3Mpl, which is around
the GUT scale, and therefore reconcilable with our expectation from the underlying heterotic
M-theory picture.

3.3 Spectrum of Tensor Perturbations – Departure from
the Predictions of Inflation

In this section, we will encounter our first departure from the predictions of the inflationary
paradigm. Tensor perturbations in the ekpyrotic/cyclic model can be analysed in a similar
manner to those in inflation, but will be found to imply a power spectrum of gravitational
waves which are negligible on the scales of the the present time [21, 73, 82, 83]. The perturbed
metric is

ds2 = a2
(
−dτ 2 +

(
δij + 2hTY

(2)
ij

))
dxi dxj, (3.3.1)

where Y (2)
ij is a tensor harmonic. The tensor perturbation is gauge-invariant, and satisfies

the equation of motion

h′′T + 2
a′

a
h′T + k2hT = 0 (3.3.2)

Using the rescaled variable fT ≡ ahT , this becomes

f ′′
T +

(
k2 − a′′

a

)
fT = 0 (3.3.3)
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Using the scaling solution a(τ) = (−τ)
1

ϵ−1 , we can express (3.3.3) in the same form as (2.5.7),
with the analogue of (2.5.8) in this case taking the form

a′′

a
=

1

τ 2
2− ϵ

(1− ϵ)2
≡ ν2t − 1/4

τ 2
, νt =

1

2

∣∣∣∣ϵ− 3

ϵ− 1

∣∣∣∣ (3.3.4)

Using the same procedure as that in Section 2.3, we find that the power spectrum of tensor
perturbations is

∆2
t (k) =

k3

2π2

|fk|2

a2

(
8

M2
pl

)
(3.3.5)

and the tensor spectral index is

nT = 3− 2νt = 3−
∣∣∣∣ϵ− 3

ϵ− 1

∣∣∣∣ (3.3.6)

Since ϵ ≫ 1, we have that nT ≈ 2. Therefore, the tensor spectrum is very blue, and so
the spectrum of primordial gravitational waves is negligible on present-day scales; moreover,
the spectrum is cut off at higher frequencies because (1) gravity is felt in the bulk as well
as on the boundary walls and (2) the Universe is kinetic-dominated after ekpyrosis. The
5-dimensional spacetime is locally Minkowski near the brane collision [73], so gravitational
waves with wavelengths smaller than the GUT scale leave the horizon after ekpyrosis and
are not amplified, since they behave as they would in flat space. This result is in sharp
contrast to the prediction from inflation. Consequently, the value of the tensor-to-scalar
ratio r provides a significant empirical test for the validity of the cyclic model.

3.4 Alternative Constructions of Bouncing Cosmologies

While we have focused on the ekpyrotic/cyclic model of Turok, Steinhardt et. al. in this
chapter, this is by no means the only attempt at constructing a bouncing cosmology as a
means of circumventing the problems of inflation [29]. We now briefly discuss some of these
alternative ideas.

Matter Bounce

The matter bounce picture [84] utilises the duality between the evolution of the canonical
fluctuation variables vk in an inflationary era and those in a contracting phase which is
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dominated by matter with pressure P = 0 (i.e. dust). In inflation, the growing mode of vk is
proportional to z(τ) and the other mode is decaying. In a contracting phase dominated by
matter, the conformal scale factor goes as a(τ) ∼ τ 2 and the solution of the mode equation
on super-Hubble scales is

vk(τ) = c1τ
2 + c2τ

−1, (3.4.1)

where c1, c2 are constants whose values are determined by initial condition and the second
mode is growing, rather than the first. Note that the scaling vk(τ) ∼ τ−1 arises due to the
characteristic equation of state w = 0.

Using the conformal Hubble parameter H ∼ τ−1 and the fact that the crossing of the
Hubble radius occurs at k2 = H2, we have that τ∗ ∼ k−1. Then the power spectrum of
curvature perturbations is

∆2
R(k) =

k3

z2(τ)
|vk(τ)|2 ≃

k3

z2(τ)

(τ∗
τ

)2
|vk(ti)|2 (3.4.2)

which, after enforcing the vacuum initial conditions, is scale-invariant. However, noting that
the actual spectrum should in fact be slightly tilted towards the red, one can add a small
cosmological constant Λ which yields the desired result [85]. If thermal initial fluctuations
are also considered, then the power spectrum is scale-dependent, but can be made scale-
invariant by using a fluid with a particular equation of state (w = 7/3) in the contracting
phase [86].

Pre-Big Bang Scenario

The pre-Big Bang approach introduces essential elements from superstring theory to produce
a cosmological model [69]. In particular, it incorporates (in addition to the graviton) the
other massless modes of a closed string, namely the dilaton and the antisymmetric Kalb-
Ramond field. To start with, neglecting the latter, the effective action in the string frame is
[29]

S =

∫
dd+1x

√
−g e−ϕ

(
R− 1

2
gµν∂µϕ ∂νϕ

)
, (3.4.3)

where d is the number of spatial dimensions and ϕ is the dilaton. The conformal transfor-
mations that take this into thw Einstein frame (where the dilaton is not coupled to the Ricci
scalar R) are

ã = ae−ϕ(d−1), ϕ̃ = ϕ

√
2

d− 1
(3.4.4)
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Then the action in the Einstein frame is

S =

∫
dd+1x

√
−g̃

(
R̃− 1

2
g̃µν∂µϕ̃ ∂νϕ̃

)
(3.4.5)

This action displays a time reflection symmetry (t→ −t), and also has a scale factor duality
symmetry, which is related to T-duality (see e.g. [49] for details). For a homogeneous,
isotropic metric, the symmetry transformation is

a→ a−1, ϕ̄→ ϕ̄, (3.4.6)

where ϕ̄ = ϕ − 2d lna. Minimally coupling matter (as a perfect fluid) to R and taking
d = 3, w = +1/3, the usual radiation-dominated solution is obtained

a(t) ∼ t1/2, ϕ(t) = const. (3.4.7)

Taking a time reflection followed by a scale factor duality transformation, a super-exponentially
expanding solution is found

a(t) ∼ (−t)−1/2, ϕ(t) ∼ −3 ln(−t), (3.4.8)

which corresponds to matter with a ‘stringy’ equation of state, w = −1/3. This corresponds
to the pre-Big Bang branch, which represents a contracting phase in the Einstein frame.
Note that, in both frames, the constant comoving scales exit the Hubble radius in the pre-Big
Bang phase. However, the solution still involves a singularity at t = 0, so new (Planck-scale)
physics is expected in its vicinity, which reduces to the solutions (3.4.7) and (3.4.8) further
out in time.

For other equations of state, it is possible to obtain a pre-Big Bang branch of an expanding
solution with reducing curvature. In the setting of pure dilaton gravity, we have [87]

a(τ) ∼ τ 1/2, τ → 0− (3.4.9)

Then the mode equation (which is essentially the Mukhanov-Sasaki equation) has super-
Hubble solutions

vk(τ) ∼ |τ |1/2, vk(τ) ∼ |τ |1/2 ln(k|τ |) (3.4.10)

As τ → 0, the second solution dominates. In contrast to the matter bounce picture, fluctu-
ations are damped on super-Hubble scales so an initial vacuum spectrum is tilted towards
the blue rather than the red. The power spectrum is given by

∆2
k(v) ∼ k3 |vk(τ∗)|2

τ

τ∗
(3.4.11)
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|vk|2 scales as k−1 but since τ ∼ k−1, τ−1
∗ ∼ k so ∆2

k(v) ∼ k3 and ns = 4. Likewise, the tensor
modes have a power spectrum with the same gradient. To find a scale-invariant spectrum,
one must either deform the background or use the entropic/isocurvature mechanism (as
in Section 3.2); in the latter, there exists a natural candidate in superstring theory with
which we can identify the second scalar field. This is the axion, which arises as the dual of
the antisymmetric Kalb-Ramond field in the Kaluza-Klein compactification of the heterotic
string theory to 4 dimensions [88]. Then the desired spectrum is obtained from a scale-
invariant spectrum of axion energy density fluctuations (in the presence of dynamical extra
dimensions) [89].

3.5 Problems with Bouncing Cosmologies

In this chapter, we have shown how a bouncing cosmology (specifically the ekpyrotic/cyclic
model) can be a viable alternative to inflation, and is not encumbered with some of the
issues that plague the latter. However, this does not mean that it is completely trouble-free;
we now look at some of the challenges facing the model/s we have considered here.

Initial Conditions

While we require initial conditions in order to solve e.g. the mode equation for curvature
fluctuations, these initial conditions ideally should not be finely-tuned so as to only work in a
very particular environment. While we saw an example of how this is a major problem for in-
flation, bouncing and cyclic cosmologies specify the initial conditions as far back into the past
as possible. We are then confronted with the question of what generated these initial con-
ditions for the background trajectory, which can especially be a problem the cyclic/phoenix
Universe picture, where the latter is inherently unstable to quantum fluctuations.

Inhomogeneities

In a contracting Universe, primordial inhomogeneities are expected to be erased through
ultra-slow contraction. This is not a problem for the ekpyrotic model; however, one finds
that while the contracting phase of a Universe dominated by pressure-free dust can be made
sufficiently homogeneous in the primordial state [90], the presence of a cosmological constant
(as required in the matter bounce picture for generation of a power spectrum of curvature
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perturbations which is slightly red-tilted) can cause the perturbations to become unstable
[91].

Matching Conditions

As we saw in Section 3.2, curvature perturbations in an ekpyrotic contracting phase need
to be matched to those in an expanding phase on the other side of a Big Crunch-Big Bang
transition. The particular matching condition (which is related to (3.1.16)) is in fact sensitive
to the specific matching surface chosen; any other surface will yield a completely different
spectrum in the expanding phase [75, 92]. This corresponds to a form of fine-tuning that is
undesirable in a theoretically solid model of cosmology, and we will see in Chapter 4 how
this is resolved with a mechanism that does not require such fine-tuning.

Moreover, the models explored in this chapter still involve a singularity at t = 0. It is as
yet unclear, from a theoretic perspective, as to what physics would determine the evolution
in the vicinity of this region and just how the perturbations could be analytically continued
across such a singularity, mild or otherwise. The alternative approach is a nonsingular
bounce, which may involve introducing new physics to ensure a consistent description; we
will explore this possibility in greater detail in Chapter 4.

Dependence on Fundamental Theory

The ekpyrotic/cyclic model is still dependent on the validity of the higher-dimensional picture
from M-theory, which is required to be UV-complete and pathology-free. In particular, one
roadblock that remains from this point of view is that the ekpyrotic potential has not been
derived from the underlying theory from first principles, and still needs to be inserted by
hand. Moreover, a full quantum treatment of the Big Crunch-Big Bang transition has not
been made, and so the exact dynamics of the bounce are not completely understood.

Instability of Background Trajectory

While the two-field entropic/isocurvature mechanism does indeed generate a (nearly) scale-
invariant spectrum of curvature perturbations, as we showed in Section 3.2, the background
trajectory (which goes along s = 0 using the notation from that section) does in fact prove
to be unstable to fluctuations. This instability was first shown by Tolley and Wesley [76],
whose analysis we follow here, in the form presented by Levy, Ijjas and Steinhardt [26].
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If we consider the two-field Lagrangian

L =
1

2
R− 1

2
Gab(Φ)g

µν∂µΦ
a ∂νΦ

b − V (Φ), (3.5.1)

where Gab is the metric on the scalar field space and a, b = 1, 2, then a scaling solution
(solution where all contributions to energy density scale with time in the same way, keep-
ing fractional contributions constant) exists if there is a continuous transformation with
parameter κ such that

dΦa

dκ
= ξa(Φ), gµν → eκgµν , S =

∫
d4x
√
−gL → eκS (3.5.2)

This symmetry means that we can find a change of variables (Φ1,Φ2)→ (ϕ, σ) such that

L =
1

2
R− 1

2
(∂σ)2 − 1

2
f(σ)(∂ϕ)2 − V0e−cϕh(σ), (3.5.3)

where we have taken the usual ekpyrotic form for the potential V and the background
solution is given by f(σ) = h(σ) = 1, σ = 0. Introducing the variables

(w, x, y, z) ≡

(√
f(σ)ϕ′
√
6H

,
σ′
√
6H

,−
√
−V0h(σ)e−cϕ/2√

3H
, σ

)
, (3.5.4)

where the conformal time τ takes negative values and H = a′/a is (as before) the conformal
Hubble parameter, the equations of motion take the form

w,N = 3(w2 + x2 − 1)

(
w − c√

6f(z)

)
−
√

3

2

f,z
f(z)

xw

x,N = 3(w2 + x2 − 1)

(
x+

1√
6

h,z
h(z)

)
+

√
3

2

f,z
f(z)

w2

z,N =
√
6x

(3.5.5)

where N ≡ ln a is the number of e-folds of ekpyrosis, y is eliminated using the Friedmann
constraint w2 + x2 − y2 = 1 and we recall that the parameter ϵ = 1−H′/H2 = 3(w2 + x2).
Since the Friedmann constraint shows that the fractional contributions of the energies sum
to 1, we see that ϵ is the sum of the kinetic energies of ϕ and σ (up to a factor of 3). The
fixed-point scaling solution for the system of equations (3.5.5) is

(w, x, y, z) =

(
c√
6
, 0,

√
c2

6
− 1, 0

)
, (3.5.6)
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where σ = 0 and only ϕ is dynamical, subject to the constraint h,σ(0) = −c2f,σ(0)
c2−6

. As
shown by Tolley and Wesley, the perturbation spectrum depends on the remaining degrees
of freedom {c; f,σ(0); f,σσ(0);h,σσ(0)}, since the background solution has σ = 0. We now take
the explicit example presented by them (and considered by Levy, Ijjas and Steinhardt), with

L =
1

2
R− 1

2
(∂Φ1)

2 − 1

2
(∂Φ2)

2 − Ṽ0e−c1Φ1 − Ṽ0e−c2Φ2 (3.5.7)

having the scaling solution Φi = Ailn |τ | + Bi and c1A1 = c2A2. In this case, the metric on
the scalar field space is simply Euclidean, Gab = δab. Here the change of variables taking
(3.5.7) to the form of (3.5.3) is

ϕ =
c2Φ1 + c1Φ2√

c21 + c22
, σ =

c1Φ1 − c2Φ2√
c21 + c22

+ σ0, (3.5.8)

where σ0 = 2 ln(c2/c1)

c21+c
2
2

. The functions f and h take the form

f(σ) = 1, h(σ) = 1 +
c2

2
σ2 +O(σ3) (3.5.9)

and
1

c2
=

1

c21
+

1

c22
, V0 =

(c2
c1

) 2c21
c21+c22

+

(
c1
c2

) 2c22
c21+c22

 (3.5.10)

Linearising the background (3.5.5) about the fixed point (3.5.6), the perturbations satisfyδw,Nδx,N
δz,N

 =M ·

δwδx
δz

 , (3.5.11)

where (δw, δx, δz) ≡ (w − c/
√
6, x, z) and M is given by

M ≡

1
2
(c2 − 6) 0 0

0 1
2
(c2 − 6) c2

2
√
6
(c2 − 6)

0
√
6 0

 (3.5.12)

Now, the solution would be stable if the eigenvalues of M were all positive. In this case, the
eigenvalues of M are

λ =
c2 − 6

2
,

(c2 − 6)±
√
9c4 − 60c2 + 36

4
(3.5.13)
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Discussion

The baseline ekpyrotic case ϵ > 3 requires c >
√
6, in which case the final eigenvalue is

negative (although, as mentioned earlier, ekpyrotic contraction is characterized by ϵ ≫ 1,
which only makes this conclusion firmer). Hence, the system must be finely tuned to be
at the fixed point, otherwise the perturbations carry its trajectory further away, implying
an unstable background solution. Moreover, this fine-tuning would have to occur during
each cycle of cosmic evolution, which represents a serious problem for the two-field cyclic
Universe model. Although we have not discussed non-Gaussianity, we note that this solution
also predicts a level of non-Gaussianity [93], fNL ≥ O(10), that is in tension with the bounds
from observational data [94]. We will see how the new iteration of a cyclic Universe resolves
these problems in Chapter 4.

3.6 Discussion

In this chapter, we presented bouncing cosmology as a plausible alternative to the inflationary
paradigm, with a focus on the ekpyrotic/cyclic/phoenix model of Turok, Steinhardt, Lehners
et. al. We started by showing how this can solve the horizon, flatness and entropy problems,
while making the singularity at t = 0 milder (as a momentary collapse and rebound of only
the orbifold dimension in the higher-dimensional setting). We then proceeded to demonstrate
how, using the entropic/isocurvature mechanism with two scalar fields, a (nearly) scale-
invariant spectrum of entropy perturbations could be obtained and subsequently converted
into a scale-invariant spectrum of curvature perturbations; we also illustrated the means
by which the spectrum of tensor perturbations predicted negligible primordial gravitational
waves, in contrast to the expectation from the inflationary mechanism of Chapter 2. We
also briefly presented the ideas behind the matter bounce and pre-Big Bang scenarios, as
alternative constructions of a bouncing cosmology.

We then considered some of the problems faced by these models, with two issues standing
out in particular. The first was the dependence of the ekpyrotic mechanism on a higher-
dimensional (M-theory) setting, and the absence of a derivation of the potential from first
principles. The actual mechanism governing the bounce is also yet to be given a full quantum
treatment and completely understood. The second issue was the instability of the background
trajectory to fluctuations, given the two-field mechanism that was used to generate the scale-
invariant spectrum of curvature perturbations. We use these two problems as motivation
for presenting the new, classical form of a cyclic Universe proposed by Ijjas and Steinhardt,
which we will explore in Chapter 4.
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4
The Cyclic Universe – A New Perspective

In Chapter 3, we demonstrated how the problems of the hot Big Bang model could be solved
by taking a bouncing cosmology, with particular focus on the cyclic/phoenix Universe of
Turok, Steinhardt et. al. The horizon and flatness problems were shown to be resolved
through a period of ultra-slow (ekpyrotic) contraction preceding a bounce to an expanding
phase. The problem of large-scale structure formation was resolved through the two-scalar
field entropic/isocurvature mechanism, whereby a nearly scale-invariant spectrum of entropy
perturbations, produced in the contracting phase, was converted into a nearly-scale invari-
ant spectrum of curvature fluctuations in the kinetic-dominated phase after contraction and
prior to the bounce. However, this model exhibited two major problems – the background
trajectory in the contracting phase was shown to be unstable to fluctuations, and the de-
scription of the bounce was still singular (and hence dependent on the fundamental M-theory
picture we discussed).

In this Chapter, we will present a rather different view of the cyclic Universe. Although
the contracting phase incorporates much of the dynamics proposed by the older model (i.e.,
a scalar in a steep negative potential), the mechanism for generating entropic perturbations
(leading to curvature ones) will be stable for generic initial conditions. We note that this is
not necessarily unique to the new picture, and could be implemented in the context of the
older model as well. Moreover, the bounce will be non-singular and will occur entirely in the
classical regime, in contrast to the string-inspired picture described in Chapter 3.

4.1 Resolving the Background Instability Problem

As we described in Section 3.5, Tolley and Wesley [76] showed that, while the two-scalar field
isocurvature model would generate a scale-invariant spectrum of entropic perturbations in a
contracting Universe, the background trajectory would be inherently unstable to fluctuations,
and so preventing this instability would require a great level of fine-tuning during each cycle.
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However, Levy, Ijjas and Steinhardt [26] presented a counter-example by expanding on the
action first discussed by Li [95]. We will now demonstrate how their argument yields a stable
trajectory without fine-tuning the initial conditions – note that this is not unique to the new
model, and indeed could be applied to the old one. Consider the Lagrangian

L =
1

2
R− 1

2
(∂ψ)2 − 1

2
e−λψ(∂χ)2 − Ṽ0e−λψ, (4.1.1)

where λ > 0, Ṽ0 < 0. The exponential coupling factor to the kinetic term for χ indicates that
the the scalar field space metric is no longer Euclidean (as in the decoupled case discussed
in Chapter 3). Note that, for now, the field χ is taken to be massless (we will return to this
point later, when considering the robustness of ekpyrotic contraction, given the modified
Lagrangian). Let us first consider the case V (ψ) = 0, and look at background trajectories
for different initial conditions in the space parameterised by

(w̃, x̃, ỹ, z̃) =

(
ψ′
√
6H

,
e−λψ/2χ′
√
6H

,
−a
√
−Ṽ0e−λψ/2√
3H

, e−λψ/2(χ− χ0)

)
, ỹ → 0 (4.1.2)

Recall that primes denote derivatives with respect to the conformal time τ , and H = a′/a is
the conformal Hubble parameter. The superscript ∼ refers to quantities in terms of (ψ, χ), as
opposed to those in terms of (ϕ, σ) (c.f. (3.5.8)), which are obtained by a change of variables.
The fixed point solutions (w̃, x̃, z̃) = (±1, 0, 0) are those wherein, if the background solution
starts there, it stays there (hence the term ’fixed point’). For generic initial conditions which
do not correspond to a fixed point, we refer to Fig. 1 of [26], which shows that the background
solution appears to be carried towards a strong attractor curve with the significant property
that x̃ = 0→ χ′ = 0, which implies that the kinetic energy of the χ field is negligible. From
[76], this corresponds to the state when the adiabatic and entropic perturbations decouple.
Such a curve is referred to as a ‘fixed curve attractor’, and the solutions along this curve are
scaling since w̃, x̃ and ỹ are constant. The negative eigenvalue that arises in the linearised
equations of motion points to the existence of a fixed curve attractor, rather than a fixed
point. The curve then implies that stability holds for generic initial conditions, and that
fine-tuning is no longer demanded of the model. In analogy to (3.5.8), the change of variables
for (ψ, χ)→ (ϕ, σ) is

ψ = ϕ+
2

λ
ln

[
sech

(
λσ

2

)]
+ ψ0, χ =

2

λ
e(ϕ+ψ0)/2 tanh

(
λσ

2

)
+ χ0, (4.1.3)

where ψ0 ∈ R is a constant. Substituting these transformations into (4.1.1) yields

L =
1

2
R− 1

2
(∂σ)2 − 1

2
f(σ)(∂ϕ)2 − V0e−cϕh(σ), (4.1.4)
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with f(σ) = h(σ) = cosh2
(
λσ
2

)
, c = λ. Solutions along the fixed-curve attractor still

generate a scale-invariant spectrum of entropic perturbations.
Now let us consider V (ψ) = 0. Varying the action (4.1.1) with respect to each of ψ and

χ yields the field equations

ψ′′ + 2Hψ′ − λṼ0e−λψa2 +
λ

2
e−λψχ′2 = 0 (4.1.5)

χ′′ + 2Hχ′ − λψ′χ′ = 0 (4.1.6)

The Friedmann constraint is

H2 =
1

6

(
ψ′2 + e−λψχ′2 + 2a2Ṽ0e

−λψ
)

(4.1.7)

Using the variables (w̃, x̃, ỹ, z̃), these equations become

w̃,N = 3
(
w̃2 + x̃2 − 1

)(
w̃ − λ√

6

)
−
√

3

2
λx̃2 (4.1.8)

x̃,N = 3x̃
(
w̃2 + x̃2 − 1

)
+

√
3

2
λw̃x̃ (4.1.9)

z̃,N = −
√

3

2
λw̃z̃ +

√
6x̃ (4.1.10)

If V ̸= 0, then there are 3 fixed point solutions

(w̃, x̃, ỹ, z̃) = (−1, 0, 0, 0), (+1, 0, 0, 0),

(
λ√
6
, 0,

√
λ2

6
− 1, 0

)
, (4.1.11)

all of which are associated with negative eigenvalues, and so are unstable. The third solution
bisects two fixed-curve solutions

(w̃, x̃, ỹ, z̃) =

(
λ√
6
, 0,

√
λ2

6
− 1,±Z̃

)
, (4.1.12)

where Z̃ ∝ e−λ
2N/2. Both fixed curves generate a scale-invariant spectrum of entropic pertur-

bations. The previous case V = ỹ = 0 corresponds to the particular solution with λ = ±
√
6.
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In terms of (ϕ, σ), as before, (4.1.1) becomes (4.1.4), with f(σ) = h(σ) = cosh2
(
λσ
2

)
, c =

λ, V0 = Ṽ0e
−λψ0 . The equations of motion then take the form

w,N = 3(w2 + x2 − 1)

(
w − λ√

6
sech(λz)

)
−
√
6c tanh(λz)xw (4.1.13)

x,N = 3(w2 + x2 − 1)

(
x+

√
2

3
λ tanh(λz)

)
+
√
6c tanh(λz)w2 (4.1.14)

z,N =
√
6x (4.1.15)

Given the change of variables (ψ, χ) → (ϕ, σ), the implied transformation for (w, x, y, z) →
(w̃, x̃, ỹ, z̃) is

w̃ = sech

(
λz

2

)
w − tanh

(
λz

2

)
x

x̃ = tanh

(
λz

2

)
w + sech

(
λz

2

)
x

ỹ = y, z̃ =
2

λ
sinh

(
λz

2

) (4.1.16)

In terms of (w, x, y, z), the fixed point solutions are

(−1, 0, 0, 0), (+1, 0, 0, 0),

(
λ√
6
, 0,

√
λ2

6
− 1, 0

)
(4.1.17)

and the fixed curve solutions are(
λ√
6
sech

(
λz

2

)
,− λ√

6
tanh

(
λz

2

)
,

√
λ2

6
− 1,±Z

)
, (4.1.18)

where Z =
(
2
λ

)
sinh−1

(
λZ̃
2

)
. The fixed curves lie on the surface of the cylinder w2 + x2 =

λ2

6
. To explicitly show the existence of a negative eigenvalue, one can linearise the equa-

tions of motion (4.1.8)–(4.1.10) about the fixed point bisecting the fixed curves and take
(δw̃, δx̃, δz̃) =

(
w̃ − λ√

6
, x̃, z̃

)
so that

M̃ ≡

λ2

2
− 3 0 0

0 λ2 − 3 0

0
√
6 −λ2

2

 (4.1.19)
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Following the same procedure with w, x, z and (δw, δx, δz) =
(
w − λ√

6
, x, z

)
yields

M ≡


λ2

2
− 3 0 0

0 λ2

2
− 3 λ2(λ2−3)

2
√
8

0
√
6 0

 (4.1.20)

Both matrices have the eigenvalues
{
−λ2

2
, λ

2

2
− 3, λ2 − 3

}
, in which case it is apparent that

the first eigenvalue will always be negative. In terms of (w̃, x̃, ỹ, z̃, the corresponding eigen-
vector is parallel to the z̃ unit vector, which is tangent to the appropriate fixed curve (4.1.12).
In terms of (w, x, y, z), the eigenvector is parallel to ẑ − λ2

2
√
6
x̂ (where x̂, ẑ are unit vectors)

which is tangent to the fixed curve (4.1.18) as well.
At this point, we note that we can generalise this approach to actions without shift

symmetry as well

L =
1

2
R− 1

2
(∂ψ)2 − 1

2
e−λψ(∂χ)2 − (1 + r(χ))V0e

−µψ + q(χ) (4.1.21)

In particular, the addition of r(χ) and q(χ) breaks the shift symmetry because

V = (1 + r(χ))V0e
−µψ + q(χ)

→
(
1 + r

(
eλκ/2µχ

))
V0e

−µψ−κ + r
(
eλκ/2µχ

)
̸= e−κV

The most general ekpyrotic, two-field Lagrangian (with shift symmetry, which implies the
existence of scaling solutions) which is either a fixed-point or a fixed-curve attractor, and
generates a scale-invariant spectrum of entropy perturbations is in the form of (4.1.4), with
V0 < 0, c ∈ R, h(σ) > 0, f(σ) > 0. The requirements of shift symmetry, scaling solution,
fixed curve attractor and scale-invariant perturbations imply the properties

1. lim
|σ|→∞

f(σ)→∞ monotonically

2. lim
|σ|→∞

f(σ) ∝ e−µσ

3. lim
|σ|→∞

(w, x, y, z) =

(
0, µ√

6
,
√

µ2

6
− 1,−sign(µ)∞

)
→ scaling solution

4. |µ| >
√
6 for ekpyrosis
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Then the remaining degrees of freedom are c, V0 and f(σ) at late times (given that property
1 is satisfied). We will not go through the explicit calculation fully here, but it is found
that, perturbing the Einstein equations about the fixed curve solution shown by property
3 in the longitudinal gauge, 3 cases are obtained – fast growth (|f,σ/f | ≳ 1), slow growth
(|f,σ/f | ≲ 1) and ‘just-so growth’ (|f,σ/f | ∼ 1) (see [26] for details). Note that the relational
operators have the following meanings

|A(τ)| ≳ |B(τ)| if
d ln|A(τ)|
d ln(−τ)

<
d ln|B(τ)|
d ln(−τ)

as τ → 0

|A(τ)| ∼ |B(τ)| if
d ln|A(τ)|
d ln(−τ)

=
d ln|B(τ)|
d ln(−τ)

as τ → 0

From [26], fast and slow growth are unable to yield scale invariance. ‘Just-so’ growth implies
that f(σ) = e−λσ, λ ∈ R such that sign(λ) = sign(µ). Then

ns − 1 = 3−
∣∣∣∣2(λµ− 2

µ2 − 2

)
+ 1

∣∣∣∣ (4.1.22)

so scale invariance (ns − 1 = 2) is achieved for λ = µ. Note that, in this case,

L =
1

2
R− 1

2
(∂ψ)2 − 1

2
e−λψ(∂χ)2 − V0e−cχe−µψ (4.1.23)

which is equivalent to (4.1.21) with r(χ) = e−λχ− 1, q(χ) = 0, c = λ. Although we have not
discussed non-Gaussianity in any detail in this dissertation, we note that this action is also
predicted [25] to produce small non-Gaussianity (fNL ∼ 5), which is within the constraints
placed by observational data [94].

Given the new exponential coupling in the kinetic term of χ that differentiates it from
the old model, we would not be remiss to check how this affects the robustness of ekpyrotic
contraction. We can, in general, add a potential term U(χ) to this effect. It was shown in
[96], using non-perturbative numerical simulations, that if χ is massless, then the evolution
is rapidly deflected away from the FLRW stationary point if the characteristic mass scale
for V (ψ), M = 1/λ is too close to the Planck scale, or if the ‘fast-roll’ parameter ϵψ (which
is directly related to its equation of state) is not large enough. Then the evolution of the
system tends towards a Kasner-like solution where the spatial gradient of χ, S̄xχ, is non-zero
and time-independent. This in turn would have a detrimental impact on the homogeneity
and isotropy of the background.

For a generic model with smaller values of the characteristic mass scale, M ≲ 0.1, or
weakly broken shift symmetry in χ (e.g. through a small non-zero mass, yielding a potential
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U(χ) = 1
2
mχχ

2), the deflection is strongly suppressed such that the evolution tends towards
a long-lived state with negligible S̄xχ and the usual FLRW scaling solution. The deflection
away from the flat FLRW background solution caused by the non-canonical kinetic coupling
occurs on a time scale that is much longer than deemed relevant for cosmological models of
interest. Specifically, this time scale is expected to be O(100) or more e-folds of contraction
of the inverse mean curvature Θ, which (by the gauge choice employed in [96]) coincides with
the Hubble radius H−1 in the homogeneous limit. However, a non-singular bounce which
connects the Universe to a hot expanding phase is expected to take place well before that
time.

The final point that we should check in the context of the non-canonical kinetic coupling
is the conversion of a scale-invariant spectrum of entropy fluctuations to that of curvature
fluctuations. It was proposed in [97] that this would require the inclusion of a quartic kinetic
term which is also exponentially coupled to ψ,

L =
1

2
R− 1

2
(∂ψ)2 − 1

2
Σ1(ψ)(∂χ)

2 +
1

4
Σ2(ψ)(∂χ)

4 − V (ψ, χ), (4.1.24)

with Σ1(ψ) = e−λψ = e−ψ/m, Σ2(ψ) = eαψ, V (ψ, χ) = −V0e−ψ/M + 1
2
mχχ

2. As the ekpyrotic
contracting phase comes to an end and the parameter ϵ → 3, the kinetic energies of the
scalar fields come to dominate the evolution, with the quartic term playing an especially
significant role. In [98], it was shown that perturbations in χ sourced entropy modes as

S ≡ H

(
δP

Ṗ
− δρ

ρ̇

)
≡ H

δPnad

P
, (4.1.25)

with the non-adiabatic pressure contribution on hypersurfaces of constant density defined as
δPnad ≡ δP − Ṗ

ρ̇
δρ ̸= 0. Then, on large scales (where k ≪ a|H|), stress-energy conservation

yields the following relation for the evolution of the curvature perturbations

Ṙ ≈ −3H Ṗ

ρ̇
S = H

δPnad

ρ+ P
(4.1.26)

Then, in the spatially flat gauge, we obtain the following expression for the curvature per-
turbation in terms of the scalar perturbations

R ≡ H
ψ̇δψ +

√
Σ1 + Σ2χ̇2χ̇δχ

ψ̇2 + (Σ1 + Σ2χ̇2) χ̇2
(4.1.27)

with the non-adiabatic pressure being

δPnad ≈ 2c2s

[
−Σ2χ̇

3ψ̇Ḟ +

((
Σ1 + Σ2χ̇

2
)(

V,ψ +
1

4
Σ2,ψχ̇

4

)
χ̇− V,χψ̇ − Σ2χ̇

3ψ̈

)
F
]

(4.1.28)
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The relative field fluctuations are quantified by

F ≡

(
ψ̇χ̇

ψ̇2 + Σ1χ̇2 + Σ2χ̇4

)(
δχ

χ̇
− δψ

ψ̇

)
(4.1.29)

and the speed of the adiabatic fluctuations is

c2s ≡
ψ̇2 + Σ1χ̇

2 + Σ2χ̇
4

ψ̇2 + Σ1χ̇2 + 3Σ2χ̇4
(4.1.30)

Since χ̇ → 0 in the contracting phase, δPnad ≈ 0. However, in this transitory kinetic-
dominated exit phase, χ̇ ̸= 0, and so F yields δPnad ̸= 0, which sources the curvature fluc-
tuations on super-Hubble scales. The spectrum is (nearly) scale-invariant since the sourcing
entropy spectrum is itself (nearly) scale-invariant. For the purpose of comparison against
previous models, the amplitude of the power spectrum is given by

⟨R2(x)⟩ =
∫

d3k

(2π)3

(
R
kν

)2

=

∫
dk

k

(
R2

2π2

)
k3−2ν =

∫
dk

k
∆2

R(k), (4.1.31)

where ν takes its meaning from the Mukhanov-Sasaki equation and its solution in terms of
Hankel functions, as before,

ν2 − 1/4

τ 2
=
z′′

z
=

1

4

(
1 + 2

M
m
ϵ− 1

ϵ− 1

)2

ns − 1 = 3− 2ν = 2

(
1−

M
m
ϵ− 1

ϵ− 1

) (4.1.32)

Therefore, the quartic kinetic term plays a significant role in the conversion of entropic to
curvature fluctuations, although it also seems to serve a second, key purpose. From the point
of view of ψ, this is a potential term which is exponential in nature, and describes the sharp
increase of the potential towards zero after the contracting phase ends. In the older cyclic
models covered in Chapter 3, this was achieved by the function F (ϕ) in (3.1.15), which was
proposed to be a super-exponential function having its origin in a string-based mechanism
(for example, in [22, 23], it was proposed that F ∝ e−1/gs , where the string coupling gs ∝ eγϕ

for γ > 0). On the other hand (as we shall see in the next section), this model is supposed to
have no string motivation or influence, and so the previous explanation cannot be used – in
fact it might be inferred that the form of the potential required for a cyclic Universe becomes
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less physically motivated in this new context. We can now see that the role of bringing the
potential to zero can be played by this effective potential term, although an open question
remains as to how we could ‘stitch’ the two components of the potential together using some
well-founded physical motivation.

4.2 Rewriting the Rules of the Game – A Non-Singular
Bounce?

Up to this point, all the models we have considered (inflation, cyclic, phoenix) involved a
singularity at t = 0, in the vicinity of which a quantum description of gravity was expected
to take over. In fact, we will now show that this is not necessarily the only way to describe
a transition from a contracting to an expanding Universe. Recall the first and second (or
Raychaudhuri) Friedmann equations for a spatially flat FLRW universe, (2.1.2)–(2.1.3). For
a perfect fluid, we have that the stress-energy tensor takes the form Tµν = (ρ+P )uµuν+Pgµν .
The null energy condition (NEC) states that Tµνlµlν ≥ 0 for a null vector lµ. Inserting the
above form of Tµν into the left-hand side of the NEC expression yields1

Tµνl
µlν = (ρ+ P )uµuνl

µlν + Pgµνl
µlν = (ρ+ P )uµuνl

µlν = (ρ+ P ) (uµl
µ)2 ≥ 0

⇒ ρ+ P ≥ 0

Now inserting (2.1.2) and (2.1.3), we find that

ρ+ P = 3

(
ȧ2

a2

)
−
(
2
ä

a
+
ȧ2

a2

)
= 2

(
ȧ2

a2
− ä

a

)
= −2Ḣ ≥ 0

Hence, the NEC implies that Ḣ ≤ 0. If we consider a phase of ordinary (NEC-obeying)
contraction, H becomes more negative as the scale factor a(t) reduces and the energy density
ρ ∝ H2 increases. Conversely, during an expanding phase, H becomes less positive as a(t)
increases and ρ ∝ H2 reduces. One could then conceive of a situation where these two phases
were connected by some classical (non-singular) transition. However, this would entail H
increasing from a large negative value to a large positive value (while ρ ∝ H2 remains sub-
Planckian) at some finite value of a(t). The fact that Ḣ > 0 during the bounce automatically
means that the null energy condition must be violated, in order for us to be able to entertain

1There is an aside regarding the applicability of the perfect fluid assumption in the model we consider,
which we will address shortly.
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a classical, non-singular description. While the NEC is a cornerstone of Penrose’s singularity
theorem [99], it is not a cornerstone of General Relativity (or gravity theory) as such, and
violating it can still be considered within the purview of the latter. However, violating the
NEC without introducing any pathologies is not straightforwardly achieved – indeed, a scalar
field with a canonical kinetic term would not suffice, and nor would a P (X) theory (as it
would lead to a classical gradient instability). The model that we will consider is that of a
generalised Galileon/Horndeski scalar-tensor theory which yields second-order equations of
motion in 4 space-time dimensions and admits an NEC-violating bounce solution2 [33, 101].

As a brief primer to theories of modified gravity, we introduce Lovelock’s theorem, which
states that the only possible second-order Euler-Lagrange expression obtainable in 4 space-
time dimensions from a scalar Lagrangian density L = L(gµν) is [102, 103, 104]

Eµν = α
√
−g
(
Rµν − 1

2
gµνR

)
+ β
√
−ggµν , (4.2.1)

where α and β are constants,

Eµν(L) = d

dxρ

(
∂L
∂gµν,ρ

− d

dxλ

(
∂L

∂gµν,ρλ

))
− ∂L
∂gµν

(4.2.2)

and Eµν(L) = 0 gives the Euler-Lagrange equations. While the most general action that
one can construct purely from the metric is the Eintein-Hilbert action (with a cosmological
constant term) plus scalar contractions of the Riemann and Ricci tensors, the only field
equations that we obtain in second order or less are the Einstein equations with a cosmological
constant. As a result, in order to find a theory of gravity that is different from General
Relativity, we must do one or more of –

• Consider fields other than the metric, such as scalars

• Include field equations with higher than second-order derivatives of gµν

• Change the number of space-time dimensions, D ̸= 4

• Relax the requirements of either rank-2 tensor field equations, symmetry under index
exchange, or divergence-free field equations

2Generic Horndeski theories introduce non-minimal coupling of the scalar to gravity so that the NEC
does not remain well-defined as a condition on matter [100]. Hence, strictly speaking in this context, we
talk about violation of the null convergence condition (NCC), Rµν l

µlν ≥ 0, where Rµν is the Ricci tensor.
For minimally-coupled theories, this coincides with the NEC, while its generic violation still corresponds to
Ḣ > 0.
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• Remove the requirement of locality

As the first of these still preserves the most physical meaning, we will take that option.
Specifically, we will work with generalised Galileon/Horndeski theory, which is the most
general scalar-tensor theory of gravity in 4 space-time dimensions that yields second-order
field equations. The general Horndeski action is given by

S =

∫
d4x
√
−g
(
1

2
R + LH

)
, (4.2.3)

where LH =
∑5

i=2 Li and

L2 = G2(X,ϕ), L3 = G3(X,ϕ)□ϕ

L4 = G4(X,ϕ)R +G4,X(X,ϕ)
(
(□ϕ)2 − (∇µ∇νϕ)

2
)

L5 = G5(X,ϕ)Gµν∇µ∇νϕ− G5,X

6

(
(□ϕ)3 − 3□ϕ(∇µ∇νϕ)

2 + 2 (∇µ∇νϕ)
3
) (4.2.4)

Note that X = −1
2
∇µϕ∇µϕ = −1

2
∂µϕ ∂µϕ is the canonical kinetic term. We can see that

ordinary General Relativity with a single minimally-coupled canonical scalar is recovered by
setting G2 = X, G3 = G4 = G5 = 0 and the class of P (X,ϕ) theories is recovered by taking
G2 = P (X,ϕ), G3 = G4 = G5 = 0. While we assumed that the stress-energy tensor took
the form of that for a perfect fluid in our derivation of the implication Ḣ ≤ 0 from NEC
violation, Tµν in fact does not correspond to a perfect fluid for a generic Horndeski theory.
However, the homogeneous part does take the required form due to the spherical symmetry
of the FLRW metric [32], and so we are able make this assumption without trouble. While
Ijjas and Steinhardt stress in [33, 101] that there is considerable flexibility in designing non-
singular bouncing models within the generalised Galileon framework, we will stick to their
example and work with the following coupling functions

G2(X,ϕ) = k(ϕ)X + q(ϕ)X2 − V (ϕ), G3(X,ϕ) = −b(ϕ)X

G4(X,ϕ) =
1

2
f1(ϕ) + f2(ϕ)X, G5(X,ϕ) = 0

(4.2.5)

Before we delve deeper into the dynamics of the non-singular bounce governed by Horn-
deski theory, let us consider as a brief aside the following – the Lagrangian describing the
pre-bounce phases depends on two scalars, with the kinetic term(s) of the second scalar hav-
ing a non-trivial exponential coupling to the first. On the other hand, the bounce Lagrangian
seems to be only dependent on a single (dominant) scalar. Given the generalised first Fried-
mann equation (3.1.3), one would naïvely expect the bouncing phase to also be dependent
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on two scalars. This would usually present a sizeable problem as the Horndeski framework
has not been concretely generalised to accommodate multiple scalars yet (for a review of
approaches to this problem, see [105] and references therein). However, this seemingly trou-
blesome issue is resolved by recognizing that one should consider the relative domination
of fields at the level of the background and perturbations. In the scalar field space, one
direction sets the trajectory for the background, with the field equations resembling that of
the single-field scenario. For the perturbations, one would strictly have to look at both the
adiabatic and isocurvature combinations, but as we have shown above, one of the scalars has
a much greater mass scale than the other, so that a single-field description is also valid at
this level [48].

As usual, we consider the background to be a spatially flat FLRW metric, so that the
homogeneous equations of motion that we obtain are [33]

3H2 =
1

2
kϕ̇2 +

1

4
(3q − 2b,ϕ) ϕ̇

4 + V − 3f1,ϕHϕ̇+ 3 (b− 3f2,ϕ)Hϕ̇
3

− 3
(
f1 − 3f2ϕ̇

2
)
H2 (4.2.6)

−2Ḣ = (k + f1,ϕϕ) ϕ̇
2 + (q − b,ϕ + f2,ϕϕ) ϕ̇

4 + f1,ϕϕ̈+ (3f2,ϕ − b) ϕ̈ϕ̇2

− f1,ϕHϕ̇+ (3b− 11f2,ϕ)Hϕ̇
3 − 4f2Hϕ̇ϕ̈+ 6f2ϕ̇

2H2

+ 2Ḣ
(
f1 − f2ϕ̇

)
(4.2.7)

As before, we have − Ḣ
H2 ≡ ϵ ≡ 3

2
(1+w). Up to linear order, we should make sure that there

are no instabilities in the theory. In the ADM formalism,

ds2 = −N dt2 + gij
(
N i dt+ dxi

) (
N j dt+ dxj

)
, (4.2.8)

where N is the lapse and N i is the shift. We perturb these as

δN = N − N̄ = α, δNi = Ni − N̄i = ∂iβ, (4.2.9)

where the background metric has N̄ = 1, N̄i = 0, ḡij = a2δij. As previously, choosing the
unitary gauge where δϕ = 0, R is the (gauge-invariant) comoving curvature mode and hij
is the (gauge-invariant) linear tensor perturbation satisfying ∂jhij = 0, hii = 0. Then, to
second order, the Lagrangian is

L(2)
R,α,β = a3

(
−3AhṘ2 +Bh

(∂iR)2

a2
+mαα

2 + 6γαṘ − 2Ahα
∇2R
a2

+ 2
∇2β

a2
(AhṘ − γα)

)
,

(4.2.10)
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where ∇2 = ∂i∂
i is the Laplacian and

Ah(t) = 1 + f1 − f2ϕ̇2, Bh(t) = 1 + f1 + f2ϕ̇
2 (4.2.11)

mα(t) =
1

2
kϕ̇2 +

1

2
(3q − 2b,ϕ) ϕ̇

4 − 3f1,ϕϕ̇H + 6 (b− 3f2,ϕ)Hϕ̇
3 − 3

(
1 + f1 − 6f2ϕ̇

2
)
H2

(4.2.12)

γ(t) =
(
1 + f1 − 3f2ϕ̇

2
)
H +

1

2
f1,ϕϕ̇−

1

2
(b− 3f2,ϕ) ϕ̇

3 (4.2.13)

Varying S(2) with respect to Ni yields the momentum constraint (which is also a simple
expression for the lapse perturbation),

Ah(t)Ṙ = γ(t)α (4.2.14)

By substituting this into the Hamiltonian constraint, we find the equation for the shift
perturbation

γ2(t)
∇2β

a2
=
(
mα(t)Ah(t) + 3γ2(t)

)
Ṙ − γ(t)Ah(t)

∇2R
a2

(4.2.15)

If γ = 0, then either Ṙ = 0 or Ah(t) = 0. By substituting (4.2.14) and (4.2.15) into the
second-order Lagrangian (4.2.10) to eliminate the explicit lapse and shift perturbations, we
find the second-order action for R,

S
(2)
R =

∫
d4x a3

(
A(t)Ṙ2 −B(t)

(∂iR)2

a2

)
, (4.2.16)

where

A(t) = mα(t)

(
Ah(t)

γ(t)

)2

+ 3Ah(t), B(t) = a−1(t)
d

dt

(
a(t)

A2
h(t)

γ(t)

)
−Bh(t) (4.2.17)

Likewise, the second-order action for the tensor modes is

S
(2)
hij

=

∫
d4x a3

(
Ah(t)ḣ

2
ij −Bh(t)

(∂lhij)
2

a2

)
(4.2.18)

In the scalar sector, the absence of ghosts requires A(t) > 0 and the absence of gradient
instabilities requires B(t) > 0. Likewise, in the tensor sector, we require Ah(t), Bh(t) > 0.
This means that the sound speed must obey c2s = B(t)

A(t)
> 0, while subluminality mandates

that c2s < 1.
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As shown by Ijjas and Steinhardt in [101], we can use this framework to enter an NEC-
violating phase, undergo a non-singular bounce and exit without finding instabilities. How-
ever, there is some remnant trouble related to the behaviour of γ(t) in this region, which
was solved in [33] by including the L4 term in the Horndeski action. Rearranging and inte-
grating the expression for B(t), (4.2.17), from some arbitrary time t to the beginning of the
NEC-violating phase at t0, we have

aA2
h

γ

∣∣∣∣
t

=
aA2

h

γ

∣∣∣∣
t0

−
∫ t0

t

dt a(B +Bh) ≡
aA2

h

γ

∣∣∣∣
t0

− I(t) (4.2.19)

Without loss of generality, we can take γ(t0) = γ0 > 0. If we take Ah = Bh = 1 (as in the case
of [101], where L4 = 0), then since a(t) > 0 ∀ t, we find that as t→ −∞, I(t) diverges and so
aA2

h

γ
must become negative at some point. If it was initially positive, then the entire fraction

passes through 0, so that γ diverges. However, it also implies that γ would pass through
0 at some point, from which it follows that either a or B would diverge. Note here that
this unwanted behaviour arises due to the cubic Galileon action and is not connected to the
fact that the NEC is being violated; indeed, the pathology occurs before the NEC-violating
phase. The significant change, as brought about in [33], is the introduction of a non-trivial
quartic interaction L4, which makes Ah and Bh dynamical and allows (4.2.19) to be satisfied
without incurring the wrath of the aforementioned pathology. It is then conceivable that
B and Bh approach zero sufficiently quickly, so that the integral I(t) actually converges as
t→ −∞. If we take a(t) ≤ |t|p (where t < t0 and p is finite), then the sufficient condition is
that B, Bh → 0 faster than 1

|t|p+1 . If γ0 is chosen such that

aA2
h

γ

∣∣∣∣
t0

− I(−∞) > 0,

which is possible since I(−∞) is finite, then the left-hand side of (4.2.19) can stay positive
for all t < t0 (which in turn implies that γ can remain positive for all finite t). To ensure
that B is finite, the additional requirement is that aA2

h

γ
be finite. Given that a diverges as

t→ −∞, then Ah → 0 faster than 1
|t|p/2 is required. If γ → 0 as |t|q, then Ah → 0 as |t|q−(p/2)

is required. The positivity of A is achieved without affecting B by including a potential term
V (ϕ(t)) = V (t) that only affects mα(t) directly.

At this point, a classically non-singular bouncing solution can be explicitly found using
the ‘inverse method’, first proposed in [101]. In the context of the cubic Galileon, this means
that the background equations allow us the freedom to specify the behaviour of H(t) and
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ϕ(t), so that we can infer the behaviour of A(t) and B(t) in particular. While, by using this
method, c2s =

B(t)
A(t)

can be found to be positive during the NEC-violating phase, it turns out
that it becomes negative right before the onset of this phase (c.f. Figure 3 in [33]), and this
is related to the trouble found with γ(t), which was attributed to the cubic Galileon action
itself. However, including the L4 term in the Horndeski action prevents c2s from turning
negative at all finite times [33], and there are sufficient degrees of freedom that we can
specify H(t), γ(t), Ah(t), Bh(t) and V (t), in order to infer the behaviour of A(t) and B(t).
The expressions for the coupling functions in terms of the input parameters are

f1(t) =
Ah +Bh

2
− 1, f2(t) =

Bh − Ah
2ϕ̇2

(4.2.20)

b(t) =
2

ϕ̇3

(
−γ + (2Ah −Bh)H +

1

2
ḟ1 +

3

2
ḟ2ϕ̇

2

)
(4.2.21)

k(t) = − 2

ϕ̇2

(
γ̇ + 3Hγ +

d

dt
((Ah +Bh)H) +

3

2
(Ah +Bh)H

2 + f̈1 − 2V

)
(4.2.22)

q(t) =
4

3ϕ̇4

(
γ̇ − 9Hγ +

d

dt
((Ah +Bh)H) +

9

2
(Bh − Ah)H2 + f̈1 − 3V

)
+

2

3
b,ϕ (4.2.23)

Given these, we can find mα as

mα(t) = 3(Ah +Bh)H
2 − 4V +

d

dt
((Ah +Bh)H) + γ̇ + 3Hγ + 3Hḟ1 + f̈1 (4.2.24)

The above relations can be expressed as functions of ϕ using ϕ(t) → t(ϕ). Note that f1, f2
and b follow from the definitions of Ah, Bh and γ, while k and q are derived using the
background equations (4.2.6)–(4.2.7).

Since we would like to have a geodesically complete cosmological model where Horndeski
gravity asymptotes to Einstein gravity before and after the bounce, we consider the signifi-
cance of γ(t), which would coincide with H(t) for theories described by a perfect fluid [32].
The presence of a non-trivial L4 and the non-minimal coupling to gravity means that γ dif-
fers from H – this is known in the literature as ‘braiding’. The transition between Einstein
and Horndeski gravity means that, as mentioned above, γ must pass through zero. It is then
found that the lapse perturbation α and the scalar part σ of the shear perturbation tensor
σµν =

1
3
Kγµν −Kµν (where γµν is the linearised metric, Kµν is the extrinsic curvature tensor

and K is the extrinsic curvature) diverge as γ → 0. However, it seems that this problem is
only manifest in the unitary and spatially flat gauges. The Newtonian gauge is defined by
σ ≡ 0 and this protects the gauge variables from blowing up (α as well, since it goes as 1/γ,
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whereas σ goes as 1/γ2). The linear stability analysis performed in Newtonian gauge reveals
that all modes with wavelengths above the Planck scale evolve with c2s > 0; for details, see
[32].

At this point, let us take a moment to summarise cosmic evolution over the course of
a cycle (and indeed multiple cycles) [31]. Starting in the dark energy-dominated era, the
positive value of V (ϕ) is equal to the observed density of dark energy. The driving scalar ϕ
is, as before, assumed to be a quintessence-like field so that accelerated expansion continues
until the potential turns negative. Ekpyrotic contraction then begins, and works as a robust
smoothing mechanism that solves the horizon and flatness problems; a nearly scale-invariant
spectrum of entropic perturbations is formed through the new 2-field isocurvature mechanism
described in Section 4.1. As the kinetic energy of the dominant scalar field increases relative
to the potential and the ‘fast-roll’ parameter ϵ → 3, we exit the contracting phase, during
which time the entropic perturbations are converted to curvature perturbations through the
mechanism described at the end of Section 4.1. The Universe then undergoes a classical
non-singular bounce, where the Hubble parameter goes from a large positive to a large
negative value, while the total energy density ρ ∝ H2 remains sub-Planckian. The dynamics
governing this bounce phase are described by the generalised Galileon/Horndeski Lagrangian
presented in this section. After the bounce, radiation (followed by matter) domination takes
over, following which we return to dark energy domination, which corresponds once again
to accelerated expansion. Note that the Friedmann equation implies that the Hubble radius
is given by rH = ϵ+∆t, where ϵ+ is (linearly related to) the equation of state during the
expanding phase. If the scale factor a(t) increases by a factor of f during this time, then
rH increases by a factor of aϵ+ = f 2. Since the bouncing model assumes that the Hubble
parameter oscillates between the positive and the negative of the same value, we find that,
during the contracting phase, rH will reduce by the same factor f 2 over a time interval given
by ∆t′ = (ϵ+/ϵ−)∆t. This implies that the contracting phase lasts for far less time than
the expanding phase, so the scale factor reduces by comparatively little. As a result, while
a local observer experiences cycles of expansion and contraction, given by the oscillating
Hubble parameter, the net result globally is a de Sitter-like evolution as the scale factor
essentially increases exponentially over multiple cycles. Energy and matter are massively
diluted so that only a minuscule fraction will remain inside the Hubble radius over the
following cycle.
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4.3 Entropy in the New Cyclic Universe

As we discussed in Section 2.5, the hot Big Bang model presents a sizeable problem from
the point of view of entropy distribution and the second law of thermodynamics; this is only
exacerbated by the inflationary paradigm. While a natural resolution to this problem was
presented in Chapter 3 using the string-based cyclic model, in the form of (3.0.2) implying
an upper limit to the collision entropy, we must revisit it in the new framework outlined in
this chapter.

The question of entropy was addressed in [106], the argument of which we reconstruct
here. After the non-singular bounce occurs, the Universe is radiation-dominated as the
scalar’s energy density decays, and space-time is homogeneous, isotropic and flat as a result
of the preceding ekpyrotic contraction. Hence, the matter-radiation is in thermal equilib-
rium at nearly maximal entropy, while the gravitational entropy and Weyl curvature are
infinitesimally small. Since the expansion from the bounce to the time of recombination is
(nearly) adiabatic and homogeneous, the distribution of entropy at recombination remains
essentially identical to that after the bounce.

With the continued expansion and cooling of the Universe, the total entropy rises due
to nonlinear structure formation through gravitational instability and irreversible processes,
i.e. formation of galaxies and other astrophysical systems. A large proportion of this takes
the form of Bekenstein-Hawking entropy, which is associated with supermassive black holes
that formed after recombination. By the time dark energy is dominant, this contribution
exceeds all others overwhelmingly, by a factor of ∼ 1015. Over the remainder of the dark
energy-dominated phase, the entropy densities of radiation and black holes get diluted, but
the former more so than the latter. Then, in order to find the entropy contribution from a
previous cycle, we only need to follow the evolution of the supermassive black holes. During
contraction, since the scale factor reduces by comparatively little, the density of the black
holes does not change significantly. As a result, most black holes are sufficiently distanced
from a given Hubble patch that undergoes a bounce, and so are outside an observer’s Hubble
radius a cycle later. If we consider a black hole at a distance L from an observer’s worldline
in the previous cycle, the condition for that black hole to lie within the Hubble radius at
present would be

L× eNDE ×O(1)× e60 < H−1
0 , (4.3.1)

where the scale factor expands by 60 e-folds in the radiation- and matter-dominated eras.
Then, given the value of the Hubble parameter today, we have L < 0.004 cm.
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Inevitably, our discussion of the evolution of entropy leads us to think about reconciliation
with the second law of thermodynamics, which is done as follows. The entropy within the
Hubble radius does decrease exponentially during contraction, but this is only because the
Hubble radius is shrinking, so the ‘visible’ entropy is exiting the horizon in essence. However,
the global entropy still increases as the number of black holes and the scale factor globally
increase from cycle to cycle (although the entropy and black hole densities remain largely
unchanged over the course of multiple cycles). As a result, the second law is not violated
from the perspective of this cyclic model.

A question that [106] left unanswered was the evolution of black holes in the near-field
regime of a Hubble patch that undergoes a nonsingular bounce. This was investigated in
[107], albeit in the context of a different model (a canonical scalar and a massless ghost field,
both minimally coupled to gravity). By evolving the system of equations nonlinearly using
numerical methods, the authors showed that the local evolution of the bouncing Hubble
patch is largely unaffected by the presence of the black hole if its radius is smaller than the
minimum Hubble radius by a factor of approximately 3.5. On the other hand, for black holes
with initial radius larger than this, the particle horizon and the black hole apparent horizon
merge and briefly cease to exist. After the Hubble radius reaches its minimum, the horizons
separate again. This does not include the possibility where the minimum size of the Hubble
radius is much smaller than the radius of the black hole. As we noted, this investigation
was carried out using a different framework to model the NCC-violating period. It would
certainly be interesting to understand how the conclusions of [107] would be altered (if at all)
when we take into account the Horndeski bounce, especially given the non-minimal coupling
to R that is introduced by the presence of L4. Given the differences in ensuring linear
stability that we have found between minimally and non-minimally coupled models, this is
certainly not a foregone conclusion that we could reach purely by association. In particular,
we expect that some new condition on the stability of the evolution of the black hole would
result; whether this turns out to be more or less stringent is a question that remains to be
solved.

4.4 Unitarity Violation during the Bounce – An
Unresolved Issue?

Up to now, we have considered in some depth the classical description of a period of NEC
(or NCC) violation in the framework of generalised Galileon/Horndeski gravity. Specifically,
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we have shown how the classical instability associated with a negative speed of propagation
of the curvature modes (which is a result of the cubic Lagrangian terms) can be avoided by
including non-trivial quartic terms in the action. The ‘inverse method’ can be used to find the
expressions of the coupling functions in terms of the input parameters that describe a given
non-singular bouncing solution. Moreover, the apparent singularity linked to the behaviour
of γ(t) can be shown to be a coordinate singularity, which can be removed by working in the
Newtonian gauge (rather than the ubiquitous unitary or spatially-flat gauges). However, we
have not yet properly considered the requirements enforced by consistency of the quantum-
level description. While the background does evolve classically (i.e. at sub-Planckian scales),
we must still take note of its energy scale Eback in relation to the strong coupling scale of the
theory Λs. The latter is the level at which we expect perturbative unitarity to be violated in
the theory. Then, if this is in fact lower than Eback, we would be hard-pressed to establish
concretely that NEC violation (and hence a non-singular bounce) did actually take place.
We will take inspiration from the work of de Rham and Melville in [108] to identify an open
question in the new cyclic model that must be addressed fully before we can consider it to
be truly robust.

For the purposes of understanding the problem, we use the setup of [108], which is a
P (X,ϕ) theory in an FLRW background. Perturbing the scalar as ϕ = ϕ̄+φ in an arbitrary
gauge, the effective scalar field metric is

Zµν∂µφ∂νφ = −A(t)φ̇2 +
B(t)

a2
(∂iφ)

2 (4.4.1)

In the WKB approximation, the decomposition of the quantised modes takes the form

φ̂(t, xi) =

∫
d3ki

(2π)3a3
1√
N (k)

(
â†(ki)e

i(k
∫ cs(t)

a(t)
dt−kixi) + â(ki)e

−i(k
∫ cs(t)

a(t)
dt−kixi)

)
, (4.4.2)

where, as before, c2s(t) = B(t)/A(t). The normalisation N (k) is found by taking the Klein-
Gordon norm along a 3D surface Σ with unit normal vector nµ and induced metric γµν ,

|φ̂|2 = −i
∫
Σ

d3x
√
γ nµ

(
φ̂
←→
∂µ φ̂

†
)

(4.4.3)

Taking a spacelike surface t = const., the unit normal vector is nµ =
√
Aδµ0 and the induced

volume element is √γ = B−3/2 so that (4.4.3) becomes

|φ̂|2 = −i
√
A

B3/2

∫
d3x a3

(
φ̂
←→
∂t φ̂

†
)

(4.4.4)
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Then, given the dispersion relation F = Aω2 −B k2

a2
and ω = cs

k
a
, we have

N (k) =
∂F

∂ω
= 2Aω = 2(AB)1/2

k

a
(4.4.5)

In the WKB approximation at high energies, we can look at an approximate S-matrix if
it is defined over a time scale that obeys ∆t ≪ 1/Eback. Specifically, we consider n → n

scattering, with |i⟩ = |f⟩ = |k1, . . . , kn⟩. Recall that unitarity of the S-matrix implies
conservation of probabilities, so it is a cornerstone of the quantum description. Taking the
usual perturbative expansion Ŝ = 1̂+ iT̂ , we require

1̂ = (1̂− iT̂ †)(1̂+ iT̂ ) = 1̂+ iT̂ − iT̂ † + T̂ †T̂ , (4.4.6)

which implies that
iT̂ † − iT̂ = T̂ †T̂ (4.4.7)

Multiplying this by ⟨i| on the left and |i⟩ on the right, the left-hand side of (4.4.7) becomes

⟨i| iT̂ † − iT̂ |i⟩ = i ⟨i| T̂ |i⟩∗ − i ⟨i| T̂ |i⟩ = 2 Im(⟨i| T̂ |i⟩), (4.4.8)

while the right-hand side becomes

⟨i| T̂ †T̂ |i⟩ =
∑
|f⟩

⟨i| T̂ † |f⟩ ⟨f | T̂ |i⟩ =
∑
|f⟩

∣∣∣⟨f | T̂ |i⟩∣∣∣2 (4.4.9)

With |f⟩ = |q1, . . . , qN⟩, we reconcile the result to that obtained in [108],

2 Im(⟨i| T̂ |i⟩) =
∑
N

⟨i| T̂ † |q1, . . . , qN⟩ ⟨q1, . . . , qN | T̂ |i⟩ ≥
∣∣∣⟨q1, . . . , qn| T̂ |i⟩∣∣∣2 (4.4.10)

Now explicitly factoring out the momentum-conserving delta function and taking ⟨f | T̂ |i⟩ =
(2π)4δ(4)(pf − pi) ⟨f | M̂ |i⟩, we obtain

2 Im(⟨i| M̂ |i⟩) · (2π)4δ(4)(pf − pi) =
∑
|f⟩

∣∣∣⟨f | M̂ |i⟩∣∣∣2 ((2π)4δ(4)(pf − pi))2 (4.4.11)

Taking a state |i′⟩ which differs from |i⟩ infinitesimally in the net momentum pi′ , then [109]

⟨i′| M̂ |i⟩ = ⟨i| M̂ |i⟩ , ⟨i′| M̂ |f⟩ ∀ |f⟩ (4.4.12)
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Now multiplying ⟨i′| and |i⟩ on both sides of (4.4.7), we get

⟨i′| iT̂ † − iT̂ |i⟩ = (2π)4δ(4)(pi′ − pi) ⟨i| iM̂ † − iM̂ |i⟩ = (2π)4δ(4)(pi′ − pi) · 2 Im(⟨i| M̂ |i⟩)
(4.4.13)

and

⟨i′| T̂ †T̂ |i⟩ =
∑
|f⟩

⟨f | T̂ |i′⟩∗ ⟨f | T̂ |i⟩

=
∑
|f⟩

∣∣∣⟨f | M̂ |i⟩∣∣∣2 · (2π)4δ(4)(pf − pi′) · (2π)4δ(4)(pf − pi)
= (2π)4δ(4)(pi′ − pi) ·

∑
|f⟩

∣∣∣⟨f | M̂ |i⟩∣∣∣2 · (2π)4δ(4)(pf − pi) (4.4.14)

Hence,

2 Im(⟨i| M̂ |i⟩) =
∑
|f⟩

∣∣∣⟨f | M̂ |i⟩∣∣∣2 · (2π)4δ(4)(pf − pi) (4.4.15)

In terms of scattering amplitudes, we explicitly recover the expression from [108],

2 Im(A2n(kj; kj)) ≥
∫

d3q1
(2π)3N (q1)

· · ·
∫

d3qn
(2π)3N (qn)

|A2n(kj; qj)|2

×
[
(2π)4δ

(
c2s
a2

∑
k2j −

∑
q2j

)
δ(3)

(∑
kj −

∑
qj

)]
(4.4.16)

For the case of a 4-pt function (i.e. n = 2), the phase space factors on the right-hand side of
(4.4.16) are evaluated in terms of the centre-of-mass energy

√
s and scattering angle θ, which

yields the optical theorem for the 2-2 scattering amplitude A4(s, θ). Using the dispersion
relation ω2 = c2sk

2/a2 and taking a partial wave expansion in terms of Legendre polynomials,
the following bound is implied by the requirement of perturbative unitarity for each l ≥ 0,

|A4,l(s)| ≤ 8π2 ω

k/a
AB = 8π2(AB3)1/2, (4.4.17)

where

A4,l(s) =

∫ 1

−1

d cos θ Pl(cos θ)A4(s, θ)

Recall that the setup of [108] was a P (X,ϕ) theory. Classically, a bouncing solution would
involve c2s < 0, which is already seriously problematic; perturbative unitarity would also be
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unquestionably violated. This was solved by taking P (X,ϕ) as an EFT and including higher-
order operators which would enter at some cutoff scale Λc. This would restore unitarity, albeit
with the caveat that Λc would have to be low enough to ensure this but high enough to not
affect the validity of the EFT. This higher-order operator should be irrelevant and take the
form

SNML =

∫
dt d3x

a3−2L

ΛN+2M+4L−4
NML

φN φ̇M(∂iφ)
2L, (4.4.18)

where N,M,L are arbitrary positive integers which satisfy N +2M +4L > 4. Now consider
a cubic operator of the form (4.4.18) with N +M + 2L = 3. This is outside the purview of
the usual P (X,ϕ) theory (so its effect must be considered in the context of an EFT) and is
irrelevant, since N +2M +4L > 4. At fixed θ, this would contribute to the 4-pt function as

Acubic
4 ∼ k4L−2ω2M

BΛ
2(N+2M+4L−4)
NML

∼ A2L−1

B2L

( √
s

ΛNML

)2(M+2L−1)

(4.4.19)

Then using (4.4.17), perturbative unitarity would be violated at

√
s ∼ A

3−4L
4(M+2L−1)B

3+4L
4(M+2L−1)ΛNML (4.4.20)

In the case of a 2n-pt function, the unitarity bound that results is3

|A2n| ≲ A(3−n)/2B3(n−1)/2s2−n (4.4.21)

We should note here that the impact of these bounds was evaluated by de Rham and Melville
in P (X,ϕ) by specifically calculating the scattering amplitudes and considering whether the
conditions imposed by unitarity were satisfied for all the coefficients in the decomposition
(in terms of Legendre polynomials) of the amplitudes. The problem that this might pose
in the context of the cyclic model we have discussed in this chapter was acknowledged by
Ijjas, Pretorius and Steinhardt in [100], albeit somewhat indirectly. The approach they used
was to ensure that the Einstein-scalar system of partial differential equations (PDEs) sat-
isfied strong hyperbolicity, which they differentiated from weak hyperbolicity. The latter
was associated with essentially ensuring that c2s > 0, and that the system did not admit
gradient instabilities. The former, on the other hand, was only satisfied if the system had
a complete set of eigenvectors, which were finite and depended smoothly on the initial con-
ditions. This would imply that the solution would have an upper energy bound, and that

3For high energy modes, this bound gets modified as irrelevant operators dominate the dispersion relation;
see Section 3 of [108] for a detailed explanation.
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the modes would be “under perturbative control”. Moreover, it was claimed that satisfying
the strong hyperbolicity condition would ensure “robustness against arbitrarily small wave-
length perturbations”. If we attempt to understand this in the context of [108], this would
mean that an arbitrarily small B(t) (as is shown to occur in Figure 3 of [33]) would not
present a major problem. However, we must take care with this argument, since it remains
a largely classical one, and it assumes that NEC violation definitely occurred. The potential
problem that remains is that, if unitarity were violated (at least at tree-level), the validity of
the aforementioned assumption would be brought into question, depending on the relation
between the background and strong coupling scales. Said differently, an arbitrarily small
B(t) implies that one should re-assess the validity of the conclusions reached by [33]. This
would be achieved by considering the quantised description of the perturbed scalar sector
and finding the partial wave expansion of the scattering amplitudes. This would have to
be weighed against the requirements set by perturbative unitarity, which would then allow
us to reach a conclusion as to whether the latter does actually present a problem or not.
We contrast the expected resolution of this problem against that of the instability of the
background trajectory, which was discussed in Section 4.1. For that issue, it was found that,
in the case of two decoupled fields, having s ̸= 0 (even infinitesimally) meant that the back-
ground would rapidly evolve away from the stable fixed point which would allow a stable
cyclic evolution. That could be resolved by including an exponential coupling and showing
that this led to the existence of a stable fixed-curve solution, to which the trajectory would
be attracted instead. The genesis of the problem discussed here is entirely different, and so
we cannot expect its resolution to be similar, in terms of a statement about the hyperbolicity
or stability of the PDE system.

We note that some steps have recently been taken in this regard. Specifically, the question
of perturbative unitarity in a Horndeski/beyond-Horndeski setup was investigated in [110],
albeit with the cosmological model in question being Galilean genesis (another alternative
to inflation, involving an NEC-violating period which causes expansion from Minkowski
spacetime in the far past [111]). In this case, the Horndeski theory leading to the Galilean
genesis solution was taken as an EFT, with the higher-order operators being of beyond-
Horndeski form. Scattering amplitudes were explicitly calculated in the far past limit, and
it was found that perturbative unitarity was violated at an energy scale which was much
less than the cut-off scale of the EFT action,

√
s≪ M . As a result, the model used by the

authors would require other operators to restore unitarity well inside the realm of the EFT.
As attractive as adapting this calculation straightaway to the context of the new cyclic

model might sound, there were two issues that we found to considerably increase the difficulty
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of the computation. Firstly, the analysis of [110] was conducted in spatially flat gauge,
which was sufficiently suitable for the purpose of the genesis model and relatively simple
to work with (since it allows one to focus directly on the perturbations in the scalar field).
However, as mentioned earlier and shown in [32], this gauge introduces unwanted behaviour
as a coordinate singularity manifests itself; γ(t) → 0, which leads to the gauge variables α
and σ going to infinity. The Newtonian gauge σ ≡ 0 is the unique algebraic gauge that
removes this problem, but focusing on the behaviour of the scalar perturbation φ becomes
less straightforward4. Secondly, the couplings used in the genesis model were constants,
which meant that they appeared in the perturbed Lagrangian just as in the full one. On
the other hand, we recall that the cyclic model presented here involved couplings that were
functions of the scalar, and their non-trivial behaviour (especially in the case of L4) was
essential to maintaining c2s > 0. This means that, to perturb the action, one would have to
consider the Taylor expansions of these coupling functions to the desired order, in order to
find the Feynman diagrams and compute the scattering amplitudes. While we have outlined
the method we would expect to use, the joint impact of these complications means that a full
calculation of the latter, and a complete analysis of the impact of perturbative unitarity at
tree level on the bounce phase of the new cyclic model is outside the scope of this dissertation.

However, in light of both [108] and [110], we can still attempt to provide some direction in
the sense of what we would expect the result to be. Looking at the form of the bounds derived
in previous analyses, the right hand side is in terms of the coupling scale that multiplies the
higher-order operator(s). Hence, we would expect unitarity to place restrictions on the
coupling functions (and possibly their derivatives), thus constraining their behaviour more
stringently than implied by the forms of the input parameters and the relations (4.2.20)–
(4.2.23) resulting from the background equations (4.2.6)–(4.2.7). As though confirming our
line of thought, we see that a similar analysis has been carried out in [112], where the authors
consider the impact of perturbative unitarity violation in the early contracting phase of a
Horndeski bouncing model with strong gravity in the distant past, when scalar perturbations
are generated. While the cosmological epoch under consideration in that work is different, it
is found that the requiring the strong coupling scale to be greater than the background scale
results in the tensor-to-scalar ratio r being bounded from below. Therefore, fine-tuning in
the new cyclic model of Ijjas and Steinhardt is not quite non-existent in the sense that [31]
would seem to imply; whether it conceptually presents as large a problem as in inflation is
a question that can only be answered with a thorough investigation of this issue.

4A possible workaround might be to focus on Feynman diagrams generated with R and h in the unitary
gauge and calculate the resulting scattering amplitudes, as in [112].
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4.5 Discussion

In this chapter, we presented the new form of the cyclic model of the Universe proposed
by Ijjas, Steinhardt et. al., which has come about in recent years. The first significant
improvement with respect to the previous models was made by introducing an exponential
coupling to the canonical kinetic term of the second scalar field, so that the background
instability problem shown to exist in a contracting Universe by Tolley and Wesley was re-
solved. The introduction of a quartic kinetic term (also featuring an exponential coupling)
was shown to facilitate the conversion of a nearly scale-invariant spectrum of entropic per-
turbations into that of curvature perturbations in the kinetic-dominated phase following
ekpyrotic contraction. The second advance was made by finding a mechanism that admitted
a non-singular bounce which appears to be stable and pathology-free for all finite times.
This was constructed in the framework of a generalised Galileon/Horndeski theory using
derivative operators up to and including quartic order, and employing an ‘inverse method’
to show that ghosts and gradient instabilities were avoided. We also discussed the evolution
of entropy in this new model and showed that it represents a significant advantage over the
corresponding problem posed in inflation.

On the other hand, we have also identified some outstanding issues. First, the bounce is
expected to take place at sub-Planckian scales, with the Hubble parameter rapidly increasing
from a large negative to a large positive value. However, there is nothing in the framework of
the theory to suggest that there is a hard cut-off, preventing H(t) from oscillating between
large and finite, but Planck-scale values. Indeed, the assumption of a sub-Planckian maxi-
mum |H(t)| is inserted into the model by construction and it would be interesting to find a
physical explanation that allows this to occur naturally. We note that Ijjas and Steinhardt
in [31] conjectured a generalised cosmic censorship principle, where the evolution of the Uni-
verse would be shielded from the domination of quantum over classical effects. A theoretic
explanation for the aforementioned requirement would likely arise from the same source as
this conjecture, if it were to hold true.

Second, the discussion of entropy evolution involved a major role being played by black
holes containing the dominant contribution to the increase in entropy over the course of
the expanding phase. While non-perturbative studies have been carried out to understand
the behaviour of black holes in the near-field regime of a Hubble patch undergoing a non-
singular bounce, one question that remains open is what happens when the minimum size of
the Hubble radius is much smaller than the radius of the black hole, in the specific context
of the Horndeski theory.
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Third, but certainly not least, we considered the impact of requiring perturbative uni-
tarity to hold during the NEC-violating phase. The motivation for this was derived from
[108], which investigated this in the context of P (X) theories. While a related problem
was recognised in [100], its resolution did not map directly to a resolution of the unitarity
violation problem. Given recent related work in the context of a Galilean genesis scenario
and of the early contracting phase in an independent Horndeski-based bouncing model, we
established expectations of the consequences that imposing unitarity at tree level would have
on the theory. We hope to be able to delve further into this problem, and present results of
our investigation in the future.
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5
Conclusion

The science of cosmology has come a long way in the last fifty years. While General Relativity
opened our eyes to (a more complete picture of) the large-scale dynamics of gravitation, the
hot Big Bang model that resulted from applying it to the evolution of the Universe was
known to suffer from the horizon, flatness, large-scale structure formation and origin of the
Universe problems. In this dissertation, we have demonstrated the various means by which
resolutions to these problems have been proposed.

After introducing the problems known to face hot Big Bang cosmology, we presented
the inflationary paradigm in Chapter 2 as the first method that sought to answer these
consistently. We looked at the dynamics of a scalar field in a slow-roll potential and derived
the associated slow-roll conditions. Working in the unitary gauge, we then found the form
of the power spectrum of nearly scale-invariant curvature perturbations by deriving the
Mukhanov-Sasaki equation and solving for the quantised mode fluctuations. This was done
to present the resolution to the large-scale structure formation problem from the point of
view of inflation. Perturbations in the tensor sector were shown to lead to predictions of
primordial gravitational waves, with the consistency relation r = −8nt providing a vital link
between the observable tensor-to-scalar amplitude ratio and the tensor spectral index. We
then considered a specific example of embedding inflation within the fundamental setup of
M-theory, which was boundary inflation. Since the required ingredients are simply assumed
to exist in the basic scenario, this was done so that we could understand how inflation could
possibly arise in the primordial Universe. We concluded our consideration of inflation by
understanding some of the problems that were known to exist before and those that have
come to light in recent years.

Chapter 3 introduced the possibility of bouncing cosmologies as an alternative to cos-
mic inflation. Specifically, we focused on the cyclic/phoenix model of Turok, Steinhardt
et. al. which used the same fundamental M-theory construction as the boundary inflation
case, albeit to yield an entirely different effect. We presented the background dynamics of
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a scalar field in an ekpyrotic contracting phase which transitioned to an expanding phase
via a singular bounce. However, this singularity was shown to be milder than in the case
of the consensus Λ-CDM plus inflation picture, since it only involved the momentary dis-
appearance and re-appearance of the fifth orbifold dimension, along which the boundary
planes representing the visible Universe and ‘hidden’ sector were moving and colliding. This
was generalised to multiple scalars, which was particularly significant for the reason that the
isocurvature/entropic mechanism describing the formation of a nearly scale-invariant spec-
trum of curvature perturbations required two scalars to match observations. Moreover, dark
energy was shown to play a critical role in this model (in contrast to Λ-CDM cosmology plus
inflation) as the key that triggered the smooth transition from expansion to contraction.
Also, given the background instability that the isocurvature mechanism brought about, a
sufficiently long period of dark energy domination ensured that a sufficiently large fraction
of the visible Universe would continue the cyclic trajectory, reincarnating from the ashes like
a phoenix. We then showed how tensor-sector perturbations in this model yielded the first
departure from the predictions of inflation, by implying a spectrum of gravitational waves
that would be negligible in the present day. We briefly looked at alternative contructions of
bouncing cosmologies, specifically the matter bounce and pre-Big Bang scenarios, and closed
by understanding the problems facing these models.

In Chapter 4, we presented a radically different approach to a cyclic Universe, although
we dedicated the opening section to discussing a resolution of the background instability
problem that was not necessarily unique to the new model. Specifically, we showed how
the introduction of an exponential coupling in the two-scalar Lagrangian in the contracting
phase implied the existence of a stable fixed-curve solution, to which the background would
be attracted for generic initial conditions. We then considered the robustness of ekpyrotic
contraction after the modification of the kinetic term, and found that a broken shift symmetry
would be required, in the form of a quadratic potential and a small non-zero mass for
the second scalar. The use of a quartic kinetic term was then shown to be relevant as
facilitating the conversion of entropic to curvature perturbations in the post-contraction
kinetic-dominated phase. We proposed that this might also be the physical motivation for
the potential asymptoting back to zero after the end of contraction. At this junction, we
shifted our perspective to understanding the viability of a non-singular bounce that could
be described in classical terms. After showing that this necessitated the use of (amongst
other possibilities, such as modified matter) a modified gravity theory, we analysed the
specific example shown by Ijjas and Steinhardt to avoid ghosts and gradient instabilities
for all finite times. This was achieved using a generalised Galileon/Horndeski framework,
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involving nontrivial contributions up to and including quartic order in the derivatives of the
scalar field. After a discussion of the evolution of entropy in the context of this new cyclic
Universe, we turned our attention to the question of perturbative unitarity and its possible
violation during the NEC-violating bounce. We drew inspiration from the previous analysis
of de Rham and Melville in the context of P (X) theories, and proposed that requiring
unitarity to hold would constrain the coupling functions more than implied in the existing
literature. In other words, to ensure the consistency of the description of the bounce at the
quantum level, an additional dose (possibly) of fine-tuning would be required.

While we are excited by the possibilities brought about in this new era of cosmology,
we realise that there is a long way to go before the theoretical issues underlying the models
investigated in this dissertation can be fully resolved. In this regard, however, we find great
opportunity for future advances to take place and hope to partake in some of them.
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