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Abstract

Loop quantum gravity is a proposed theory of quantum gravity that uses connections
and holonomies as its fundamental variables, instead of metric variables in Einstein’s
original formulation of general relativity. LQG proposes a fundamentally discrete pic-
ture of spacetime, predicting features such as quantised area and volume, and the
resolution of spacetime singularities. In this review, we construct the Hilbert space of
LQG, and discuss some of the popular ways dynamics have been defined. In addition,
some applications of the theory in black holes and cosmology are discussed.

1 Introduction

Two of the most well established theoretical frameworks in physics are general relativity
and quantum field theory. General relativity states that, as opposed to a rigid background,
spacetime itself is a dynamic entity, which interacts with the matter that exists within it.
Quantum field theory, on the other hand, claims that all elementary particles that we in-
teract with are in fact quantised excitations of fields. Both theories have stood the test
of experiments to incredible precision; yet, conceptual problems exist within both of them,
suggesting that there is deeper theory that we have not discovered. General relativity, while
being incredibly successful at modelling phenomena ranging from the fall of an apple to
the expansion of the universe, predicts its own downfall: spacetime singularities inevitably
form from the collapse of stars, where curvature becomes infinite. Quantum field theory, on
the other hand, is even more severely plagued by infinities. Many expressions only exist as
formal expressions, and although some divergences can be removed through renormalisation
schemes, we are nonetheless brought to question the true validity of QFT as a fundamental
description of nature. On top of that, despite being two of the most precisely tested theories,
GR and QFT are constructed from incompatible mathematical frameworks, and therefore
cannot be simultaneously true. There are other more subtle issues such as the black hole
information paradox, which urges us to revamp our current available theories.

Among many others, two of the most popular candidates of quantum gravity are string
theory and loop quantum gravity. String theory postulates that all matter and interactions
in the universe manifest from different oscillations of a quantum string, including gravity.
It is a subject that covers an immense range of topics, and it is one of the most studied
areas in theoretical physics. The other theory, loop quantum gravity, will be the focus
of this review. It is a theory that describes a fundamentally discrete spacetime: at the
Planck scale of around 10−35m, one reaches the most elementary division of spacetime, and
smaller lengths no longer have physical meaning. The conceptual framework of string theory
and LQG are drastically different. String theory is proposed to be the description of all
phenomena in the universe, while LQG simply constructs a theory of gravity in a quantum
framework, with minimal modifications to everything else. In string theory, the curvature
of spacetime manifests perturbatively, through propagation of graviton states over a smooth
and continuous background. In LQG, the background itself becomes quantised. It is the
subject of ongoing debate which of the two theories is the more favourable description of
quantum gravity, as both have produced many convincing results, while receiving a fair
share of criticism.
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The history of LQG can be traced back to the attempts by Wheeler and DeWitt in 1967 [1] to
formulate a canonical quantisation of general relativity. This resulted in the Wheeler-DeWitt
equation, which is a equation on the wavefunction of the universe. However, numerous
conceptual and technical difficulties halted the progress of this program. Ashtekar in 1986
[2] reformulated general relativity in terms of connections and triads in what is known as the
Ashtekar variables, which drastically simplified the constraints of GR, making quantisation
easier. Around 1990, Rovelli and Smolin began attempting loop quantisation based on the
Ashtekar variables, and later introduced spin networks as representations of quantum states
of gravity; spin foam formulations of LQG dynamics were also formulated in the 90s. After
2000, numerous people have contributed to the refinement of the theory, in aspects such as
the classical limit and the coupling of gravity to matter. Loop quantum gravity remains a
continuously developing theory to this day.

We shall begin discussing the theory of loop quantum gravity in the following chapters. In
chapter 2, we will go over some foundational aspects of general relativity, which motivates
the construction of LQG. In chapter 3, we define the Hilbert space of LQG, and examine
its physical interpretations through operator relations. In chapter 4, we discuss some pro-
posed definitions of the dynamics of LQG, going over constructions of time evolution and
transition amplitudes. Chapter 5 and 6 will cover applications of the theory in black holes
and cosmology. Some important physical constants are: c, the speed of light, ~, the reduced
Plank’s constant, and (8πG), the gravitational constant. Unless their explicit appearance
in equations is important to the discussion, their values will be set to equal 1, using Planck
units. We will take the spacetime metric gµν to have signature (−1, 1, 1, 1).
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2 Aspects of General relativity

General relativity, in its original formulation described by the Einstein equations, is a geo-
metric theory of spacetime, in which the dynamic variables are the components of the metric
gµν . Over the past century, developments in quantum gravity have shown that the direct
quantisation of this theory is difficult. One is therefore motivated to seek alternative formu-
lations of general relativity that facilitate more feasible constructions of a quantum theory of
gravity. In this chapter, we will discuss some of the reformulations of Einstein’s theory that
led to LQG.

2.1 The ADM Formalism

General relativity is a theory symmetric under diffeomorphisms. The Einstein-Hilbert action
is invariant under reparameterisations, meaning that spacetime coordinates are arbitrary
labels with no physical significance. In quantum mechanics, on the other hand, time is
treated very differently from spacial indices, where the dynamics of a system is generated
by the Hamiltonian; namely, the Schrodinger equation i∂t |φ〉 = H |φ〉 requires an explicit
notion of time. This formulation of quantum dynamics cannot be directly applied to gravity.
Because of reparameterisation invariance, the Hamiltonian of general relativity is entirely
composed of constraints, leading to the Wheeler-DeWitt equation H |φ〉 = 0. Instead of
describing the dynamics in terms of evolution with respect to a physical time, in general
relativity, dynamics is determined by the relation between dynamical variables, described
by constraints. Nontheless, to describe gravity in the language of quantum mechanics, one
may try to reformulate general relativity using variables that explicitly distinguish time and
space, and then attempt to recover spacetime diffeomorphism invariance afterwards. This is
the principle behind the Arnowitt-Deser-Misner (ADM) formalism [3]. We will see in chapter
3 that in LQG, Hilbert spaces are defined on spacial slices of spacetime, and the dynamics
of the theory is defined by transition amplitudes between two states on spacial slices at
different times. The ADM formalism establishes the conceptual foundation for the quantum
theory.

We first assume that the topology of a 4-dimensional spacetime is R × Σ, where Σ is a 3-
dimensional manifold. To foliate spacetime into spacial slices, one can introduce a fictitious
time t(x). The spacial submanifolds are then slices of constant t, denoted Σt. Associated
with the time function, one also introduces a vector field tµ(x), satisfying the condition

tµ∂µt = 1. (2.1)

This vector field represents the flow of time: beginning with a spacial slice Σt, flowing along
tµ(x) generates translation into subsequent slices. In addition, we also construct a unit length
vector field, orthogonal to Σt: n

µ such that nµgµνn
ν = −1. With it, we can decompose tµ

into components, one orthogonal to Σt and one tangent to it:

tµ = Nnµ +Nµ. (2.2)
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This expression produces the two quantities important to the ADM formalism: N , known
as “lapse”, and Nµ, known as “shift”. We can then explicitly choose the function t(x) as
the zeroth component of the coordinates, so xµ = (t, x1, x2, x3). This is the “time gauge”
parameterisation. In this gauge, N0 = 0, so it can be regarded as a vector on Σt. On the
other hand, the only non-zero component of ta is t0. We define the 3-dimensional metric on
the spacial submanifolds:

qab = gab + nanb, (2.3)

where a and b range from the spacial indices 1, 2, and 3. The spacetime metric gµν can then
be expressed by the lapse, the shift, and the 3-metric:

ds2 = (−N2 + qabN
aN b)dt2 + 2qabN

adxbdt+ qabdx
adxb. (2.4)

We can now analyse the physics using these variables. First, the Einstein-Hilbert action can
be rewritten. Omitting some boundary terms, the action can be expressed as

S =

∫
d4x
√
−gR(gµν)

=

∫
dt

∫
d3xN

√
q(R(qab) +KabK

ab −K2).

(2.5)

Here we have defined the extrinsic curvature of the spacial manifold:

Kab =
1

2N
(∂tqab −D(aNb)), (2.6)

and K = Kabq
ab. It is important to note that the Einstein-Hilbert action contains second

derivatives of the metric. As a result, if we want to study fully the dynamics of the theory,
we cannot simply ignore the boundary terms, like it is often done in ordinary field theories.
However, for our purposes here, boundary terms do not affect the discussions, so for the
sake of keeping the calculations manageable, they will be discarded. From the reformulated
action, we can work out the conjugate momenta:

πab =
∂L
∂q̇ab

=
√
q(Kab −Kqab)

πN = 0

πNa = 0.

(2.7)

The important observation of the ADM formalism is that the lapse and the shift have no
conjugate momenta. They are therefore non-dynamical, and they serve as Lagrange multi-
pliers that define the constraints. In fact, the Hamiltonian, in terms of ADM variables, is
entirely constructed from constraints, in the form of Lagrange multipliers:
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H = −2NbDaπ
ab −N√qR +

N
√
q

(πabπ
ab − π2

2
). (2.8)

On equations of motion, the Hamiltonian equals zero, and it does not generate dynamics
through Poisson brackets like ordinary Hamiltonian mechanics. As discussed before, this
indicates that dynamics is formulated through relations between dynamical variables, instead
of evolution with respect to a fixed time. We can now work out the constraints defined by
the Lagrange multipliers:

0 =
∂L
∂N

=
√
q(R +K2 −KabKab)

0 =
∂L
∂Na

= 2
√
qDb(K

ab −Kqab).
(2.9)

Re-expressed in terms of the metric and its conjugate momentum, these equations define
quantities

C = −qR + πabπab −
1

2
π2

Ca = 2Dbπ
ab,

(2.10)

known as the “Hamiltonian constraint” and the “momentum constraint” respectively. Phys-
ically, these constraints generate time and space reparameterisations. To see this, we begin
with the momentum constraint Ca. It is useful to write it in a smeared form, using an
arbitrary vector field ~v(x):

C~v =

∫
d3xvaCa

= 2

∫
d3xvaqacDbπ

bc

= −2

∫
d3xqacπ

bcDbv
a

= −
∫
d3xπab(L~vq)ab.

(2.11)

Total derivatives were discarded as boundary terms. From the last line above, using the
properties of the Lie derivative, we can re-express this quantity as

C~v =

∫
d3xqab(L~vπ)ab, (2.12)
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where, again, boundary terms are omitted. For an arbitrary function of the metric and its
conjugate momentum, we can then calculate the poisson bracket:

{f(q(y), π(y), C~v[q, π]}

=

∫
d3x

(
δf

δqab(x)

δC~v
δπab(x)

− δf

δπab(x)

δC~v
δpab(x)

)
=

∫
d3xδ(3)(y − x)

(
−∂f(y)

∂qab
(L~vq)ab −

∂f(y)

∂πab
(L~vπ)ab

)
= −L~vf(q(y), π(y)).

(2.13)

We can therefore see that C~v generates spacial diffeomorphisms along the vector field ~v.
The calculation for the Hamiltonian constraint is more complicated, but one can similarly
introduce a smearing using an arbitrary function g(x):

Cg =

∫
d3x g C(q, π), (2.14)

and show that the Hamiltonian constraint is responsible for generating time reparameterisa-
tions. Therefore, the set of constraints in the ADM formalism correspond to the requirement
that the physics must be invariant under both space and time reparameterisations. We have
thus successfully recovered the full spacetime diffeomorphism symmetry of general relativity,
using quantities defined on the spacial submanifolds.

One may be tempted to proceed and perform canonical quantisation of this theory, following
standard procedures of field theories: promote dynamical variables qab and πab to operators,
convert Poisson brackets into Dirac commutation relations, and introduce a Hilbert space of
states |φ〉. The constraints can then be implemented as conditions on physical states in the
Hilbert space, for example:

Ĉ |φ〉 = Ĉa |φ〉 = 0. (2.15)

It is at this point that one runs into issues: the form of the Hamiltonian constraint is non-
polynomial, and it is difficult to convert it into an operator expression. For the quantisation,
we must therefore seek alternative formulations of general relativity.

2.2 Tetrad Actions and Ashtekar Variables

This section references [4] [5]. For this alternative formulation, we first convert the metric
variables gµν in the Einstein theory to tetrads eµ

I . They are related by gµν = eµ
Ieν

JηIJ ,
where upper case Latin letters such as I and J are indices in the internal space, with values
0, 1, 2, 3. The matrix inverse of the tetrads are written as eµI , and the determinant of the
tetrad is denoted e. Using the tetrad variables, general relativity can be formulated in terms
of the tetrad-Palatini action:
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S[e, ω] =

∫
d4x e eµIe

ν
JRµν

IJ(ω) (2.16)

Here, the spin connection ωµ
IJ is treated as an independent variable from the tetrad. The

tetrad-Palatini action therefore contains more variables than the Einstein-Hilbert action,
where the Christoffel symbol Γµαβ depends explicitly on the metric and its derivatives. How-
ever, in the tetrad formalism, if one finds the equation of motion by varying the action
with respect to the connection, one will obtain the result that the connection equals the
torsion-free metric connection, recovering the same relations between the metric and the
connection as the Einstein theory. In addition to diffeomorphism invariance, the tetrad for-
malism gains an additional Lorentz symmetry on the internal space. The action is invariant
under local SO(3, 1) transformations eµ

I → ΛI
Jeµ

J . This symmetry will manifest as an ad-
ditional constraint, as we will see. The tetrad-Palatini action has some advantages over the
Einstein-Hilbert action. First, because the connection is independent from the tetrad, some
calculations are simplified; more importantly, the tetrad action can be coupled to Fermions,
while it is impossible to couple metric variables to spinors. For a spinor field ΦI , the indices
are over the internal space, so its covariant derivative with respect to gravity cannot be de-
fined using the Christoffel symbol, which only contains spacetime indices. Using the spin
connection in the tetrad formalism, we can write down the covariant derivative of a spinor
field:

DµΦI = ∂µΦI + ωµ
I
JΦJ . (2.17)

Over the past decades, overwhelming evidence has been produced that suggest the existence
of spinors, which indicates that the tetrad formulation may be more fundamental than the
metric formulation of general relativity. However, if we attempt to quantise gravity using the
tetrad action, we will obtain the same constraint equations as (2.10) that arise in the ADM
formalism, so the same problems persist. To progress, we notice that a more general family
of theories can be constructed, which are classically equivalent to the tetrad-Palatini theory.
This can be done by adding a term to (2.16), resulting in a new action:

S[e, ω] =

∫
d4x e eµIe

ν
J

(
Rµν

IJ − 1

2γ
εIJMNRµν

MN

)
. (2.18)

This action yields the same equations of motion as (2.16). On the equations of motion, the
connection becomes torsion free. Due to the symmetry properties of the curvature tensor,
the second term of (2.18) then becomes

∫
d4xεµναβRµναβ = 0, (2.19)

and the dynamics of the manifold is described by the original action. The parameter γ
is known as the Barbero-Immirzi parameter. In different theories, this parameter can take
values as both real and complex numbers. Although this new family of actions do not modify
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the classical theory, they will change the relation between quantum operators, and affect the
form of the constraint equations. We now study an important choice of γ = −i, which leads
to the original formulation of the Ashtekar variables.

We first define the “self-dual” part of the connection:

Aµ
IJ = ωµ

IJ − i

2
εIJKLωµ

KL. (2.20)

It is called the self-dual connection because it satisfies the following relation:

1

2
εMN

IJAµ
IJ = iAµ

MN . (2.21)

Using this connection, we can write the action (2.18), with the choice γ = −i, equivalently
as:

S[e, ω] = S[e, A] =

∫
d4x e eµIe

ν
JFµν

IJ (2.22)

where Fµν
IJ is the curvature of Aµ

IJ :

Fµν
IJ = ∂µAν

IJ − ∂νAµIJ +GAµ
I
KAν

KJ −GAνIKAµKJ . (2.23)

The gravitation constant G is explicitly written to emphasize that, if we regard Aµ
IJ as a

gauge field with SO(3, 1) symmetry, it has a coupling strength G. We now carry out a similar
procedure used in the ADM formalism, and foliate spacetime into spacial slices. As before,
we introduce a time function t(x) anda vector field tµ that defines a “flow of time”. On the
spacial submanifold, this allows us to decompose the tetrad eµI into, again, the lapse function
N , the shift vector Na, and this time, a triad Ea

iE
b
jδ
ij = qab, where lower case Latin letters

such as i and j run over spacial indices 1, 2, 3 on the internal space.

The self-dual property of Aµ
IJ conveniently allows us to redefine it on the spacial manifolds.

Since the 0i components are sufficient to determine the full tensor, we can define the “Ashtekar
connection”:

Aa
i = iAa

0i. (2.24)

The conjugate momentum of the Ashtekar connection is the densitised inverse triad: Ẽa
i =√

qEa
i. The Ashtekar connection equates to

Aa
i = Γa

i − iKa
i, (2.25)
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where Γa
i = εijkΓajk is the torsionless spin connection of the triad, and Ka

i derives from
the external curvature: Ka

i = KabE
bi. Using these variables, one can similarly work out the

Hamiltonian and momentum constraints:

C = εijkFab
iẼajẼbk

Ca = Fab
iẼb

i ,
(2.26)

where Fab
i = ∂(aAb)

i + εijkAa
jAb

k. Again, these constraints correspond to time and space
reparameterisations. In addition, there is a constraint responsible for the internal SO(3)
symmetry of the triads, named the “Gauss constraint”:

Gi = DaẼ
ai. (2.27)

The Gauss constraint also appears in Yang-Mills theories. This parallel between the Ashtekar
formalism and gauge theories suggests that gravity can be regarded as a gauge field with ad-
ditional Hamiltonian and momentum constraints. This motivated the treatment of quantum
gravity as a Yang-Mills theory, and as we shall see, the quantisation techniques of LQG bor-
rows ideas from lattice gauge theories, where spacetime becomes descretised. The Ashtekar
formulation of gravity is useful for quantisation: as we can see, the form of the Hamilto-
nian constraint is now polynomial. It therefore becomes easier to implement as a quantum
operator.

An important detail has been glanced over: with the choice of γ = −i, the Ashtekar variables
describe a complex theory, while general relativity is defined with real variables. This dif-
ference may be reconciled by implementing additional “reality conditions” on the densitised
triads:

(Ẽa
i Ẽ

bi)∗ = Ẽa
i Ẽ

bi

(εijkẼ
(a
i Dc(Ẽ

b)
k Ẽ

c)
j ))∗ = (εijkẼ

(a
i Dc(Ẽ

b)
k Ẽ

c)
j )).

(2.28)

The first condition ensures the metric qab is real. The second condition fixes the Poisson
bracket between the metric and the Hamiltonian to be real.

Although the choice of γ = −i is a useful and historically popular choice, many results in
LQG are obtained under the assumption that γ is real. For an arbitrary γ, the generalised
Ashtekar connection is

Aa
i = Γa

i + γKa
i. (2.29)

Its conjugate momentum is still the densitised triad Ẽa
i . However, the poisson bracket is

modified to include the parameter γ:
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{Aai(x) , Ẽb
j (y)} = γδbaδ

i
jδ(x− y). (2.30)

Since the tetrad-Palatini action corresponds to the choice γ →∞, this connection could not
be defined on the original tetraf-Palatini theory, suggesting that the extension to the original
theory results in a distinct theory fundamentally. The Hamiltonian constraint in this theory
is expressed as

C = ẼajẼbk
[
εijkFab

i − 2(1 + γ2)(KjaKkb −KjbKka)
]
. (2.31)

One may notice that if we set γ = ±i, the second term vanishes, and the Hamiltonian
constraint indeed equals the simplified form (2.26) in Ashtekar’s original formulation.

We now derive an important relation for LQG. First, we rewrite (2.18) in terms of differential
forms, such that eI = eIµdx

µ, and so on, absorbing the spacetime indices. The action can be
expressed as

S =

∫ (
εIJKLe

K ∧ eL +
1

γ
eI ∧ eJ

)
RIJ . (2.32)

We have previously interpreted (2.18) as the action involving the self-dual part of the con-
nection. Written in this form, it is clear that we can also interpret it as an action involving
the full connection, but the self-dual part of the area 2-form ΣIJ = eI ∧ eJ . This allows us
to define a 2-form:

BIJ = εIJKLe
K ∧ eL +

1

γ
e(I ∧ eJ). (2.33)

One may in fact show that this is the conjugate momentum to the connection ω, so it is
sometimes called the “momentum two-form”. We then decompose it into two parts, which
can be defined on the spacial submanifolds:

Ki = Bi0

Li =
1

2
εijkB

jk.
(2.34)

From the self-duality of BIJ , it then follows that

~K = γ~L. (2.35)

This is called the “linear simplicity constraint”, and it will be crucial to the construction of
LQG dynamics.
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2.3 Holonomy and Loop Quantisation

Holonomies are an important concept to the development of LQG, as well as the study of
gauge theories. The techniques introduced in this section will provide important physical
insights, and highlight the historical development of LQG. The outline of this section follows
[6].

Consider a gauge field Aµ
IJ of some group G, in a manifold. This gauge field functions as a

connection that allows us to parallel transport objects along paths in the manifold. Suppose
there is a vector ~v = vI on the internal space at a point p1 in the manifold, and a curve γ
that begin at p1, and end at some other point p2. This curve can be parameterised as xµ(t),
with t ranging between 0 and 1. If ~v is parallel transported along γ, a new vector ~vγ will be
produced at p2. The two vectors are related by a matrix:

~vγ = Uγ · ~v (2.36)

Uγ is known as the holonomy of γ. It is given by

Uγ[A] = Pe
∫
γ A = Pe

∫
γ dx

µAµ , (2.37)

where P denotes that the exponential is “path ordered”, meaning that factors in a product
are arranged, from left to right, in the order that they appear along γ. For example,

P

(∫
γ

A

)2

= 2

∫ 1

0

dt1

∫ t1

0

dt2ẋ
µ(t1)Aµ(t1)ẋµ(t2)Aµ(t2). (2.38)

This is similar to the time ordering that appears in quantum field theory. Since the holonomy
is a result of parallel transportation, it is the solution to the differential equation

U̇(t) = ẋµ(t)Aµ(t), (2.39)

with the choice t = 1 and the initial condition U(0) = 1. One can check the transformation
of a holonomy under a gauge transformation of the connection, and deduce that it only
depends on the beginning and end points of the path γ. For a local gauge transformation, in
the form:

Aµ → A′µ = ΛAµΛ−1 + (∂µ)Λ−1, (2.40)

the holonomy transforms as

Uγ → Λ(x(0)) Uγ Λ−1(x(1)). (2.41)

This transformation property will play a role in defining the Hilbert space of LQG.
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An important category of holonomies are theose of closed loops. One can see that for the set
of all closed paths beginning and ending at some point p, the holonomies are matrices that
form a group, with a multiplication

Uγ1◦γ2 = Uγ1Uγ2 (2.42)

and an inverse

(Uγ)
−1 = Uγ−1 . (2.43)

Here, the composition γ1 ◦ γ2 refers to going around the closed path γ1 and then γ2, and the
inverse γ−1 refers to travelling around the path γ backwards. The group of holonomies is a
subgroup of the general linear group, and the exact group depends on the gauge group and
the geometry of the manifold. For gravity on an orientable manifold, the holonomy group
of the Levi-Civita connection is SO(3, 1). Using holonomies of closed paths, we can define
“Wilson loops” by taking traces of the holonomies:

Wγ = Tr(Uγ), (2.44)

where γ is a closed path. The complex version of Wilson loops is also sometimes used,
expressed as

Wγ = Tr
(
Pei

∫
γ A
)
. (2.45)

From the cyclic property of the trace and the transformation property (2.41), one can deduce
that Wilson loops, in both the real and the complex variation, are gauge invariant objects.
It can also be shown that Wilson loops do not depend on the base point of a closed path,
such that one may choose any point on the path as the beginning and end point. In fact, it
suffices to study Wilson loops of closed paths around one point in the manifold. Consider two
points p1 and p2, connected by a path γ12. A closed path γ1 beginning and ending at p1 can
be transformed to a closed path around p2, with γ2 = γ12γ1(γ12)−1; in other words, travelling
backwards along γ12 from p2 to p1, around γ1, and along γ12 back to p2. The Holonomies are
related by

Uγ2 = Uγ12Uγ1(Uγ12)−1. (2.46)

The cyclicity of the trace then means that the Wilson loops of γ1 and γ2 are equivalent.

One may notice that the form of (2.46) is the same as the transformation (2.41). Therefore, by
changing the base point of the paths, one can reproduce the effect of a gauge transformation
on holonomies of closed paths. In fact, it can be shown that all gauge invariant information
about Aµ can be reconstructed using Wilson loops [7]. This motivated the attempt to quantise
gravity as a gauge theory using holonomies, resulting in the so-called ”loop representation”
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of general relativity. To formulate the quantum theory with holonomies, one may attempt
to express states |Φ〉 in the Hilbert space using basis states |{Uγ}〉 labelled by the set of
holonomies on all loops γ in a manifold. The “wavefunction of loops” may be expressed
as

Φ(γ) = 〈{Uγ}|Φ〉

=

∫
DA 〈{Uγ}|A〉 〈A|Φ〉

=

∫
DA 〈{Uγ}|A〉Φ(A),

(2.47)

in the second line, a complete basis of states |A〉 labelled by the configuration of the gauge
field was inserted. While conceptually attractive, difficulties arise with loop quantisation.
First, the set of all holonomies {Uγ} contains redundancy when describing gauge invariant
information about the gauge field. The states |{Uγ}〉 therefore form an over-complete basis.
In addition, it is unclear how one may define an inner product between these states, so
important physical quantities such as transition amplitudes cannot be calculated. These
problems can be mitigated if one considers a truncation of the theory. Consider a finite
subset of loops {γi}, where i = 1, ... , N . A functional of the connection g[A] is ”cylindrical”
if it is a function of holonomies on γi, that is:

g[A] = G(Uγ1 [A], ... , UγN [A]). (2.48)

If one assumes the quantum states |Φ〉 are cylindrical, then one can express it in basis states
of holonomies |{Ui}〉 of the paths γi. The inner product between a basis state of holonomies
and a basis state of the connection can be defined as

〈{Ui}|A〉 = W ∗
γ1

[A]...W ∗
γN

[A], (2.49)

where Wγ is the complex Wilson loop. This allows the conversion between wavefunctionals
on the connection to wavefunctions of loops:

Φ(Ui) =

∫
DAW ∗

γ1
[A]...W ∗

γN
[A]Φ[A]. (2.50)

In addition, one may define the inner product between two states using the loop basis:

〈Ψ|Φ〉 =

∫
G

dUγ1 ...

∫
G

dUγNΨ∗(Uγ1 ...UγN )Φ(Uγ1 ...UγN ). (2.51)

Where dUγ is the Haar measure of the group G of holonomies, defined by
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∫
G

dU = 1

dU = d(gU) = d(Ug) = d(U−1), ∀g ∈ G.
(2.52)

Since this theory only depends on a finite number of loops, it will not be able to capture the
full geometry of the manifold. As we shall see, in LQG, the truncation in degrees of freedom
will lead to the interpretation that spacetime is fundamentally discrete.

2.4 Regge Calculus

Regge calculus is one of the early attempts at disctetising general relativity, introduced by
Tullio Regge in 1961 [8]. For simplicity, we begin with the discretisation of a 2-dimensional
manifold into triangles. The triangles are joined by their edges, and the edges are in turn
joined at points. We assume that the internal geometry of each triangle is flat. Therefore,
all information about curvature is contained in the geometry at points where the triangles
join. This curvature can be approximated through “deficit angles” [9].

Consider a set of triangles ∆i in the discretisation that are joined at a point p. We use θi
to label the angle where triangle ∆i joins at p. This angle can be calculated using the side
lengths:

cos(θi) =
c2 − a2 − b2

2ab
. (2.53)

Curvature arises if the sum
∑
θi differs from 2π. This defines the deficit angle at p:

θp(ls) = 2π −
∑
i

θi(ls), (2.54)

where ls refers to the lengths of edges of the triangles. This idea can be generalised to higher
dimensions: in 3-dimensions, where a manifold is discretised into tetrahedra, the deficit angle
is measured around an edge; in 4-dimensions, a manifold is discretised into 4-simplices, and
the deficit angle is measured around a triangle. In general, for a d-dimensional manifold, the
deficit angles are measured around the (d − 2) dimensional hinges. The remarkable result
is that Regge constructed an action using the discretised variables, which approaches the
Einstein-Hilbert action in the continuous limit. This action is written as

S(ls) =
∑
h

Ah(ls)θh(ls). (2.55)

the index h sums over all (d−2) dimensional hinges in the discretisation, and Ah is the (d−2)
dimensional volume of the hinges. This discretisation provides a possibility of introducing a
length scale cut-off, thus providing a regularisation to quantum gravity. However, the Regge
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action uses the lengths ls as its variables, which are subject to the triangle inequality. This
results in a highly constrained space of solutions, making quantisation difficult. In the next
chapter, we will see that, by switching to a different set of variables after discretisation,
quantisation becomes possible.

We have now developed all relevant background theories needed, and in the next chapter, we
will begin to define the theory of loop quantum gravity.
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3 Kinematics: The States and Operators of LQG

Since Loop quantum gravity is a theory still under development, its formulation continues to
evolve, and its physical interpretations adapt accordingly. For this chapter, we will examine
the theory defined and interpreted by Rovelli and Vidotto in their writing in [10], as well as
Rovelli’s lectures in [11]. Rovelli is among the most important contributors to the develop-
ment of loop quantum gravity, and these sources provide the most up to date formulation of
the theory. Where relevant, extended discussion about the theory from other sources will also
be studied. In this chapter, the Hilbert space and operators of LQG will be defined.

3.1 Classical Discretisation

We first consider a discretisation of a 3-dimensional manifold Σ that breaks it down into
tetrahedra. We then associate a graph Γ to the discretisation, by assigning a node n to
each tetrahedra, and a link l to each pair of tetrahedra that share a common face. This
graph will be later used to define the Hilbert space of loop quantum gravity. One can view
the discretisation as the “dual” to the graph, and denote it with Γ∗; that is, each node in
Γ corresponds to a tetrahedron in Γ∗, and each link in Γ corresponds to a traingular face
in Γ∗. Because the manifold is discretised using tetrahedra, the nodes in Γ will always be
4-valent, that is, each node connects to 4 links. One may consider discretisations using other
shapes, which will result in graphs with different topologies. However, most of the current
developments in LQG are achieved using discretisations with tetrahedra, and it is unknown
whether graphs of different topologies will result in fundamentally distinct theories.

We now investigate the geometric properties of the discretisation. First, one can define
a quantity Ei by integrating the densitised inverse triads Ẽa

i over a face F of a tetrahe-
dron:

Ei =

∫
F

dσ1dσ2naẼ
a
i , (3.1)

where σ1 and σ2 are the parameterisations of the face F , and na = εabc
∂xb

∂σ1
∂xc

∂σ2 is a vector
normal to F . By inspecting this integral expression, one can see that Ei represents the flux
of Ẽa

i through F . However, there is a more geometrical interpretation: assuming the metric
is constant inside the tetrahedron, one can fix parameterisation and gauge of the triads so
that Ẽa

i = δai . The components Ei then form a vector ~E, whose direction is normal to F ,
and whose magnitude is the area of F . This interpretation becomes clear if one considers
that Ei can be equivalently expressed as the integration over F of the area 2-form:

Ei =
1

2
εijk

∫
F

ej ∧ ek. (3.2)

By considering the geometry of a tetrahedron, one will find the “closure” relation: denote
the normal vector associated with each face of the tetrahedron as ~E1, ..., ~E4, then
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~E1 + ~E2 + ~E3 + ~E4 = 0. (3.3)

The volume of a tetrahedron can also be expressed using the vectors ~E as:

V 2 =
2

9

∣∣εijk(E1)i(E2)j(E3)k
∣∣ . (3.4)

Because of the closure relation, one may choose any 3 faces of the tetrahedron, and find the
same value for V 2.

In addition, one can calculate the dihedral angle θ between two faces:

∣∣∣ ~E1

∣∣∣ ∣∣∣ ~E2

∣∣∣ sin(θ) = ~E1 · ~E2. (3.5)

3.2 The Hilbert Space of Loop Quantum Gravity

We now define the Hilbert space of the theory. On the manifold Σ, we define a generalised
Ashtekar connection Aa

i, given in (2.29). For a graph Γ embedded in Σ, the embedding of a
link li in Σ can be regarded as a path γi in the manifold. One can then define a holonomy
associated with each link:

Ui = Pe
∫
γi
AaiTi , (3.6)

where Ti = − i
2
σi are the generators of the su(2) algebra, which is isomorphic to the algebra

so(3) (here σi denote the Pauli matrices). As a result, the holonomies will take values in
the group SU(2), which is the double cover of SO(3). Given a gauge transformation of the
connection (2.40) parameterised by Λ(x), it follows from (2.41) that the holonomies transform
as

Ui → Λsi Ui Λ−1
ti
, (3.7)

where Λsi and Λti respectively refer to the gauge transformation at the source node and the
target node of the link. For a graph Γ with p links and q nodes, the states in LQG are the
set of square-integrable wavefunctions on the p holonomies, written as Ψ(Ui). (Note that,
for a graph that contains only 4-valent nodes, i.e. those associated with discretisations using
tetrahedra, one will obtain the relation p = 2q. However, as previously discussed, theories
in LQG can be constructed by considering discretisations with other shapes, so for more
generality, we will consider a wider class of graphs, where p and q are unrelated.) The inner
product defined on these states takes the form of (2.51), where the integration variable dUi
is the Haar measure of SU(2). The Hilbert space is the collection of such wavefunctions,
denoted as

H = L2[SU(2)p]. (3.8)
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This Hilbert space is independent from the topology of the graph Γ, since the wavefunctions
Ψ(Ui) do not contain information on how the links are joined at the nodes; only the number
of links p is relevant.

The Hilbert space formulated this way contains unphysical states, since not all wavefunctions
in L2[SU(2)p] satisfy the quantum versions of the constraint equations that define the dy-
namics of general relativity. We first impose the Gauss constraint (2.27), which corresponds
to the condition that physical states must be invariant under gauge transformations. Sup-
pose there is an operator that produces gauge transformations, denoted U [Λ]. Its action on
a wavefunction is

U [Λ]Ψ(Ui) = Ψ(Λsi Ui Λ−1
ti

). (3.9)

Then a gauge invariant wavefunction must satisfy U [Λ]Ψ(Ui) = Ψ(Ui), for any choice of gauge
transformation at the q nodes. This set of physical states form a subspace of the Hilbert
space (3.8), written as

HΓ = L2[SU(2)p/SU(2)q]Γ (3.10)

that is, the subspace of (3.8), invariant under q SU(2) gauge transformations. The subscript
Γ emphasizes that the states now depend on the topology of Γ: the holonomies of links
joined at the same node will transform under the same local gauge transformation. The
Hilbert space (3.10) defined above will describe the quantum states of loop quantum gravity
satisfying the Gauss constraint. However, it is often simpler to perform calculations on the
larger space of states (3.8), so it will also be utilised in the following sections.

3.3 Spin Networks

We now construct a set of basis states in the Hilbert space (3.8), and following that, a set of
basis states for the gauge invariant subspace HΓ, in the form of spin networks.

First, we introduce the Wigner matrices: a Wigner matrix Dj
ab(g), where g ∈ SU(2), is an

element in the spin-j representation of SU(2). Its elements can be computed by considering
rotations of spin-j basis states:

Dj
mn(g) =< j,m|R̂(g)|j, n >, (3.11)

where R̂(g) is the rotation operator:

R̂(G) = R̂(α, β, γ) = e−iαĴze−iβĴye−iγĴx , (3.12)

where α, β, γ are the Euler angles associated with the group element g.
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Consider a function f(g) ∈ L2[SU(2)] on one SU(2) group element g. The Peter-Weyl
theorem states that the elements of the Wigner matrices Dj

ab(g) form a complete orthogonal
basis for L2[SU(2)]. That is, they satisfy the equations of orthogonalty:

∫
SU(2)

dgDi
ab(g)Dj

cd(g) =
1

2j + 1
δijδacδbd (3.13)

and completeness:

δ(g1g
−1
2 ) =

∑
j

(2j + 1)Dj
ab(g1)Dj

ba(g
−1
2 ). (3.14)

Thus, any square integrable function f(g) can be decomposed into elements of the Wigner
matrices:

f(g) =
∑
j

fabj φjab(g), (3.15)

where φjab =
√

2j + 1Dj
ab are the normalised matrix elements, and

fabj =

∫
SU(2)

dg φjab(g
−1) f(g). (3.16)

Similarly, wavefunctions in L2[SU(2)p] can be decomposed into products of elements of
Wigner matrices:

Ψ(U1, ..., Up) =
∑
j1,...,jp

Ψ
a1...ap, b1...bp
j1...jp

φj1a1b1
(U1) ... φ

jp
apbp

(Up). (3.17)

Thus, one can express any state in the Hilbert space in a basis of wavefunctions

p∏
i=1

φjiaibi(Ui). (3.18)

We now find the set of gauge invariant states. In the graph Γ, consider a set of r links joined
at the same node n. Since the labelling of links and the assignment of their direction are
physically irrelevant, for simplicity we assign the r links with indices 1, ..., r, and they all
have n as their source node. A wavefunction on this graph can be written as

Ψ(U1, ..., Up) =
∑

j1, ..., jr

F a1...ar, b1...br
j1...jr

(Ur+1, ..., Up) φ
j1
a1b1

(U1) ... φjrarbr(Ur). (3.19)
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Here the tensor F contains all information about the wavefunction related to the rest of the
links. Consider now a gauge transformation Λ at the node n. The basis elements φjiaibi , with
i = 1, ..., r, transform as

φjiaibi(Ui)→ φjiaibi(ΛUi) = Dji
aici

(Λ)φjicibi(Ui). (3.20)

Thus, to find the set of gauge invariant wavefunctions Ψ(Ui) corresponds to the requirement
that the tensor F is invariant under transformations

F a1...ar, b1...br
j1...jr

= Dj1
a1c1

(Λ)...Djr
arcr(Λ)F c1...cr, b1...br

j1...jr
. (3.21)

Such tensors are known as “intertwiners”. For a trivalent node, that is, a node which joins
3 links, given the spins that label the Wigner matrices associated with the 3 links, there is
a unique tensor ia1a2a3 , up to normalisation, that is invariant under gauge transformations.
This tensor is expressed by the “Wigner 3j symbol”:

ia1a2a3 =

(
j1 j2 j3
a1 a2 a3

)
. (3.22)

For the Wigner 3j symbols to have non-zero values, the spins j1, j2, j3 must satisfy the
following conditions:

j1 + j2 + j3 ∈ N
|j1 − j2| 6 j3 6 j1 + j2,

(3.23)

that is, they must sum to an integer, and they satisfy the triangle inequalities. In addition,
the Wigner 3j symbol ia1a2a3 is only non-zero if a1 + a2 + a3 = 0. For nodes that join more
than 3 links, the intertwiners i a1 ... aN can be constructed by contracting multiple Wigner
3j-symbols. This corresponds to decomposing a node into multiple trivalent nodes, joined by
virtual links. For 4-valent nodes, an intertwiner with 4 indices can be calculated from the
contraction of 2 Wigner 3j-symbols:

ik
a1a2a3a4 =

(
j1 j2 k
a1 a2 b

)
δbc

(
k j3 j4

c a3 a4

)
. (3.24)

There is therefore a family of 4-valent intertwiners, labelled by the spin of the virtual link
k.

Therefore, a gauge invariant wavefunction can be written as a product of intertwiners asso-
ciated with each node, and Wigner matrices associated with each link, for instance:

Ψ(U1, ..., Up) =
∑

j1, ..., jp

K i a1 ... ak ... i a(p−l) ... ap i b1 ... bm ... i b(p−n) ... bp φj1a1b1
(U1) ...φ

jp
apbp

(Up), (3.25)
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where K is a constant of normalisation. This set of states can be graphically represented by
spin networks: one assigns a normalised representation matrix φji(Ui) of spin ji to each link
li, and an intertwiner i a1 ... aN to each node n.

Figure 3.1: Example of a spin network. The numbers label the spins assigned to each link. The
intertwiners are not labelled. Figure sourced from [12].

3.4 Geometric Operators

In this section, we discuss some of the operators that act on the Hilbert space HΓ, and from
their properties, we will find the physical interpretation of the geometry of LQG.

Consider first the much simpler theory of particle quantum mechanics, where states in the
Hilbert space can be represented by wavefunctions Ψ(x). In this theory, we promote classical
variables of position x and momentum p to operators, where their Poisson bracket relations
become commutation relations

{x, p} = 1→ [x̂, p̂] = i~. (3.26)

The actions of these operators on wavefunctions are

x̂Ψ(x) = xΨ(x)

p̂Ψ(x) = −i~ d
dx

Ψ(x).
(3.27)

For LQG, we wish to find an analogous set of operators that act on wavefunctions Ψ(Ui). It is
simple to define one half of them: one promotes the configuration variables, which are matrix
elements of the holonomy (Ur)ij, into operators (Ûr)ij , with their action on wavefunctions
simply defined as a multiplication:

(Ûr)ijΨ(..., Ur, ...) = (Ur)ijΨ(..., Ur, ...). (3.28)

To find the conjugare operator to (Ûr)ij, analogous to p̂ in particle QM, recall the generalised
Ashtekar variables that LQG is based on. As discussed in previous sections, the theory
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defined by the action (2.18) uses the generalised Ashtekar connection Aa
i as its configuration

variable, while the densitised inverse triad Ẽa
i acts as the conjugate momentum, with a

Poisson bracket

{Aai(x) , Ẽb
j (y)} = γδbaδ

i
jδ(x− y). (3.29)

Returning to the theory of LQG defined on a graph Γ, we may notice that the holonimies
Ur can be regarded as a smearing of the connection Aa

i(x) along the embedding of a link lr.
Thus, to reproduce the Ashtekar theory in the continuum limit, one should seek a conjugate
operator constructed from the smearing of Ẽb

j (y). An appropriate candidate to promote into

an operator is the quantity Ei, defined in (3.1) by smearing Ẽb
j (y) over a face F . Recalling

that each link lr is dual to a face Fr, we define a set of operators (Êr)i associated with each
link lr, whose action on wavefunctions is defined as

(Êr)iΨ = γ(L̂r)iΨ (3.30)

where (L̂r)i is a derivative operator on wavefunctions, whose action is defined as

(L̂r)iΨ(..., Ur, ...) = −i d
dt

Ψ(..., Ure
tTi , ...)|t=0

= −i lim
t→0

[
Ψ(..., Ure

tTi , ...)−Ψ(..., Ur, ...)
]
,

(3.31)

Ti being generators of the su(2) algebra. One can check that the operators satisfy the
commutation relation

[
(Ûr)mn, (L̂s)i

]
= δrs(Ur)ml(Ti)ln. (3.32)

We now inspect the properties of the derivative operators (L̂r)i. Consider a gauge invariant
state Ψ ∈ HΓ. We choose 4 links that share the same target node n0. Without loss of
generality, we again assign indices l1, ..., l4 to the links. The relevant part of Ψ can be
written, as before:

Ψ =
∑

j1, ..., j4

F a1...a4, b1...b4
j1...j4

φj1a1b1
(U1) ... φj4a4b4

(U4). (3.33)

Consider an infinitesimal gauge transformation Λ = 1+ tλ at the node n0. The wavefunction
will transform as
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Ψ→ Ψ′ =
∑

j1, ..., j4

F a1...a4, b1...b4
j1...j4

φj1a1b1
(U1Λ) ... φj4a4b4

(U4Λ)

=
∑

j1, ..., j4

F a1...a4, b1...b4
j1...j4

φj1a1c1
(U1)Dj1

c1b1
(Λ) ... φj4a4c4

(U4)Dj4
c4b4

(Λ)

=
∑

j1, ..., j4

F a1...a4, b1...b4
j1...j4

φj1a1c1
(U1)

(
1 + tdj1(λ)

)
c1b1

... φj4a4c4
(U4)

(
1 + tdj4(λ)

)
c4b4

,

(3.34)

where dj are spin j representation matrices of su(2) algebra elements. Now consider the
operation

[
(L̂1)i + (L̂2)i + (L̂3)i + (L̂4)i

]
Ψ

=
∑

j1, ..., j4

F a1...a4, b1...b4
j1...j4

(−i)[ d
dt
φj1a1b1

(U1e
tTi) ... φj4a4b4

(U4) + ...

+ φj1a1b1
(U1) ...

d

dt
φj4a4b4

(U4e
tTi)]t=0

=
∑

j1, ..., j4

F a1...a4, b1...b4
j1...j4

(−i)[φj1a1c1
(U1)dj1(Ti)c1b1 ... φ

j4
a4b4

(U4) + ...

+ φj1a1b1
(U1) ... φj4a4c4

(U4)dj4(Ti)c4b4 ].

(3.35)

By inspecting the expressions (3.34) and (3.35), one can see that to for the wavefunction to
be gauge invariant Ψ = Ψ′, it must satisfy the condition

[
~̂
L1 +

~̂
L2 +

~̂
L3 +

~̂
L4

]
Ψ = 0. (3.36)

This property of
~̂
L operators justifies the choice of correspondence

~̂
Er = γ

~̂
Lr, since classically,

the vectors ~E satisfy the same closure relation (3.3).

3.4.1 The Area Operator

We now show that area is quantised in LQG. Consider the classical discretisation again. The
area of a face of a tetrahedron can be calculated with formula:

A2 =
∑
i

EiEi = ~E · ~E. (3.37)

In the quantum theory, the area of a face is promoted to an operator Â, which is the simplest

gauge invariant operator one can build from
~̂
E. We would like to find the eigenstates of the

area operator:
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Â2Ψ =
~̂
E · ~̂EΨ = γ2 ~̂L · ~̂LΨ. (3.38)

In the derivation (3.35), we have used the result that for elements of Wigner matrices,

L̂iD
j
ab(U) = Dj

ac(U)djcb(Ti). Consider the spin-1
2

representation, where D
1
2
ab(U) = Uab. The

area operator acting on this matrix gives

Â2Uab = γ2 ~̂L · ~̂LUab
= γ2

∑
i

Uac(Ti)cd(Ti)db

= γ2 3

4
Uab.

(3.39)

The property of Pauli matrices (σ1)2 = (σ2)2 = (σ3)2 = 1 was used in the above calcula-
tion.

The operators L̂i satisfy the same commutation algebra as spin in particle mechanics:

[
L̂i, L̂j

]
= iεij

kL̂k. (3.40)

Therefore, one should expect the area operator Â2 to have eigenvalues γ2 j(j+1). In general,
one can show that the element of a Wigner matrix of spin j is an eigenfunction of the area
operator, with the relation

Â2Dj
ab = γ2 j(j + 1)Dj

ab. (3.41)

Thus, we can deduce that the spin network states are eigenstates of the area operator,
since such states are decomposed into products of Wigner matrices. We also see that the
smallest quantum of area takes discretised values. Reintroducing the physical constants, area
eigenvalues are

A = γ lp
2
√
j(j + 1), (3.42)

where lp is the Planck length. Furthermore, one may also calculate the area of an arbitrary
surface embedded in the manifold:

A = γ lp
2
∑
r

√
jr(jr + 1), (3.43)

summing over all links lr that “pierce” the surface. This is an important fundamental result
of loop quantum gravity: there exists a smallest unit of area, on the scale of lp

2.

25



3.4.2 The Volume Operator

Recall from the classical discretisation that the volume of a tetrahedron is

V 2 =
2

9

∣∣εijk(E1)i(E2)j(E3)k
∣∣ . (3.44)

As it is with the case of area, when the volume equation is promoted to an operator relation,
it defines a gauge invariant operator. The volume operator acts on nodes of a spin network
state, dual to a tetrahedron in the discretisation. Therefore, its eigenvalue depends on the
spins assigned to the four links that join at the node, as well as the virtual spin that labels the
4-valent intertwiner at the node. Rovelli and Vidotto provide a derivation of the eigenstates
and eigenvalues in [10], here we quote the result that for a node that joins links with spins j1,
..., j4, the eigenstates are superpositions of two spin network states, where the intwrtwiners
are labelled with spin k and k + 1 respectively. The eigenvalues are

V =

√
2

3
lp

3γ
3
2

4√
4k2 − 1

∆(j1 +
1

2
, j2 +

1

2
, k)∆(j3 +

1

2
, j4 +

1

2
, k). (3.45)

Here, ∆(a, b, c) is the Heron’s formula, which calculates the area of a triangle with side lengths
a, b, and c:

∆(a, b, c) =
1

4

√
(a+ b+ c)(−a+ b+ c)(a− b+ c)(a+ b− c). (3.46)

We again see that, similar to area, there exists a smallest unit of volume, on the order lp
3.

The area and volume operators form a complete set of commuting observables. Therefore,
their eigenvalues completely determine a state in the Hilbert space of LQG. To illustrate the
intrinsic “blurriness” of the quantum geometry introduced in LQG, consider a node dual to
a tetrahedron. Each 4-valent node in the graph is associated with 5 degrees of freedom: the
four areas and the one volume. On the other hand, a tetrahedron classically has 6 degrees
of freedom: for example, the length of its 6 edges. This is similar to angular momentum
in particle quantum mechanics, where one can only simultaneously diagnalise two operators
L̂2 and L̂z. The classical notion of a tetrahedron therefore breaks down at the quantum
level, serving only as an analogy for one to better understand the physical quantities in the
theory.
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4 Dynamics: Constraints, Time Evolution and Transi-

tion Amplitudes

The construction of the Hilbert space of loop quantum gravity described in the previous
chapter is well established with little ambiguities. For the dynamics of the theory, however,
many open problems remain, and there does not exist a consensus on the formulation of the
full theory. In general, there are two approaches to generating dynamics in LQG. The first is
by solving the canonically quantised version of the Hamiltonian constraint. In the classical
theory, constraints generate time evolution from one spacial sub-manifold to succeeding ones,
so one may expect the quantum theory to exhibit the same property. The other approach
is the “covariant” approach, where path integrals are constructed from spin foams, which
are a four dimensional analogue of spin networks. In this chapter, we will examine both
approaches, and discuss some proposed models.

4.1 The Momentum Constraint

Up to this point, we have constructed a gauge invariant theory of quantum gravity, solving
the Gauss constraint. There are, however, additional constraints remaining, namely the
momentum constraint and the Hamiltonian constraint in (2.26). In this section, we address
the momentum constraint.

As shown in previous sections, the momentum constraint classically corresponds to the re-
quirement that the theory is invariant under spacial diffeomorphisms. Therefore, the quan-
tum theory satisfies the momentum constraint if it can be shown to be background indepen-
dent. This condition is in fact automatically satisfied by the theory constructed so far. In
the classical discretisation, we considered a graph Γ embedded in a spacial manifold Σ, and
defined the holonomies using the embedded path γi of each link li. This construction is not
invariant under diffeomorphism, since the holonomies depend on the background connection
field Aa

i, and transforming the embedding of a link li will change the holonomy associated
with li. However, in the quantum theory, if we interpret the graph Γ as the fundamental
structure of spacetime, and the SU(2) group elements Ui as the fundamental variables, the
theory no longer depends on the background metric. Rather, the spin network states now
define the geometry, through observables such as the area and volume operator.

Figure 4.1: Two graphs that are combinatorially equivalent, but inequivalent under diffeomor-
phisms.
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A point of subtlety needs to be addressed: combinatorially equivalent graphs may define
inequivalent physical spaces. Figure 4.1 shows two spin networks with equivalent combina-
torial structures. However, the graph on the right contains a knot, making it topoligically
distinct from the graph on the left; it is impossible to transform the two graphs into each
other through continuous deformations. The inequivalent spin networks with different knot
structures are known as “knotted spin networks”. It is unclear if knotted graphs occur in
physical systems, since they cannot be constructed from the dual of a discretisation, and
therefore do not have meaningful physical interpretations such as area and volume.

There is a more mathematical construction of solutions of the momentum constraint, follow-
ing [13] and [14]. We use Ψγi denote states in the Hilbert space constructed by embeddings
γi of links li into the manifold. Consider states to be cylindrical wavefunctionals of the con-
nection: Ψγi = Ψγi(Ui[A]). Consider a diffeomorphism χ ∈ Diff(Σ), and denote Uχ as the
operator that transforms a state under the diffeomorphism:

UχΨγi(Ui[A]) = Ψχγi(Ui[A]). (4.1)

From this, we can formally construct a diffeomorphism invariant state:

( [Ψγi ] | =
∑

χ∈Diff(Σ)

〈Ψγi | Uχ =
∑

χ∈Diff(Σ)

〈Ψχγi | . (4.2)

The square bracket [Ψγi ] denotes the equivalence class of states under diffeomorphism, and
the rounded bracket emphasises that this is a distributional state that cannot be normalised.
It is easy to see that ( [Ψγi ] | is invariant under diffeomorphisms: ( [Ψγi ] | Uχ = ( [Ψγi ] |. Using
this, one can define a diffeomorphism invariant inner product between two states:

〈
Ψγi|Φγ′i

〉
Diff

=
(

[Ψγi ] |Φγ′i

〉
. (4.3)

4.2 The Hamiltonian Constraint

Up to this point, the constraint equations have been addressed indirectly: the Gauss con-
straint was solved by considering gauge transformations, resulting in spin network states; the
vector constraints were taken into account if one takes the spin networks to be independent
of diffeomorphism. There was no need to explicitly implement the constraint equations as
operator relations. The Hamiltonian constraint, however, seems to pose more challenge, since
it is related to the reparameterisation of time, which has been neglected in the construction of
the theory so far. There is currently no consensus on how the Hamiltonian constraint is to be
implemented in loop quantum gravity, although there exist some popular candidate methods.
In this section, we review the technique developed by Thiemann [15] to impose the Hamil-
tonian constraint on states in LQG. Instead of showing the full derivation of the constraint
here, the logical outline will be presented, and some key steps will be highlighted.

First, recall the classical form of the Hamiltonian constraint (2.31). We now introduce its
smeared form, written as
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C[g] =

∫
d3x g

Ẽa
i Ẽ

b
j√

det(Ẽ)

[
εijkFab

k − 2(1 + γ2)Ki
[aK

j
b]

]
, (4.4)

Where g(x) is an arbitrary scalar field. For convenience, we decompose the smeared constraint
into two components : C = CE − 2(1 + γ2)T , defined as

CE[g] =

∫
d3x g

Ẽa
i Ẽ

b
j√

det(Ẽ)
εijkFab

k

T [g] =

∫
d3x g

Ẽa
i Ẽ

b
j√

det(Ẽ)
Ki

[aK
j
b].

(4.5)

The superscript in CE emphasizes that it is the “Euclidean component” of the constraint. The
goal of the following paragraphs is to reformulate (4.4) in terms of the operators of holonomy
Û , area Â, and volume V̂ defined previously in the quantum theory, and implement it as an
operator on physical states, in terms of the condition

Ĉ Ψ(Ui) = 0. (4.6)

The first trick by Thiemann is the realisation that the variables in the expression of CE and
T can be re-written as Poisson brackets. Introducing quantities

K̄ =

∫
d3xKi

aẼ
a
i

V =

∫
d3x
√
detẼ,

(4.7)

one finds relations

Ki
a =

1

γ
{Aia, K̄}

K̄ =
1

γ
3
2

{CE[1], V }

Ẽb
i Ẽ

c
j√

det(Ẽ)
εijkεabc =

4

γ
{Aka, V }.

(4.8)

Using these, the constraints CE and T can be rewritten as
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CE[g] =

∫
d3x g εabcδijFab

i{Ajc, V } =

∫
d3x g εabcTr[Fab{Ac, V }]

T [g] =

∫
d3x

g

γ3
εabcεijk{Aia, {CE[1], V }}{Ajb, {CE[1], V }}{Akc, V }.

(4.9)

This formulation allows one to convert the classical constraint into an operator: the Poisson
brackets become commutators when the variables become operators.

The next step is to re-express the variables in terms of quantities defined on spin networks.
To do this, we notice that the curvature Fab

i at some point can be approximated using
holonomies of infinitesimal closed paths that start and terminate at that point:

Uγab − U−1
γab

= AFab
iTi +O(A2), (4.10)

γab denotes a closed curve oriented in the ab plane, and A is the coordinate area enclosed by
γab. Similarly, one can find the relation

U−1
γa {Uγa , V } = l{Aia, V }+O(l2), (4.11)

γa being a path in the direction of coordinate a, with length l. Using these relations, one
can write the Hamiltonian constraint in terms of holonomies U and volumes V , which are
well defined operators in the quantum theory. In particular, the Euclidean component can
be expressed as

CE[g] =

∫
d3x g

1

Al
εabcTr[Uγab − Uγab{Ac, V }]. (4.12)

The last step is to discretise the integral expressions, so that they can act on spin network
states. One can convert integrals into sums over all nodes ni in a spin network:

∫
d3x g →

∑
i

Vigi, (4.13)

where Vi is the volume of the tetrahedron dual to node ni. The volume factor Vi cancels
the inverse volume factor 1/Al in (4.12), and we can obtain a regularised and well-defined
Hamiltonian constraint that acts on states in LQG. The Hamiltonian constraint acts on
spin network states by creating and annihilating nodes and links, thereby generating time
evolution.

Finally, we discuss the solutions to the quantum Hamiltonian constraint. That is, physical
states satisfying the condition ĈΨ = 0. In general, these states take the from of spin networks
with “dressed nodes”. They are a superposition of spin network states, where the original
spin network is modified, including additional links that join the original links around a node.
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Figure 4.2: An illustration of dressed nodes that solve the Hamiltonian constraint.

Such dressed nodes are depicted in figure 4.2. On these states, the Hamiltonian constraint will
manifest as algebraic relations between coefficients αn for each graph. The new nodes created
in this process are tri-valent. As a result, they do not carry any volume. The information in
volume is therefore preserved by the original 4-valent node dual to a tetrahedron. In general,
the explicit expressions of states that solve the Hamiltonian constraint is not well known [14].
The definition of the Hamiltonian constraint is not unique, the example presented here being
one of the most studied. There are many ambiguities, such as the ordering of operators, that
result in mathematically consistent theories. It is not known whether any of the formulations
better reproduce classical general relativity in appropriate limits [13].

4.3 Spacetime Discretisation and Spin Foam

Spin foam is an alternative method of defining the dynamics of LQG. It is based on the
discretisation of path integrals, which has the advantage of avoiding the complicated form of
the Hamiltonian constraint. As a result, full definitions of the dynamics have been completed
using the covariant method, allowing for the computation of transition amplitudes. Several
different definitions of spin foam theories exist, most of which are conceptually similar, and
differ only in small variations. Since an explicit recovery of a classical limit has not been
completed, it is difficult to determine which variation is favorable. For this review, we focus
on the definition presented in [10].

We consider a sectionM of a 4-dimensional spacetime. We assume the boundary ∂M consists
of two disconnected spacelike hypersurfaces: a past boundary denoted Σp, and a future
boundary Σf . The aim is to define quantities on the bulk spacetime M, which allows us to
compute transition amplitudes between LQG states defined on Σp and Σf . The construction
here is analogous to that of spin networks. We first discretise M into 4-simplices, which are
4-dimensional analogues of tetrahedrons. Each 4-simplex is bounded by 5 tetrahedra, which
are in turn bounded by triangles. This discretisation is denoted ∆M. In the 3-dimensional
case, a graph was constructed dual to the discretisation. In the 4-dimensional case, we
instead construct a “two-complex”, which is a graph with additional structures: as in the
3D case, we associate a node ni to each 4-simplex in the discretisation, and a link li to each
pair of 4-simplices that share a boundary tetrahedron; furthermore, we associate a face fi
dual to each triangle in the discretisation. These faces are bounded by links in the graph. A
two-complex denoted ∆∗M is composed of the set of nodes, links and faces.

The two-complex allows us to discretise the generalised tetrad-Palatini action. Recall the
form of the action:
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S[e, ω] =

∫ (
εIJKLe

K ∧ eL +
1

γ
eI ∧ eJ

)
RIJ =

∫
BIJR

IJ . (4.14)

To define the discretised action, we again smear the connection ω and its conjugate mo-
mentum B over appropriate regions of the manifold. We choose the connection ω to be an
element of the algebra sl(2,C), which is isomorphic to the Lorentz algebra so(3, 1), and define
a holonomy Ui ∈ SL(2,C) associated to each link li in ∆∗M:

Ui = Pe
∫
li
ω
. (4.15)

The conjugate momentum B is a two-form, so it is natural to integrate it over a 2-dimensional
subserface. Thus, we assign an algebra element Bi ∈ sl(2,C) to each face fi in the two-
complex:

Bi =

∫
Si

B, (4.16)

where the range of integration Si is the triangle in ∆M dual to the face fi. One may notice the
problem with defining these smeared variables on the boundaries, where there are incomplete
faces and links that do not end at any node. These will be addressed in the next section, for
now we focus on the interior of ∆M.

Using the smeared variables, one can write a discrete action:

S =
∑
f

Tr

[
Bf

∏
l∈f

Ul

]
, (4.17)

where the sum is over all faces in the two-complex, and l ∈ f refer to the links that bound
a face. It can be shown that in the continuous limit, this action approaches (4.14) [10]. The
product of holonomies Ul on all links that bound a face f approximates curvature, since it
represents the parallel transport along a closed loop around the triangle dual to f . As a
result, curvature is only defined in the plane normal to the triangle. It can be defined as a
covariant tensor RIJ only when one considers the average of curvatures in a region of the
discretised spacetime.

We can now propose a partition function by discretising the path integral:

Z =

∫
DeDωeiS[e,ω] →

∫ ∏
f

dBf

∏
i

dUi e
iS[Bf ,Ui]

= A

∫ ∏
f

dBf

∏
i

dUi e
i
∑
f Tr[Bf

∏
l∈f Ul].

(4.18)
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The factor A represents all irrelevant constants in the equation. The factors Bf can then be
integrated out using the definition of the delta function, resulting in (absorbing all 2π factors
into A) the expression for the partition function:

Z = A

∫ ∏
i

dUi
∏
f

δ

(∏
l∈f

Ul

)
. (4.19)

Effectively, the discretised path integral serves as a regularisation to the continuous the-
ory.

4.4 The Yγ Map and Transition Amplitudes

The discretisation ∆M naturally defines discretisations of the future and past boundaries
into tetrahedrons, denoted ∆Σp and ∆Σf . One can then construct spin network states on
the boundaries following the prescription given in chapter 3. In principle, one can compute
the transition amplitude between states on ∆Σp and ∆Σf , by defining boundary limits in
the integration (4.19) based on the boundary wavefunctions, and integrating over all internal
links in the two-complex. However, there remain some difficulties. First, states defined
on spacial manifolds are wavefunctions of SU(2) group elements, while variables defined on
the bulk spacetime are elements of SL(2,C). One needs an appropriate mapping between
elements in the two groups. Second, in the disctetisation of a 3-dimensional space, a node is
dual to a tetrahedron, and a link is dual to a triangle; for a two-complex on a 4-dimensional
spacetime, a node is dual to a 4-simplex, while a link is dual to a tetrahedron. Therefore,
more construction is required to produce a precise mapping between boundary wavefunctions
and boundary spacetime variables. In this section, we address both problems , and propose
a formula for transition amplitudes in LQG, following [10].

There exist different models of LQG resulting from different methods of mapping SU(2)
elements into SL(2,C)). There we will examine the technique that Rovelli calls the “Yγ map”.
We first consider unitary irreducible representations of SL(2,C)). Each representation can
be labelled with a positive real number p and a half-integer spin k. Noting that SU(2) is a
subgroup of SL(2,C)), the representation V p,k of SL(2,C)) can be written as a tensor sum
of SU(2) irreducible representations:

V p,k =
⊕

j=k, k+1, ...

Hj, (4.20)

where Hj is the spin j representation of SU(2), which can be decomposed into basis states
|j,m〉. As a result, a basis state in any unitary representation of SL(2,C) can be labelled
with 4 numbers |p, k; j,m〉.

Now recall from chapter 2 that the momentum 2-form can be decomposed into a “boost”
component Ki = Bi0 and the “rotation” component Li = 1

2
εijkB

jk, with the linear simplicity
constraint Ki = γLi. This constraint holds also for the smeared variable Bf =

∫
Sf
B. Since

Bf is an element of sl(2,C), we can consider its action as generators of SL(2,C) on the states

33



|p, k; j,m〉. Then the spin j is the eigenvalue of ~L2, and m can be set as the eigenvalue of Lz.
There are two Casimir invariants in sl(2,C):

C1 =
1

2
BIJB

IJ = ~K2 − ~L2

C2 =
1

8
εIJKLB

IJBKL = ~K · ~L.
(4.21)

One can show that, acting on the basis states, the two Casimirs give the relations

C1 |p, k; j,m〉 = (p2 − k2 + 1) |p, k; j,m〉
C2 |p, k; j,m〉 = pk |p, k; j,m〉 .

(4.22)

Thus, imposing the linear simplicity constraint on the basis states with Ki |p, k; j,m〉 =
γLi |p, k; j,m〉, we find that they must satisfy the relation

p = γk, k = j. (4.23)

This allows us to relate states in SU(2) representations into states in SL(2,C) representations
using the Yγ map:

Yγ :Hj → V (γj,j)

|j,m〉 → |γj, j; j,m〉 .
(4.24)

This is the map that we will use to convert SU(2) variables on the spin networks into SL(2,C)
variables on the boundary of the two-complex of spacetime.

For the next step, Rovelli introduces an alternative construction of the spin foam path inte-
gral, which allows one to map spin networks onto the boundary of the bulk discretisation.
Instead of assigning one holonomy Ul to each link l, we assign two SL(2,C) elements. One
may interpret this as identifying a mid-point of the link, and associating a holonomy to each
segment. These elements are denoted glv, labelled by the link and vertex adjacent to the seg-
ment of the link. The path integral (4.19) is rewritten using twice as many variables:

Z = A

∫ ∏
lv

dglv
∏
f

δ

(∏
g∈f

g

)
. (4.25)

The factor A again absorbs extra constants resulting from integrations. Next, we assign an
SL(2,C) element to each pair of links that join at a node, and bound the same face. These
elements are labelled hvf , identified by the vertex and face they are adjacent to. The path
integral (4.25) can then be rewritten as
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Figure 4.3: The assignment of group elements for internal and boundary faces. The dotted lines
represent links, and the solid lines represent the assignment of h. Figure sourced from [10].

Z = A

∫ ∏
vf

dhvf
∏
f

δ

(∏
h∈f

h

)∏
v

Av, (4.26)

where Av is the “vertex amplitude”:

Av =
∑

dg′
∏
f

δ (g′ghvf ) , (4.27)

g′ and g are the two SL(2,C) elements adjacent to hvf .

To compute the transition amplitude, we consider the combined graph of the bulk and bound-
ary discretisation. This graph will contain bulk links, dual to internal tetrahedra, and bound-
ary links, dual to triangles. The product (

∏
h∈f h) is defined as illustrated by figure 4.3. For

an internal face, bounded only by internal links, the group elements h are assigned according
to the left figure. For a face bounded by a boundary link, the group elements are assigned
according to the right figure, where the bottom link is the boundary link. Applications of
this definition of the transition amplitude has produced successful results, some of which will
be discussed in the following chapters.
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5 Application: Black Holes

In section 3, we have studied the kinematics of loop quantum gravity, defining the Hilbert
space and some observables. In section 4, we discussed some proposed methods of completing
the full theory, where transition amplitudes may be calculated. In the following sections, we
will examine some physical applications of the theory. From a successful theory of quan-
tum gravity, one should be able to generate classical general relativity in appropriate limits.
Unfortunately, the task of explicitly recovering the classical theory from LQG is still incom-
plete. On the other hand, much progress has been made in applying loop quantum gravity in
situations where the classical theory is expected to fail, and quantum effects become signifi-
cant: namely, spacetime singularities occurring in black holes and the cosmology of the early
universe. In this chapter, we shall examine some results in applying LQG to black holes: a
calculation of the black hole entropy, and a prediction of what happens at end of a black
hole’s life time.

5.1 Black Hole Thermodynamics

Bekenstein [16] [17] and Hawking [18] showed that black holes exhibit thermodynamic prop-
erties. One can define the three laws of thermodynamics on a black hole, whose entropy
is proportional to the area of its event horizon, given by the Bekenstein-Hawking entropy
[19]:

S =
kbc

3

4~G
A. (5.1)

This formula can be derived through considerations of quantum fields on a classical curved
background. Since it is not derived from a fundamental theory of quantum gravity where both
matter and spacetime are quantised, there exist different interpretations of the statistical
origin of the entropy. Loop quantum gravity provides a solution to this problem. As a
foundational theory of spacetime, it has been shown that LQG predicts the existence of
black hole entropy. In this section, we study a derivation of the entropy of a Schwarzschild
black hole using LQG spin networks, presented in [20] and [21].

Some useful results shall be quoted here without proof. The first is the energy of a Schwarzschild
black hole, measured by a stationary observer at a distance d from the horizon. In order
for the observer to remain stationary within the gravitational field, they must maintain an
acceleration a = 1/d. This observer measures the black hole to have energy

E =
Aa

8πG
, (5.2)

A being the area of the horizon. Second, the Unruh temperature, measured by an accelerating
observer in vacuum [22]:

T =
~a

2πkB
. (5.3)
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Consider now a spin network embedded in a Schwarzschild spacetime. The event horizon is
pierced by a number of links. The spins associated with these links then determine the area of
the horizon. A patch of the horizon pierced by a single link may have area eigenvalues

Aj = γ(lp)
2
√
j(j + 1). (5.4)

We may then use (5.2) to find the energy associated with a patch of the horizon to be

Ej = aγ
√
j(j + 1). (5.5)

Since there is a degeneracy of 2j + 1 for each area eigenvalue, the probability distribution,
at temperature T, for the patch of horizon to have area Aj is

pj(T ) =
1

Z(T )
(2j + 1)e

−
Ej
kBT , (5.6)

where Z(T ) is the partition function. If one sets T as the Unruh temperature from (5.3), one
finds the probability distribution

p(T, j) =
1

Z(T )
(2j + 1)e−2πγ

√
j(j+1). (5.7)

Using the Gibbs entropy

S = −
∑
j

pjlog(pj), (5.8)

one finds the entropy associated with the patch of the horizon to be

S =
A

4G
+ log(Z). (5.9)

The first term is the Bekenstein-Hawking entropy. The second term vanishes if the equa-
tion

1 = Z =
∑
j

(2j + 1)e−2πγ
√
j(j+1) (5.10)

is satisfied. The solution for this can be found numerically to be γ = γ0 ≈ 0.274. This is a
critical parameter of LQG. If γ takes this value, then one successfully derives the Bekenstein-
Hawking entropy. An alternative calculation of the black hole entropy, presented in [23],
considers the entanglement entropy from SL(2,C) coherent states, which exactly recovers
the Bekenstein-Hawking entropy, independent of the value of γ. The calculation of black
hole entropy from first principles in loop quantum gravity provides a strong argument for its
validity as a fundamental theory of quantum gravity.
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5.2 Black Hole to White Hole Transition

Hawking [24] showed that black holes emit thermal radiation, and as a result, a black hole
loses its mass over its lifetime, and the area of its event horizon gradually reduces. The tem-
perature of the radiation increases as the mass of a black hole decreases, with formula

T =
~c3

8πGkBM
(5.11)

for a Schwarzchild black hole. A solar mass black hole is expected to have a life time on the
order of 1067 years before completely evaporating [25]. An alternative estimate [26] suggests
that the life time of a black hole is roughly proportional to the square of its initial mass.
A lunar mass black hole, as a result, may have a life time on the same order as the age
of the universe, meaning end stages of primordial black holes may, at least in principle, be
observable today. Although lacking in observational evidence, the gradual evaporation of a
black hole has become a widely accepted prediction in theoretical physics. What is currently
unknown, however, is what occurs near the end of the life time of a black hole. As the
mass of the black hole reduces, the intensity of Hawking radiation increases, and area of
its event horizon approaches the Planck scale. It is widely conjectured that, at this stage,
quantum gravitational effects become significant, and it is no longer accurate to model the
phenomenon as quantum perturbations over a classical spacetime. The behaviour of the black
hole, in this case, deviates from Hawking’s predictions. One of the proposed scenarios is that,
toward the end of a black hole’s evaporation, it transitions into a white hole through quantum
tunnelling. White holes are not known to emerge from any classical process. However, it may
be possible that they are the product of some quantum effect. This result has been discussed
using generic quantum gravity arguments [27]. However, an explicit calculation of the black
hole to white hole transition amplitude has been done using LQG [28] [29]. Here, we will
summarise [30] and [26], which provide a simplified calculation that gives an estimation of
the transition amplitude.

This calculation makes several assumptions that makes the exact scenario likely unphysical,
but the hope is that a real black hole may be constructed through modifications that do
not drastically change the order of magnitude of the restult, so it is still valid as a rough
estimation. First, the back hole is assumed to form from the collapse of a spherical shell of
matter. Second, Hawking radiation is neglected. While the effect of black hole radiation is
small for any given time, it is unclear whether quantum effects from the radiation build up
thrughout the lifetime of the black hole. The core assumption is that, as the spherical shell
collapses to the Schwarzschild radius, a black hole will form. As the shell then approaches
Planck size, it will undergo a quantum bounce, and begin to expand outward. From the
view of an outside observer, they will perceive the collapse of the shell to slow down and
red-shift as its radius approaches the Schwarzschild radius. After some possibly very long
amount of time, the black hole will transition into a white hole, and the observer will see the
shell re-emerge from within the Schwarzschild radius. In such a picture, there is no event
horizon: matter that fall into the black hole will eventually be emitted out of the white hole.
What we perceive as a black hole is instead enclosed by an “apparent horizon” that does not
entrap infalling matter for an infinite time. The possible absence of an event horizon in such
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Figure 5.1: The Carter-Penrose diagram for the black hole to white hole transition form the
collapse of a massive shell. Figure sourced from [30].

scenarios provides potential solution to the black hole information paradox, and has lead to
Hawking’s statement that “there are no black holes” [31].

Apart from regions of high curvature around the black and white hole singularity, spacetime
is well approximated by classical general relativity. Neglecting small regions where quantum
effects are significant, one may still construct a classical geometry that describes the spacetime
where this transition takes place. The Carter-Penrose diagram for this spacetime can be
constructed from sections of the diagram for a maximally extended Schwarzschild spacetime.
In figure 5.1, the bold black lines depict the collapse and rebounce of the massive shell. Region
I inside the shell is flat and isomorphic to a Minkowski spacetime, while region II outside
the shell has the geometry of a Schwarzschild spacetime. Region III is where quantum
effects are expected to take place, and a diagram cannot be drawn. Figure 5.2 demonstrates
the construction of this spacetime from patches of the maximally extended Schwarzschild
spacetime. This is known as a Haggard-Rovelli spacetime [32], the behaviour of which is
symmetric under time reversal: that is, the evolution of the white hole and the expanding
shell is identical to the reversed motion of the black hole and the collapsing shell. This is
obviously unphysical, since additional effects such as Hawking radiation have been ignored.
Nontheless, this simplified model is a good starting point to investigate the decay of a black
hole.

Transition amplitudes can be calculated following the procedures defined in the previous
sections: we first discretise a bulk section of spacetime, then define spin network states
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Figure 5.2: Construction of the bounce spacetime from the maximally extended Schwarzschild
spacetime. Figure sourced from [30].

on the boundary of the discretisation. The boundary can be chosen as the dotted lines in
figure 5.1, which has the topology of two 3-balls joined at their boundaries. An appropriate
discretisation can then be selected, for example, [26] chose to discretise each 3-ball into four
tetrahedra. The result shows that the transition amplitude is a function of the initial mass of
the collapsing shell, and the time elapsed after the collapse: W (m,T ). The average life time
of the black hole can then be estimated numerically, which appears to scale with the square
of the mass: τ ∼ m2. Since this result is estimated from a drastically simplified model, one
should not place full trust on its validity. An alternative construction, demonstrated in [32],
results in an estimate of the life time:

τ = me
m2Ξ
~G , (5.12)

for a constant Ξ. In conclusion, although there have been numerous attempts to predict the
final stage of the life time of a black hole, no consensus has been reached. Nonetheless, an
astrophysical observation of a white hole may be considered strong evidence for the validity
of LQG.
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6 Application: Cosmology

Around the turn of the century, Bojowald [33], Ashtekar [34] and others begin applying
techniques developed in loop quantum gravity to the construction of cosmological models.
This lead to the establishment of loop quantum cosmology, which describes the quantum
behaviour of highly symmetric spacetimes. LQC has produced promising results, such as the
resolution of the big bang singularity. However, due to many of the assumptions made in the
construction, it is unknown if the predictions are valid in the full theory. In this section, we
will discuss some of the results obtained from LQC.

6.1 Classical Cosmology

We first discuss classical cosmology. For simplicity, consider a universe without spacial cur-
vature. Assuming homogeneity and isotropy, this universe is described by the k = 0 FLRW
metric:

ds2 = −dt2 + a2(dx2 + dy2 + dz2). (6.1)

The spacial component of a flat universe can either be compact, with the topology of a torus
T 3, or non-compact, with the topology of R3. The two cases need to be treated slightly
differently: for the compact case, the scale factor a can be set to measure the volume of
the entire universe; for the non-compact case, one may introduce a cubical fiducial cell C.
The scale factor then measures the volume of this cell. Results obtained from final theory
should be independent from the choice of this cell, with appropriate limits when C approaches
R3.

To enrich the dynamics of this universe, matter is coupled to the gravitational action. In
the literature, this matter often takes the form of a scalar field φ, whose field strength, due
to homogeneity, is assumed to be uniform in space. The full action therefore consists of a
gravitation component, and a matter component:

S = Sg + Sm. (6.2)

The cosmological constant Λ has been neglected up to this point. Here, we introduce it into
the theory, so the gravitation part of the action is

Sg =
1

16πG

∫
d4x
√
−g(R− 2Λ). (6.3)

We now describe this universe in terms of the ashtekar variables. In a homogeneous and
isotropic universe, the connection and the triad can be chosen to take simple forms:

Aia = c̃δia,

Ea
i = p̃δai ,

(6.4)
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where c̃ = γȧ and p̃ = a2. These variables satisfy the Poisson bracket

{c̃, p̃} =
8πGγ

3V0

. (6.5)

For a compact space, V0 refers to the comoving volume of the universe. For a non-compact
universe, V0 is the comoving volume of the fiducial cell C. It is possible to fix V0 = 1 by re-
scaling the dynamical variables: redefining c = V0

1/3c̃ and p = V0
2/3p̃, one obtains the Poisson

bracket {c, p} = 8πGγ/3. In the normalisation where V0 = 1, the scale factor a3 describes
the physical volume of the universe [10]. Since a matter field is coupled to this universe, the
Hamiltonian constraint consists of a gravitational part and a matter part: C = Cg + Cm.
The gravitational component can be expressed with the variables c and p, which reads

Cg = (
cp

γ
)2 − Λ

3
p3. (6.6)

Imposing the Hamiltonian constraint C = Cg + Cm = 0, one obtains the Friedmann equa-
tion

(
ȧ

a
)2 =

Λ

3
+

8

3
πGρ, (6.7)

where the matter density ρ is defined as

ρ = a3 δSm
δN

. (6.8)

It is common to introduce an alternative set of variables:

b =
c

|p|1/2
,

v = sgn(p)
|p|3/2

2πG
.

(6.9)

Notably, v is proportional to a3 and therefore is a volume variable. These variables satisfy
the Poisson bracket {b, v} = 2γ. For a universe only inhabited by a scalar field, the sign on
p is associated with the orientation of the triad and does not affect the dynamics: a sign
inversion can be regarded as a remarameterisation symmetry. However, if the spacetime is
coupled to a spinor field, the sign on p will affect the equations of motion. For this universe,
the classical solutions to the equations of motion can be expressed relationally, using v and
the scalar field strength φ:

φ = ± 1√
2πG

ln(
v

v0

) + φ0, (6.10)
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where v0 and φ0 are constants that can be fixed by boundary constraints. The scalar field
strength φ can be regarded as an internal time, with respect to which the evolution of the
universe is measured. The plus and minus signs correspond to two distinct solutions: an
expanding universe that begins at a big bang, and a contracting universe that end at a big
crunch. In the following section, we shall see how the quantum theory may suggest that, as
the matter density approaches the Planck scale, the evolution of the universe deviates from
the classical trajectory, and the contracting universe transitions into the expanding universe,
resulting in a big bounce.

6.2 Loop Quantisation of Cosmology and the Big Bounce

This section follows the discussions in [35] and [36]. For this highly symmetric universe with
reduced degrees of freedom, the quantisation follows a similar procedure as the full theory
of LQG: we smear the connection over a path to obtain a holonomy. We choose the path to
be a straight line with comoving length µ, parallel to the kth direction. The holonomy of the
isotropic connection has a simple form:

Uk = eµcTk = cos(
µc

2
)1 + 2sin(

µc

2
)Tk. (6.11)

It is thus sufficient to describe the holonomy with a function Nµ = eiµc/2. Since the triad is
constant in a homogeneous universe, there is no need to smear it over some area, and one
can simply use p as the variable for the conjugate momentum. These variables satisfy the
Poisson bracket

{Nµ, p} =
8πiγG

3

µ

2
Nµ. (6.12)

The quantum theory is constructed by promoting these variables into operators N̂µ, p̂. The
wavefunctions in this system are square-integrable functions of the length parameter and the
scalar feield strength Ψ(µ, φ), with the action of the operators defined as

p̂Ψ(µ, φ) =
8πγl2p

6
µΨ(µ, φ),

NχΨ(µ, φ) = Ψ(µ+ χ, φ).

(6.13)

For the dynamics of this quantum system, we construct the Hamiltonian constraint in a
similar fashion as discussed in chapter 4: the curvature tensor Fab

i is approximated with
holonomies of small loops in the ab plane, and integrals are replaced with finite sums, giv-
ing rise to a discretised constraint. The resulting Hamiltonian constraint in loop quantum
consmology can be expressed as the following equation:

∂2

∂φ2
Ψ(µ, φ) = −ΘΨ(µ, φ), (6.14)
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Figure 6.1: The evolution of a spacially flat FLRW universe, as predicted by classical cosmology
versus loop quantum cosmology. Figure sourced from [36].

where Θ is the discretised analogy of a differential operator, known as a “difference operator”,
whose action is defined as

ΘΨ(µ, φ) = −3πG

4λ2
µ [(µ+ 2λ)Ψ(µ+ 2λ, φ)− 2µΨ(µ, φ) + (µ− 2λ)Ψ(µ− 4λ, φ)] , (6.15)

where λ = (4
√

3π)
1
2 lp is a constant, which arises from the consideration that, due to the

existence of a minimum area in LQG, when approximating curvature using holonomies, the
area of the loop cannot be continuously brought to zero. The Hamiltonian constraint (6.14)
describes the evolution of a quantum state with respect to the field strength φ. Similar to the
classical equation (6.10), the description of the dynamics does not involve an explicit time
coordinate.

Figure 6.1 compares the classical and quantum evolution of the universe. On the left, equation
(6.10) is plotted, showing the evolution of the volume parameter v with respect to the field
strength φ. As explained before, there are two solutions, one expanding and one contracting.
The graph on the right plots the expectation values of operator v̂ on quantum states that solve
the Hamiltonian constraint. These states are chosen by starting with a minimal uncertainty
state peaked at some large value of v, then evolving it with (6.14). It is easy to see that,
at large values of v, the quantum trajectory is well approximated by the classical solution.
However, as the universe shrinks and v approaches unity, the quantum universe transitions
from the contracting trajectory to the expanding trajectory, resulting in a bouncing universe.
In addition, it has been shown [37] [38] that loop quantum cosmology produces an effective
Friedmann equation, which modifies the classical equation with an additional term:

(
ȧ

a

)2

=
8πG

3
ρ(1− ρ

ρ0

) (6.16)

where ρ0 ≈ 0.41ρp is predicted to be the maximum matter density on the order of the
Planck density. This modification generates an effective repulsive force when matter density
approaches ρ0, giving rise to a big bounce. The prediction of a bouncing universe from LQC
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Figure 6.2: On the left: the dipole graph, representing two tetrahedra joined together. On the
right: the graph representing discretisation of S3 with five tetrahedra.

provides argument in favor of LQG, as it is expected to remove singularities that plague
classical general relativity. However, since LQC is a highly simplified theory, it is unknown
if the full theory of LQG can reproduce the same predictions. Solutions of loop quantum
cosmology without a bounce have also been constructed, further casting doubt over the big
bounce picture [39] [40].

A more recent development has been attempts to apply covariant loop quantum gravity to
cosmological settings, in what is known as “spinfoam cosmology” [41] [42]. As opposed to a
model with reduced degrees of freedom which gives rise to LQC, spinfoam cosmology begins
with the full theory of LQG. Thus, it is expected to produce stronger predictions that do
not depend on the truncation of the theory. Compared to LQC, however, there has been
limited development in spinfoam cosmology. The idea is to construct homogeneous states
from the quantum theory. A spacial manifold with spherical topology S3 can be discretised
into symmetric graphs. The simplest of which is known as a dipole graph, which is dual to
two tetrahedra, with their faces joined to each other. A slightly more complex discretisation
uses 5 tetrahedra, as illustrated in figure 6.2. One then defines coherent states on such
graphs. These are states that satisfy the minimal uncertainty principle, and in the limit
where the spins j become large, are well approximated by classical geometry, analogous
to wave packets in particle quantum mechanics. They have been demonstrated to solve
the Hamiltonian constraint in the limit where the length scale is large, through transition
amplitude calculations.
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7 Miscellaneous Aspects and Final Remarks

Due to the limited time span available to complete this review, many aspects of the theory
could not be explored in depth. Here, some additional topics shall be briefly discussed.

Cosmological constant and IR regularisation

The discreteness of the geometry of LQG provides a length scale cutoff, and removes UV
divergences in quantum gravity. There are however additional divergent quantities remaining
in the transition amplitudes. Consider a 4-simplex in the spacetime discretisation. By placing
a point inside and connecting it to the vertices, the 4-simplex can be divided into 5 smaller
4-simplices. From this modification, one would obtain the same transition amplitude, except
with an additional delta function in the expression, which diverges. It has been shown [43]
that such infinities can be removed in a theory with a positive cosmological constant. This
result is in agreement with current observations [44].

Coupling with matter

The difficulty of coupling LQG to matter has long been a criticism to the theory. A method
has been proposed, however, that allows the quantum geometry of spin foam to be coupled
with Fermions [45], by constructing a modified Fermion action. Consider a chiral spinor field
ψ. The projection of the Dirac action onto one of its helicity states gives

S = i

∫
d4x ψ̄σµ∂µψ, (7.1)

where σµ = (1, σi) are the Pauli matrices. This action can be discretised by assigning a
spinor field to each link l in the spin foam: ψ(x)→ ψl. The resulting action reads

S = i
∑
l,l′

ψ̄l′Vlσlψl, (7.2)

where Vl is the volume of the tetrahedron dual to l, σl is the projection of the vector-matrix
σµ in the direction of the link l, and the indices l, l′ sum over pairs of links that share a
node. This action is defined on the same physical space as spin foam variables, allowing
interactions between them. Little is known still on explicitly coupling the standard model to
loop quantum gravity.

Propagation of light

Some have proposed that LQG may produce observable effects on high energy gamma ray
bursts [4]. Based on dimensional estimations, the quantum geometry may affect the speed of
light propagation on the order lp/λ, where lp is the Planck length and λ is the wavelength of
light. Although the order of magnitude of this effect is very small, it may cause measurable

46



differences in the arrival time of gamma rays from bursts up to 1010 light years away. However,
this effect is predicted based on rough estimations, and its validity cannot be verified.

Although loop quantum gravity has produced many elegant results, much work remains
in refining it into a mathematically consistent and physically realistic theory with testable
predictions. It remains to be seen whether it will rise above the rest to become the definitive
theory of quantum gravity.
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