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Chapter 1

Introduction

1.1 Motivation and Structure of the Disserta-
tion

In modern physics, General Relativity is a widely accepted theory that describes
gravitation. Einstein’s equation describes the relationship between the matter
and the geometry of the space-time that encloses the matter source. This equa-
tion directly predicts the existence of gravitational waves. By measuring the
properties of the emitting gravitational waves, we can retrieve the data of the
gravitating sources. This information is crucial for us to understand the nature
of massive astrophysical objects, e.g. neutron stars and black holes.

In recent decades, large gravitational wave detectors such as LIGO and VIRGO
[10] [I8] [16] are constructed to test the non-linear aspect of General Relativity
and to measure the parameters of the sources [6], among which compact binary
systems made of black holes or neutron stars are among the most promising
ones. It is, therefore, crucial to theoretically derive not only the dynamics of
the coalescing compact two objects but also the expressions of the gravitational
radiation fields. The latter one will be used to compute the properties of the
radiation generated by a coalescing compact binary system [I]. However, due
to the highly non-linear aspect of Einstein’s equation, it is hard to directly find
a theoretical solution for a certain given gravitating source, e.g. a compact
binary system. Therefore, it is natural to linearize Einstein’s equation by ex-
panding the equation to an appropriate order of ¢~!. This process is called
post-Newtonian expansion, which makes Einstein’s equation theoretically solv-
able at certain post-Newtonian corrections. Although, nowadays, higher post-
Newtonian corrections are needed to retrieve data with high accuracy [21] [11]
[22], in this dissertation, we only consider the second post-Newtonian (2PN)
corrections (corresponds to the order ¢~*), which will demonstrate a similar
approach and provide a reference when one calculates higher-order corrections.
This dissertation will be mainly divided into two chapters. In Chapter 3, we
focus on the effective one-body approach that reduces the dynamics of com-



pact binary objects to the dynamics of an effective one object by a canonical
transformation. In this chapter, we start from deriving the general two bodies’
Lagrangian that is derived from-Einstein Infeld-Hoffmann equations. We then
work in the center-of-mass frame and compute the Hamiltonian corresponding to
the compact two-body system, from which we use the Hamilton-Jacobi approach
to derive the real action. At the same time, we construct some effective metric,
from which we derive the effective action from the Hamilton-Jacobi equation,
with some undetermined coefficients, which can be evaluated by matching the
real action to the effective action. Finally, we discuss the dynamics that arise
from the effective metric and derive the canonical transformation that links the
effective problem to the real problem.

In Chapter 4, we compute the gravitational radiation field corresponding to the
2PN correction. We start from introducing the irreducible Cartesian tensors,
which are representations of the SO(3) rotation Lie group. We then find the
solution for Einstein’s vacuum equation in the exterior zone of the source by
using the Multipolar-Post-Minkowskian expansion [7] [23]. We also compute
the solution for Einstein’s equation in the interior zone and express the solution
in terms of the stress-energy tensor. By comparing the two solutions in their
common zone of validity, we obtain a set of matching equations, which are used
to deal with the cubic order of non-linearality of Einstein’s equation at 2PN
correction. Finally, from the matching equations, we derive the expressions for
the source moments up to an appropriate order of correction. Previous work has
been done in calculating the slowly moving isolated system at 1.5PN correction
4 .

1.2 Introduction to the Relevant Math

In Chapter 3, we will implement the Hamilton-Jacobi mechanism in dealing
with the effective one-body problem. This mechanism is useful in finding the
conserved quantities of a particular system. Once the Hamiltonian of the sys-
tem is given, the Hamilton-Jacobi equation can be reduced to a set of first-order
differential equations, each of which corresponds to a conserved quantity of the
system. One can then express the resulting action in terms of these conserved
quantities by solving the differential equations iteratively. The formal mathe-
matical introduction of the Hamilton-Jacobi mechanism can be found in Section
2.3.

In Chapter 4, we compute Einstein’s equation in the harmonic coordinate. We
introduce some field h*” which is the deviation of the metric ¢g*¥ from the
Minkowski metric. Einstein’s equation is then reduced to an equation of the
field h* together with the harmonic coordinate condition, i.e. d,h** = 0. This
new equation is linear at the order O(h), but becomes nonlinear at higher or-
ders. Details of deriving the equation can be found in Section 2.3. Another
mathematical tool we will use in this Chapter is the symmetric trace-free (STF')
tensors. Equivalent to the spherical harmonics Yj,,, the STF tensor with [
indices generates a 2] + 1 dimensional vector space that corresponds to the vec-



tor space constructed by the irreducible representation of SO(3) rotation group
[12]. Previous work by Campbell, Macek, and Morgan [9] has demonstrated
the approach of solving electromagnetism and linearized gravity by spherical
harmonics. Thorn [23] provided the mathematical construction that links the
spherical harmonics and the STF tensors. In this dissertation, we will use the
STF tensors to perform the multipole decomposition of the fields. Detail of
the STF tensors can be found in Section 4.1 and the decomposition formula is
proved in Appendix A.



Chapter 2

Preliminaries

Spacetime indices (0,1,2,3) are denoted by Greek indices while space indices
(1,2, 3) are denoted by Latin indices. Our signature is (—1,1,1,1).

2.1 DMotion in Schwarzschild Space-time
Let us first review the motion of a test particle in a Schwarzschild spacetime.
In polar coordinate, the geometry can be described by the following metric

2M 1
d82:—(1_7)dt2+ 1_M

dr? +r2df* + r?sin*0dp> (2.1)

This expression can describe a spherically symmetric space-time affinely parametrized
by a parameter A outside a star of mass M[19]. In Schwarzschild coordinate,
r = 2M is the coordinate singularity, while the curvature singularity is at r = 0.
In the following calculation, we only consider the case where r > 2M. Since the
metric g,,, does not explicitly depend on ¢ and ¢, it admits two Killing vectors

k=0, (2.2a)
m = 8¢, (2.2b)

From the Killing vectors, we can construct the conserved quantities

o
dA
where V), is the corresponding Killing vector and d@/dX\ = 0. Substituting Eq.

(2.2)) into Eq. (2.3)), we obtain two conserved quantities which are identified as
the energy and the angular momentum respectively

Q=V, (2.3)

dt 2M _dt
— ti — _— ) —
do . do
_ $0P 2 . 9
J = ggem o) = rsin Q—d/\ (2.4b)



The minus sign in Eq. (2.4h) is to ensure the energy is positive.
Now, let us consider the motion of a test particle with rest mass m in the

Schwarzschild spacetime. We assume that the motion is solely in equatorial
plane, i.e. # = Z and % = 0. We construct the four-momentum of the particle
2 dax
pro= (4 dr db j—f), which, by using Eq. (2.4), can also be written as
E dr J

P = (——, =0, = 2.5
(1_¥,dx ,3) (2.5)

The mass shell condition in General Relativity reads

gwpupu + m? =0 (26)
Inserting Eq. (2.5)) into Eq. (2.6)) yields
E? dr 1 J?

2 2
—17727]\44‘(5)@4‘71724-7” =0 (2.7)

Multiplying the equation by 1 — y and rearranging the terms, we have

dr .y 2 2

Ve =F° (1 - ") (=— 2.8

() (1= =5) (5 +m?) (23)

The test particle moves along a timelike geodesic, on which mA = 7. Therefore,
it is natural to define the new variables e = % and j = % Eq. 1) then can

be written as

dr

(E)2 = 62 - Ve2ff (29)

where we have defined the effective potential Vs

2M 52
Ve2ff = <1_T)(7"72+1) (210)
The test particle follows a circular motion, i.e. 7 is a constant, when V, s reaches
its minimum value. Expanding out the equation d‘ji% = 0 and defining a
To
new variable u = % yields
1

— (2Mu?(1 + j%u?) — 25%u*(1 — 2Mu)) = 0 (2.11)

2V

The stable circular orbit corresponds to the solution

1 12M72
1__7

= (- ) (2.12)

Uo

The other root uy = ﬁ(l +4/1— ujj\fZ) gives a smaller r, which represents

an unstable orbit. Since r is a constant along the circular orbit, fil—: = 0.
To

Therefore, the energy per unit mass is equal to the effective potential

e= \/(1 — 2Mug)(j2ud + 1) (2.13)



The angular velocity wy is defined as

_d¢
T dt

Finally, simplifying both Eq. (2.13) and Eq. (2.14) using Eq. (2.12)), we obtain

e = (1 —2Mug)j /% (2.15a)
wo =/ Mu} (2.15b)

For consistency, we define the scaled variables: g := Mug, j =
Muwyg. In this notation, we conclude

aozéu_,h_%) (2.16a)
J

e = (1—209)j\/ o (2.16b)
Qo = /03 (2.16¢)

wo = (1 — 2Mug)u2? (2.14)
e

T0

Now, let us consider again Eq. (2.10)). It is worth discussing the monotonicity
of the effective potential. For dV.;s/dr to be positive for all r, we require
d*Vess/dr* = 0. We obtain the innermost stable circular orbit (ISCO) for the

Schwarzschild metric, where iy = é andj' = 2v/3. Therefore, to ensure the
effective potential to have a local minimum, we require
j=2V3 (2.17)

For particles with angular momentum below this value, they will fall inside the
event horizon.

2.2 Hamilton-Jacobi Equation and Its Solution

Let us now review the Hamilton-Jacobi description of a particle’s motion [I7].
Consider a Lagrangian L(x,&,t) and its corresponding action

S(@,t) = / Y L, t)dt (2.18)

where t; and ty are the initial and final time respectively. From the Lagrangian,
we can construct the Hamiltonian H(x, m,t)

H(x,m t)=na& — L(x,&,t) (2.19)
where 7 is the conjugate momentum, i.e. 7w = ?Ti' From Eq. l) we have
oS ox 0S
L L, t) = — — + — 2.20



Therefore, we obtain the Hamilton-Jacobi equation (referred as HJE in the
following context)

a8 08 ox as
= (2 (x.dt)) = —H(x, ==t 2.21
ot = (5pr ~ Ll@dt)) (@, 5-,1) (2.21)
A general HJE can be highly non-linear. However, if the Hamiltonian is ex-
plicitly independent on time, the resulting action can be separated into two
parts .

S(x,t) = —Et+ S(x) (2.22)

where F is a constant of motion. Inserting this equation into the HJE gives

22)=E (2.23)

We can further partition the action if we assume the Hamiltonian can be written
in the form
oS 08
H(m, 7) :H(qbl(:nl, %), L1y L2y eeey Lj—1, .TZ‘_‘_l, veey Ly
3

oz (2.24)

95 05 05 05 o8
8.%17 812 T 8131'_17 BxH_l B aIn

)

where the dependence of the variable z; is absorbed into a function ¢;. The
action is then once more partitioned

S(ar:, t) =—-Ft+ Sz(xl) + S (.131, T2y i li 1y L1y e l‘n) (2.25)

HJE Eq. (2.25)) then reads

ds;
E =H(¢i(x, T)7$17I2» ey Ty 15 T 1y +ves Ty,
i (2.26)
9582 H55® 952 5s®@) 952 '
8$1 ’ 81‘2 B 83:,»_1’ 8.1‘1'_5_1’“.’ 6l‘n

Since the function ¢; only depends on x; but not on other variables, we imme-
diately see that it must be a constant, denoting as ®;. The partitioned action
S; then obeys a simple differential equation
ds;
(T, —) = ®; 2.27
bilan ) = @, (227)
a8® . 95®
=—— appear together as a function ¢;(z;, %—,
J J
in the Hamiltonian. Applying the above discussion gives us a differential equa-
tion with respect to x;

We similarly assume that x; and

b5, du, ,®;) = D, (2.28)

®i)



This process is iterated until we find the differential equations for all the vari-
ables. It is worth noticing that, through the Hamilton-Jacobi formalism, we can
easily identify the constants of motion, i.e. ®; and FE.

Now consider the Hamiltonian in Newtonian Gravity [I9]. The particle’s posi-
tions and momenta are denoted as r and p respectively. The Hamiltonian can

be written as )

H(r,p) = 2=+ V(r) (2:29)
In polar coordinate,
2
Pe Po
= = 2.
= Jr r2sin20 (2.30)
M
V(r)= - (2.31)

The HJE reads

05 1,05, 1,95, 1 05, M

“a 25 TG e ae) T

(2.32)
Writing the action as

S =85.(r)+ Se(0) + Sp(¢) — Et (2.33)
and inserting into Eq. (2.32)) yields three separated differential equations

ds,

. 2 —
dSp 1
(W)z + 2g%e = Po (2.35)
1.ds,, M 1
ST = 5% = (2.36)

where ®4, ®y, and E are three constants of motion, which we can identify as the
angular momentum in the ¢ direction, the angular momentum in the 6 direction,
and the total energy of the motion, respectively. Solving these equations, we
can obtain the general expression for the action

1 / 1
S = /\/2E + — = 2@96[7"4—/ Py — .720‘I)¢d9+\/q>¢¢—Et+C (237)
Stn

where C' is the integrating constant.

2.3 Einstein’s Equation in Harmonic Coordinate

In harmonic coordinate, we linearly expand the metric g** around the Minkowski
metric n** [4]

W =g — (2:38)

10



where g is the determinant of the metric g,,, and A" is assumed to be a
small field deviation from the Minkowski metric, which, in our convention, is

diag(—1,1,1,1). Since g"” is the inverse of g,,, the determinant of g"” is %.

From Eq. (2.38), we deduce

det(nt + ) = det(/—gg"") =g (2.39)
Taylor-expanding Eq. (2.39)) yields
Og 8%g

g=-1+ + O(h?) (2.40)

1
hH*Y + —hHVhPe
n 2

gt |g= OgHv 0gPe lg=n

Evaluating each term in Eq. (2.40)), we have
1 1
—g=1+h+ §h2 = 3P hup+ O(h?) (2.41)

where we have denoted h = bt =1, h*".
From Eq. (2.38)) and Eq. (2.41), up to the first order in h, we can derive

o R = (1 4 %h)g“” +om?) (2.42)
Therefore, after rearranging, we obtain

g ="+ — %n‘“’h +0(h?) (2.43a)

G = Nuw — Iy + %mwh +O(h?) (2.43b)

The deviation of g,, takes a relative minus sign because g, is the inverse of
g"¥. The Christoffel symbol is defined as

1
FZI/ = igpk(aug)\u + 8Vg)\u - 3/\9W) (244)

Inserting Eq. (2.43)) into Eq. (2.44]) yields

1
re, = —5(8Mhlp, + Oyl — 0%hy

1 1 1 (2.45)
- §np)\77>\uauh - inpknkuauh + EUPAUuuaxh) + O(h'2)
The harmonic coordinate condition reads
g™, =0 (2.46)
Now consider
0,hM" = 0,(vV/—g9"") (2.47)
Recall that
Vo(V=9) = 0pv/=g9 — V—9Ta, =0 (2.48)

11



Therefore, one can rewrite Eq. (2.47) as
W =V, (V=99"") + 9"/ =gTa, — g™ To V=9 — g™ Th,v/—g  (2.49)

After contracting the indices p and p, we easily notice that the first term and
the third term on the right hand side of Eq. (2.49) become zero, while the
second term cancels against the fourth term. Therefore, we deduce

O™ =0 (2.50)

under the harmonic coordinate condition. Now we can use Eq. (2.44) to calcu-
late the Riemann curvature tensor, which, to the first order of h, can be denoted
as

RE,, = 0,8, — (n+— v) + O(h?) (2.51)

where (pu <— v) is the term with p and v indices exchanged compared to the
first term on the right hand side of Eq. (2.51)). Using Eq. (2.45)), one can check

R =_

o pY

(00l — 00y — D, 051+ 0,07h,,)

+ — (1”100 0,00h — 1P 13100 0o b — 0P 5, 0,00 B + P15, 0,05 ) + O(h?)
(2.52)
where terms that are symmetric in ¢ and v cancel. Contracting indices p and

i, we find the Ricci tensor

=N =

1 1
Ry, = 5a,,aphw — ana,,aph +O(h?) (2.53)
Einstein tensor is denoted as
1
G =R — Eg#,,gp”Rpg (2.54)

which obeys Einstein’s field equation

831G
A

G = =217, (2.55)

where we have neglected the cosmological constant. Inserting Eq. (2.53)) into
Eq. (2.55)), to the first order of h, we have

1
0,0° by = %FTW (2.56)

However, once considering the higher-order terms which we neglected in the
previous calculations, one finds

167G
8,07 h,, = *%QTW + A, (h) (2.57)

where A, (h) is expressed by Eq. (1.4) to Eq. (1.6) in [4].

12



Chapter 3

Effective One-Body

3.1 Lagrangian and Equations of Motion

Newtonian motions of multiple point-mass particles in a curved spacetime can
be described by the Einstein-Infeld-Hoffmann equations [15] (denoted as the ETH
equations in the following context). In our case, we only consider the motions
of two particles in the ADM coordinate. The notation is the following: m, and
mo are the two particles’ masses; @7 and xo their positions; vq and wvg their
velocities; a1 and ag their accelerations. We consider the terms up to ¢4 in

the following calculation. The EIH equation for the first particle is

Pxy ~ Gman
ez r2
1 Gman 3 Gmy, Gmy
2 2 [—v} — 203 + 4(vy -v2)+§(n-v2)2+4 =+ = ]
1 Gm
272(41;1 ‘n — 3’02 . n)(vl — ’02)
1 Gmy 7 Gmg )
52 5z M@ —@2)az] + 55 ——ax + 0(c™)
(3.1)
where we have defined
r= @ — (3.2)

r

In order to eliminate the acceleration dependence in Eq. (3.1), we apply the

EIH equation for the second particle and expand as to the terms up to the order

0

Gmin
as =

a2t O(c™?) (3.4)

13



Insertion of Eq. (3.4) into Eq. (3.1]) gives

d2$1 _ sz’n
a2 r2
1G 3 o .
2 7:22”[7,0% — 205 +4(v1 - v2) + 5(” - vp)? +4$ +5 ;nl]
1 Gm )
2 72 : (4v1 - —3vz - m)(v1 —wva) + O(c™?)

(3.5)
where we have used n-n = 1.
A general Lagrangian for two particles relativistic motion is described in [I3]

1 1 Gm1m2 1.1 1
L(ZB17CL'2, V1, 1)2) :§m1v% + §mgv§ + T + g{gml’v% + gmgv%

Gmimsg 3 3 7 1

— 2[§U%+§U§*5(1’1‘”2)*5("'1’1)(71‘”2)
1Gm1 1Gm1 —4

5 a2 o

(3.6)
Now let us prove that the equations of motion that are described by the La-
grangian in Eq. coincide with the EIH equation in Eq. . Since the
Lagrangian does not depend on accelerations nor higher derivative terms, the
equation of motion is described by the Euler-Lagrange equations

oL d oL

In order to write the equation of motion explicitly, it is useful to evaluate the
following expressions

0 1 1
7a$1 ; = —ﬁn (3'88’)
0 1
87931(7,, cu) = ;[u —(n-u)n] (3.8b)

where w is an arbitrary vector and

d1 0 1 01
a;fvla—wl;—l—vza—m;7—T—2(n~vl—n~v2) (3.9a)
d 0 0 1
%n—a—wl(n~vl)+87w2(n-v2)—;{vlfvzf[(n~v1)f(n~v2)]n}
(3.9b)

14



From Eq. (3.8]), we find
oL Gm1m2 1 Gm1m2 [
g n4+ — 2522
oz 72 2 r2 271 9

Gm1 Gmg]

3 3 7
3 U§+§(

vy - ’Uz)

+ %(n-vl)(n-vz) +

r
1 Gmim
T 92 T12 2{[ 1—(n-vi)nj(n-vz)+ [v2 — (n-v2)n|(n-v1)}
+0(c™
(3.10)
Similarly, from Eq. (3.9)), we deduce
d oL 1 1,
i =mya; + c—zml[(vl caq)vr + 5”1‘11]
1 Gmimo 7 1
R R (n- vy —n-ve)[3v; — Jv2 ~ i(n - v2)n)|
1 Gmim 7 1
= ; 2{3a1 — 502~ §(n ~az)n (3.11)
1
- ﬂ[(vl cva)n —van + (n - v2)v — (n-va)vg
~2n-v1)(n-va)n + 2n - va)’n}
+0(c™)

Again, Eq. (3.1) and Eq. (3.4)) are used to eliminate the acceleration dependence
in Eq. (3.11). Insertion of Eq. (3.10) and Eq. (3.11) into the Euler-Lagrange
equation Eq. (3.7) gives

Px1 Gman 1 Gmo 9 9 3 9
e R [—vin —2vsn + 4(vy - va)n + i(n -v2)n

+4Gm2n +5Gm1n

+ (4v1 -n —3vgy -n) (v —v2)] +O(c™) =0
(3.12)
Eq. is identical to Eq. . Therefore, the particles motion described
by the EIH equations are encoded in a general Lagrangian expressed by Eq.
(3.6). Higher-order terms in the general Lagrangian are expressed as Eq. (2.2c)
in [I3]. The Lagrangian for two particles relativistic motion, up to the order

15



1 1 Gmim
2 2 1Me
L(x1,T2,v1,v2) = —m1v7 + —mov; + ——

2 2
+ C%{émlv‘ll + émgvg + M[gﬁ + 31}%
~ S vn) (e w)(nwa) - 5 CT - L ET)
(= qgmiof = ggmaot + T2 Sut - Sof
+ 181 vivi + i(vl vg)? — gvf(n v9)? — gvg(n )2 (3.13)
5w ) 0) 4 5 () 02)’]

1
+ ———=[=>(19my + 10my)v? — 1(1Om1 + 19my)vs

1
4
+ i(ml +mg)(27v - v2 + 6(n - v1) (N - v2))]

G?’mlmg

b5 (M ms o+ smima)} 4 0(c™°)

3.2 Hamiltonian and Action

From Eq. (3.13), we perform the Legendre transformation to find the Hamil-
tonian of the two-particles system, denoted as H. The conjugate momentum

of two particles are denoted as P; and Py respectively, i.e. P, = g—le and
P, = g—é. We will work in the center-of-mass frame where Py = —Py = P. It

is therefore convenient to define the following quantities

M :=my +mg (3.14)
mims

W= T (3.15)
mimeso

vi= —m (3.16)

and the following reduced variables

P

pi=— 3.17
m (3.17)
H

H:=— 3.18
. (3.18)
r

16



The Hamiltonian can then be expressed as

1 1 1.1 1 1

H=-p?>— 4+ <{=Bv-1p* - —[(3 2 )+ =

5P q+02{8( v—1)p 2q[( +v)p* +v(n-p) ]+2q2}
11, 6
+cj{T(5V —5v+1)p

(3.20)

1
+ 871[(731/2 —20v +5)p* — 20%p%(n - p)? — 31 (n - p)?

+ %q2[(81/ +5)p? + 3v(n - p)?| — %(31/ + 1)} +0(c%

We now consider the Hamilton-Jacobi approach and assume the motion solely in
the equatorial plane. The conjugate momentum p can be expressed in spherical
coordinate

R r
P = Dgér + ?pd)e(z, (3.21)

where we have used § = 7. In spherical coordinate, the normal vector reduces
to
n=_¢é. (3.22)

As discussed in Section 2.2, we can partition the action
S = 84(q) + S4(¢) — Bt (3.23)

where ¢ is the reduced time, i.e. ¢ = &4;. By inserting Eq. (3.20) and Eq.
(3.23) into Eq. (2.23]), We then deduce

dSy(¢ .
;; ) _ j (3.24)
where j is the conserved reduced angular momentum and
ds .
Bty — (o, £.) (3.25)

The function K obeys

-2 2
E :%(K + 2—2) - é + ;12{%(31/ - 1) (K + ‘2—2)2
.9 -2

— 2%[(3 +v)(K + 2—2) +vK| + %} + %{%(51/2 —5v+1)(K + ;—2)3
+ i[(—31/2 —20v + 5)(K + ﬁ)Q - 23K + ﬁ)K — 32 K7

8q ¢ q
+ L (v 5K+ L) 1 3vK] — L 30+ 1)} + 0()

2q2 q2 4q3

(3.26)

17



where we have used

n- s _ VK (3.27a)
dq
ds ., i
Wyl 2
(dq) + 7 (3.27Db)

To explicitly find a solution, we expand the function K up to the order ¢*

K(q,E,j) ZZAZ](] ¢ 4+ 0(c7%) (3.28)

1=0 5=0

Elements of the matrix A;; can be determined by substituting Eq. into
Eq. and rearranglng terms according to the order of gq. For example
collectlon of terms with ¢° gives

E :lAOO + %Am o Lo+ 812 (30 — 1)(AZy + 2400 A0y ) 520
+ m%(su —5v 4+ 1)A3, +O0(c™%) '
By eliminating the terms of ¢=2 and ¢~4, one can check
Ago = 2F (3.30)
App = (1 — 3v)E? (3.31)
Agy = (4° —V)E? (3.32)

Using the same procedure, we can explicitly determine all the elements of the
matrix A;;.

2E  (=3v+1)E? (4% —v)E3
2 2(—v+4)E 2(v? —2v + 2)E?
2
R v+6 15F
W=lo o eeepws-Epwey| OF
0 0 —35%v% — j%v
0 0 %j41/2

It is then useful to define )
Ai = Z Aij672j (334)
=0

Since A;jo = 0 for i > 2, it is clear that, when ¢! tends to 0, A; # 0 only
if # < 2. Under this condition, one can then check that, among 5 roots of
K(q,E,j), three of them tend to infinity while the other two remain non-zero
and finite. We then denote these two roots as ¢nin and gmnaqz. In this notation,

we can solve Eq. (3.25))
Ay Az Ay As

/qu0+—+—+—+F+q—5)% (3.35)
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The reduced action is defined as

1 [amas .
Sred = — dg(A — =+ =+ —4+ —)2 3.36
d 7T/ Q(o+q+q2+ +— + )2 (3.36)

dmin

This integral is explicitly evaluated in [I3], such that

A 11
Sped = ——= —/—Ax{l — ——[A1 A3 + AgA
d2\/—7Ao 2 4A§[13+04]
31
+ EI;WM + AgAZ + 240 A, A5] (3.37)
51 _
- GZF[SAfA% + 243451} + O(c™9)
2

Recall, for € whose absolute value is small compared to an arbitrary finite value
x, up to the order €2,

(z+€)F = 2F[1 + k% + %k(k - 1)(5)2] +O() (3.38)

Use Eq. (3.33), Eq. (3.34), and Eq. (3.38)), we can explicitly evaluate each term

in Eq. (3.37) up to and including the order of ¢—*

1 1 E, 1 15 E? 3 15 35
TA(A)E [ (v D (22 2
1(—4o) —plt et a(Gr vt )]
(3.39a)
. 1lv+6 1. 15E (v+6)2
Yy W R LN G k) .
2=t g Taly Toep (3.39b)
1, s 1y 13E1, )
7 (TA2) T F[A1ds + Ao A = — % c4[j (3v +u)+4j3( v? 4+ 13v — 17)]
(3.39¢)
3 5 31 4 8
—(—Ay)T2[A%As + AgAZ + 24041 A5] = — —[—-—=(3V? —Ev?
16( 2)  2[A7As + AgA3 + 2A0 A1 As] 1664[ j3(3’/ +V)+j V]
(3.39d)
) _T 2 42 3 15 1 2
@(_AQ) 2[3A1A3+2A1A5]:§]377/ (339@)

Inserting Eq. (3.39) into Eq. (3.37)), we obtain

S = -_i_#_,_i[g ] E(E 9
red — J /7_2E C2j 2\ 4 4

1 E 15 13 5 [ E 3 15 35
== _3 — (2L _ = _Z (=2, == o2
taG G oW G (G T )
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3.3 Effective Metric

Eq. is the reduced radial action obtained from the Newtonian expansion
of a two-body Lagrangian. In this section, we aim to encode the motion de-
scribed by Eq. in a single effective metric. The effective variables are
represented by adding~to their representations in ADM coordinate. We assume
that the coordinates, i.e. the positions and the conjugated momenta, in the ef-
fective problem are linked to the coordinates in the real problem by a canonical
transformation. Detail of this canonical transformation can be found in Section
3.5. The metric §,, can be written as [§],

ds? = —M(R)c2di2 + N(R)dR? + L(R)R2(d6? + 6%d¢?) (3.41)

where we can expand the R-dependent functions M, N, and L

5\ GM()CLl G2M§a2 G3Mga3 _8

M(R)=1+ Y Py Y +0(c™) (3.42a)
- GMyby  G*M3b, 6

N(R)=1+ 2F g T O(c™%) (3.42b)
S GM061 GZM(?CQ —6

L(R)=1+ 25 Af +0(c™®) (3.42¢)

By analogy to the Schwarzschild metric describe in Eq. (2.1), we naturally
define the mass scale M;, such that

We also define mg to be the mass of the effective particle. In these notations,
the motion of the effective particle can be described as

Gu PP’ +mic? =0 (3.44)

where p, is the conjugate momentum of the effective particle. Similarly, we
assume_the motion of the effective particle is purely in the equatorial plane,
where § = 5. We then apply the Hamilton-Jacobi approach and partition the
effective action as o R R

S = SR + Sd; - Etott (345)

where E,,; is the total energy of the effective particle
Etot = EO + m002 (346)

Applying the same method in Section 3.2, The Hamilton-Jacobi equations are

dSs -
0o J (3.47)
dSg N .
— =\/K(R, Eo1,J 3.48
= =\ K(R, By, J) (3.48)



B P 1
Mc?2 L[R2 N

To simplify our calculation, we define the following scaled variables

K+m2c=0 (3.49)

~ j
I = Gt (3.50)
p- o (3.51)
mo
g = Lror (3.52)
mo
R
e T (3.53)

In the following calculations, we work in the Schwarzschild coordinate where
L(7) = 1. We can then obtain an expression for K by inserting Eq. (3.42) into
Eq. (3.49)

5 2
K(7E,j)=> > Ay e (3.54)

i=0 j=0
where in the matrix notation
2F E? 0
—ai 2E(b1 — (11) EZ(bl — a1)
A —m2 —j? (a%_a2ja1b1) 2E(by + a? — ay — a1by)
* 0 0 —b1j2 2a1a9 — a:f —as + b1a% —bias — arbs
0 0 —byj?
0 0 0
(3.55)
Similarly, we define
2
Ai = Z ijC_Zj (356)
i=0

The scaled reduced effective action is therefore defined as

. 1 Pmas T
Sred = —— \/ K(7, Eor, J 3.57
d mgﬂ/} (7 Etot, ) ( )

min

where, with the similar discussion in Section 3.2, 7,,in and 7,4, are two roots
which are non-zero and finite when % goes to zero. One can directly calculate
this integral by using Eq. (3.37)). Detail calculation gives the explicit expression

for each term in Eq. (3.37)

1o 1 mg .1 7T E 1 19 | E?
§A1(—A0) = \/ﬁ[_gal + (b1 — gal)g + (Zbl — 674@1)674] (358)
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- ~ 1m

—\/ —Az = —mgj gﬁ(af*twfmbl)
- (3.59)
0 2 Img, o 2
—[—=—(b —as —ab — = —as —a1b
+C4[ ; (2+a1 az — ax 1)+8j3 (a1 az — ag 1) ]
1, = s 2+ = 2. ml Emg 1 1, 1
Z(*AQ) 2 [A1A3 —+ 0A4] —7310,1 1 C4~ (§a1b1 — le 2b2)
mo 1 9 1
c4 3(8 b1 8a1b1a2 b 2a1a2
1
+ Zal + Zalag + Za%bg)
(3.60)
3 - 3 Em 3 m
15 (-A2)” S[A2A, + AgA2 + 240A A5 = 3 jc4°b§f17637‘1 a?b,  (3.61)
) —Tr1a A2 12 i3 15 mg 5.5
—(— AQ) [3A A5+ 24 A5} 107 (3.62)

64 64]304a

Therefore, we obtain

1 E3 1 19 E 1 1, 1
A 5 (b1 = gz + 7(01 — gaibr —az — oby + ibz)]
1 3 3 1 1 1
~3C4 (ga‘f — Z %QQ + 4(11(13 + 8(12 S(I?bl + galagbl 64 b2 a%bg)
(3.63)

Canonical transformation ensures that the action of the effective problem is
unchanged from the action of the real problem. Eq. has the same form as
Eq. - However, before we can determine the explicit values of coefficients
a; and b;, we must know the relations between the effective quantities, i.e. Mo,
mo, j and E, and the real quantities, i.e. M, u, 7 and E. One can check that if
we require all the effective quantities equal to their correspondmg real ones, e.g.
My =M, mg = p, j =4, and E =E, by comparing Eq. to Eq. ,
we obtain 5 independent equations with only 4 unknowns (recall a = 2). No
solution is found in this case. Therefore, there is at least one effective quantity
that differs from its corresponding real quantity. There are several approaches
which give different assumptions about their relations. However, in the following
discussion, we will assume

My =M (3.64a)
mo = p (3.64b)
j=3j (3.64c)

- E E?
E=EQ1+ ag+ 026—4) +0(c™%) (3.64d)
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where ¢ and ¢ are two unknown coefficients to be determined. Now, we insert

Eq. (3.64]) into Eq. (3.63) and obtain

1 1
Sred =—J— 3
O Ay
11,145 1 1 E 7 1
07[3(501 T2~ Zalbl) +1/ *g(gal — b1 — 1@161)]
+1 E3( 7 —l—lb 3 2+1b 19 +1 )
—A——(——=a1c1 + =bic1 — —a1ci + -b1 — —a1 + -c
A I [ R 1 R RV R
1E,, 1 1, 1
+ 0747(011 — §a1b1 — ag — gbl + 5()2)
1 3 3 1 1 1 1 1 1
+ ﬁ(ga‘f — Za%az + Zalas + gai - §a§b1 + §a1a2b1 - 6*4(1%5% + 16
(3.65)

We aim to find the values of a;, b;, and ¢;, such that the reduced effective radial

action is equal to the real action. Comparing Eq. (3.65) to Eq. (3.40), we
obtain a set of equations

1, 1 1
301~ 502 — Zalbl =3 (3.66a)
7 1 15 v
—a; — by — - =—— 4+ - 3.66b
8a1 1= A 1 + 1 ( )
7 1 3 5 1 19 1 3 5, 15 35
—Ealcl + 5[)161 — Ealcl + 1()1 — @al + 162 = 3*21/ + TGI/ + 33
(3.66¢)
1 1 1 15
a% — §a1b1 — ag — gb% + 5()2 :? —3v (366d)
3 3 1 1 1 1 1 1 35 5
ga‘f - Za?ag + 70103 + gag - ga?bl + galazbl—aa%bf + Ea%bg =7 " 3Y
(3.66¢)

Now, since a; is known (a; = 2), we have 5 equations and 6 unknowns. We can
therefore fix the value of b; without affecting the physics. By analogy to the
Schwarzschild metric described in Eq. (2.1), by is chosen to be 2. Eq.
then gives a unique solution

(a1,az2,a3) = (—2,0,2v) (3.67)
(bl,bg) = (274 - 61/) (368)
(c1,c2) = (%,0) (3.69)

We therefore conclude
7 2GM  2G3M3v

ds?> =—(1 — + —— + O(c®)c2at?
( 25 7 (™))
WGM (4 — 61)G2M?2 ~
L4 M BEEME 6y (3.70)
2R A R?

+ R2(d6? + 62d¢?)
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and

~ vE _6
E=E(l+55)+0(c°) (3.71)
Inserting Eq. (3.46]) into Eq. (3.71), we have
3 E  1vE?
—=14+=4+=— -6 72
2 tat g +0(c™”) (3.72)

3.4 Dynamics

In order to discuss the dynamics of the effective one body system, by analogy
to the Schwarzschild metric, we write the metric described in Eq. (3.70) in the

following form

P(R)

ds? = —M(R)Pdi® + ——=LdR? + R2(d0? + §%d¢> 3.73

# =M@+ o ( ZONNCEC)
where - - -
P(R) = M(R)N(R)

27 12 3.74

_q o etME +0(c™% .
ctR?

To simplify the calculation, we define

GM

ii= s (3.75)
h:=cj (3.76)
The function M(R) reaches zero when
Wi —2i+1=0 (3.77)
From the definition of v, we have
Ogygi (3.78)

If we require v = 0, Eq. yields a single solution R= Q%M , which is the
event horizon of the Schwarzschild metric. However, if v # 0, Eq. admits
three real roots, among which two are positive. In the following discussion, we
only consider the root RO that tends to QCC;2M when v tends to zero. The other
positive root is not physical, since it tends to infinity when v tends to zero.

In order to obtain the radial effective potential, we recall, from Eq. —,

the Hamiltonian can be written as

H? = m2c* [ M(R) + M(R)J? + M(R)~ (dS’T

- =) 3.79
m3c2R?  m2c2N(R) dR) ] (8.79)
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The effective radial potential can be directly read as

Vegs = M(R) + % (3.80)
In terms of the notation we defined, Eq. can be simplified
Vopr = 20h2@° +2(v — h®)ad + h2a® — 20+ 1 (3.81)
To calculate the ISCO of the effective one body metric, we require dz% =0
and % = 0. This condition yields two equations
svh?at + 3(v — k) a2+ h*a—1=0 (3.82a)
20vh?a® + 6(v — h®)u+h?> =0 (3.82b)
which can be further simplified
300%0° —20va® — 3vi® + 66— 1 =0 (3.83a)
3,02
b=/ % (3.83b)
From Eq. (3.83)), one can check that, if v = 0, u|V 0= 3§ L and h‘ = 2v/3. This

is exactly the result we obtained from calculating the ISCO for the Schwarzschlld
metric. For general values of v, one can numerically calculate the value of u

from Eq. (3.83h).

3.5 Canonical Transformation

In this section, we aim to map the coordinates and momenta in the real problem
(ADM coordinate) to that in the effective problem. We denote the positions
and momenta in the real problem as Ql and P; and the positions and momenta
in the effective problem as Ql and B, where the index ¢ = 1,2,3. In spherical
coordinate, we have Q' = Qsmf)cos ¢, Q? = Qsm051n QS, and Q3 = Qcos&
We can calculate the momentum in the spherical coordinate by using

5_ 05 _ 5 09 500 5 0%
P, = 90 Pr 20 + P 20 + Py 90 (3.84)
When 6 = 3, We obtain
_ ~ Ql ~ QQ
TG 0 (3:55)
_ 0?2 - O
Py =Pr%+ + Py— 3.86
SR T (3560



Py =0 (3.87)

One can check that the Hamilton Jacobi equation in Eq. (3.49)) can be written
as

. . P2 P2
Hy = moc? | M(Q _B + 2
0 0 ( )(N(Q)mgc2 Q*m3c?

+1) (3.88)

Eq. (3.88]) can be simplified

i @ P2 P (n P
Ho = moc?y | M(G) (- +1 3.89
0 =mo \/ O yGmeat mga *D )
where we have used the following properties

P.Q=PrQ (3.90a)

_ _ P2
P’—(a -Pp?=2 (3.90b)

0?2
n = g (3.90c)

Q

Again, to simply the following calculation, we define the following scaled vari-
ables

. Q
= 3.91
1= o (3.91)
P
p = — 3.92
p=_- (3.92)
- H,
H==" (3.93)
mo
We can therefore express Eq. (3.89)) with the scaled variables
. hop)2 p2— (R p)2
‘ \/ @G+ PSP (3.94)

Since, the reduced action and the angular momentum are identical in the real
and effective problem, e.g. Syeq = Sreq and j = j, the Hamilton’s equations are
preserved. We can define a canonical transformation such that

pidq’ — p;dq* = dg(q,q) (3.95)

where g(q, ¢) is the generating function. Introducing a new generating function
G(q,p) = piq" + 9(q, ), we obtain

pidq' + §'dp; = dG(q,p) (3.96)

26



We can then expand the new generating function

G(q,p) = piq’ + Gpn (g, P) (3.97)

where 1 1

One should be aware that G py (g, p) is of order ¢~2. By dividing Eq. (3.96) by
dq’ and dp; respectively, we yield

Di = Di — 6GP3]\£]Eq’p) (3.99a)
~i i 8GPN(q725)
=g+ ———— 3.99b
i=q 5, (3.99b)
—4 . ~ _ 9Gpn(q,p)
To the order of ¢™*, we expand Ky (q,p) = B
~ 0K 4(q, _
Kyi(q,P) = Kqi(q:p) — Kq5(, p) gzg? P) 4 o) (3.100)
j

Inserting Eq. (3.100)) into Eq. (3.99R) yields

. - 0Gpn(g,p) n 9Gpn(q,p) *°Gpn (g, p)

- —6
pi Pi 8qi ('3qj 8pj8qi + O(C ) (3101)

) = aG%ﬁ(q’ﬁ) and obtain

7

Similarly, we expand f(;(q, p

9Gpn(g,p)  0Gpn(g,p) 8*GpN(g:p)
Opi 9q7 OpiOp

We can further reduce Eq. (3.101) and Eq. (3.102)) using Eq. (33.98) and obtain

i=q+ +0(c™%) (3.102)

__ 13Gi(g,p) 1 ,0Gi(g,p) 9*Gilg,p) 9Ga(g,p)

. —6
Pi = Di o2 8qi ! ( 8qj 8pj3qi 8qi ) + O(C )
(3.103a)
- g i 8G1(Q7p) i 8G1(qap) 82G1 <Qap) aGQ (qap) —6

(3.103Db)

Let us recall that the reduced real Hamiltonian is related to the reduced effective

Hamiltonian by Eq. (3.72)

H 1 vH?
c? ct 2

1
=1+ SH+ +0(c™) (3.104)
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The reduced real Hamiltonian is explicitly expressed in Eq. (3.20)). To deal with
the square root in the reduced effective metric H, it is convenient to square both
side of Eq. (3.104)). We therefore have

. (n-p? p*—(n-p)? 1 1 1 -8
M 1)=14+ =R —R —R 0]
(q)( N(q)cg + C2 + ) + C2 2 + C4 4 + 06 6 + (C )
(3.105)
where 9
Ry=pt— = (3.106)
2 2
. 1
Ry =vp* — (4+21/)p— —V<n p) +2+v)—> (3.107)
q q q
1 1p* 1 p?
Rg :§p6(81/2 —2)+ Z%(*S 2 33v) + 5%(71, -p)3 (=202 —v)
1(n-p)* 2 1p*
+ ZT(731/ )+ 5(?2(2u + 28y + 17) (3.108)
(n-p)? , 11
+ T(V + 41/) + 5@(—71/ — 3)

In the following calculations, we will denote G1 := G1(q,p) and Ga := Ga(q,p)
for the sake of simplicity. Since the coordinates and momenta indices are all
spatial, we are therefore allowed to define w;v; = u'v® = u;v* = u - v and
u? = u;u;0"” = u?, where u and v are some arbitrary functions of g and p, i.e.
u = u(q,p) and v = v(q, p). To simplify the left hand side of Eq. , it is
useful to check

~ 1 ni 8G1
—q{1+ -1
I=qll+ c q Op;
L[Qni 8G2 i<8G1 )2 _ 2ni 8G1 82G1 _ ninj 8G1 E)Gl}}
2¢t” ¢ Opi  ¢* Op; q O0g¢ OpiOp;  ¢* Op; Op,
(3.109)
. 12 120 0G,
M@G) =1- =4+ =-=2=2"1
@ cq T q* Op;
i[27nl8G2 i(8G1>2_27nz8G1 62G1 _ ninj 86‘1 8G1 2l]
S q? Op; ¢ Opi q* 0q7 OpiOp; ¢ Op; Op; @
+O(C_8)
(3.110)
1 2 1 6v 2n'0G; 6
=1 = 4+ (= 111
N(q) 02q+c4<q2+ ¢ G‘pi)+0(c ) (8-111)

We then have

(n-p)*  p*—(n-p)

M(Q)(N(Q)CQ + 2

1 1 1
+1) = I+ S Lot Lo+ C—6L6+O(c_8) (3.112)
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where

Ly =p®— 2
q
B o2n' 0G, 0G1 2, 2(p-n)?
o Tad T T T g
_Zni G, 0G, 2n' 0G, 0°G, 0G, 8°Gy

T2 op Tag T @ o opiop, | T ogi opog

1 801 ninj 3G1 6G1 8G1

2 2
q?’(api) ¢® Opi Opj (5(]1)
N (_4(n~p)pi 6(n - p)n’ 2p2ni)8G1
7 7 ¢ " Op;
4(n-p)nt  4p; 0Gy 2 6v+4 9
e ) B R R R (7
( . p ) o B " (n-p)

We choose the ansatz such that
9 1
G1 = (aup” + aag)(p -q)

we therefore have

oG . . ,
3 L= a1g'p? + 200p'(p - q) + azn’
Pi
oG i n;
5 L= apip? + s — M (n-p)
q q q
and
0%G, - o g
=2a(p'¢ +p'¢" +"(p-q
9D, ( (p-q))
82G1 i o . [ %) . .
—— = a1 (6] p” + 2pip’) + — (6] — !
9q'Op; ( ) q ( )

Inserting Eq. (3.117) into (3.114)) and equating L4 = R4, we have

Oél—OQ:—l—l/
14
2a1+a2:1—§
—201 =V
2000 =2+ v

Eq. (3.119) yields a single solution

14

O[1:_§
v
O[2:1+§
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(3.113)

(3.114)

(3.115)

(3.116)

(3.117a)

(3.117D)

(3.118a)

(3.118b)

3.119a,
3.119b

—~ o~

3.119¢
3.119d

—
L D

—~

(3.120a)

(3.120D)



Once we deduce the explicit expression for G1, we can insert Eq. (3.117) and
Eq. (3.118) into Eq. (3.115]

_ 200Gy, 0G:
T2 op Tog

702 4 1 2 Y
+ LPG + (—4v? — 81/)177 + (== + 41/)p—(n -p)? 4 (—3v° — 6v) (n-p)
4 q 2 q q
115 P’ Lo (n-p)? Lo 1
+ (Zl/ + 101/Jr9)q—2 + (ZV +4v—1) e + (*51/ -2)—
(3.121)
Similarly, we choose the ansatz for G4
2 n-p)? 1
Gz = (ﬂlp4+521;+53(p)+54q2)(p-q) (3.122)
and evaluate the following
0Gs 4 i i, 2 2 i i 2 i n'
o, = PP ¢ +4p'p (P~ q)) + Bo(p™n' + 2(n - p)p’) + 3B3(n - p)°n +ﬁ4;
(3.123)
oG p>  p*n-p
72-2 =61p*p;i + Bo(—pi — gnz)
dq q q
(nopP D) mp
n . n . Z n .
+ B33P 3 Py o 54(2’—2 —2 qf n:)

Inserting Eq. (3.123]) and Eq. (3.124)) into Eq. (3.121)) and equating Lg = Rg,

we have
—p1 = —%(31/ +1) (3.125a)
Bi—Ba= S (8v—1) (3.125)
38, — %”(:w +8) (3.1250)
Ba= %(zﬂ —Tv+41) (3.125d)
461+ B2 — 3B5 = —%(u +9) (3.125¢)
Bo — Ba = é(—?:ﬂ + 16v — 2) (3.125f)
282 + 383 +2Ba = é(?uﬂ +4) (3.125g)
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From Eq. (3.125)), we have a unique solution

B = §(3V +1) (3.126a)
By = g(—5u +2) (3.126b)
B3 = %(3u +8) (3.126¢)
By = i(ﬁ —Tv+1) (3.126d)

Once the explicit expressions of (G; and G are found, one can easily deduce the
canonical transformation between the effective coordinates and the real coordi-

nates using Eq. (3.103])

- 1 Di n; 1
Pi =Pi — Cj(alpiPQ + Oézj - Oégj('n/ -p)) + Cj[(?)a% - 51)171174

p2pi )pQ(n )i ( )(n - p)?p;

+ (doiaa — f2)

+ (2012 + B2 —2a100 — 333

Di (n-p)n;

. 371/
mpPni |2 Be) o + (-ad +280) 7= 5+ 0(c™)

1 38s
(3.127)
¢ =dq+ (g P>+ 2a1p'(p - q) + asn’) — Cz[(%é? - B1)p'q
+ (4ai — 4B1)(p- )P’ + (20102 — Bo)p°n’ + (20102 — 22)(n - p)p’
. ni
+ (—4ayaz — 3B3)(n - p)*n’ — 54;} +0(c™9)

(3.128)
where a; and ; are expressed in Eq. (3.120) and Eq. (3.126)) respectively.
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Chapter 4

2PN Approximation of an
Isolated Gravitating Source

4.1 Symmetric Trace-Free Tensors

In this section, we introduce the notation used by Blanchet and Damour [2].
Latin letters denote the spatial indices, while Greek letters denote the spacetime
indices. The Minkowski metric is denoted by 7,, = diag(—1,1,1,1) and the
Cartesian metric is denoted by ¢;; = diag(1,1,1). The Levi-Civita tensor is
€ijk- A tensor which includes a Cartesian multi-index is denoted by an upper-
case Latin index, i.e. Ur, = Uj,4,..4,, Ui = Ujiyi,..5,- We also introduce a2l =

Hl - 2 and 9, = 0;,0;, ...0;,. For simplicity, we introduce U;V*® = U;V; =

n

3 )
S U;V; and Uy; = Uijéij = Uy1 + Uss + Uss. For a positive integer k, we denote
i=1

k
El =] n and k! = k(k — 2)...2 or 1. We shall also denote 0! = 0!l = 1. The
n=1
symmetric part of a Cartesian tensor is denoted by Upg) = 71, > Uialiaz...ial-

The symmetric trace-free (STF) part of a Cartesian tensor Uy, is denoted by
Up = Uy = STFL(UL), which can be explicitly expressed by [20],

(5]
U<L> = Z a’lﬂ(s(ili2 s 6i2n71i2n Si2n+1---il)plpl---pn,pn (41)
n=0

where [21] denotes the integer part of 1/, i.e. [3] =2 and
St = Uy (4.2)
4 (DRl — 20 - 1 (43)
(I =2n)1(21 = DHN(2n)!!
We also need to introduce the notation to exclude certain indices from the action
of taking STF part of a tensor, i.e. Ui, i, ipglimsr...it) = STELAUsy i pgimsr...it -
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Equivalent to the spherical harmonics, each STF tensor represents an irreducible
representation of the rotation Lie group SO(3). From Eq. (4.1)), we can decom-
pose the product of a rank 1 tensor and a STF tensor of rank [ [2],

UV = AfY + H%Gaim Aéoll)a + ;71 ifi) A(L_—11)> (4.4)
where
AY = U, Vip ) (4.5a)
AD = UVt 1€aypa (4.5b)
AT =0,V (4.5¢)

Detail proof of Eq. (4.4) is given in Appendix A. Similarly, we can also de-
compose the product of a rank 2 symmetric tensor and a STF tensor of rank [
2],

UijVL = Bz(j_l? + STFijSTFL(EaiiI Bg_ll)ja

(4.6)
+ 6iilB(LOle + €aiiy 16JHB(L 12)a + dii, 16ﬂzB( ) ) +0;;CL
where
BSY =04V (4.7a)
G+ 20 4 o
Bp Yja = mUp<j‘/|q|Lflea>pq (4.7b)
o  6l2l—-1) . =
L1 = U+ )2+ 3) pVi-1)p (4.7¢)
(-1) _ 20-1)@20-1) ~» -
By 3. = mUTP‘/:]T<L—26a>pq (4.7d)
—2 20 —3 ~
= THquV}aqL—1 (4.7¢e)
C(O U;DpVL (4.71)

3

Eq. (4.4) and Eq. - can be interpreted by a well known result that, given any
two 1rreduc1ble representations of SO(3) of weights p and ¢ respectively R®) and
R their tensor product can be decomposed into irreducible representations
of SO(3) such that

p+q ]
R® ¢ R@ — @ R® (4.8)
i=|p—q|
4.2 Multipole Expansion and Linearized Grav-
ity
Let us consider a compacted supported source J(x, t) which is defined inside the
region |z| < rg, such that J(x,t) = 0 for || > ro. We can therefore define the
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interior zone [, D; = (x,t)/|x| < r;, where r; satisfies ro < r; < co. Similarly,
we define the exterior zone D, = (x,t)/|x| > r., where ro < r. < r;. We assume
the weak gravitation in the exterior zone such that 7}, is approximately zero.
The retarded potential which satisfies the equation OV = —4nJ can be written

as [3]
V(x,t) / _ =yl (4.9)

|z — yl ¢
In the region |x| > 7o, by denoting r = |x|, this potential admits a multipole
expansion

o0

VM (g t) = le(t - E)] (4.10)

=0

where the subscript (M) denotes the multipole expansion and

/dgny/ dady(a y,t+a|y|) (4.11)
204+ 1!
di(a) = 72”1[! (1—a?) (4.12)

Now, let us consider the deviation of the metric h*” which satisfies Eq. (2.38).
From Section 2.3, we obtain

16 G
Dh,uu = u gTMV +AIW( ) (413)

We can expand A, [4]
Ay = N (h?) + M, (h*) + O(h?) (4.14)
where
N, (h?) = —h*P0,05h,, + %auhaﬁayhaﬁ — i@uh&,h — 20(,yap Oh),

1 1 1
+ 95h (0 hya + 0ahl)) + nw(—za,,haﬁaphaﬁ + 50ah0h + 5aahgpaﬁhw)

(4.15)
My (h*) = =h*P(OuhapOuhly + 0phaud ™ b, — Oahp.0sht)
1 1 1
+ hw(—iaphagaphw + 50ahOh + 5c’)apraﬁW)
1
+ 500 uhiag Ok + 20 DphauOuyhfy + {00 hispDah
(4.16)

1
- Qh?ﬂ(?'mh”)ﬁaahﬁp - §h((luau) haah
+ 1 (Gh**0uhdsh — ThP0phapdh — 11" Ophasdeh®

1 1
- ihﬂaaahpgaf’hg‘ - 5hpf’aah,ffa@h[,ﬂ)
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We now consider Einstein’s equation in the exterior zone. We can further expand

the field in the external zone h,,,, such that
v k v
W =" GRRE (4.17)
k=1

This expansion is called Multipolar-post-Minkowskian (MPM) expansion [2].
The first coefficient h!Y| is called ’linearized field’. Inserting Eq. G) into Eq.

1)
(4.13)) gives
167G

Dhﬁ") = CTT“” (4.18)
Since in the exterior zone, T"" is assumed to be negligible. We therefore obtain
Dhﬁ") =0 (4.19)

Inserting Eq. l] into Eq. 1' yields the harmonic condition for h‘(‘ll')
5‘#hf”1”) =0 (4.20)

Now, we need to impose three other constraints on the deviation of the metric for
completeness. First, we assume that each term of the MPM expansion admits
a finite multipolar expansion

n

nro_ ~ L
il = W (4.21)
=0

Expansion in Eq. (4.20) is explained in [23]. Second, we assume that the
deviation of the metric is constant in some past such that

QY = 0 (4.22)

for all t < —T', where —7T is some time in the past. Finally, we assume that the
metric g*¥ is asymptotically Minkowskian at infinity for all time ¢t < =T, i.e.

lim A/ =0 (4.23)

r—oo (1)

In the following context we shall solve Eq. (4.19) and Eq. (4.20)) under the
three constraints Eq. , Eq. (4.22)), and Eq. (4.23]), which follows the
process described in [2]. We prove some useful formulas in Appendix B. Recall

that Of(r) = 50,(r?0, f(r)) — £ 0}. Inserting Eq. (4.21)) into Eq. (4.19) and

using Eq. (B.2), we obtain

1 2 e + D)
(—ga,? + 02 + ~0r — (1), = (4.24)
Now we change the variables, i.e.
u=t+"- (4.25a)
c
v=t— - (4.25b)
c
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such that

02 = 02 + 20,0, + 02 (4.26a)
1
02 = 5@3 — 20,0, + 02) (4.26b)

Inserting Eq. (4.26) into Eq. (4.24)), we obtain

Ou—0y LI+1) L
(=8u0y + == = (15 — U))Q)hg‘l)L =0 (4.27)

Now, we define a new function

1

i = (4.28)

One can easily see that

(O = Bu)h(y), = =21(v — )"y + (v — ) (B — B0y, (4.29a)
Bu0uh = (0 =)' 0,0, 51, + (v = u)' " (B = Bu)jfy, — 1 = 1)(v —w)' 25,
(4.29b)

Inserting Eq. (4.29) into Eq. (4.27) gives

Eq. (4.30)) is a particular case of Euler-Poisson-Darboux equation. Let’s define
the operator E,, ,, := (u — v)9,0, + md, —nd,. Eq. (4.30) can be rewritten as

Ei10410i( ) =0 (4.31)
We now differentiate Eq. (4.29) by v and v, respectively, and obtain

auEl,l(jfo;L) = El-l—l,l(aujétll;L) (4.32a)
OuEL1(i()y ) = Eras1(0ud()y 1) (4.32b)

From Eq. 1' we notice that, if j(*LlV)L is a solution for El,l(jﬁ';L) = 0, then
8271, Ny

arardyr 18 a solution for El+n,l+n(jﬁu)L) = 0. Therefore, to find a solution for
Eq. (4.31)), it is sufficient to find a solution for

Elvl(jéI;L(l,l)) =0 (4.33)
A general solution for Eq. (4.33)) can be described as

o P (u)+ QY (v)
Jyray =@

(4.34)

u—v
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where a is an arbitrary constant and P! (u) and Q7" (u) are two arbitrary
functions. The solution for Eq. (4.31) is

o P () + Q4 )

jétll;L(l+1,l+1) = aaluﬁlv w—o (4.35)
Using Eq. (4.28)), we, therefore, find a general solution for Eq. (4.27))
o PLY(w) + Q1 (v)
v I L L
hl{l)L - CL(U - U) alualv °—v (436)

n

Recall that Leibniz formula, i.e. aanic(f(m)g(x)) => l,(n”ilz),% (z)%g(x)
i=0
We obtain

. Lo LD o O

- v — i, 2 \—(2l—i4+1) Y  ppr

8IU8IU(PL (U - il l—Z)' ) (u ’U) 81UPL (U)
(4.37a)

L L 21—@)' . 1—isn) O

v v _ _ _ — —3 )7 v

alualU(QL ( 'LL U ; Z—Z)' ) (U U) 81',UQL (’U)
(4.37b)

Inserting Eq. (4.37)) into Eq. (4.36) gives

l i 0" puv L oM
L oy B2t D PR W) + Q1 (0) €
L = il =) rl=itl 2

(4.38)

Since P/ and Q7" are arbitrary function, we can fix a Value for a without
changing the physics. After careful comparlson between Eq and Eq.
(B.4), one can check that, if we choose a = 7, Eq. admlts the same
form as Eq. (B.4). We can therefore rewrite Eq. ( -

P+ 7))+ Q- )
T

AtR g = oLl ] (4.39)

We now prove that we are free to change P}”(t+Z) to P/ (t— L) in Eq. (4.38).
Applying the constraint Eq. (4.22) to Eq. (4.39)), we obtain
QP (t+ L) +0,QF (t — %)

r

oLl

]=0 (4.40)

for any time ¢ before —T'. From Eq. (B.1), we notice that dy is proportional to
a( 2)1 Therefore, the solution for OLF (r) = 0 must have the form

-1
r)=> ar*t (4.41)
=0
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where a; is some arbitrary constants. We can then write

21

OPL(t+2) + QL (= =) = D al(t+ ) = (¢ = )] (4.42)

i=1
We can integrate Eq. (4.42]) with respect to t + ~ and ¢t — ~ and obtain

21+1
v T T i
i=1
21+1

r r
Pt — =)= — thf 4.43b
Q=D =-3 att— D'+ (1.430)

where we have redefined a;, such that a; := al—’l One can easily check that

orrf =0 (4.44)

for positive even integer k less than 2I. Using Eq. (4.44), we can insert Eq.

(4.43) into Eq. (4.39) and obtain

ALh’(Ll”)L 5L[—cm%a2l+1r21 + %] (4.45)
We then apply constraint Eq. to Eq. and easily find

agi41 =0 (4.46)
From Eq. , one can easily check

(t+2)' 5 =8

ar(

) (4.47)
for positive integer 4 less and equal to 2. Therefore, since Eq. (4.46)), we have
dL P (t + %) = O Pl (t — %) (4.48)

We can then naturally define U™ (t — L) := P/ (t — L) + Q" (t — L) and rewrite

Eq. (4.21) by applying Eq. (4.39)
huly) - Z I (

Since dy, is STF in L, we can replace Ul in Eq. 1) by U<“LV> and replace Or,

by 0r. By using Eq. , we can decompose U<L>, such that

Uw(t — 7)) (4.49)

! {0 2010 2
I+ 1 ai{it L —1)a + 2 + 16i<ilAL—l>

0
Uitry =

(3

(4.50)
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where

F(4+1

AV =Up,, (4.51a)
70
A(Lzla = U;?q(L—lea)pq (451b)
A(L 1) = Uppr—1 (4.51c)

Inserting Eq. (4.50) into Eq. -7 we have

A (41) ~(0) 1
1) _ZaL 1( AzL 1) +ZaL 6M(HAL Da T I+1 6MbAabL 503 _1i1))
1>1 1>1

-1, 12a1 6D
+ZaL 2l+1 85, A +Z@L A S0 i)

(4.52)

From Eq. , one should notice that GaibAg()))L_g is zero, since A(Lo) is totally
symmetric with respect to all its indices. Also, since Jy, is totally symmetric
with respect to its indices, we can ignore the symmetrizing operations in the
terms, i.e. dL Uy = 9 Ur. Using Eq. to compute a), we obtain

204+11 4 - 1) +1) l 12
; —A} — — NA(=A;
Zal‘ 2l_|_3 ;81/ 1 zL 1 2l+3 (7, szl))

+ Z 6zbaabL 1 AgJ) la)

>1

(4.53)

One can then check A(L LAGCD) = %%flw |, where f(z) := 92f(z). We can
thus further simplify Eq -

Wy =0 (r ' Bo)+Y 01 (r ' Cir1)+Y_ €ivalor—1(r~' D _14) (4.54)

1>0 1>1 1>1
where
204+ 1 ;1
Bp=—-—A 4.
L7 o143 (4.55)
_ A4 I (o))
Cin1= A — mAiL—l (4.55Db)
L0
Di_1,= —A 4.
L-1la 1+1 L—1a ( 550)
Similarly, one can insert Eq. (4.6)) into Eq. (4.49)) and obtain
iy = Y 00 (r EL) + 6500(r " FL))]
1>0
+ Z[aL—l(i(TilGj)L—l) + €ap(i05yar—1(r " Hyp—1)] (4.56)
1>1
+ Z[aL 2(r M Lijn—2) + Oar—2(r e Jjypr—2)]
1>2
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where E,F,G, H,I and J are functions of B2 B(+D BO) B(1) B(=2) and
C’]go). For completeness, we define

Ap =UY (4.57)
such that
WYy = 0L(r~AL) (4.58)
>0

Now, we apply the harmonic condition Eq. (4.20)) to Eq. (4.54)), Eq. (4.56)), and
Eq. (4.58), which will impose constraints on functions A to J. For example,

the time component of Eq. 1' reads

Inserting Eq. (4.54)) and Eq. 1) into Eq. (4.59)), we obtain
Z@L(r_lAL) + ZBL A(’I“_lBL) + Z@iL_l(r_lCiL_l) =0 (460)

1>0 1>0 1>1

where we have used 0;0,€¢;5, = 0. Using the identity of the Laplace operator,
one can easily check

1. 1 .
Crt AL+ 5Br=0 (4.61)

We now define A(L”) = pn atn AL One should be careful that 1ndlces ( ) which
represent higher derivatives is distinct from indices (£n) in Eq. which
label different irreducible representations of the rotation Lie group. Therefore,

we can rewrite Eq. (4.61))

CL+AY +BY =0 (4.62)
Similarly, using the spatial component of Eq. (4.20)),
7601#0 + k{3, =0 (4.63)

We obtain the following constraints

G +2BY +2E® 4 2F, =0 (4.64a)
R L o (4.64b)
Jp + 2D + <2> =0 (4.64c)

For future convenience, we now redefine the functions, such that

1 9 (71)l+14 N
My = Ay +2B" + EP + Fy =My (4.65a)
1 —1)i*14] -
Sy = —py — Lgw .= E (4.65b)

2L A+
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and

T, =B + %Egn (4.66a)
0 i %EL (4.66b)
&, :=-B" —E® — Fy (4.66¢)
Uy = %HL (4.66d)

In terms of the new functions, from Eq. (4.58)), Eq. (4.54), and Eq. (4.56)), we
obtain

(M) + >0 (-TY + 0P +ap))  (4.67)
>0 ! >0

(1)

_ 4 ~13
LA (r ) ) 72 l+1 fmbaaL—l(T 'Shr—1)
>1

1>1
+ > O (r (T - o)) - Z[aLﬂ(?"_l(I’z(‘L)ﬂ) + €iar@ar—1 (r L) )]
>0 I>1
(4.68)
z s ] (-4 (1
hiy = (M) ) - a maaL—Q(Eab(iS§)2L—2)
1>2 122
+22<9sz '0L) = ;0L (r (TS + 0 + 1))
1>0

+ 22 Or—16(r ' ®j-1) + €ap(iOjyar—1(r " Wpr_1)]
>1
(4.69)
where we have used the inverse of Eq. and Eq. and also the

constraints Eq. (4.62) and Eq. (4.64). Now, one can check that Eq. (4.67) to
Eq. (4.69) can be rewritten as

R =R (M,S)+ K*(T',0,,0) (4.70)

(1) — (1)can(
Using 7"*1@(5) = A(r~'0p), we can rewrite K* (T, 0, ®, ¥)

00 — —%ao S0 T 0D 0 (rTOL) + > Opa(r )] (4.71)

1>0 1>0 1>1

; 1
K% = — 760[2 in(r~'er) + Z(aLfl(Til)(I)iLfl + €iabOar—1(r " Wpp_1))]
¢ >0 >1
+0;y Op(r ')
1>0
(4.72)
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» 1 ,
KY = —5”;80 Z&L(T’II‘L) - §”3k(z Okr(r~tOr) + ZaL—lq)L—lk)

>0 1>0 >1
+3(i[z Ihr(r~'er) +Z OL—1(r ' ®jr-1) + €jyap0ar—1(r "Wy _1))]
1>0 I>1
(4.73)
We can therefore write K#¥ in the form
KM = 9Wg) — v ke (4.74)
where
Z A (r~iTr) (4.75)
1>0
= Z iL(r~ter) + Z(an(T_l)‘I)iLq + €iapOar—1(r " Wpr 1)) (4.76)

1>0 1>1

Therefore, Eq. is canonical transformation of hf’ ”) used in [23]. Now, we

obtain an expression for the canonical linearized field h(1) in the exterior zone
D..

—4 (—1)! -
h(l)can = 072 Z N 8,;(7‘ ML) (477)
>0
4 —1 (1 4 ~
(1)um 3 Z aL 1( MzL 1) ? Z €zab3aL 1(r ' Spr—1)
I>1 >1
(4.78)
i —4 1@ 8 &(1)
h J )can = T Z aL 2 MZjL 2 74 Z l—|— 1 GL*Q(Eab(iSj)bL72)
1>2 1>2
(4.79)

where M, and S}, are sets of totally arbitrary functions. We identify the func-
tions M 1 as the mass multipole moments and the functions S 1, the current
multipole moments [23]. In the following discussion, we will drop the tilde on
both functions for convenience.

4.3 Solution of Einstein’s Equation in the Inte-
rior Zone

In this section, we solve Einstein’s equation in the interior zone D;. We introduce
a notation for small order terms in the post-Newtonian expansion [4]. If a totally
symmetric tensor TH1#2"H obeys

THik2 R — O(p07p17 o 7pl) (480)

we mean the following o
T im0 = O(c™™) (4.81)
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For example, G* = O(a, b, c) is equivalent to, G = O(c™?), G% = O(c™?),
and G¥ = O(c™¢). Now we define the following quantities from the stress-energy
tensor TH¥

TOO + Tn
o= 5 (4.82a)
TOi
o=~ (4.82b)
045 = Tij (4820)
We also define the related retarded potential, such that
OV = —4nGo (4.83a)
aV; = —4nGo; (4.83b)
1
Using Eq. (4.9)), we obtain
lz—y|
,t -
V(z,t) G/d3 olyt= =) (4.84a)
[z -y
|z—y|
Y, t— ——
Vi(z, 1) G/d3 iyt = ") (4.84b)
T -y
. (044 25 (BVO,V — L6,,0,VO, V) (y, t — 2=l
Wij(w,t)G/ddy(gj—i_MG( J 30i;0:V V) (y )
lz -yl
(4.84¢)

In the following context, we assume that o, o;, and o;; are of order c®. From
Eq. -, one can easily check that h*” is of order O(2,3,4). Recall that the
stress-energy tensor obeys the conservation law

vV, T" =0 (4.85)
where V is the covariant derivative operator, such that,
V,T" =0, T" + 1T}, +THT,, (4.86)

First, we consider the '0’ component of Eq. (4.85)), e.g. v = 0. We, therefore,
obtain
0 0 0
o0,T"" + TP +THT,, =0 (4.87)

Rewriting Eq. (4.87)), we have
1 ) ) .
oo + 0,05 + E(Toorgu + TTY, + TTg, + TOTg, + TVTY) =0 (4.88)

One should notice that, from Eq. , £, is of order O(2). Therefore,
terms with T°° and T% must have order smaller or equal to O(2). We can then
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compute Iy, by using Eq. (2.45)

1
b
Fou—%

which is of order O(3). Thus, inserting Eq. (4.89) into Eq. (4.88)), we obtain

O (4.89)

0o + Ojo; = 0(2) (490)
Second, we consider the ’i’ component of Eq. (4.85)) and obtain
9;0 + 9;045 + TOTfy + TOT; = O(2) (4.91)

where we have ignored all the terms whose order is smaller or equal to O(2) by
the same reason as before. From Eq. (2.45), we have

. 1
F60 = Eaz(hoo + Z hjj) (492&)
J

i 1
o = 5(Gihjo — 9;hin) (4.92b)

From Eq. (4.92b), we immediately see that the term T%T}; is of order O(2).
Inserting Eq. (4.92h) into Eq. (4.13)), we obtain, at lowest order,

167G
D(hoo + Z hjj) = 7T o (493)
J

2

Comparing Eq. (4.93) with Eq. (4.83h), we obtain, at lowest order,
1

Tho = —gaiv (4.94)
Inserting Eq. (4.94)) into Eq. (4.91)) gives
81'0' + 6]'0'1']' = a@zV + 0(2) (495)

In order to replace o, 0;, and 0;; in Eq. (4.90) and Eq. (4.95)) by corresponding
retarded potentials, one can check

0055 + g OV AV))(y, t — 224
lz -yl

oW = G/d3y( (4.96)
By using AV =0V + O(2), one can check that Eq. (4.95)) can be written as
o;Vi + 8]'Wij = 0(2) (497)

For consistency, we also rewrite Eq, (4.90) in terms of the retarded potentials

AV +0,V; = 0(2) (4.98)
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Now, let us consider Einsltelns equation Eq. (4.13) to Eq. (4.16)) in the
interior zone. From Eq. (4.13) and Eq. , we have h%° = —27 1+ O(2),

hY = O(3), and h¥ = O(4). Inserting thebe relatlonb into Eq. (4.13), we can
obtain Einstein’s equation at order O(6,5,6). For example, the 00’ component

of Eq. (4.13]) reads

DhOO

167G (1 4 )T 4 NO(R2) 4 O(6) (4.99)

Using the fact that h*” = O(2,3,4), we can simply Eq. (4.15)), such that

) 1 . 1 )

N(h?) = 9;h%°0"hJ + Z&-hooalhoo — gaihalh +O(6) (4.100)

One can then explicitly compute N (h?) using Eq. (4.100).

14
N9(p?) = —Cjaivaiv (4.101)
Inserting Eq. (4.101)) into Eq. (4.99)), we yield
167G 4V

O = — 1+ —)T% — 7@ Vo,V + O(6) (4.102)

Using the same method, we obtain

167G

Oh? = (3—4T@’0 +0(5) (4.103)
Iy 167TG 4 1
OrY = T” 0—4(&V8JV - 5&]6]@‘/8]@‘/) + O(6> (4104)
From Eq. and Eq. (4.83F), we can easily see
w4

R = SVt 0(5) (4.105)

W= 2w, o 4.1
= Wi +0(6) (4.106)

However, to solve Eq. (4.102]), one can check
167TG

O(W —2V?) = —4xGT" — a Vo,V + VT +0(2) (4.107)

where we have used OV? = 29,Vo;V +2vV0OV + 0(2) and W = W;;. We can
solve Eq. (4.102)

4 4
00 vV w ‘72

Using Eq. (4.105), Eq. (4.106), and Eq. (4.108)), we can iterate the above

process again to find Einstein’s equation at order O(8,7,8). Using h = 1, h*",
we obtain

8
h=5V - C—4(W—V2) (4.109)
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From Eq. (2.41)), we find

4 8
—g=l+5V- (W — V%) +0(6) (4.110)

ct
One should notice that the term Lh2 cancels with the term %hﬂph”p at order

O(4). Inserting Eq. (4.105), Eq. (4.106), Eq. (4.108)), and Eq. (4.109)) into Eq.
(4.14)), we have
2

A =~ %aivaiv - E[fsvafv —16V;0,0;V + 5(9,V))* + 40, V;0,V;

(4.111)
.4
A" = = (40, VOV; — 40,V 0;V; + 30:V O,V) + O(7) (4.112)
i _ 2
c6 1 VEUjVE kViUkVj (i Vi) (i ViOkVj)
— 8,5 (3(8V)? + 8LV O, Vi, — 40 Vi(Ok Vi — 81 Vi))] + O(8)
Therefore, we obtain Einstein’s equation at order O(8,7,8)
1 _

OR™ = = (ZGET‘W + A" +0(8,7,8) (4.114)

where g and M are functions of the retarded potentials V, V;, and W;; and
obey

g=3g+0(6) (4.115a)
AP =AM 1+ O(8,7,8) (4.115b)

Solution of Eq. (4.114)) can be written as

B = —G/d3y

In the following context, for convenience, we rewrite the solution as

167G
0

1
|z — y|

4 1 - |z — y|
— g 4 — AMW - 4.11
(C4g toc )yt . )+0(8,7,8) (4.116)

hH = OR'( gr* + A" + 0(8,7,8) (4.117)

where the subscript R represents the name 'retarded’.

4.4 Solution of Einstein’s Equation in the Exte-
rior Zone

In this section, we extend the discussion in Section 4.2 and compute the canon-
ical external field k%Y (x) up to the order O(7,7,7) in the exterior zone D..

can
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In Section 4.2, one can see that the canonical linearized field h’(‘{’)can (2) can be

written in an expression that only depends on two sets of functions My, and Sg.
Now, we introduce the potentials in the exterior zone V, V;, and V;;, such that

(r='Mp) (4.118a)
>0
- (—1)! _ (-4 _
Vi= =Gy 0 ML) +Z—(l Ty ar-1(r Su-1)]
>1 >1
(4.118D)
- —1)! _ -1l
Vij = G[Z( l') Or—a(r 1M1(JQ£ 2) +Z ((l+)1)'8aL2<€ab(iS§)lgL_2)]
1>2 1>2 :
(4.118¢)

From Eq. (]4 77[) Eq. (|4 78[) and Eq. , one can easily check h ycan =

GCQV h(1 Yean = GC3V and h”l)can = Gc4 VU Using Einstein’s vacuum
equation (Eq. ( - ) with T#¥ = 0), we can compute the higher-order coefficient
in the MPM expansion Eq. | - 4.17) by

OB, = Al (h) (4.119)

where the non-linear term A’(L ,:) obeys

Afbku) = Z Nﬂu(h(i)cana h(j)can) + Z Ml—w(h‘(a)cana h(b)ca'ru h(c)can)
i+j=k a-+b+c=k
(4.120)
To obtain a solution for Eq. (4.119)), we introduce a notation in [4], such that

hiy = FP.—o0g r e Ay (W] + ) (4.121)

where z is a complex number and c? ]:) is an arbitrary function that obeys

Oy, =0 (4.122)

For a function f , the function g(z) = Dgl(rz f) admits a Laurent expansion,
i.e. g(z) =Y a;z'. Then we define

FP._oOx'(r*f) = ao (4.123)

Formal definition and detail discussion of this notation can be found in [2]. We
will see the convenience of introducing this notation in the following computa-
tion. Now, we will assume that cé”) = O(7,7,7) and C'EL;) = 0(8,7,8), which
are proved in detail in Appendix A of [4]. Using the iteration equation Eq.

(4.119) and Eq. (4.120) and recalling h’(‘ll’) = 0(2,3,4), one can check that the
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coefficient h? 4") will be smaller or equal to the order O(8,8,8). Therefore, the

canonical external field h%” can be written as

BEY, (Pean) = G o (ean) FFP_oDI5 1" (GPAL () +GP AL ()] +O(7,7,7)
(4.124)

where the term O(7,7,7) comes from the term 0(2) in Eq. 1_} We can now
explicitly compute the coefficient hé)can in terms of the external potentials by

inserting the expression for the linearized field h*" into the non-linear term

Af‘;can This is exactly the identical calculation gil)célgction 4.3. We obtain
R —%f/ + %(W —2V%) + 0(6) (4.125a)
noi = —;%f/i +0(5) (4.125Db)
hid = —%Wij + 0(6) (4.125¢)

where

Wij = Vij — FP,_oOR [r*(0;VO,;V — %@jakf/akf/)] (4.126)

Eq. (4.125) admits the identical form to Eq. (4.105), Eq. (4.106f), and Eq.
(4.108). Therefore, we can directly apply the calculation in Section 4.2 to the
case of exterior zone. By analogy to Eq. , we obtain the solution for the
canonical external field

(Zean) + FP._oOR [r* A (V, V;, Wij)] + O(7,7,7)
(4.127)

hian (Tean) = th

(L)can

where A*(V,V;, W;;) admits the exact same form as A* (V, Vi, W)

4.5 The Matching Equations

In previous sections, we introduced the solutions to Einstein’s equation in the
exterior zone D, and in the interior zone D;. In this section, we aim to find the
matching equations that link between the two solutions in the overlapping zone
D,, = {(z,t)|re < |x| <7}

Now, let us consider a canonical transformation, i.e.

bt =at 4+ ot (4.128)

We assume that ¢* is of order O(3,4). From the transformation law of the
metric, we can write

oxg ozt = OzY
can /,w m _ can can (, po po
ot 20 o 4 () = O O gy o) (1.129)
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We can then expand the determinant

ax?an _ « 2
det( 5P ) =14 0,0% + O(¢%) (4.130)

Taking the derivative of x* on both sides of Eq. (4.129)) gives

(14000 ) (1" +higarn (€)+0 Do hizen (2))] = Ou[(65+0,0") (05 +059") (1”7 +h" (2))]
(4.131)
where we have used % (zcan) = hEY (2) 4+ ¢P0,ht, (x). Now, expanding both

can
sides of Eq. (4.131)), we obtain

" 4 hen (x) + 7 Ophiay (x) + 0/ 0,¢0° + hig, (2)0,¢”
= B (@) G+ O+ W (2)D,0 + W ()00
+n770,9" 059" + O(8,7,8)
(4.132)
After some rearrangement, one can check

i () = () + 01" + 0¥ g — 1 0,7
+ WP (2)0p 0" + WP (2)0p0" — ¢ Ophis, (1) — hig, ()00 + 107 0,0 050"
+0(8,7,8)

(4.133)

One should, however, be aware that terms which contain both h and ¢ in Eq,

(4.133) are smaller or equal to O(6). This is simply because the ’0’ component
of the derivative d, contains another factor of % Therefore, the transformation

law Eq. reduces to
Ry (x) = B (z) + O " + 0¥ ¢" — 0" 0,0" + O(6,7,8) (4.134)

Recall h**(z) obeys the harmonic condition, i.e. 9,h*"(z) = 0. Inserting Eq.

(4.134)) into Eq. (4.131]), we obtain
O¢” + " (x)0,0,¢" =0 (4.135)

It is also useful to compute the ’00’ component of the transformation law Eq.

(4.119) to the next order O(8). Inserting Eq. (4.124) into Eq. (4.123)), we obtain
R (z) = h®(z) +20°¢° + 0,¢" + 2h*°(2)0,¢°

= 20,1 (@) — K (@)D, + 5:6°0,6° + O(8) (4139)
We therefore write Eq. as
W (@) = h* (z) + O* + " + O(8,7,8) (4.137)
where
DY = @Y + BV P — ' D,¢” (4.138)
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and

Y90 = 21P9(2)0,¢° — ¢?9,h°%(x) — h*(2)0,¢° + 0;¢°0;¢° (4.139a)
¥ =0 (4.139b)
»J =0 (4.139c¢)

Now we can match the exterior potentials to the interior potentials by inserting

Eq. (.105), Eq. (#.106), Eq. (4.108), and Eq. (#.125) into Eq. (@.137). We

therefore obtain a set of matching equations

N . 1 ¢ c?
V(W - 2V?) = -V + (W= 2V?) — §at¢° +0,9" +0(4)

(4.140a)

-V fatqsi + az¢° +0(2) (4.140b)

_ oA
—Wij = -Wij + — ( 0ip; + 0j¢; — 0;0,0”) + O(2)  (4.140c)

From Eq. (4.140c), one can easily check

= ct 33 . 5
W =W + Zaid)i + Tat¢ (4.141)
Inserting Eq. (4.141]) into Eq. (4.140R), we obtain
V =V 404" + O(4) (4.142)

From Eq. (4.140p), we obtain
. 3
V=V — %aia;o +0(2) (4.143)

where we have used ¢! = O(4). We can then use Eq. (4.10) to expand interior
potential V' and V;. This procedure is to ensure both external potentials and
interior potentials to have the same mathematical expression. Therefore, we
write

& l
(1) _ (GO
yM) = GZ i 8L[TVL(t -] (4.144a)
VD = _r
GZ . Vir(t = -)] (4.144D)
where
: i}
Byir, daél oly,t+a - ) (4.145a)
~ [ lyl
= d yy Ur, daél CTZ y, t+a ) (4145b)
C
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We have matched the exterior potentials V and V; to the corresponding interior
potentials V' and V; in the previous discussion. Now we need to match the
exterior potential V;; to the interior potential W;;. Inserting Eq. (4.126) into

Eq. (4.140F), we obtain

- -1 ot

‘/ij = Wij+FPZ:OD}}1[rz(&V@VfiéijﬁkvakV)]fZ(8i¢j+8j¢¢—6ij6p¢p)+0(2)
(4.146)

Since OW;; = —4nGoyj — 0;VO;V + %&jakvakv, we can write

- 1

Vij = Dél(—llﬂ'GO'ij — 8iV8jV + §5ij8kV8kV)

-~ 1 -~ 4
+ FPZZQDE1 [rz(aiVajV — §5ij8kV8kV)] — %(81(]5] + 8j¢i - 5ij6p¢p) + 0(2)

(4.147)

Since V = V(M) +0(2), we can replace the exterior potential V by the multipole
expansion of its corresponding interior potential V. Thus, we can rewrite Eq.
(14.147)

- _ 1 ct
Vij = Og!(—4nGoij) — (Zij — §5ijZkk) - Z(ai¢j + 0j¢0; — 0;;0,0°) + O(2)
(4.148)
where we have defined
Zij =0 (0iVO,;V) — FP.—oOx [r* (VM) ;v (M) (4.149)

Since the first term in Eq. (4.149) is regular at » = 0, we can write Eq. (4.149))

in the following form
Zi; = FP,_oOx' [r*(9;V 0,V — 0;V Mg,y (1)) (4.150)

The convenience of writing Z;; in this form is that now we can multipole expand
Z;j, such that

(-1t 1 r
220 = C oz~ D) (1.151)
=0

where

1 . R
ZijL = *ZFPZ:O/d3y|y|ZZJL/
v

1

dady(a)(3;V;V—9;V M 9,7 M) (y, t+a‘%)
1

(4.152)
From Eq. (4.144h) and Eq. (4.145h), one can compute that the multipole

expansion of V has the form

VD =N " fger™ f(t+ (a — 1)%) (4.153)
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where K is some multi-index, m is an integer, and f is some function. One can

then insert Eq. (4.153) into the integral Eq. (4.152) and obtain

1
FPr{/fmw@L/lM&WM@VMD@VWU@¢+a%H

_ (4.154)
=Y gl [ dlylyl
0
Let us define
- / dlylly|"" (4.155)
X
X
L— / dlyllyl=" (4.155b)
0

For I, we choose the complex number z, such that Re(z) +n+1 < 0. One can

check that 1

:z+n+1

Similarly, for Iy, we choose the complex number z, such that Re(z)+n+1 > 0.
We then obtain

I | X |zt (4.156)

1
z+n+1
Therefore, at z = 0, by analytic continuation, we obtain

I = | X[z (4.157)

PP [ dlylly =0 (4.158)
0
From Eq. (4.152), we then have
ZijL ZFPz:O/d3y|y|Z§L/

2m&mx@v¢vx%t+awb (4.159)

¢
Inserting Eq. (4.151)) into Eq. (4.148)), we obtain

N (=1t 1 r ct
Vij=G Z T 6L[;WijL(t - E)] — Z(az¢] +0;¢; — 5ij8pd)p) +0(2) (4.160)
=0 !

where
N 1 1 lyl
WijL(t) =FP._ d y|y| YL daél(a)[aij—f—r(&-VajV—fE)kV(’)kV)](y,t—i—a—)
1 TG 2 c
(4.161)
and A
Wiy = WM — S (0,0, + 060 — 6,,0,8°) + O(2 4.162
ij ij 4(Z¢]+ J¢z ij pd))"‘f_ () ( )
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> r
Wi =a > o wine - )
= (4.163)

1
—FP,_o0x [r*(9;V Mo,y (MD) §5ijakV<M)akV<M>)}

We have related all the exterior potentials, i.e. V, V;, and VT/ZJ, to the multipole

expansion of the interior potentials, i.e. V() V(M) and W( ) in Eq. ,
Eq. m, and Eq. m, respectively. We have also obtalned the so utlon
for Einstein’s equation in the interior zone D; (Eq. m and in the exterior
zone D, (Eq. m We have also explicitly computed the form of the non-
hnear term A in Eq. ({.111), Eq. (4.112), and Eq. (4.113). Inserting Eq.
, Eq. m, and Eq. (4.162) into Eq. (4.111]), we obtain

< ~ 2
Aoo( Vi, W, ) Aoo( M>,Vi<M),W.(.M’)—c—faiatqsoaiv(”f)

¥

2 14398997 1+ 19— 8.0-009.7 M + & 5.9.699.9: 4

+ GO0,V +12(=50,0,0°0,V™) + T:0.0,6°0,0;0")
3 6
+ 4(f%a¢aj¢oaivj<M) + %aiajgboaiajqﬁo) — 2839,V M) 9,9,¢°
1
+2c*(0ip; + 0 — 5ij(gat¢° + O r)) 00, VM
4OV (004 — 0:016°)] + O(8)
(4.164)

Rearranging the terms in Eq. (4.164) and using OV = AVM) 4+ O(2), we
have

AOO( VL W, ) AOO(V(M) V(M) W(M)) Baiat(bOaiv(M)

+ —36¢¢08i6tV(M) - 7aiv.<M>aiaj¢°

(4.165)
+20,0;¢°0,0;6° + az@a 9, VM)
+ gaivw 9;0;6; + O(8)
Similarly, one can simply check that
AUV, Vi, Wiy) = A% (v D v (D) 4 o(7) (4.166a)
NV, Vi, Wig) = A9 (vOD v M w D)+ 0s) (4.166D)

Now we claim, using Eq. (4.165]) and Eq. (4.166]),

A (V, Vi, Wig) = A (v D v D WDy L Osie + 0(8,7,8)  (4.167)

93



where

20 = - LV 9,60 a0 — Vg, — v M) — SVMa0 10,600

(4.168a)
¥ =0 (4.168b)
SVii (4.168c)
To prove Eq. (4.167)), one can easily check, for two functions f and g,

O(fg) = (@f)g + f(Bg) + 20;f0;9 + O(2) (4.169)

However, one should notice that OV ) = ( and EIVZ-(M) = 0, since the multipole
expansion is evaluated outside the source. From Eq. (4.135), one can easily
see that O¢* = O(7,8). Therefore, one can check that OYX*” gives the exact
expression in Eq. (4.165). One can also check that X'#¥ defined in Eq.
is the same as X*” that we have defined in Eq. . In the overlapping zone
D,,,, we have the canonical ﬁeld htv () relates to the internal field h*¥(x) by

can

Eq. (4.137). Inserting Eq. into Eq. (4.127) and comparing with Eq.
(4.117

4.117)), we have

167TG

G,  (x) =0gx"(~

(1)can

,T/w A;W(Vv’ V;‘, Wij))

— FP,_,0j;! [rzf\’“’(V(M), VA W) e 1 0(7,7,7)

(4.170)

where we have defined ®*” in Eq. . Since the first term on the right
hand side of Eq. is regular at » = 0, we can rewrite Eq. as

167G
4 — -1 FTHY pv g y
Gh(l)can( ) - FPZZODR [T ( C T + A (‘/’ ‘/17 Wl]) (4171)

N4 M (M) (M) v
— A (VD VR WEE) + e+ 0(7,7,7)

One should recall that, as we discussed in Section 4.2, the linearized field h?ll’)can

is a function of two set of functions My, and Sp,. We can multipole expand Eq.

(4.171)), such that,
G o0

GRS M, 8] = — =

(1)can 4

P“”( ~ Do +0(7,7,7) (4.172)
C
=0

where

1
PI¥(t) = FP._q / Pylyl’ / dagj6,(a) (0"

” (4.173)
v (M) (M) (M) 1Yl
- A, VD ) g, e+ ot
The new source p"” is defined as
4
PV Vi Wey) = =g(ViW)T™ 4 SR (V, Vi W) (4.174)
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As we have discussed in Eq. (4.152), the integral of A (VM) VZ.(M)7 WZ.(]M)) is
proportional to Y fxg(t)FP.—g [~ dlyl|ly|*™", and, therefore, vanishes due to
analytic continuation. We then have

1
PR =¥ [yl [ depuipwotalZ)
-1
Eq. (4.172)) is an equation that relates the two set of functions My and S to
the internal potentials V', V;, and Wj;. One should be aware that
Oup™” = 0(3,4) (4.176)

4.6 Relation Between Source Moments and In-
terior Potentials

In this section, we will explicitly write the multipole moments of the source
in terms of the interior potentials. The process of solving Eq. is very
similar to the process of finding Einstein’s equation in the exterior zone, which
we discussed in detail in Section 4.2. It is also thoroughly discussed in [I2].
First, we define

, AGN (-, 1L, r
and

! ly

QrL(t) :FPZZO/d3y|y|Z/ da@Ldl(a)poo(y,t—i—a?) (4.178a)
-1
1

Kip(t) = FP._, / Pylyl’ / 1dagL61(a)pm(y,t+agcl) (4.178b)
1

Li;(t) :FPZ_O/d3y|y|Z/1dag}L6l(a)p’J(y,t+a’Z|) (4.178c¢)

We can then decompose K;; and L;;; into irreducible representations of the
rotation Lie group. This process is done in Section 4.2. We write the result as

below [12]. Using Eq. (4.4) and Eq. (4.5)), we have
l 20— 1

4D (0) (-1)
KiL = KiL + meai<ilKL—l>a méi@lKL—l) (4179)
where

1

KD (1) = FP,_, / Pylyl® / dady(@)gEpi0(y, ¢ + a%) (4.180a)
—1

©) P X 0 ly
KL (t) = FPZZQ d y|y‘ da5l(a)eab<ilyL_1>bp (y, t + a?) (4180b)
—1

1

K@) =FP,_ / dByly|* / dady(a)jr—1ap"" (y, t + a%) (4.180c¢)
-1
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Similarly, from Eq. (4.6) and Eq. (4.7), we have

2l
LijL = L(;f + STFijSTFL(aniiZL(Ltll)ja

1, l+
61(2 — 1) 0  20-1@-1) (1)

B SN2 B SR 5 C B Tt SN2 A S PSR I 5
(I+1)(20+3) Pl (I+1)(20+1) €asir—1O7in L 24
20-3

_92 =
méiil—léjilL(LfZ)) + 0y L1

(4.181)

where

Y
L(L+2 =FP,_ 0/d3y|y| / dad;(a mem”)(y,t—&-a‘ |) (4.182a)
z Yy
L) =Fp —0/d3y|y| / dadi(a)€ab(iy, UL —11b|Pis)a (y7t+a‘ |)

(4.182b)
©0) 1y — 3, 1,12 5 |y
LL (t) - FPz:O d y|y| da l( )ya L— 1pu> (y;t +a— ) (4182C)
L—1 (t) - z=0 y‘y| a l( )Gab(zl 1yL 2>bcpca(y7 t+a— )
—1
(4.182d)

1
LA =FP.— / Byly|? / dad)(a)fapr— gpab(y,t—i-a'm) (4.182€)
-1

_ 1 1 .
Lp(t) = gFPz:O/dSy|y|Z/ dadi(a)rpaa(y,t + a%) (4.182f)
-1

One should recall that we have defined sz = p<l - With the decomposition of

Kip(t) and L;;z, in Eq. (4.179) and Eq. (4.181) respectively, one can decompose
(.177

P+ and write Eq. 77) in the followmg form

=> 0L(rAyp) (4.183)

>0

P = Z Oin(r~*Br) + Z O—1(r*Cip—1) + Z €ibaObr—1(r""Dr_14)

1>0 1>1 1>1
(4.184)
PY = [0ijr(r ' EL) + 6,500 (r " FL)]
1>0
+ Z aL 1(1 _])L 1) +€ab(zaj)aL 1( 71HbL71)} (4185)
1>1
+Z [Or—2(r " Lijr—2) + Oar—2(r™ "eapidjypr—2)]
1>2
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One can immediately see that

4G (—1)!
AL="a
We have calculated the functions By, Cr,, and Dy, in Eq. (4.55). However, due

to the factor (_“1)1 in Eq. (4.177)), one should be careful about the coefficient in
front of each term. We have

QL (4.186)

4G (—1)l 20+ 1 (-1)
By =—— 4.1
L=7a 0 G+n@+3) L (4.187a)
4G (1" 1 (—1)
= -K K 4.1
iy iy e A (SO TR R (4.187b)
AG (-1 o)
N 1)!KL (4.187c)
Using the same method, we can compute the terms in P% [12]
74G (71)1 20+ 1 (-2)
LS A U a5t (4.188)
F _ﬁ (-1 = 20(21 - 1) 0) _ 20+1 E(—2)]
P Y0+ n@i+3)7E (D0 +2) 1+ 3)(20+5)c2 E
(4.188b)
a, G (—1)5[ 62l —1) ) _ 20(20 + 1) P2
P2 7 i+ D@+3)F T G+ )1 +2)20+3)(2l+5)2 L
(4.188¢)
4G (—l)l 2[(2[ + 1) (~1)
Hp=—— 4.1
L= AT Ui+ @as) it (4.1884)
4G (1) (+2) 6(l—1) (0
I, =—" -0y - ———— L
e T LU ) (I+1)(20+3)c2 " F (4.1850)
4 (=1 i4L(*2)]
(I+1)(I+2)(20 +3)(2 + 5)ct dtt ™ F
g G (=1 - 210 -1) +1) 201 —1)(20+1) FASE)
ST I+1 L I+ 1)1 +2)20+1)(20+3)c2 " F
(4.188f)

Following the process in Section 4.2, we have to determine the constraints on
functions Ay, to Jr using the conservation law of the stress-energy tensor. One
should recall the new source p" obeys Eq. (4.176)), i.e. 9,p"" = O(3,4). Let’s

compute

d d

1
Op _ 3 z ~ Op ‘y
P = PP [Pyl [ deiusi@p e+ o) (180)
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Inserting Eq. (4.176) into Eq. (4.189), we have

d 1 )
PP (1) = —FP.g / Pyly|* / dagéi(a)dp™ (y, t + a‘%') +0(3,4)
-1
(4.190)
One should be careful that
d QL o d iu
i ——p" = 0;p"™ + nz i (4.191)
where we have used ZI;I = n,;. Inserting Eq. (4.191)) into Eq. (4.190f), we obtain
d " z
Epgl( —FP.- o/d3y|y| / dagroi(a (%tJraM)
3 z ~ d |y|
+FP.—o | d’yly] daniyLdl(a) 2P P (y,t + a—) +0(3,4)
~1
(4.192)
Now, we notice that
d
%(5a+1(a) = —(2l+ 3)d;(a)a (4.193)

Therefore, for the first term on the right hand side of Eq. (4.192), we can
integrate by parts with regard to y* and, for the second term on the right hand
side of Eq. (4.192)), we can integrate by parts with respect to a. We, thus, yield

d

d ! |
— P (t) = FP.—o | d®y—(|y|*9 / das t+a—>
P ) = _0/ vy (lulie) [ dasa)p™(y.t + o)

—FP /d3||z/ldanf5 ()d[d (t+a@)]
2l—|—3 2=0 Yy . iYLoi+1la da dtp Y,

+0(3,4)
(4.194)
We can explicitly compute the derivatives inside the integral. We have
d l
g (1vln) = zielyl* i Y17 Gitin L m) (4.195)
m=1
. d_d ] d 1y
y 2 z y
— t = Hy,t 4.1
iy o) =y (B ) (@19p)
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where we have used m ‘da piH(y,t + a‘%l) = jtp”‘(y,t + a‘yl) in Eq. (4.196).
Inserting Eq. (| and Eq. (4.194)) into Eq. (4.194) gives

d
0 =Pocalz [ uinuly = [ dasapi+al
cdt _ c
+ZFPZ:0/d3y|y|z/ dady(a)jr— 1p”>(y,t+a|zc/‘)
+argtPeco [@ylyl” [ doninaia(o) .+ ol2)
2l +3 cdt ’ c
+0(3,4)
(4.197)
Using the definition of P} in Eq. (4.175), we can rewrite Eq. (4.197)
d 1 d ;
P ISTF, P} Py
dtL() LL1+2I+3(cdt) il
1
FPofe [ dyinulyl ™ [ dasia .+l + 0.0
-1
(4.198)
Now we will assume
1
FPZZO[z/d3yg]Lyi|y|Z*2/ dadi(a)p “‘(y,t+a|y|)] 0 (4.199)
-1
This arises from the fact that [4]

FPz:o[/ CygelylFo(yl — |z )™ - (Jyl = [za)*] =0 (4.200)
for any integers ag, - - -, ay, that obey .7, a; is even. Full proof of this lemma
can be found in [4]. Therefore, Eq. (4.198) reduces to

d o d ;
— PH ISTF, P/ P 1+ 0(3,4 4.201
dtL() LL1+2l+3(dt> i+ 0(3,4) ( )

Let us recalculate the constraints arise from Eq. (4.62)) and Eq. (4.64). In this
case

1. 1 .. 4G (—1)!
CL+EQL+EBL=*( )

+1
ct (_lKé =

ki lon (o
(21+3)c2KL +LQr) (4202)

Inserting Eq. (4.178h), Eq. (4.180R), and Eq. (4.180c) into Eq. (4.202)) gives

. 4G oot d
Co+ Qo i = S E e [@yyin [ dasio) 5w +al2)

1
—lFPzzo/d3y|y|ZyL/ dadl(a)g}<L_1p?l>(y,t+a|y|)
—1

1
X d Yl
3 z 2, 0a
~ grraPen [ olyl [ deinnnbin( (Gt it ol
(4.203)
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One can easily check that Eq. (4.203) is exactly the '0’ component of Eq.
(4.201)). Therefore, we have

cL+QW+B® =07 (4.204)

Using the ’i’ component of Eq. (4.201)), we obtain

Gp + 2BV + 2B 4 2F, = O(8) (4.205a)
I, — AP —2BY _ g _ ) — O(8) (4.205b)
Jp+2DV + H? = 0(8) (4.205¢)

Similar to what we have done in Section 4.2, we define the following new vari-
ables

To(t) == %ZCQ“(AL +2BY + E® 4 Fp) (4.206a)
TL(t) = %EZH)!(*DL - %Hﬁ”) (4.206b)
and
vL(t) := By, + %ES) (4.207a)
0,(t) = %EL (4.207h)
on(t):=-BY —E® — F, (4.207¢)
Yr(t) = %HL (4.207d)
Therefore, we obtain (see Eq. to Eq. )
P =P L KM (v, 0, b,1)) (4.208)

where P#” has the same form as Eq. (4.77) to Eq. with M, and Sp
replaced by Z;, and Jp, respectively and C#” has the same form as Eq. (4.74])-
Eq. (4.76). One should also note that the O(7) and O(8) terms in Eq. (4.204)
and Eq. can be absorbed into the O(7,7,7) term in Eq. . Now,

we choose the gauge, such that ®** = KM 4+ 0(0,7,8), we can rewrite Eq.

@172)

th‘l”)mn[M, S] = hf‘l")can[I, J+0(1,7,7) (4.209)

One can immediately see
GML (t) = IL (t) + 0(4) (4.210&)
GSL(t) = JL(t) + O(4) (4.210b)
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From the definition of Z,(¢) and Jz(t) in Eq. (4.206)), we can write

1 ' . i
1) = PP [ Eylyl” [ dalsi@in ™ + ")

420+ 1) .0

- méprl(a)yw@po
2021+ 1)

(I+1)(1+2)2+5

1 ! .
JL(t) = EFPz:o/d3y|y\z/ da[6y(a)eqp (i, Gi—1) 0"
—1
(4.211b)
Y|

20+ 1 A 0 4
_ mél—kl(a)eal)(ilyL—l)ac@p 1(y,t+ a7)

(4.211a)

- 9 ij Yy
Savsa(@)isn (5 P+ 0l
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Chapter 5

Conclusion

This dissertation provides a general review of the dynamics of a compact two-
body system and derives explicit expressions of the multipole moments in terms
of the stress-energy tensor of a gravitating source at 2PN correction. In dis-
cussing the dynamics, we have transferred the motion of a two-body system into
the motion of an effective one-body system, by the means of canonical trans-
formation. By matching the effective action S to the real action S, we have
obtained an effective metric d3?, which is a deformation of the Schwarzschild
metric with mass M = my +ms. From this metric, we have derived expressions
of the radius and the angular momentum of the effective particle moving in the
ISCO of this metric. Finally, for completeness, we have computed the explicit
canonical transformation that matches the real problem to the effective prob-
lem at 2PN correction. This effective one-body approach illustrates a way to
reduce the complicated relativistic two-body problem to a rather simple effec-
tive one-body problem at 2PN correction. However, further work can be done
to extend this approach to higher-order correction. Furthermore, this approach
may also be extended by adding the electromagnetic interaction and the spin
to the two-body system.

We have then discussed the fields and the related potentials of a gravitating
source. We have defined the field A*” and have computed Einstein’s equation
in the harmonic coordinate. Together with the harmonic condition, we have
derived the solution for Einstein’s equation in both interior and exterior zones.
The solutions are represented by the multipole expansion and are decomposed
into the irreducible representations of the SO(3) rotation group. We have iden-
tified the two sets of functions My, and Sy, to be the mass multipole moments
and the current multipole moments respectively. By matching the solutions of
Einstein’s equation in the overlapping zone, we have expressed the multipole
moments in terms of the stress-energy tensor of the gravitating source. These
expressions are mathematically well defined. They are significant in deducing
the explicit gravitational waveform of a given source and computing the energy
associated. Further work has been done in applying these expressions to the
inspiralling compact binaries [IJ.

62



Appendix A

Decomposition of the
Product of Representations

In this appendix, we give a proof of Eq. , copied as below
21

UiV = A + T it AL 1ya + QZ—H(L(“A(;% (A.1)
where
AEZ” = U(izf/iLfl) (A.2a)
A(Lolla = Uqu<L—1€a)pq (A.2b)
AN = U,V (A.2¢)

In order to write the following derivation conveniently, we introduce a notation
for indices, where, for a positive integer m <[, ULfip=Us, 4 s 1y and, for
i1t

distinct positive integers m,n <,

ULy Uiy oivimsromin—ving1.ip fm<n (A.3)
/(imin) = Ui, .. ifm>n

A —1%n41em—18m1- 01

For a STF tensor VL, we notice that if the tensor has repeated indices, it must
be zero, i.e. .

Vipr—2 =0 (A4)
This is simply because we have removed all the traces of the tensor, therefore,
any trace of a STF tensor must be zero.
We can then evaluate each of the term in Eq. by Eq. . For Agzl),

we have

A1 ~ +1
Az('L = Ui, Vie—1) + a11+15(sz(2 2,)bb (A.5)
where ()
+ - i -
Ky = UoVhiy.i) = Yo Ui Vieyiag, (A.6)

all permutations
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However, from Eq. (A.4), we notice that among all (I + 1)! permutations,
only 2£l — 1)! ones are non-zero. We also notice that, since Vi, is symmetric,
Vi = Vial..-ial~ Therefore, we obtain
+1

Kl(z’)leb = l+ 1Ub%"2 X7 (A7)
Now we consider the last term in Eq. (A.5). One should be careful with the
position of the i index. Since V7, is totally symmetric, once the indices in Kro-
necker Delta are chosen, there will be 2(I — 1)! numerically identical expressions
of Ki('H) . - Therefore, we can write the last term in Eq. " as

N 1

ap--la;_

l
l+15mK1(2+12[)bb Z —1)! al+15iimUbVZL/im

T +1)!
l
P

There is an extra factor of 2 in the first expression on the RHS of Eq. (A.8)
because 6;;,, = 0;,,;. However, in the second term, we already include both §;_;,

and 0;,;, through the double sum. Similar discussion applies for the first term
on the RHS of Eq. (A.5). We then have

(A.8)
Y

1)

al1+15icid UbvbiL/(icid)

*M

Ui Vie—1) = UVL Z Ui, Vivsi, (A.9)

m=1

For the second term on the right hand side of Eq. (A.1]), we firstly consider
A(O) . From Eq. 7 we have

~(0 . o
A(Lzla = Uqu(Lfl%)pq + aéUp(S(aiz 1K£ )2)bb (A.10)
where
(0) 2
Ky~ opyy = Vq(L—2b€b)pq = jVL—%qupq (A.11)

The extra factor of 2 in the last term of Eq. (A.11)) comes from 2(I—2)! non-zero
permutations among [! permutations, where we have applied the same discussion

as what we do in Eq. (A.7). Inserting Eq. (A.11) into Eq. (A.10) yields

-1
AS:O) la =7 U VqL 1€apq T 7 I Z U 6mquaqL 1im
=1

-1
4 .
* m“wp > Gt Vi1/ivbq€bap (A.12)
m=1
-1

4 - N
+ ma'll Up D > 0icigVi1/(ivia)aba€bpq
c=1 d#c
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One can easily check that the last two terms in Eq. ( is zero, because €54
is totally anti-symmetric but Vi1 Jimbg and VL 1/(iciq)abg 18 Symmetric with
respect to indices b and ¢. Inserting Eq. into the second term on the

RHS of Eq. - yields

H%Eai@l/ig?l)a = 11 + IQ (A13)
where
1 N
L = I+ 1€ai(ilVL—1>queapq (A14a)
1 -1
T Zleaz zl€zm\pq\VL 1/1m>aqU (A14b)
m=

Using Eq. (4.1) and the discussion used in Eq. , we obtain

a1€mb€apq5(zm 1VL g)qu (A.15)

1 1
Il 6az(zl‘/L 1)qU €apq + 1+11

[+1

When expanding I», we will obtain a term which contains €az(b€b|pq|VL 2)q

One can easily notice that either Easzzm\pq\VL 2/imbqa OT €aiiy, 6b\pq|VL 2/imbqa
are zero due to the properties of Levi-Civita tensor. Therefore, we obtain

N 2 N
6ai(bi\pq|V‘L—Q)qa = mﬁaib€b|pq|VL72qa (A16)

From Eq. (A.16), we have

-1

1 .
12 = It 1Gai(izfil,1|pq|VL_2)aqu
" (A.17)
-1 1 9
l N
T2 1(1—1) a1 €aib€bpqd iy, VI-2)qaUp
m=1

We notice that the dummy index m disappears in Eq. (A.17)), therefore, we can
simplify Eq. (A.17)

-1 L
I, = T 7 €ai( i 1|P‘I|VL 2)aqU l+ 11

l+1 alembebpq(S(ml 1VL g)an (A18)

By switching the indices a and b in the last term in Eq. (A.15), one can easily

see that the last term in Eq. (A.15) cancels with the last term in Eq. (A.18).

We can now simplify Eq, (A.13

l 2(0) 1 l _
meai(ilA(L—Da = l—|— m(uVL 1)q Up Ean+l+1 ai(i €ip - 1|PQ|VL 2)aqU
(A.19)
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We can further expand Eq. (A.19)

l
l ~(0 1 .
Eai@LA(Lzl)a = Z €apg€aiin VL /imqUp

I+1 I+ 1)~
. (A.20)
-1 1
+ 7f Z Z 6u,mc€pqzd‘/L/(z zd)aqu
I+ 11( —
Recall the epsilon-delta identities, where €gij€apq = 2!5@)53] and €gij€ppg =
3'5&(5;6] Therefore, we obtain
l 2(0) 1
e A — f
l+1€az(u L—1)a l—‘rlU l-i—l lmzl m 1L/1m
1 (A.21)
UV — Ui, Viri
+(z+1z;§ b Mo ik
+ 8.1 Vipr /(o) Up — 6634 Vi i Uyl
Further simplifying Eq. (A.21)) gives
1(0) R
e .. A - _— - Virs
I+ 1 i 1) z+1UVL ] 1;::1UMVZL/W
1 < -1 )
+ 8iviaVipr iy Up — +— Y 03 Vi U,
(l+1)l;d¢c aVipL/(icia) Y p (l+1)l; cVL/icYp
(A.22)

Now let us consider the last term in Eq. (A.1). From Eq. (A.2), it can be
written as

20 —1 A(=1) 21
m‘si(izAL_m 2l+151 leL 1pUp (A.23)

Using Eq. (4.1), we obtain

2-1. cq _2-1 A=12

U 51 leL 1)p lbé(uzl 1VL 2)apU

T‘i‘l i(il L—l> 2l + 1 l 1 l (A 24)
Further expanding Eq. (A.24) gives
!
2l -1 A( 11 R
Tﬂéi<i1AL 77 mz_: Updiin, Vi iy
N l (A.25)
2(21 — R
* 21 1 a ZZéZCidVL/(icid)PUp
( + c=1 d#c
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We then insert Eq. (A8), Eq. (A9). Eq. (A22), and Eq. (&:25) into Eq. (A1)

and obtain
UV, =U; V.
4 g 1-1 20—

[(z+1)2z O (S TR T ¥ ZU‘S“MVL/W

2 1 2(20 - 1)
[(z+1)2z ! +(z+1)z+(2z+1z2z—1 ZZ&WVL/(W

c=1 d#c

From Eq. (4.3)), for any integer p > 1, we can evaluate
p_ —pp—1)
ay = ———+
22p—1)
Inserting Eq. (A.27) into Eq. (A.26)), one can easily check
4 -1 20-1
aytt — - =0
(1+1)2 I+l (20+1)
1 220 —1
l+1 + 4 ( ) CLl — 0

[ (+1)  @@+1rg-1)"

Therefore, we have proved Eq. (A.1)).
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Appendix B

Some Useful Equations and
Their Proofs

We here introduce a set of equations that are useful in finding the general
multipole expansion solution for the vacuum Einstein’s equation.

al

Org(r) = sz(%)lmg(T) (B.1)
Nip = =11+ 1)r %y (B.2)
dprF = (—1)lW(r<k+l>ﬁL) (B.3)
A - ! n)! =)t —r
o

where, in this appendix, G (z) = G(z), We now give detail proofs to Eq.

to Eq. .

To prove Eq. , one should notice that the function g(r) solely depends on
r and, therefore, use 9; g(r) = 9;,70,g(r). The left hand side of Eq. (B.1))
then becomes

dx™

l
Org(r) = STFL[([] n4,.0r)g(r)] (B.5)

m=1

where we have used 9;, 7 = n;, . Now, one can easily check that Eq. (B.5]) can
be further simplified

Bug(r) = i1(-0,)'g(r) (B.6)
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which is identical to Eq. (B.1J).
In order to prove Eq. (B.2]), one should notice that

asnim - ((5ims - nimns) (B7a)

TIN 3| =

Dyns = (B.7b)

We then rewrite the Laplace operator as A = 959;. Using Eq. (B.7h), one can
expand the left hand side of Eq. (B.2)

l

. 1 l
Anp = STFL[0.() i sLfm — L) (B.8)
m=0

which can be further expanded

l l
. 1 1
Ang = STFL[Z (05 ;)nL/m(Sims + Z Z ;61'm8(8snin)nL/(m”)
m=0 m=0n#m (BQ)

20 l
— (63;)ln5nL — T—an — ;ns((’“)snL)]

One should note that the second term on the right hand side of Eq. gives
a term of an:o > nstm Oips0i,sML/(mn), Which is clearly zero since m and
n are distinct. Simplifying Eq. (B.9)) using Eq. (B.7)) gives exactly the same
equation as expressed in Eq. (B.2]).

To prove Eq. (B.3)), one can use Eq. and let g(r) = r~*. Therefore, one
can directly find

AprF = rlﬁL(lar)lr_k (B.10)
T
We therefore obtain
Ak (k+20—2)N — (k4D

Finally, we use induction to prove Eq. (B.4). Using Eq. , one can find
1

s Gt — r)) _ ’IAlL?”l(*aT)l(G(t -r)

or( " " " ) (B.12)

Therefore, proving Eq. (B.4]) is equivalent to proving

l

)= (1" (n)t GE( ) (B.13)

11 = n)! i+l
= 2ml(l—n)t

(lar)l(w

r r

Now, we use induction to prove Eq. (B.13)). One can easily see

- Wt —r —r
Loy Gty LGtz | G-, (B.14)

r r r r r
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Now, assuming Eq. (B.13]) to be correct, we need to prove

1 Gt — r) S (+n+1) G 1)
- (+1) I\ Ty l+1)
(-0,) (= Z Tl (B19)

The left hand side of Eq. (B.15) can be rewritten as

1 G(t—r) 1.1

—9,) D (2 = —(29,) [-K(t — B.16
Capero Gy - Loyt - (B.16)
where we have defined K (t —r) := —8,,(@). One can now apply Eq. 1)
to Eq. (B.16)) and obtain

l
1 G(t—r) (14 mn)! K(l_”)(t—r)
- (l+1)7 — (l+1)
(Z0) " (———) = ZQn T (B.17)

Recall that Leibniz formula gives (UV)U) =

Leibniz formula to K~ (t — ), we obtain

e 071,(] z),U()VJ ). Applying

l—n+1
K(lfn) (t o 7“) _ Z (l 'Z"+ 1) G(z ( ) n+i—1—2 (B.18)
i=0 ’

Inserting Eq. (B.18]) into Eq. (B.17) gives

I l—-n+1
(lar)(lJrl)(G(t;T _ z+1z Z (I +n)! lin+1)G(i)(t—’r‘)’r‘72l+i73

r r 712nn)!
n=0 =0

(B.19)
By carefully analyzing Eq. (B.19), one can find that the coefficient for term

GU=H (1 — )2 s (—1) sy Yopy D Recall that

n

S U+ - k+1)2 ’fk' (I+n+1) (B.20)
k=0

Therefore, the coefficient for GU¢—"*D (¢t — ¢)r—t-n=2 ig (—1)“’1%,
which agrees with Eq. (B.4).
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