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Abstract

This dissertation develops a new and relatively simple way of generating non-linear

duality-symmetric Lagrangians for electromagnetism. We start with a general ansatz

Lagrangian and use it to re-obtain some known and find new theories. The physical

implications of the new theories are analyzed by considering their spherically symmet-

ric electrostatic solutions. The resulting electrostatic fields are distinct, ranging from

confinement-like effects, reshaped Coulomb’s law, to particles having a finite radius.
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1 Introduction

Maxwell’s electrodynamics is one of the most well-understood physical theories. Symme-

tries, from Lorentz invariance to charge conservation, played an important role in its devel-

opment and analysis. From all of its symmetries, there is an interesting one that appears in

fields absence of charge sources; the electric and magnetic fields can be transformed into one

another by the so-called dual symmetry transformations [1, 2, 3]. This aspect of Maxwell’s

theory has inspired physicists to extend the theory of electromagnetism, for example, Dirac’s

magnetic monopoles [4], and the development of duality-symmetric formulations [5, 6, 7, 8].

More recently, there has been a renewed interest in non-linear electrodynamics theories

that are duality-symmetric. Historically speaking, non-linear electrodynamics offered ways

to solve classical field divergences of point charges [9], provided description of photon-matter

coupling [10], and appeared in the context of string theory [11, 12]. In general, dual sym-

metric non-linear electrodynamics models have the potential to provide further insight into

magnetic monopoles, string theory, and black holes.

One of the most well recognized non-linear dual symmetric theories would be that of Born

and Infeld [9]. While it is widely celebrated within the community, it is not the only possible

non-linear theory with duality symmetry.

The general Lagrangian for non-linear electrodynamics can be written in the form:

S =

∫
d4x L(u, v) , u = s+

√
s2 + p2 , v = −s+

√
s2 + p2 . (1)

In this dissertation, the chosen convention is u, v ≥ 0 and the variables s, p correspond to

the usual Maxwell’s Lagrangian and the so-called θ−term respectively:

s =
1

2
FµνF

µν , p =
1

2
Fµν ? F

µν , (2)

with Fµν = ∂µAν − ∂νAµ being the Faraday tensor with its corresponding Hodge dual

?Fµν = 1
2εµνλρF

λρ. The electric-magnetic duality symmetry, that is, the symmetry with
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respect to the rotations of Fµν and Gµν = (? ∂L∂F )µν :

Fµν → cosαFµν + sinαGµν ,

Gµν → − sinαFµν + cosαGµν , (3)

can be imposed by the Gaillard-Zumino-Gibbons-Rasheed (GZGR) duality symmetry con-

dition [14, 15] on the Lagrangian (1):

∂L
∂u

∂L
∂v

= −1 . (4)

For simplicity, we have chosen u, v to be dimensionless; however, one may modify u→ a
T u+b

and v → 1
aT v + c in such a way that a, b, c are dimensionless and act as scaling/shifting

parameters, and T as a parameter of energy density (in the context of string theory it is

regarded as tension of D-brane [12]). Then, the Lagrangian L′(u, v) = TL( aT u+ b, 1
aT v+ c)

satisfies the duality-symmetric condition (4) as long as L(u, v) does.

This dissertation aims to show a new and general method of constructing non-linear La-

grangians that are of the form (1), satisfying GZGR dual symmetry condition (4). In

the proceeding section, we declare an ansatz Lagrangian that contains arbitrary functions

ρ = ρ(u, v) and f(ρ), with their purpose being of providing a way to generate duality-

symmetric theories. Furthermore, we derive the Lagrangian’s equations of motion and

Maxwell-like equations for the electric and magnetic fields. We analyze the physical im-

plications of the theories by considering their spherically symmetric electrostatic solutions.

Afterward, we reobtain the usual Maxwell in a vacuum and Born-Infeld Lagrangians and

introduce new duality-symmetric theories. Later on, the dissertation suggests another con-

struction that additionally maintains u ↔ v exchange symmetry. Again, we show some

more examples that have this additional symmetry.
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2 Generalization of Non-Linear Dual Symmetric Lagrangians

2.1 General Form of Non-Linear Dual Symmetric Lagrangians

We start by introducing Bialynicki-Birula [17] electrodynamics, which is regarded as the

T → 0 limit of Born-Infeld theory:

LBI = 2
√

(u+ T )(−v + T )− 2T . (5)

The T = 0 limit is easy to derive:

LBB = 2
√
−u v = 2

√
−p2 = 2 i |p| . (6)

The latter expression is total derivative, and therefore the Lagrangian is equivalent to

zero up to boundary terms1. We will, however, work with the non-trivial deformations of

L ≡ LBB = 2
√
−u v.

It is easy to see that L satisfies the dual symmetry condition (4). Due to its simple form,

the Lagrangian acts as a useful starting point for constructing more general dual symmetric

theories. For example, the model can be modified by shifting one of the parameters, say u,

by some arbitrary function ρ = ρ(u, v) and adding another f(ρ) term. That is, we consider

an ansatz Lagrangian

L = 2
√
v(ρ− u)− f(ρ) , (7)

where ρ and f(ρ) will be chosen in such a way that dual symmetry of L is maintained. The

condition on these functions can be found by looking at the L derivatives with respect to

1A recent discussion of Lagrangian formulation of BB theory can be found in [18]: the appropriate
Lagrangian for BB theory is given by two constraints, s = 0 and p = 0, imposed by Lagrange multipliers.
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u, v:

∂L
∂u

= −
√

v

ρ− u
+

[
− f ′(ρ) +

√
v

ρ− u

]
∂ρ

∂u
,

∂L
∂v

=

√
ρ− u
v

+

[
− f ′(ρ) +

√
v

ρ− u

]
∂ρ

∂v
, (8)

where f ′(ρ) = ∂f(ρ)/∂ρ. A simple and non-trivial way to ensure dual symmetry is to make

the second terms vanish by choosing the condition

f ′(ρ) =

√
v

ρ− u
, (9)

and in return giving us a direct relationship between ρ and f ′(ρ). Furthermore, the deriva-

tives reduce to:

∂L
∂u

= −
√

v

ρ− u
= −f ′(ρ) ,

∂L
∂v

=

√
ρ− u
v

=
1

f ′(ρ)
, (10)

which satisfies (4) and gives us two possible ways to express it: either having only ρ or the

derivative of f(ρ).

Since, ρ depends on both u, v, there are many possible solutions for ρ and f(ρ) that satisfy

equation (9). This allows us to generate many possible non-linear dual symmetric theories:

the challenge is to find functions ρ(u, v) and f(ρ), satisfying (9). There are two ways one

can try to approach this problem. One method involves simply choosing a f(ρ) function

and solving the constraint to obtain ρ. This method is straightforward, and as shown later

on in the examples section, can be used to obtain different non-linear theories. Another

way to approach the problem would be by first considering desired equations of motion

and finding suitable ρ, f(ρ) solutions. Examples of this are also covered later on and are

used to obtain already known theories. We do not know if our ansatz can cover all possible

duality-symmetric theories. Nevertheless, it implicitly defines a large class of such theories.
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2.2 Equations of Motion

We derive the equations of motion for the generalized duality-symmetric Lagrangian (7).

Explicitly, we use Euler-Lagrange equations with respect to the field Aµ; thus,

∂L
∂Aν

− ∂µ
∂L

∂(∂µAν)
= 0 . (11)

Since the Lagrangian does not explicitly depend on the potential Aµ, the first term of the

equation is equal to zero. Applying the chain rule for derivatives further expands it to

∂µ

[
− ∂L
∂u

∂u

∂(∂µAν)
− ∂L
∂v

∂v

∂(∂µAν)

]
= 0 . (12)

In the previous subsection, we chose L such, that its derivatives (10) would satisfy (4). We

obtained two possible but equivalent ways to express them. In return, this gives equations

of motion either in terms of ρ or f ′(ρ):

∂µ

[√
v

ρ− u
∂u

∂(∂µAν)
−
√
ρ− u
v

∂v

∂(∂µAν)

]
= ∂µ

[
f ′(ρ)

∂u

∂(∂µAν)
− 1

f ′(ρ)

∂v

∂(∂µAν)

]
= 0 .

(13)

Next, we compute the derivatives of the u, v. Specifically, using the definitions of (1), in

terms of s, p we obtain:

∂u

∂(∂µAν)
= 2Fµν +

1√
s2 + p2

[
2sFµν + 2p ? Fµν

]
,

∂v

∂(∂µAν)
= −2Fµν +

1√
s2 + p2

[
2sFµν + 2p ? Fµν

]
. (14)
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However, for our discussion, it is more useful to re-express the derivatives in terms of u, v.

Using the fact that:

u+ v = 2
√
s2 + p2 ,

u− v = 2 s ,

sign(p)
√
uv = p , (15)

where sign(p) appears as s, p are arbitrary real numbers; we obtain the derivatives as:

∂u

∂(∂µAν)
= 4

[
uFµν + sign(p)

√
uv ? Fµν

u+ v

]
,

∂v

∂(∂µAν)
= 4

[
−vFµν + sign(p)

√
uv ? Fµν

u+ v

]
. (16)

Applying this to the equations of motion, gives us

∂µ

[(
u

√
v

ρ− u
+ v

√
ρ− u
v

)
Fµν

u+ v
+

(√
v

ρ− u
−
√
ρ− u
v

)
sign(p)

√
uv ? Fµν

u+ v

)]
=

∂µ

[(
uf ′(ρ) +

v

f ′(ρ)

)
Fµν

u+ v
+

(
f ′(ρ)− 1

f ′(ρ)

)
sign(p)

√
uv ? Fµν

u+ v

)]
= 0 . (17)

Since there are two ways to express the equations of motion, this gives us the convenience

of choosing one or the other depending on the situation and how easy it is to compute these

factors.

2.3 Electrostatic Solutions

We can describe the physical implications of a dual symmetric theory by reformulating

the equations of motion into a form that resemble Maxwell’s equations. Redefining the

equations of motion in a more readable form

∂µ
(
α ? Fµν − β Fµν

)
= 0 , (18)
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where α = α(u, v) and β = β(u, v) are the factors of equation (17):

α(u, v) =

(√
v

ρ− u
−
√
ρ− u
v

)
sign(p)

√
uv

u+ v
=

(
f ′(ρ)− 1

f ′(ρ)

)
sign(p)

√
uv

u+ v
,

β(u, v) = −
(
u

√
v

ρ− u
+ v

√
ρ− u
v

)
1

u+ v
= −

(
uf ′(ρ) +

v

f ′(ρ)

)
1

u+ v
, (19)

we can expand equation (18) in a manner, similar to Maxwell equations. In natural units

and metric (+,−,−,−), the field tensor components correspond to electric E and magnetic

B fields as: Ei = F 0i, Bi = −1
2ε
ijkFjk, B

i = −?F 0i, Ei = 1
2ε
ijk ?Fjk. Therefore, we obtain

equations:

∇ ·
(
βE − αB

)
= 0 , (Gauss’s Law)

∇×
(
βB + αE

)
+
∂

∂t

(
βE − αB

)
= 0 . (Ampere’s Law) (20)

Since Fµν = ∂µAν−∂νAµ, two more equations can be derived from the Hodge dual condition

∂µ ? F
µν = 0 . Explicitly,

∇ ·B = 0 , (Gauss’s Law for Magnetisim)

∇×E +
∂

∂t
B = 0 . (Maxwell-Faraday Equation) (21)

The equations of (20) and (21) are the non-linear Maxwell equations for given duality-

symmetric theories. In general, assuming that the gauge field Aµ is well-defined everywhere,

(21) implies that these theories do not predict spherically symmetric magneto-static solu-

tions: a feature, shared with the free Maxwell case. However, there appears an additional E

and B mixing in both Gauss’s and Ampere’s laws, differently from the free Maxwell case.

The additional α, β factors gives rise to more complicated equations. Specifically, they

depend on s, p which can be expressed in terms of E and B as

s = B2 −E2 , p = −2B ·E . (22)
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In this dissertation, we restrict our analysis to spherically symmetric electrostatic solutions.

In the electrostatic limit we require the magnetic fields to vanish, s → −E2 and p → 0.

As a consequence, the parameters u, v approach u → 0 and v → 2E2. In this limit, the

Maxwell-like equations (20) and (21) reduce to:

lim
u→0
v→2E2

∇ · (βE) = 0 ,

lim
u→0
v→2E2

∇× (αE) = 0 ,

lim
u→0
v→2E2

∇×E = 0 . (23)

Since the electric field has no curl, we can solve the first of the upper equations to obtain

spherically symmetric solutions. The parameter β in this limit will only dependent on E2,

a scalar. Therefore, we can express the spherically symmetric solution as

lim
u→0
v→2E2

∇ · (βE) = lim
u→0
v→2E2

1

r2
∂

∂r
(βE(r)r2) = 0 . (24)

Following [9], we define the term inside the derivative, which has to be constant, electric

charge Q,

lim
u→0
v→2E2

βE(r) =
Q

r2
. (25)

As a result, the electrostatic solutions are determined by the β factor only and α plays no

role. We can try to explicitly take the electrostatic limit of β. Let us assume that in the

limit ρ 6= 0 or ∞. That is, we wish for β to be well defined in this limit. In this case,

lim
u→0
v→2E2

β =

√
ρ̄

2E2
, ρ̄ = lim

u→0
v→2E2

ρ . (26)
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Applying it to the electrostatic solution (25), we get a simple algebraic equation of the form

ρ̄ =
2Q2

r4
, ρ̄ = lim

u→0
v→2E2

ρ 6= 0 or∞ . (27)

The resulting formula proves to be very useful in finding electrostatic solutions for a given

theory. As long as ρ̄ is non-zero or infinite, the formula lets us quickly work out the resulting

E(r) solution without the need of deriving the equations of motion from first principles.

However, if ρ̄ does not satisfy the upper condition, the limit of β must be explicitly evaluated

as it might still be finite and give us electrostatic solutions.

3 Non-Linear Duality-Symmetric Theories

3.1 Examples

3.1.1 Maxwell’s Electrodynamics

Let us start by applying the new developed method for the simplest dual symmetric theory,

which would be Maxwell’s electrodynamics. In order to obtain L, we need to determine

ρ(u, v) and f(ρ). By requiring the theory to satisfy Maxwell’s equations in a vacuum

∂µF
µν = 0 , (28)

we compare it to the general equations of motion (18) obtained in the previous section. In

this case, the factors are β = −1 and α = 0. It is simple to obtain f ′(ρ) from the conditions:

0 =

(
f ′(ρ)− 1

f ′(ρ)

)
sign(p)

√
uv

u+ v
,

1 =

(
uf ′(ρ) +

v

f ′(ρ)

)
1

u+ v
. (29)

The solution gives us f ′(ρ) = 1, which implies f(ρ) = ρ (we neglect any constants that

appear after integration). Next, we use the dual symmetric condition (9) that relates f ′(ρ)
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and ρ(u, v). This in return gives us ρ(u, v) = u+ v. Therefore, the Lagrangian becomes

L = 2
√
v(ρ− u)− f(ρ) = v − u = −2s , (30)

which is up to a factor Maxwell’s electrodynamics in a vacuum. In the electrostatic limit,

ρ → ρ̄ = 2E2; hence, non-zero or infinite. Therefore, we can apply the formula of (27) to

re-obtain Coulomb’s law

E(r) =
Q

r2
. (31)

While Maxwell’s theory is linear, we have obtained it from our general non-linear dual sym-

metric construction. This simple example highlights how one can use the developed method

to construct more complicated theories, which will be shown in the following examples.

3.1.2 Born-Infeld Electrodynamics

Another test for our method would be to re-derive the Lagrangian which corresponds to

Born-Infeld electrodynamics. We start by considering it’s equations of motion [9]. Specifi-

cally,

∇ ·
[

E2 − pB2√
1 + s− p2

]
= 0 . (32)

Where s, p can be converted back to u, v using (15). Comparing each term of Born-Infeld

electrodynamics to our equations of motion, we have:

α =
p√

1 + s− p2
,

β =
1√

1 + s− p2
. (33)
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In other words, Born-Infeld’s theory requires pβ = sign(p)
√
uvβ = α. Thus, we obtain an

equation that f ′(ρ) must satisfy,

−uf ′(ρ)− v

f ′(ρ)
+ f ′(ρ)− 1

f ′(ρ)
= 0 . (34)

When the equation is solved, the function is

f ′(ρ) =

√
1− v
u+ 1

. (35)

However, we can not find f(ρ) yet, as we do not know the form of ρ(u, v). This can be

obtained from (9), ρ(u, v) is found to be equal to

ρ =
u+ v

1− v
. (36)

Therefore, we can now find f(ρ). We can rearrange ρ(u, v) as follows

ρ =
u+ v

1− v
=
u+ 1 + v − 1

1− v
=
u+ 1

1− v
+
v − 1

1− v
=

1

[f ′(ρ)]2
− 1 . (37)

Hence, we have f ′(ρ) = 1/
√
ρ+ 1 which implies that

f(ρ) = 2
√
ρ+ 1 . (38)

Therefore, we have all of the information needed to re-obtain the Lagrangian which described

Born-Infeld electrodynamics

L = 2
√
v(ρ− v)− f(ρ) = −2

√
(1− v)(1 + u) . (39)

As for the electrostatic solution we have that in the electrostatic limit ρ → ρ̄ is not equal

to zero or infinity. Explicitly,

ρ̄ =
2E2

1− 2E2
. (40)

15



Applying the result to formula (27), the electrostatic field is equal to

E(r) =
Q√

r4 + 2Q2
. (41)

The field has the characteristic of being finite at r = 0 with a field value E(r = 0) =

sign(Q)/
√

2. Since we are working with dimensionless u, v, the proper way to restore the

dimensions of fields would be by reintroducing u → u/T , v → v/T and L → TL into our

formulation, as mentioned in the Introduction.

3.1.3 Function ln ρ

This is going to be the first example of a new type of non-linear dual symmetric theory.

We will show that the electrostatic solutions predict a confinement-like effect. With this

example, we directly assume that the Lagrangian has f(ρ) = ln ρ. Directly calculating

ρ(u, v) from the (9) constraint

f ′(ρ) =
1

ρ
=

√
v

ρ− u
, (42)

returns us a polynomial vρ2−ρ+u = 0. When solved, it has two possible ρ±(u, v) solutions

ρ±(u, v) =
1±
√

1− 4uv

2v
, 0 ≤ uv ≤ 1

4
. (43)

Since we obtain two separate solutions, this implies that there are two possible L+ and L−

dual symmetric theories with the same f(ρ) function.

L± =
√

2
[
1− 2uv ±

√
1− 4uv

]
− ln

[
1±
√

1− 4uv

2v

]
. (44)

Next, we derive their electrostatic solutions. Let us start with L+ with its corresponding

ρ+(u, v). Clearly, in the electrostatic limit it becomes equal to

ρ̄+ =
1

2E2
+

. (45)
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Where we denote E+ as the electrostatic field for the L+ Lagrangian. Therefore, we can

simply apply formula (27) to obtain the static field as

E+(r) =
r2

2Q
. (46)

As for the second case, L−, we need to directly evaluate the β limit in (25), since ρ̄− = 0.

Explicitly, the limit is

lim
u→0
v→2E2

β = lim
u→0
v→2E2

−
(
uf ′(ρ) +

v

f ′(ρ)

)
1

u+ v

= lim
u→0
v→2E2

−
(
u

ρ−
+ vρ−

)
1

u+ v

= lim
u→0
v→2E2

−
(

2uv

1−
√

1− 4uv
+

1−
√

1− 4uv

2

)
1

u+ v

= lim
u→0
v→2E2

−
(

2uv

1− (1− 2uv +O(u2))
+

1−
√

1− 4uv

2

)
1

u+ v

= lim
v→2E2

−1

v

=
−1

2E2
−
. (47)

Therefore, solving (25) gives us the same electrostatic solution as it was with ρ+ but with

a sign change,

E−(r) = − r2

2Q
. (48)

However, the minus sign can be reabsorbed into the charge if one assumes that the sign of the

charge is arbitrary. Thus, the two different Lagrangians give rise to the same electrostatic

solution.

It is interesting to point out the form of the electrostatic solution. In both Lagrangian

L+ and L−, we get the same electrostatic field, which increases from the origin of the

charge where the field strength is zero. Another aspect of the theory is that E±(r) becomes

dependent on the charge Q inversely compared to Coulomb. In general, this might hint a
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possibility of a confinement-like effect. For example, two opposite charge particles could

experience a force on each other that does not let them escape each other. It would be

interesting to investigate the possibility of stable multi-particle configurations with finite

energy.

3.1.4 Function arcsinh(ρ)

In this example, we will obtain two separate theories that have the same function f(ρ)

(as in previous example) but different electrostatic solutions. Both of these theories have

electrostatic solutions that are only defined in certain regions of space, that is, the elemen-

tary particle in this theory has to have a non-zero radius r0. One Lagrangian provides

a confinement-like effect as discussed in the previous example and the other one shows a

Coulomb-like behavior when far away from the charge source of finite radius.

In this scenario, we choose a function f(ρ) = arcsinh ρ. For f ′(ρ) = (1 + ρ2)−1/2 the

constraint

1√
1 + ρ2

=

√
v

ρ− u
(49)

implies ρ(u, v) has two distinct solutions

ρ±(u, v) =
1±
√

1− 4uv − 4v2

2v
, 0 ≤ 4v(v + u) ≤ 1 . (50)

The chosen f(ρ) produces two possible Lagrangians L+ and L−

L± =

√
2
[
1− 2uv ±

√
1− 4uv − 4v2

]
− arcsinh

[
1±
√

1− 4uv − 4v2

2v

]
. (51)

In the electrostatic limit, both ρ±(u, v) are finite

ρ̄± =
1±

√
1− 16E4

±

4E2
±

, E2
± ≤

1

4
, (52)
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and using equation (27) we get

1±
√

1− 16E4
±

4E2
±

=
2Q2

r4
.

8Q2

r4
E2

± − 1 = ±
√

1− 16E4
± . (53)

This is the point where L± theories start to deviate.

Let us first consider the L+ case. We require that the left side of the upper equation remains

positive. Hence, the solution is

E+(r) =
r2Q√
r8 + 4Q4

,
r2

2
√

2Q
≤ E(r)+ ≤

1

2
. (54)

We wish to determine the range of r for which the solution holds true. First, we consider

E ≤ 1/2. The inequality gives

r2Q√
r8 + 4Q4

≤ 1

2

r8 − 4Q2r4 + 4 ≥ 0

(r4 − 2Q2)2 ≥ 0 . (55)

Which is a trivial condition and it is always satisfied. At the point r0 = (2Q2)1/4 the E(r)

field reaches its maximum value. This point is also the radius of the charge r0. In order to

see this, we consider r2/(2
√

2Q) ≤ E(r)+. This gives the inequality

r2

2
√

2Q
≤ r2Q√

r8 + 4Q4√
r8 + 4Q4 ≤ 2

√
2Q2

r ≤ (2Q2)1/4 = r0 . (56)
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In conclusion, the L+ theory gives an electrostatic solution defined inside the particle’s

radius

E+(r) =
r2Q√
r8 + r80

, 0 ≤ r ≤ r0 = (2Q2)1/4 . (57)

and the field value at the radius is E(r0)+ = Q/(
√

2r20). Considering the field near the

origin r = 0 by expanding the electrostatic solution, gives us

E+(r) ≈ r2

2Q
. (58)

We see that the field gives a confinement effect. However, there is an additional constraint

for where the electrostatic field exists. The field is defined inside the radius r0. It is

important to point out the at the radius point r0, the field has a finite value. This means

it is physically ambiguous as to what happens outside the radius.

Next, we analyze the L− case. In this situation, we require

8Q2

r4
E2

± − 1 ≤ 0 , (59)

that is, we need the left side to be strictly negative. Again, we obtain the electrostatic

solution as

E−(r) =
r2Q√
r8 + 4Q4

, E(r)− ≤
r2

2
√

2Q
, E(r)− ≤

1

2
. (60)

However, we already established r0 = (2Q2)1/4 and E(r)− ≤ 1/2 is always satisfied. There-

fore, we consider the inequality

r2Q√
r8 + r80

≤ r2

2r20

√
2r40 ≤

√
r8 + r80

r0 ≤ r . (61)
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Hence, we get an electrostatic field defined outside the radius r0,

E−(r) =
r2Q√
r8 + r80

, r ≥ r0 = (2Q2)1/4 . (62)

Again, we see that the field value at the radius E(r0)+ = Q/(
√

2r20) is finite. There is no

field defined inside the radius. If we consider distances r � r0, we observe Coulomb like

electrostatics

E−(r) ≈ Q

r2
. (63)

It is interesting to note that both of the Lagrangians gave the same field E(r) function but

defined at different regions around the radius point r0. However, there is a bit of physical

ambiguity as to what happens to the field when one considers L± inside/outside the radius

respectively.

In order to fix the vanishing of the field inside the radius for the L− theory, let us modify

the Lagrangian by adding a current term L− → L− + AµJ
µ. We add this modification to

obtain field solutions inside the region of the charge Q by assuming that it has a constant

charge density ρ0 within it’s radius r < r0. In this case, we can modify the electrostatic

solution of equation (24) to include this constant distribution

lim
u→0
v→2E2

1

r2
∂

∂r
(βE(r)r2) = 4πρ0(r) , 0 ≤ r ≤ r0 . (64)

If we compute this differential equation by assuming that at point r = 0 the field is finite,

then

lim
u→0
v→2E2

βE(r)r2 =
4π

3
ρ0(r)r

3 0 ≤ r ≤ r0 . (65)
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Taking the charge density ρ0(r) = Q
4
3
πr30

, and performing the limiting process of β, we get

an equation of similar form to (27) as

ρ̄ = 2Q2

(
r

r30

)2

, 0 ≤ r ≤ r0 . (66)

That is, we can redefine the r →
√
r30/r in the E−(r) solutions from before. Explicitly, we

get a field defined inside the radius as

E−(r) =
rQ

r0
√
r4 + r40

0 ≤ r ≤ r0 . (67)

This is consistent with the requirement r ≥ r0 in the previous case. When we redefine

r →
√
r30/r, we get that r ≤ r0. This means we get an electric field defined everywhere

in space. In summary, the Lagrangian L− with a constant charge density within radius

r0 = (2Q2)1/4 gives electrostatic solutions

E−(r) =


r2Q√
r8 + r80

, r ≥ r0

rQ

r0
√
r4 + r40

, 0 ≤ r ≤ r0
(68)

As for the L+ case, where there is a field defined inside the radius, we can reason that there

is also a constant charge density ρ0 defined outside the charge. Again, we use equation

(64) and leave ρ0 as some kind of arbitrary constant. This time, we solve the differential

equation by assuming that the terms E(r)r2 → 0 at r → ∞. Then preforming the limit

process, we obtain

ρ̄ = 2Q2

[
4πρ0r

3Q

]2
, r ≥ r0 . (69)

However, since we wish the field to be continuous after crossing the radius r0, we must

equate r0 =
√

3Q
4πρ0r0

, which helps us get rid of the factors and in return give us the same
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equation as before

ρ̄ = 2Q2

(
r

r30

)2

, r ≥ r0 . (70)

only the region is now defined outside the radius. Again, we can substitute r →
√
r30/r in

E+(r) and obtain the same curve

E+(r) =
rQ

r0
√
r4 + r40

, r ≥ r0 . (71)

Again, this is consistent with the requirement r ≤ r0 as in the previous case. When we

redefine r →
√
r30/r, we get that r ≥ r0. Thus, we get the electrostatics of L+ described by

E+(r) =


r2Q√
r8 + r80

, 0 ≤ r ≤ r0

rQ

r0
√
r4 + r40

, r ≥ r0
(72)

Therefore, by assuming a constant density of charge, we managed to obtain electrostatic

fields defined in all points in space.

3.1.5 Function − ln(1− ρ)

We will construct a theory which gives an electrostatic solution with a charge radius r0.

In this theory, there is no field defined inside the radius, and the field for r � r0 behaves

Coulomb-like. At the radius point, the field strength is infinite; thus suggesting an inter-

pretation of the theory having finite sized particle.

Explicitly, we consider f(ρ) = − ln(1 − ρ), with ρ function satisfying ρ < 1. The corre-

sponding ρ(u, v) function satisfies the polynomial equation vρ2 − (1 + 2v)ρ + (u + v) = 0,

giving two possible solutions:

ρ±(u, v) =
1 + 2v ±

√
1− 4uv + 4v

2v
. (73)
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However, applying the constraint ρ < 1 we obtain an inequality

ρ± < 1

±
√

1− 4uv + 4v < −1 . (74)

Clearly, for u, v ≥ 0, ρ+ does not satisfy this condition, so the only physical solution is ρ−.

However, we still need to check the range of u, v for which the equality holds true. Since

u, v ≥ 0, meaning all terms are strictly positive, then

−
√

1− 4uv + 4v < −1

√
1− 4uv + 4v > 1

1− 4uv + 4v > 1

v(1− u) > 0 . (75)

Thus, constraining 0 ≤ u < 1 with 0 < v. In the electrostatic limit, u vanishes and the ρ−

function becomes equal to

ρ̄− =
1 + 4E2 −

√
1 + 8E2

4E2
=

2Q2

r4
. (76)

Therefore, the theory produces one Lagrangian

L =
√

2
[
1 + 2v −

√
1− 4uv + 4v

]
+ ln

[√
1− 4uv + 4v − 1

2v

]
. (77)

Solving it for the electrostatic field yields us

E(r) =
Qr2

|r4 − 2Q2|
, E(r)2 ≤ r4

4(2Q2 − r4)
. (78)

Again, we wish to obtain the range of r for which the field is defined. There clearly is

a singularity at point r0 = (2Q2)1/4 and we define it as the radius of the charge. The
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inequality requires

Q2r4

(r4 − 2Q2)2
≤ r4

4(2Q2 − r4)

(2Q2 − r4)2 − 4Q2(Q2 − r4) ≥ 0

−(2Q2 − r4)(2Q2 + r4) ≥ 0 . (79)

Which implies that r ≥ (2Q2)1/4 = r0, meaning the field is defined outside the radius. In

conclusion, the model gives us an electrostatic field

E(r) =
Qr2

r4 − r40
, r > r0 = (2Q2)1/4 . (80)

This model offers a non-linear theory where charges have a finite radius r0. The field is

finite everywhere except inside the radius and on the radius point (surface of the particle).

For r > r0 the field strength decreases with distance. Taking r � r0 we have Coulomb’s

law

E(r � r0) ≈
Q

r2
. (81)

Thus, providing an alternative formulation to the usual electrostatic solutions but with the

inclusion of finite-size particles.

Again, we can use the same reasoning as in the previous example. We assume that the

charge density ρ0 inside the charge is constant. Using equation (24) we obtain that

ρ̄ = 2Q2

(
r

r30

)2

, 0 ≤ r ≤ r0 . (82)

We can redefine the r →
√
r30/r in our E(r) solution to obtain

E(r) =
Qr

r0|r20 − r2|
, 0 ≤ r < r0, . (83)
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Which gives a field value E(r = 0) = 0. Therefore, the electric field in all regions would be

equal to

E(r) =


Qr

r0(r20 − r2)
, 0 ≤ r < r0

Qr2

r4 − r40
, r > r0

(84)

Comparing it to the function f(ρ) = arcsinh ρ, we obtain a field singularity on the radius

r0.

3.1.6 Function 2
3ρ

3/2

As a final example, we obtain a dual symmetric theory that in the electrostatic limit re-

sembles a reshaped E(r) of Coulomb’s law.

In this case, f(ρ) = 2
3ρ

3/2. Solving the constraint equation gives us the polynomial

ρ2 − uρ− v = 0. When solved, it returns two solutions

ρ±(u, v) =
u±
√
u2 + 4v

2
. (85)

Again, we get two possible Lagrangians L+ and L− for the same function f(ρ), that is

L± =

√
2v
[
±
√
u2 + 4v − u

]
− 2

3

[
u±
√
u2 + 4v

2

]3/2
(86)

In the electrostatic limit the functions approach

ρ̄± = ±
√

2E2 . (87)

Therefore, the electrostatic solution looks like

|E±(r)| = ± Q2

√
2r4

. (88)

Since Q2 ≥ 0, this implies that E− can be only equal to zero. Meaning, that L− produces

only zero spherically symmetric electrostatic fields. On the other hand, L+ is non-trivial
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with solution

E+(r) =
Q2

√
2r4

. (89)

Comparing the result to Coulomb’s law, the fields are the same at point
√

2r20 = Q. However,

as r > r0, this theory produces weaker fields and for r < r0 stronger fields compared to

Coulomb’s law. In any case, both derived theories suggest singularities at r = 0. However,

both sign charges produce electric fields of the same direction, since Q2 ≥ 0.

3.2 Addition of u↔ v Symmetry

3.2.1 General Form of Non-Linear Dual Symmetric Lagrangians with u ↔ v

Symmetry

In the first part of the dissertation, we introduced a new method for constructing non-

linear dual symmetric Lagrangian and showed some examples of the method. However,

The previous model did not necessarily impose a discrete u ↔ v symmetry. That is, if we

consider the electric and magnetic fields can be interchanged as Ei → Bi and Bi → −Ei,

then the field tensors transform as F → ?F and ?F → −F . This implies:

s =
1

2
FµνF

µν → 1

2
? Fµν ? F

µν

=
1

2
εµνρλε

µναβ FαβF
ρλ

4
= −1

2
FµνF

µν = −s ,

p =
1

2
Fµν ? F

µν → −1

2
? FµνF

µν = −p . (90)

Therefore, u↔ v are interchangeable in a dual symmetric Lagrangian.

We can incorporate this discrete symmetry by extending (7). For example, let us consider

the Lagrangian

L(u, v) = 2
√

(u− ρ)(ρ− v) + f(ρ) . (91)
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As L(u, v) = L(v, u) (that is, u ↔ v invariant), we require ρ(u, v) = ρ(v, u) symmetry to

make sure the Lagrangian is preserved under this discrete transformation. Following the

same line of thought as in the first construction, we find a way to impose the dual symmetry

condition on f(ρ) and ρ(u, v) by considering the derivatives of the Lagrangian with respect

to u, v:

∂L
∂u

=

√
ρ− v
u− ρ

+

[
f(ρ)′ −

√
ρ− v
u− ρ

+

√
u− ρ
ρ− v

]
∂ρ

∂u
,

∂L
∂v

= −
√
u− ρ
ρ− v

+

[
f(ρ)′ −

√
ρ− v
u− ρ

+

√
u− ρ
ρ− v

]
∂ρ

∂v
. (92)

As previously, we constrain

f(ρ)′ −
√
ρ− v
u− ρ

+

√
u− ρ
ρ− v

= 0 , (93)

with the derivatives becoming

∂L
∂u

=

√
ρ− v
u− ρ

,

∂L
∂v

= −
√
u− ρ
ρ− v

, (94)

and giving us Lagrangians that satisfy the dual symmetry condition.

Thus, we obtain a another general dual symmetric Lagrangian, with the addition of u↔ v

symmetry. Comparing this construction to the previous one, we see that the f ′(ρ) and

ρ(u, v) relating equation (93) becomes more complicated. When constructing new models

of f(ρ) such that it is a polynomial in ρ, it might be useful to consider

[
f ′(ρ)

]2
=

[√
ρ− v
u− ρ

−
√
u− ρ
ρ− v

]2

=

[
2ρ− (v + u)

]2
(u− ρ)(ρ− v)

, (95)
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and it’s polynomial form

([
f ′(ρ)

]2
+ 4
)(
ρ2 − (u+ v)ρ

)
+ uv

[
f ′(ρ)

]2
+ (v + u)2 = 0 . (96)

In general, a degree n polynomial in ρ of f(ρ) gives back an 2n polynomial equation for ρ

which satisfies the (93) constraint. Hence, making it a challenge to find analytic solutions.

3.2.2 Equations of Motion and Electrostatic Solution

The equations of motion can be derived using the same process as before. We only need to

exchange α, β in equation (18) with the terms in the modified Lagrangian:

α =

(√
ρ− v
u− ρ

−
√
u− ρ
ρ− v

)
sign(p)

√
uv

u+ v
,

β = −
(
u

√
ρ− v
u− ρ

+ v

√
u− ρ
ρ− v

)
1

u+ v
. (97)

In return, we obtain the same Maxwell like equations in (20) and (21). Again, we are going

to focus on the radial electrostatic solutions

lim
u→0
v→2E2

βE(r) =
Q

r2
, lim

u→0
v→2E2

, β = lim
u→0
v→2E2

(
u

√
ρ− v
u− ρ

+ v

√
u− ρ
ρ− v

)
1

u+ v
. (98)

Assuming that in the electrostatic limit ρ→ ρ̄ 6= 0 or 6=∞, then the upper equation reduces

to

ρ̄E2

2E2 − ρ̄
=
Q2

r4
ρ̄ = lim

u→0
v→2E2

ρ 6= 0 or 6=∞ , (99)

and thus providing a quick way to compute electrostatic solutions.

3.3 Examples with u↔ v Symmetry

3.3.1 Function Equal to a Constant

We start by considering the simplest case, which would be an always positive defined

Maxwell Lagrangian. For this we choose f(ρ) = constant. From the polynomial equa-
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tion (96) we get that

ρ2 − (u+ v)ρ+
(u+ v)2

4
=

(
ρ− u+ v

2

)2

= 0 (100)

with ρ causing the Lagrangian to be dual symmetric and u↔ v invariant as

ρ =
u+ v

2
. (101)

Therefore, we obtain a Lagrangian of the form (neglecting the constant that comes from

f(ρ))

L = 2
√

(u− ρ)(ρ− v) + f(ρ) = |u− v| = 2|s| . (102)

That is, we get Maxwell’s electrodynamics with the difference being that the Lagrangian

is always positive defined. Using the fact that in the electrostatic limit ρ̄ = E2 and using

equation (99) we obtain the electrostatic solution

E(r) =
Q

r2
. (103)

That is, we get the expected Coulomb’s law.

However, the requirement for the absolute value has some interesting consequences. Since

the Lagrangian is of the form L = |u− v|, then the equations of motion are not defined for

when u = v, since the derivative of L is not defined at that point:

∂L
∂u

=
u− v
|u− v|

,

∂L
∂v

=
v − u
|v − u|

. (104)

This means that the equations of motion are undefined when B2 −E2 = 0. For example,

in regular Maxwell’s theory, a plane electromagnetic wave has the fields related by |E| =

|B|. In this modified theory, such waves could not exist. This might raise a question

as to why this happens, since Maxwell’s equations in vacuum incorporate E → B and
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B → −E transformations. The problem comes from the fact that Maxwell’s Lagrangian

does not exhibit u↔ v symmetry itself (explicitly, L(u, v)→ −L(v, u)), while the modified

Lagrangian does. This means, that constraining the Lagrangian to maintain this discrete

symmetry could result in very different theories from the original.

3.3.2 Function ρ

In this example, we consider a simple function f(ρ) = ρ. Looking at equation (96), we see

that we obtain a polynomial equation of degree two, meaning it is easily solved. This gives

us an interesting result, an electrostatic field similar to Coulomb’s law, only re-scaled by

the golden ratio ϕ+.

For our chosen f(ρ), we obtain a polynomial 5ρ2 − 5(u + v)ρ + (u + v)2 + uv = 0. When

solved, we get two possible theories

ρ±(u, v) =
u+ v

2
± 1

2

√
(u− v)2

5
, . (105)

That is, for the same function f(ρ) = ρ, there is a corresponding L+ and L− Lagrangian

L± =

[
4± 1

2
√

5

]
|u− v|+ u+ v

2
. (106)

Now the interesting part comes from the electrostatic solutions. In the electrostatic limit,

we get

ρ̄± =

[
1± 1√

5

]
E2 (107)

Therefore the electrostatic solution is

E±(r) =

√
1±
√

5

−1±
√

5

Q

r2
. (108)
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However, we can observe the golden ratio ϕ+ (and it’s corresponding second root to the

golden ratio polynomial ϕ2 − ϕ− 1 = 0, ϕ−), which is defined as

ϕ± =
1±
√

5

2
, ϕ− = −ϕ−1+ . (109)

Hence, reducing electrostatic solution to

E±(r) = (ϕ+)±1
Q

r2
, (110)

which is Coulomb’s law re-scaled with the golden ratio ϕ+ for the L+, and 1/ϕ+ for L−

theories. Of course, ϕ+ can be reabsorbed intoQ and thus giving back the regular Coulomb’s

law.

3.3.3 Function 2ρ sinhγ

In this example, we obtain a theory that corresponds to constant derivatives of the La-

grangian and a more generalized electrostatic solution to the previous example. This can

be done by choosing:

eγ =

√
ρ− v
u− ρ

=
∂L
∂u

,

−e−γ =

√
u− ρ
ρ− v

=
∂L
∂v

, (111)

where γ is some constant. Using the constraint, we get that f ′(ρ) = eγ − e−γ = 2 sinhγ. In

return, we obtain the function

f(ρ) = 2ρ sinhγ , (112)

That is, we get a more generalized function of the previous example. Solving for ρ yields us

ρ =
e2γu+ v

1 + e2γ
. (113)
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We observe, that under u→ v and v → u the factor in the exponent transforms as γ → −γ;

thus, making ρ(u, v) symmetric under u↔ v. The corresponding Lagrangian is therefore

L =
|u− v|
cosh γ

+ (eγu+ e−γv)tanh γ . (114)

The electrostatic solution gives ρ that is non zero or infinite; explicitly,

ρ̄ =
2E2

1 + e2γ
. (115)

This means we can use the simple electrostatic formula (99) to obtain

E(r) = eγ
Q

r2
. (116)

Which is re-scaled Coulomb’s law. However, compared to the last part, the f(ρ) function

does not split the Lagrangian into two parts L±.

4 Conclusions and Future Research

In this dissertation, we have obtained a new and relatively simple way to construct non-linear

dual symmetric theories using the Lagrangian of the form (7) with the constraint on ρ, f(ρ)

being (9). Using the method discussed in this dissertation, we re-obtain Maxwell’s and

Born-Infeld electrodynamics. Furthermore, we generated more non-linear dual symmetric

Lagrangians. These new theories have different physical implications when one considers

spherically symmetric electrostatic solutions. The predicted electrostatic fields range from

confinement-like behavior to reshaped Coulomb’s law and particles having a finite radius.

Therefore, we conclude there is a wide range of non-linear dual symmetric electromagnetic

theories with different properties of their electrostatic solutions.

Since we did not exhaust all possible non-linear dual symmetric theories, one can try to

generate more Lagrangians or maybe even try to classify them. We restricted our work to

4d Minkowski spacetime, while generalisations to higher dimensions and higher forms can

be considered [18, 19, 20], in particular for the cases relevant for string theory. Another
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research path could involve considering a way to introduce magnetic monopoles, quantum

and non-abelian theories, and more. The manifestly democratic approach of [19, 20, 21]

can be more instrumental there.

One more interesting application of this work would be generating gravitational solution

via double copy of the spherically symmetric solutions discussed here, following [13]. In

particular, those solutions that exhibit horizon already for electromagnetism, could generate

non-trivial black hole solutions for gravity.
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