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Abstract

Quantum cosmology is based on the idea that quantum physics should apply

to anything in nature, including the whole universe. If quantum mechanics is truly

a fundamental theory, one would expect that we can apply it to the Universe as

a whole. Simply we treat the universe as a quantum system and this approach

attempts to answer open questions of classical physical cosmology. For example

some questions concerning the first phases of the universe. However, there is no

unique version and no completely well-defined theory yet to describe the universe

as a quantum system.

The main aim of this dissertation is to give an introduction to this interesting

field of Physics which constantly gives new results compatible with observations.



Science cannot solve the ultimate mystery of nature. And that is because, in the

last analysis, we ourselves are a part of the mystery that we are trying to solve.

Max Planck
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Chapter 1

Introduction

The Cosmological Principle proposed by Milne in 1933 states that no observer

occupies a special place in the universe (Copernican Principle). It is based on two

principles of spatial invariance. The universe is homogeneous and isotropic on large

distances. This means that the universe looks the same at each point and in all

directions.

Figure 1.1: The oldest galaxy in the Universe, which is located at the boundary of the
observable Universe.
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Chapter 1. Introduction

A subject of interest in quantum cosmology is the description of a closed uni-

verse by the wave function:

ψ[hij(x), φ(x), B]. (1.1)

This functional was first introduced by DeWitt in 1967 [1] and describes the prob-

ability amplitude that the Universe contains a three-surface B where φ(x) is the

matter configuration, hij is the three-metric. This object should describe the past,

present and future of a closed Universe. Unlike the familiar particle wave functions

of quantum mechanics, the wave function of the Universe is not defined on space-

time but rather, actually being a functional, is defined on an infinite dimensional

manifold known as superspace.

The governing equation of such a function, and the central equation to quantum

cosmology is known as the Wheeler-DeWitt equation. This equation, which the wave

function must satisfy, takes steps towards a theory of quantum gravity as it blends

ideas from both quantum mechanics and general relativity by Dirac quantizing the

Hamiltonian constraint of a gravity plus matter system. The equation takes the form

of a second order hyperbolic functional differential equation and permits infinitely

many solutions. The explicit form of this equation is rather complicated due to the

fact that it is defined on an infinite dimensional manifold. In an attempt to under-

stand properties of its solutions, we usually restrict ourselves to a finite dimensional

manifold known as minisuperspace. Upon doing so, the Wheeler-DeWitt equation is

reduced to a wave equation which can be solved by techniques that are described in

[2].

In conventional cosmology there is no a way to assign the initial conditions for

the evolution of the universe (for example, for inflation) and relatively, one faces a

landscape problem [3]. Next, we turn to quantum cosmology to construct a mea-

sure that could potentially provide answers in terms of probabilities. However, this

requires certain boundary conditions to determine it. These cannot arise from the
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Chapter 1. Introduction

theory itself, and once applied, new physical laws are effectively made. Observa-

tions in the universe led to the idea that the function ψ is a no boundary quantum

state. This idea was first introduced by J. B. Hartle and S. W. Hawking in [4]. This

proposal was of great importance for subsequent research in this field, and reference

will be made to it in a subsequent chapter.

The structure of this thesis is as follows:

• Chapter 1 gives a brief introduction about Quantum Cosmology which is the

main object of review in this dissertation. Some basic principles are described

as well as some points of interest in Quantum Cosmology.

• Chapter 2 describes the general formalism that is needed to determine the

equation of the universe as the solution of the Wheeler-DeWitt equation. More

precisely, the second chapter describes the Hamiltonian Formulation of Gen-

eral Relativity, the Canonical Quantization procedure and the path integral ap-

proach. Finally, a description is given for the spaces in which the wave function

of the Universe is defined.

• Chapter 3 focuses on the two most studied and comprehensive boundary condi-

tion proposals. These boundary conditions are important to ensure the unique-

ness of the solution that describes the Universe. The first one is Vilenkin’s and

Linde’s tunnelling proposal and the second one is the no-boundary proposal of

Hartle and Hawking. Using these boundary conditions, the wave function of

the Universe was determined for the classically allowed and for the classically

forbidden region. Finally, some information about the inflation of the Universe

is given.

• In Chapter 4, Picard-Lefschetz technique was introduced so as to identify the

Lorentzian path integral for quantum gravity during a semiclassical expansion.

This technique describes an alternative version of Hartle-Hawking proposal

that gives new results.
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Chapter 1. Introduction

• In conclusion, a brief summary of what follows is given. Also, some recent

work concerning Quantum Cosmology is mentioned.
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Chapter 2

General Formalism

2.1 Hamiltonian Formulation of General Relativity

Describing general relativity as a field theory is based on the Lagrangian formu-

lation. This formalism leads to the general formalism of quantum cosmology. It has

been suggested by Roger Penrose that a physically appropriate spacetime must be

globally hyperbolic [5]. Any manifold of this form admits a smooth time function t,

such that the set of points satisfying t = constant form a spacelike Cauchy hypersur-

face Σ. We may split a manifoldM, of this type in terms of the orthogonal product

[6]:

M = R× Σ (2.1)

One considers a compact of three surface (since we are considering only closed

universes) which is embedded in a four-manifold on which the four-metric is gµν .

The relevant metric is hij, with some matter field configuration. The embedding of

three surface is described by the Standard (3 + 1) form of the four metrics:

ds2 = gµνdx
µdxν = −

(
N2 −NiN

i
)
dt2 + 2Nidx

idt+ hijdx
idxj (2.2)
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2.1. HAMILTONIAN FORMULATION OF GENERAL RELATIVITYChapter 2. General Formalism

Figure 2.1: Graphical illustration of the lapse function N and the shift vector Na (taken
from [7]).

where µ, ν = 0, 1, 2, 3 and i, j = 1, 2, 3. N is known as the lapse function and is fully

determined by the difference between the elapsed coordinate time t, and proper

time τ on curves normal to the hypersurfaces. The defining equation of this function

takes the form dτ + Ndt. The shift vector Ni describes how the hypersurface Σt

differs from the neighbouring hypersurface Σt+dt. Consider a point in Σt. For the

special case in which Ni = 0, the spatial coordinates are said to be “comoving”. N

and Ni are arbitrary as they are related to choice of coordinates.

We are considering the standard Einstein-Hilbert action coupled to matter:

S =
m2
p

16π

[∫
M

d4x(−g)1/2(R− 2Λ) + 2

∫
∂M

d3xh1/2K

]
+ Smatter (2.3)

where Kij is the extrinsic curvature at the boundary ∂M of the four-manifold M .

K = tr(Kij). Components Kij satisfy the relation:

Kij =
1

2N

[
− ∂hij

∂t
+ 2D(iNj)

]
(2.4)

where the symbol Di refers to the covariant derivative in this three-surface. For a

6



Chapter 2. General Formalism2.1. HAMILTONIAN FORMULATION OF GENERAL RELATIVITY

scalar field Φ, and in terms of the (3+1) variables, the action is:

S =
m2
p

16π

∫
d3xdtNh1/2

[
KijK

ij−K2 +3R−2Λ
]
− 1

2

∫
d4x(−g)1/2[gµν∂µΦ∂νΦ+V (Φ)].

(2.5)

The action takes the following Hamiltonian form:

S =

∫
d3xdt

[
ḣijπ

ij + Φ̇πΦ −NH−N iHi

]
. (2.6)

The symbols πij and πΦ denote the momenta conjugate to hij and Φ respectively:

πij =
δL
δḣij

= −
m2
p

16π
h1/2(Kij − hijK) (2.7)

πΦ =
δL
δΦ̇

=
1

N
h1/2(Φ̇−N i∂iΦ) (2.8)

The Hamiltonian is derived from a sum of constraints, where the lapse N and shift

N i are actually Lagrange multipliers. The momentum constraint is given by:

Hi = −2Djπ
j
i +Hmatter

i = 0 (2.9)

and the Hamiltonian constraint:

H =
16π

m2
p

Gijklπ
ijπkl −

m2
p

16π
h1/2(3R− 2Λ) +Hmatter = 0 (2.10)

Gijkl =
1

2
h−1/2(hikhjl + hilhjk − hijhkl) (2.11)

The above constrains are useful in the canonical quantization procedure and equiv-

alent to components of Einstein’s classical equations. In the absence of matter these

constrains can be described geometrically, using the Gauss-Codazzi equations [8].

In the expression 2.10 Gijkl is the Wheeler-DeWitt metric which has signature (-

+++++) at every point xµ on the hypersurface.
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2.2. CANONICAL QUANTIZATION Chapter 2. General Formalism

2.2 Canonical Quantization

A wave functional Ψ[hij,Φ], which is a functional on superspace, represents the

quantum state of a system. When our constraints are taken on-shell, the integrand

and thus the Hamiltonian vanish. This is rather suspicious as in quantum mechanics,

the Hamiltonian is responsible for generating translations in time which we interpret

as being the flow of time. A vanishing Hamiltonian therefore implies that there is

no such flow. The issue that has arisen is one of the main difficulties encountered

when attempting to construct theories of quantum gravity [9]. At its core, this is a

conflict due to the fact that quantum mechanics and general relativity each have in-

dependent and incompatible notions of time. In quantum mechanics time is treated

as a background parameter with an absolute and rigid flow that is external to the

system itself. On the other hand, in general relativity time is a coordinate that can

flow in a malleable way depending on the motion and position of the system under

consideration. Finding a resolution to this conflict is vital if we are to ever replace

quantum theory and general relativity with a unified framework to treat situations

where the effects of both are important i.e. during the early Universe or inside of a

black hole.

We use the usual substitutions for momenta:

πij −→ −i δ

δhij
(2.12)

πΦ −→ −i δ
δΦ

(2.13)

According to Dirac quantization procedure, the wave function is described by the

operator versions of the classical constraints. Some appropriate replacements and

operating on the wave function with the quantized Hamiltonian constraint, gives the

8



Chapter 2. General Formalism 2.2. CANONICAL QUANTIZATION

Wheeler - DeWitt equation:

HΨ =

[
−Gijkl

δ

δhij

δ

δhkl
− h1/2(3R− 2Λ) +Hmatter

]
Ψ = 0. (2.14)

In the above expression we have ignored operator ordering problems. Make no mis-

take though, the Wheeler-DeWitt equation suffers from issues of operator ordering as

is often the case in quantum theory. Although solutions to this equation will clearly

depend on how we choose to resolve these issues, it will not be too big of a concern

to us as predictions in quantum cosmology can only be trusted to leading semiclas-

sical order. That is to say, the operator ordering will only affect the prefactor and

not the exponential contribution to the wave function in which we are interested.

The significance of the momentum constraint was first realised and proven by Peter

Higgs in 1958 [10].

The 2.9 indicate that the wave function remains unchanged for configurations

(hij(x),Φ(x)). These configurations are associated with coordinate transformations

in the three-surface. To illustrate this, a diffeomorphism in the three-surface can be

used (in the absence of matter):

xi −→ xi − ξi (2.15)

Under this change in coordinates, the wave function transforms as:

Ψ[hij +D(iξj)] = Ψ[hij] +

∫
d3xD(iξj)

δΨ

δhij
(2.16)

We are interested in compact geometries and as a result of this, the boundary term

(that arises from integration by parts of the last term) can be ignored. The change

in Ψ then is the following:

δΨ = −
∫
d3xξjDi

(
δΨ

δhij

)
=

1

2i

∫
d3xξiHiΨ (2.17)
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2.2. CANONICAL QUANTIZATION Chapter 2. General Formalism

Now we have:

Ψ[hij +D(iξj)] = Ψ[hij]−
∫
d3xξjDi

(
δΨ

δhij

)
= Ψ[hij] +

1

2i

∫
d3xξiHiΨ (2.18)

If the momentum constraint is satisfied, the second term on the RHS of the above

equation vanishes, and we have:

Ψ[hij +D(iξj)] = Ψ[hij] (2.19)

Similarly to the wave functions from non-relativistic particle mechanics, there is a

probability interpretation associated with our wave function. Because the Wheeler-

DeWitt equation has a Klein-Gordon form, there exist a corresponding conserved

current:

J =
i

2
(Ψ∇Ψ∗ −Ψ∗∇Ψ) (2.20)

Although tempting to naively interpret J as a probability flux, it is not positive

definite. For this reason, many physicists reject probabilities constructed from the

conserved current J . Instead, many adopt Hawking’s proposal that |Ψ[h̃ij, Φ̃,
∑

]|2 is

to be interpreted because it is proportional to the probability of the Universe contain-

ing a three-surface
∑

with metric h̃ij and matter field Φ̃. Explicitly, the probability

of finding that the Universe is in a configuration contained within a region V of our

superspace [11] is then:

P (V) ∝
∫
V
|Ψ|2 ∗ 1 (2.21)

with ∗1 being the volume element.

In quantum field theory, solutions to the Klein-Gordon equation are quantized

and turned into field operators, thinking in a similar manner about the Wheeler-

DeWitt equation has led to proposals that Ψ should be “third quantized” and turned

10



Chapter 2. General Formalism 2.3. SUPERSPACE

into an operator Ψ̂. This operator creates and annihilates Universes in the same way

that the familiar ladder operators associated with the Klein-Gordon field create and

annihilate particles. Difficulties with this method arise due to the fact that we clearly

cannot make measurements on a statistical ensemble of Universes the same way we

can for particles. Therefore, it is not known how using this method could lead to

measurable probabilities [12], [13], [14].

2.3 Superspace

Superspace is the space on which our wave function is defined. To construct this

space, we start by considering the configuration space that contains the Riemannian

three-metrics hij and matter field configurations Φ(x) on a spatial hypersurface Σ.

Riem(Σ) = {hij(x),Φ(x)|x ∈ Σ} (2.22)

If we can find a diffeomorphism relating a set of configurations, those configurations

must have the same intrinsic geometry and we consider them to be equivalent. We

now proceed by partitioning this space into equivalence classes such that if two

configurations are related by a diffeomorphism, they belong to the same equivalence

class. Superspace is defined as the following quotient:

Sup(Σ) = Riem(Σ)/Diff0(Σ) (2.23)

where the subscript zero specify that only diffeomorphisms that are connected to

the identity are considered. The metric on the infinite dimensional superspace is the

Wheeler-DeWitt metric Gijkl.

11



2.4. MINISUPERSPACE Chapter 2. General Formalism

2.4 Minisuperspace

Instead of speaking about superspace, which is infinite dimensional so it’s not

trivial to make exact statements about it, we can focus to a finite number of de-

grees of freedom xα(t). By doing this we can create minisuperspace which is fi-

nite dimensional and which can be approached with an isotropic and homogeneous

three-surface [15]. It is not sure with certainty that minisuperspace is a part of a sys-

tematic approximation of the full theory. Some arguments about the validity of this

finite dimensional minisuperpace is given in [16]. In this space, the shift is N i = 0

and the lapse is homogeneous and thus N = N(t). Then, the space element in this

space is given by:

ds2 = −N2(t)dt2 + hij(x, t)dx
idxj. (2.24)

The matter in this approximation is homogeneous as well. According to [17], the

inverse of the DeWitt metric is the following:

Gijkl =
1

2
h1/2(hikhjl + hilhjk − 2hijhkl). (2.25)

Also it can be proved that:

Gijklḣijḣkl = 4h1/2N2(KijK
ij −K2). (2.26)

Now, one can rewrite the action 2.5 as:

S =

∫
dtL =

∫
dtN

[
1

2N2
Gαβẋ

αẋβ − U(x)

]
(2.27)

where:

U(x) =

∫
d3xh1/2

[
m2
p

16π
(−3R + 2Λ) + V (φ)

]
(2.28)

Gαβdx
αdxβ =

∫
d3x

[
m2
p

32π
Gijklḣijḣkl + h1/2δφδφ

]
. (2.29)

12



Chapter 2. General Formalism 2.5. PATH INTEGRAL APPROACH

The equation 2.29 defines the metric in minisuperspace.

Now, the canonical momenta is given by:

πα =
∂L

∂ẋα
= Gαβ

ẋβ

N
, (2.30)

and therefore, the Hamiltonian is:

H = παẋ
α − L = N

[
1

2
Gαβπαπβ + U(x)

]
. (2.31)

The above expression arises from the Hamiltonian constraint of the full theory, in-

tegrated over the spatial hypersurfaces. Having the precise Hamiltonian, one can

proceed with the quantization procedure.

2.5 Path Integral Approach

A path integral is called the multiple integral, in which integration is done by

adding a functional G[f(x)] to a continuous range of functions f(x), as opposed

to adding a function f(x) to a continuous range of values of the variable x, as in

the normal integral. That is, instead of the usual integral
∫
dxf(x), the functional

integral is defined as follows:

∫
DfG[f ] =

∫ ∏
x

df(x)G[f(x)] (2.32)

The implementation of such an integral is useful for representation of correlation

functions (such as the propagator of fields) in systems of many continuous degrees

of freedom q(t), as it turns out to be simpler than the process of canonical quan-

tization. Another reason the path integral approach is preferred, is because while

functional integral is based on the basic principles of quantum mechanics, it does

13



2.5. PATH INTEGRAL APPROACH Chapter 2. General Formalism

not display the formalism of operators, that is, it does not require the conversion of

fields into operators. Fields are treated as functions thus making it easier to man-

age them. Also, unlike canonical quantization, in gauge theories, the control of the

independence of physical quantities from gauge selection is more direct using a func-

tional integral. In addition, a very close analogy with statistical mechanics occurs

when using functional integrals, which allows the use of common tricks of statistical

mechanics and Quantum Field Theory. Adding to this, the functional quantization of

fields is also used for non-perturbative calculations in theories of interacting fields.

Finally, the path integral approach is important for the formulation of the no-

boundary proposal. The boundary conditions of this proposal can be expressed in a

more natural way when using the path integral approach. In analogy with particle

mechanics, we can now write the wave function of the Universe as a path integral

[18,19,20]:

Ψ[h̃, Φ̃,Σ] =
∑
M

∫
C
DgDΦeiS[g,φ] (2.33)

In the above expression, we sum over compact three-manifolds M with boundary

conditions containing Σ, a three-surface with three-metric h̃. Φ̃ is the field matter

configuration.

Hartle and Hawking in their paper [4] argue that a closed universe can be

described by a wave function satisfying the Wheeler-DeWitt second order functional

differential equation. They propose that the state of minimum excitation of the

Universe should be the cosmological analog of a quantum mechanical ground state.

However in quantum cosmology the ground state is not the state with the lowest

energy and the energy of the Universe is not well-defined as there is no natural

definition for the energy.

14



Chapter 3

Boundary conditions

3.1 Introduction

According to DeWitt’s paper in 1967, the Wheeler-DeWitt equation gives one

and only solution. However, is seems that when differential equations are combined

with dynamical theories, like Wheeler-DeWitt equation, there is no just a unique

solution. In order to get just a unique solution that describes the Universe, we

must apply a set of boundary conditions that lead to our observable universe. These

boundary conditions are not universally agreed upon. In this chapter we will focus

on some boundary condition proposals, the two most studied and comprehensive.

The first one is Vilenkin’s and Linde’s tunnelling proposal and the no-boundary pro-

posal of Hartle and Hawking.

3.2 Classical Solutions

As mentioned earlier, the wave function that describes the universe is a solution

of the Wheeler-DeWitt equation and using the path integral approach is important

for the formulation of the no-boundary proposal. Boundary conditions that will be

discussed in this chapter, ensure the uniqueness of the solution for the wave function.

15



3.3. WKB APPROXIMATION Chapter 3. Boundary conditions

One possible question is what kind of solutions do we expect to find. If the solution

is the correct one, then the wave function should give the classical spacetime at the

limit where the universe is large.

A quantum system is classical when it satisfy some requirements. Firstly the

solution must strongly correlate the canonical variables with one or more classical

configurations and also the interference between these configurations must deco-

here. It can be proved that the solutions are single wave packets strongly peaked

about a single classical trajectory. In Hartle’s lectures (Hartle, 1990), path integral

methods are described when there are predictions (peaks) from a theory of initial

conditions.

3.3 WKB Approximation

The WKB approximation is used to focus in the oscillatory region of the solutions

of Wheeler-DeWitt equation:

[
− 1

2m2
p

∇2 +m2
pU(q)

]
Ψ(q) = 0 (3.1)

where mp is the Planck mass. In the presence of a cosmological constant Λ, one can

take Λm−4
p to be a small parameter to control the dimensionless WKB expansion.

Using the WKB approximation, we are interested in solutions whose behaviour

is strictly exponential or oscillatory, (i.e. solutions of the form e−I or eiS). Solutions

of 3.1 have the following form in the WKB approximation:

Ψ(q) = C(q)e−m
2
pI(q) +O(m−2

p ), (3.2)

where I and C are complex. Doing this, one can found that peaked wave func-

tions in the oscillatory region determine a set of solutions to the classical field

equations. Also for every solution of the above form, there is an associated current

16



Chapter 3. Boundary conditions 3.4. THE TUNNELLING PROPOSAL

Jn = −|Cn|2∇Sn.

3.4 The tunnelling proposal

Alexander Vilenkin in 1982 [21] introduce the tunnelling proposal as a possible

approach to quantum cosmology that involves the spontaneously nucleating of the

Universe from the vacuum (no matter, time and space) into de Sitter spacetime and

after that the entrance into an inflationary period. This proposal description is given

through a path integral [22,23]. This proposal regards the transition amplitude

between two three-geometries h1
i,j and h2

i,j. The path integral is the following:

∑
M

∫ h2
ij ,Φ

2

h1
ij ,Φ

1

DgµνDΦeiS[gµν ,Φ], (3.3)

where Φ1 and Φ2 are the corresponding matter fields.

Now, one can compute the wave function of the Universe by shrinking the three

geometry h1
ij to a single point. Then:

∑
M

∫ h̃2
ij ,Φ̃

2

0

DgµνDΦeiS[gµν ,Φ], (3.4)

where the above expression is the transition amplitude between the configuration

of the Universe (h̃ij, Φ̃) and the three geometry. The integration over events of the

past (h̃ij, Φ̃) and as a result of this, the Universe exhale from a vanishing three-

geometry. In tunnelling proposal, the integration is over Lorentzian metrics with

no restrictions to compact Euclidean geometries. In the Hartle-Hawking proposal

we face this restriction. In this proposal, there is the issue with singularity which

follows from the fact that any Lorentzian geometry that connects the vanishing three-

geometry to h̃ij is inherently singular. Focusing on spacetime manifolds at smaller

scales than the Planck length can conquer this issue [24]. Also this issue can be

17



3.4. THE TUNNELLING PROPOSAL Chapter 3. Boundary conditions

avoided by a sufficient quantum gravity theory.

This proposal was remodelled some years after, in terms of boundary conditions

in hyperspace [24]. Even though there is no obvious equivalence with the original

proposal, the condition is that at singular boundaries of superspace, the wave func-

tion including modes that carry flux out of superspace (outgoing modes). Vilenkin

tried to associate the solutions of the Klein-Gordon equation (which are positive

and negative frequency) with the solutions of the Wheeler-DeWitt equations and

attempted to classify these solutions as ingoing or outside at the boundary. How-

ever these solutions are not that well defined outside of the semiclassical case. Now,

as a regularity condition, the wave function should be bounded everywhere. The

boundary of superspace will in general incorporate singular configurations because

of points or regions (like Φ, ∂iΦ) which may be infinite.

The boundary of the superspace can be split into two regions. The first region

is the non-singular boundary that consists of three-geometries where singularities

are credited to slicing of regular four-geometries. The second region is the singular

boundary consisting of everything not in the first region.

The Hamiltonian - Jacobi equation on superspace is given by:

(1/2)(∇Sn)2 + U = 0 (3.5)

Every semi - classical wave function can be written as the following sum:

Ψ =
∑
n

Cne
iSn (3.6)

where Sn are the solutions of the Hamiltonian - Jacobi equation. As we mentioned

before, in the WKB approximation, for every exponential or oscillatory (i.e. solutions

of the form e−I eiS), there exist an associated current:

Jn = −|Cn|2∇Sn (3.7)
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The term −∇Sn is defined to point out of superspace at the boundary.

Now, one can consider the FRW metric:

ds2 = −dt2 + a(t)2
(
dχ2 + sin2 χ(dθ2 + sin2 θdϕ2)

)
(3.8)

where 0 ≤ χ ≤ π, 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π. The above metric can describe a closed

universe with the following action:

S =

∫
d4x(−g)1/2

[
3a−2

8π
(1 + ȧ2 + aä) +

1

2
gµν∂µΦ∂νΦ− V (Φ)

]
(3.9)

The homogeneous and isotropic minisuperspace will be defined by the scale factor

a(t) ≥ 0 and Φ(t). Now, we can rewrite the action as:

S =

∫
dt

(
3πa

4
(1 + ȧ2 + aä) + π2a3Φ̇2 − 2π2a3V (Φ)

)
(3.10)

where in the above expression we used that:

∫
d3x(−g)1/2 = 2π2a3 (3.11)

Using integration by parts and setting the boundary term equal to zero, we simplify:

S =

∫
dt

(
3π

4
(1− ȧ2)a+ π2a3Φ̇2 − 2π2a3V (Φ)

)
=

∫
dtL (3.12)

where:

L =
3π

4
(1− ȧ2)a+ π2a3Φ̇2 − 2π2a3V (Φ) (3.13)

We can now calculate the canonical momenta:

πa =
∂L

∂ȧ
= −3π

2
aȧ (3.14)
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πΦ =
∂L

∂Φ̇
= 2π2a3Φ̇ (3.15)

Then, the Hamiltonian is given by:

H = − 1

3πa
π2
a +

1

4π2a3
πΦ −

3π

4
a

(
1− 8π

3
a2V (Φ)

)
(3.16)

Using the canonical quantization procedure:

πa → −i
∂

∂a
(3.17)

πΦ → −i
∂

∂Φ
, (3.18)

we can determine the Wheeler-DeWitt equation for the minisuperspace model. In

this equation there will be some operator ordering issues because of terms like 1/a

and ∂a. According to Hawking and Page [25], if one replace the differential operator

with the Laplacian one in the metric on superspace, this issue can be ignored. Then:

(
a
∂

∂a

(
a
∂

∂a

)
− 3

4π

∂2

∂Φ2
− 9π2

4
a4

(
1− 8π

3
a2V (Φ)

))
Ψ = 0 (3.19)

Vilenkin in his paper introduced a parameter p to group the operator orderings:

(
∂2

∂a2
+
p

a

∂

∂a
− 3

4πa2

∂2

∂Φ2
− 9π2

4
a2

(
1− 8π

3
a2V (Φ)

))
Ψ = 0 (3.20)

Setting p = 1 to the above expression leads to Hawking and Page argument. Vilenkin

introduced a suitable scaling for Φ and V (Φ) to simplify the above equation:

(
∂2

∂a2
+
p

a

∂

∂a
− 1

a2

∂2

∂Φ2
− U

)
Ψ = 0 (3.21)
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where:

U = a2(1− a2V (Φ)) (3.22)

is the superpotential. The Euclidean region is described by U > 0 and the Lorentzian

region by U < 0. U = 0 ⇒ V (Φ) = 1/a2 is the boundary [26]. Assuming that the

potential is far from the boundary, we get the following condition [27]:

|dV (Φ)/dΦ| � max

[
|V (Φ)|, a−2

]
. (3.23)

Due to the above assumption, we can ignore terms ∂/∂Φ and rewrite the equation

3.21 as: (
∂2

∂a2
+
p

a

∂

∂a
− U

)
Ψ = 0 (3.24)

If one set the value of p to be equal to −1, the above equation can be solved exactly.

The tunneling wave function for the classically allowed region (oscillatory re-

gion) is described by the approximation:

a2V (Φ) > 1, (3.25)

and it is of the form:

ΨT ∝ exp

(
− 1 + i(a2V (Φ)− 1)3/2

3V (Φ)
+
iπ

4

)
. (3.26)

For the classically forbidden region (exponential region) the approximation is:

a2V (Φ) < 1. (3.27)

The tunnelling wave function for this region has the following form:

ΨT ∝ exp

(
− 1

3V (Φ)

[
1−

(
1− a2V (Φ)

)3/2
])

(3.28)
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3.5. NO-BOUNDARY PROPOSAL Chapter 3. Boundary conditions

The two components of the conserved current J according to WKB approximation

are given by:

Ja =
i

2
ap(Ψ∂aΨ

∗ − Φ∗∂aΨ) (3.29)

JΦ = − i
2
ap−2(Ψ∂ΦΨ∗ − Φ∗∂ΦΨ). (3.30)

According to Vilenkin [24], the above solution for the wave function is not arbitrary

and consist to an expanding de Sitter minisuperspace:

a ≈ V −1/2 cosh
(
V 1/2t

)
. (3.31)

where the above scale factor can play the role of the time variable, giving a current

J > 0 for expanding Universes.

3.5 No-Boundary Proposal

Hartle and Hawking in their paper propose that the amplitude of the state of

minimum excitation for a three-geometry is given by a path integral over all compact

positive and definite four - geometries where the three - geometry is the boundary.

Also according to Hawking’s assumption, the geometry of the Universe was a regular

Euclidean geometry with four spatial dimensions that after a quantum transition

became a Lorentzian geometry with one time dimension and three spacial.

In the previous chapter we mentioned that the path integral approach is im-

portant for the formulation of the no-boundary proposal. The boundary conditions

of this proposal can be expressed in a more natural way when using the path inte-

gral approach. According to this, the solution of the Wheeler-DeWitt equation that

describes the Universe is expressed as a Euclidean path integral. This Euclidean

geometry is compact, having a compact three - surface Σ as the only boundary.

Using the gauge where Ṅ vanishes, we express the wave function of the Uni-
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verse as a Euclidean path integral:

ΨNB =

∫
dN

∫
DΦDa exp[−I(a(τ),Φ(τ), N)] (3.32)

The subscript NB denotes the no-boundary wave function for the closed homoge-

neous Universe.

We can now parametrize the three - surface Σ as follows:

hij(x, 1) = h̃ij(x) (3.33)

Φ(x, 1) = Φ̃(x) (3.34)

a(1) = ã (3.35)

where we set τ = 1 in the above expressions. The Euclidean action that describes

this model is given by:

I =
1

2

∫ 1

0

dτN

[
− a

N2

(
da

dτ

)2

+
a3

N2

(
dΦ

dτ

)2

− a+ a3V (Φ)

]
. (3.36)

In the above expression, we chose the initial point τ = 0. Now, by variation of the

action with respect to a and Φ, we obtain the following field equations:

1

N2

d2Φ

dτ 2
+

3

Na

da

dτ

dΦ

dτ
− 1

2

dV (Φ)

dΦ
= 0 (3.37)

1

N2a

d2a

dτ 2
+

2

N2

(
dΦ

dτ

)2

+ V (Φ) = 0 (3.38)

The saddle-point condition (∂I/∂N) = 0 gives:

1

N2

(
da

dτ

)2

− a2

N2

(
dΦ

dτ

)2

− 1 + a2V (Φ) = 0 (3.39)

Let’s now consider the Euclidean four-geometry (FRW metric) where the line ele-
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ment is given by:

ds2 = N2dt2 + a2(τ)dΩ2
3 (3.40)

In Hartle and Hawking no-boundary proposal, we require a(τ) ≈ Nτ at the limit

τ → 0 and thus a(0) = 0 That’s because we want the four-geometry to close off in

a regular way. In this case, the metric 3.40 approaches the flat space (in spherical

coordinates), which has the following metric:

ds2 = dt2 + r2Ω2
3 (3.41)

The above requirement is not enough because it leads to singularities of the fields

equations. However if we require:

dΦ

dτ

∣∣∣∣
τ=0

= 0 (3.42)

for the scalar field Φ, then the solution will be regular.

We can now find a solution of 3.38 that meets the above requirements:

a(τ) ≈
ã sin

(
V 1/2Nτ

)
sin
(
V 1/2N

) (3.43)

Substituting this solution to 3.39, we get:

V ã2 cos2
(
V 1/2Nτ

)
sin2

(
V 1/2N

) − 1 + a2V = 0 (3.44)

For τ = 1, we get:

ã2V
(
1 + cot2(V 1/2N)

)
= 1 (3.45)

and thus:
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sin2(V 1/2N) = ã2N (3.46)

For the above expression we consider real values for the potential and the scale

factor a and for this reason:

ã2V < 1 (3.47)

Now, the solutions are solutions are parameterized by n ∈ Z:

N±n =
1

V 1/2

[(
n+

1

2

)
π ± cos−1(ãV 1/2)

]
. (3.48)

In the above expression, cos−1(ãV 1/2) lies in the principle range
(

0, π
2

)
. For n = 0

we have [27]:

a(τ) ≈ 1

V 1/2
sin

[(
π

2
± cos−1(ãV 1/2)

)
τ

]
. (3.49)

Now, we can calculate the action, where:

I± = − 1

3V (Φ̃)

[
1±

(
1− ã2V (Φ̃)

)3/2
]

(3.50)

As we can see, there are two possible solutions:

• (-) describes the three-sphere which is closed off by less than half of a four-

sphere.

• (+) describes the three-sphere which is closed off by more than half of a four-

sphere.

Finding these two possible solutions is not enough as we still need to specify the

contour that we will perform the integration over it.

According to Halliwell et Louko [28,29,30], different convergent contours are

dominated by different saddle-points leading to different wave function. Hartle and
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Hawking proposal doesn’t offer guidance in making a choice. However, there are no

preferred contours but only some better than others.
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Figure 3.1: Steepest descent, ascent and integration contours for Hartle and Hawking
proposal (taken from [31] where more details are provided).

Figure 3.2: Modification of the contour (taken from [31] where more details are pro-
vided).
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In [32], the following conditions, that any sensible contour should satisfy, are

presented:

• Classical spacetime should be predicted in the case of a large Universe.

• Convergence of the integral that defines the wave function.

• Compatibility between wave function and diffeomorphims invariance imple-

mented by momentum constraint.

• The correct field theory in curved spacetime should be reproduced in this

spacetime.

• To the extent that wormholes make the cosmological constant dependent on

initial conditions the wave function should predict its vanishing.

Halliwell and Hartle in the same paper showed that contours dominated by

saddle-points corresponding to negative lapse functions lead to difficulties in recov-

ering quantum field theory in a curved space time. While this provides us with a

good reason for excluding contours for which the dominating contribution is from a

saddle-point with n < 0 there does not appear to be any good reason for preferring a

contour for which the dominating contribution comes from a saddle-point associated

with any particular n ≥ 0.

Hartle and Hawking in (1983) derived to the semi-classical no-boundary wave

function. As mentioned before, the condition for the classically allowed region is:

a2V (Φ) > 1 (3.51)

and for the classically forbidden region is:

a2V (Φ) < 1 (3.52)
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The no-boundary wave function for the classically allowed region is:

ΨNB ≈ exp

(
1

3V (Φ)

)
cos

[
1

3V (Φ)

(
a2V (Φ)− 1

)3/2 − π

4

]
(3.53)

and the one that corresponds to the classically forbidden region is:

ΨNB ≈ exp

[
1

3V (Φ)

(
1−

(
1− a2V (Φ)

)3/2
)]

(3.54)

Hawking in 1985, published a paper [33] on the arrow of time in cosmology, in

which he made what he considered his ”biggest mistake” [34]. Previously, he had

proposed that the thermodynamic arrow of time and the cosmological arrow of time

must always point in the same direction [35]. With this suggestion in mind, Hawking

concluded that the thermodynamic arrow would reverse at the moment of maximum

expansion and entropy and coincide with the cosmological arrow when the universe

eventually re-collapsed. Since the psychological arrow of time is presumably a con-

sequence of the thermodynamic arrow, this would bizarrely mean that a conscious

observer would then remember the future but not the past. A crucial factor leading

him to this conclusion was the fact that his unbounded quantum state was CPT in-

variant. The CPT theorem is a recognised property of all fundamental physical laws

and states that these laws are invariant under the combination of charge conjugation

(Charge), space inversion (Parity), and time reversal (Time). Therefore, the fact that

the wave function without limits exhibits this property is an encouraging sign.

To finish the discussion about calculation of the no-boundary wave function, we

construct a probability measure on a set of paths J · dΣ:

dPNB = J · dΣ ∝ exp

(
2

3V (Φ)

)
dΦ (3.55)

where Σ is a surface where a is constant.
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3.6 Inflation

Obviously the universe has reached a sufficient level of inflation for large-scale

structures and even observers to emerge. At least in the case of a minisuperspace

model, the two boundary conditions mentioned lead to a wave function that predicts

an inflationary period. The amount of inflation a universe experiences is determined

by the initial value Φ0 of our scalar field. It is the potential energy of this field that

allows the universe to expand exponentially for a short period of time. If this value

is too small, the model will predict that the universe will expand and collapse again

in a time period too short for a large-scale structure to emerge. Therefore, we will

make the same restriction as Hawking and Page did in an earlier paper [25] and not

deal with values of Φ0 that are below a certain small value, which we will call Φmin.

We would like our model to predict a sufficient amount of inflation, say 60 e-folds

[36, 37], to provide a satisfactory explanation for the flatness and horizon problems.

This motivates us to define a value Φsugg for which the universe experiences sufficient

inflation for Φ0 > Φsugg. Now we can write:

Ne = 6

∫ Φ0

Φe

dΦ
V (Φ)

V ′(Φ)
(3.56)

where Ne is the number of e-folds, Φe is the value of the scalar field at the end of

inflationary period. Considering a chaotic potential of the form V (Φ) = m2Φ2, we

get:

Ne =
3

2
(Φ2

0 − Φ2
e) (3.57)

It can be proved that a sufficient amount of inflation occurs at Φsuff ≈ 6.3. Vilenkin in

his paper [28] pointed out that the potential V (Φ) is likely to far exceed the Planck

energy density for large values of Φ, unless it has a very special form. Since the

derivation of our probability density is based on a semiclassical approximation, it

would not be wise to trust the predictions of our mini-space model in this domain.

30



Chapter 3. Boundary conditions 3.6. INFLATION

We are therefore again motivated to define another value Φmax, which is the largest

value of Φ0 for which we trust our model. Since the initial value for the scalar field

is somewhere within the range Φmin < Φ0 < Φmax, we would like to compute the

probability that it is greater than Φstuff . That is, we want to evaluate the conditional

probability:

P (Φ0 > Φsuff |Φmin < Φ0 < Φmax) = 1−

∫ Φsuff

Φmin
dΦ exp

(
± 2

3V Φ

)
∫ Φmax

Φmin
dΦ exp

(
± 2

3V Φ

) (3.58)

We can think of this result graphically:

Figure 3.3: Probability distributions for the tunnelling and no-boundary wave function
(taken from [26] where more details are provided).

According to the figure for the tunnelling wave function we see that for values Φ→

Φmin: ∫ Φmax

Φmin

dΦ exp

(
2

3V (Φ)

)
�
∫ Φsuff

Φmin

dΦ exp

(
2

3V (Φ)

)
(3.59)

and thus:
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P (Φ0 > Φsuff |Φmin < Φ0 < Φmax) ≈ 1. (3.60)

On the other hand for the no-boundary wave function we see that:

∫ Φmax

Φmin

dΦ exp

(
− 2

3V (Φ)

)
≈
∫ Φsuff

Φmin

dΦ exp

(
− 2

3V (Φ)

)
, (3.61)

and:

P (Φ0 > Φsuff |Φmin < Φ0 < Φmax)� 1. (3.62)
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Chapter 4

Alternative approach of the

no-boundary proposal

4.1 Introduction

In this Chapter, a mathematical technique called Picard-Lefschetz theory is in-

troduced. Turok et al. in [38] used this technique to implement an alternative

version of the no-boundary proposal which gives different results to the traditional

implementation.

4.2 Picard-Lefschetz Theory

One can use this technique to approximate integrals of the following form:

∫
D

dxeiS[x]/~ (4.1)

In the above path integral ~ is a real small parameter, S[x] a real function, and

D a real domain. This technique was first introduced by Arnol’d et al. [39]. To

calculate the above integral, we need a generalisation of the methods of stationary
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phase or steepest descent. As in these cases, and assuming that Cauchy’s theorem is

applicable, one then allows x to be complex and deforms the domain of integration

to a contour of steepest descent that is bounded by critical points of S.

At these points, the equations of Cauchy-Riemann, imply that Re(iS) (which

controls the decay of the integrand) has a saddle point. We then take the steepest

descent contour through a to be the path along which Re(iS) decreases most rapidly.

These contours generally lead to a convergent integral and in this case are called

Lefschetz’s thimbles Jσ.

Now, we can write:

iS[x]/~ ≡ h+ iH (4.2)

x ≡ u1 + iu2 (4.3)

Using λ as a parameter for the path, we can define a downward flow that satisfies

the following equation:
dui

dλ
= −gij

∂h

∂uj
(4.4)

Use of the chain rule gives:

dh

dλ
=
∑
i

∂h

∂ui
dui

dλ
= −

∑
i

(
∂h

∂ui

)
< 0 (4.5)

Therefore, we have the real part of the exponent h decreases on such a flow away

from its critical point. In addition, the decrease is the fastest because the gradient has

the largest possible amplitude and thus we use the direction of the fastest descent

Jσ to identify this flow. Adding to this, one can similarly define the upward flow or

steepest ascent path Kσ.
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Figure 4.1: The integrand, in the complex N-plane, for a closed, homogeneous and
isotropic Universe. (Taken from [38])
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For the flat Riemannian metric, we have:

dx

dλ
= −∂Ī

∂x̄
(4.6)

Also, the imaginary part of the exponent is conserved:

dH

dλ
=

1

2i

d(I − Ī)

dλ
=

1

2i

(
∂I

∂x

dx

dλ
− ∂Ī

∂x̄

dx̄

dλ

)
= 0 (4.7)

According to the above results, we see that the integrand does not oscillate

along the downward flow, but decreases monotonically, so that the integral con-

verges most rapidly. This is not entirely true, however, since it may be that a steep-

est downward path through one saddle point coincides with a steepest upward path

through another saddle point. This degeneracy is usually caused by symmetries of

action and is solved by introducing perturbations. Once this is resolved, a one-to-one

relationship can be established between the saddle points and the relatively steepest

descent and ascent contours. The general situation is that every steepest descent

contour terminates on a singularity where h→ −∞. Therefore, we can consistently

modify the integration domain D to a new contour:

C =
∑
σ

nσJσ (4.8)

where the coefficients nσ (intersection number) takes values 0 or ±1. For more

details, see [40]. Critical points that make very large contributions to the integral,are

described by setting nσ = 0 [41].

Finally, one can write:

∫
D

dxeiS[x]/~ =

∫
C
dxeiS[x]/~ =

∑
σ

nσ

∫
Jσ
dxeiS[x]/~ (4.9)
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The above integral converges when:

∫
Jσ
|dx|eh(x) <∞ (4.10)

∀ Lefschetz trimbles Jσ.

Using the semiclassical expansion of the integral of interest in powers of ~, we get:

∫
D

dxeiS[x]/~ =
∑
σ

nσe
iH(pσ)

∫
Jσ
ehdx ≈

∑
σ

nσe
iS(pσ)/~[Aσ +O(~)], (4.11)

where Sσ is the value of the action at the critical point and Aσ is the value of the

leading order Gaussian integral about the same saddle point.
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Conclusion

Quantum cosmology is based on the idea that quantum physics should apply to

anything in nature, including the whole universe. Universe is treated as a quantum

system and this approach attempts to answer open questions of classical physical

cosmology. In this dissertation, a description of general relativity as a field theory

(that is based on the Lagrangian formulation) is given. This formalism leads to the

general formalism of quantum cosmology. Also some issues related to this formal-

ism are briefly described. Universe is described by the central equation known as

the Wheeler-DeWitt equation. Describing this equation requires the approximation

of minisuperspace which is the space on which the wave function is defined. Some

boundary conditions ensure the uniqueness of the wave function that describes the

Universe. This dissertation gives a brief review of the two most studied and com-

prehensive boundary condition proposals. Finally, Picard-Lefschetz technique was

introduced so as to identify the Lorentzian path integral for quantum gravity dur-

ing a semiclassical expansion. This technique describes the formulation of Hartle-

Hawking proposal, as a sum over real Lorentzian four-geometries.

Some recent work about Quantum Cosmology is also given in [42]. Turok at al.

in this paper made calculations concerning the no-boundary amplitude for a closed

Universe. They found the opposite semiclassical exponent from what was originally
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proposed by Hartle and Hawking. As an extension of the work that Diaz Dorronsoro

et al. did [43], they showed that the integration contour gives an additional non-

perturbative contribution (correction) which continue render the perturbations un-

suppressed. Adding to this, they prove that there is no an integration contour that

solves this problem.
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