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Abstract

This thesis presents the way to calculate the probability of a false vacuum decay by

computing Coleman-de Luccia (CdL) bounce solutions (instantons) in a polyno-

mial potential. We calculate these solutions by using the shooting method. First,

these solutions are calculated in a flat spacetime and then, they are computed in a

curved spacetime. In the latter case, the calculations are performed including the

effect of the bounce backreaction on the metric and with a fixed de Sitter back-

ground. The results indicate that when we have a polynomial potential, there are

no CdL solutions above a false-vacuum critical potential and the Hawking-Moss so-

lution (constant solution) dominates. We also compare the bounce solutions with

and without gravitational back-reaction and we conclude that when the energy

density difference ∆V is much larger of the value of the false-vacuum potential

V0, background fixed approximation is not a good approximation and we should

include dynamical gravity. It is vital to understand and calculate bounce solutions

with dynamical gravity since the depth of the Standard Model effective potential

is large so the energy density difference is also large. Therefore, we should not

assume that the metric is fixed since we will ignore some new phenomena.

vi



Chapter 1

Introduction

1.1 Vacuum Instability

The Standard Model is one of the excellent achievements of the last century. This

theory describes three of the four known fundamental forces (the electromagnetic,

weak, and strong interactions, and not including gravity) and all known elementary

particles in the universe. Many experiments have shown through time that it

accurately reproduces the world as we see it. However, it leaves some phenomena

unexplained so this is not the end of the story.

The vacuum (‘empty space’) is the space in the absence of matter. Before

the discovery of special relativity by Einstein, scientists believed that there was

an invisible substance called ‘luminiferous aether’ instead of truly vacuum. Early

theories stated that this aether was a medium through which light propagated.

However, the results of the Michelson–Morley experiment proved that the aether

is conclusively absent and light is a wave in the electromagnetic field. Later, a

model of the vacuum as an infinite sea (Dirac sea) of particles having negative

energy was proposed by Paul Dirac in 1930. This idea implies the existence of an

anti-particle when a particle excite the negative energy and leaves a ’hole’ there.

1



Chapter 1 Introduction 2

Nonetheless, these ideas were superceded by Quantum Field Theory, where

the Dirac equation is quantised as a field, the field operator obeying the Dirac

equation, rather than the field being the wavefunction for a particle. In the last

years there have been interesting developments in quantum field theory. A field

represents a quantity that is defined in each point in spacetime. A classical field

can be either scalar, i.e. each point is associated with a number (e.g. temperature),

or vector (e.g. electromagnetic field). In quantum field theory there is another

type of field, the spinor field. In contrast with particles, which have a finite

number of degrees of freedom, the fields have infinite degrees of freedom, at least

one for every point in space. In this theory, particles are excitations of a set of

fundamental fields, i.e. a small, localised packet of non-zero energy that can move

about in space.

A classical field theory can have two homogeneous stable equilibrium states

with different energy densities. The state of smaller energy density, which is the

global minimum of energy, is always stable but the other state is not. We call

the former a true vacuum state and the latter a false vacuum state. Although,

in classical physics, the false vacuum state appears stable, in quantum physics,

it becomes unstable through barrier penetration and given the right conditions it

collapses into the true vacuum state. Classically, we need to give sufficient energy

to an object in order to pass over the top of a potential barrier. However, in

quantum mechanics, the object may disappear on one side and reappear on the

other side without being given sufficient energy to pass over it. This process,

which is called ‘quantum tunnelling’, depends exponentially on the barrier height

and barrier width and one of its cause is the radioactive decay.

Observations illustrate that our universe is in the false vacuum, at least ac-

cording to the Standard Model. Nonetheless, in any second, a catastrophic event

might happen. There is a tiny probability that the false vacuum state of some

part of the universe may decay to a true vacuum state. Worth note, that the most
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common theory that describes this decay is called bubble nucleation. This theory

states that if a small region of the universe by chance reached a more stable vac-

uum, this bubble would spread with almost the speed of light and it would convert

false vacuum into true.

In this thesis, at first, we will study vacuum decay without gravity and then

with gravity which add a thermal component to the decay of the vacuum. This

component might give the vacuum sufficient energy to pass over the top of a

barrier. Therefore, there are different ways for a decay to occur: entirely thermal

effects, entirely quantum tunnelling, or a combination of the two.

When Higgs boson was discovered in 2012 [1, 2], many questions raised about

the relation of it with the stability of the electroweak vacuum. Before the discovery

of the Higgs boson, some authors suggested that the electroweak vacuum might be

metastable [3]. However, when the Higgs mass (Mh = 125.09± 0.25 GeV) and the

top quark mass (Mt = 173.21 GeV) were discovered, people started believing that

the electroweak vacuum can in fact decay via the nucleation of bubbles of true

vacuum in the Standard Model [4, 5]. The Higgs mass is placed in a narrow region

of parameter space where the electroweak vacuum is in a metastability region i.e.

it is neither completely stable nor so unstable that it should have already decayed

in the lifetime of the Universe [6].

Therefore, new physics may be demanded to explain the stabilization of the

potential knowing from observations that no true-vacuum bubble is likely to have

nucleated in our past light cone. This is consistent with the expected lifetime of

the visible Universe that is longer than its age. Many phenomena in high-energy

physics might arise a vacuum decay so these phenomena may be restricted due

to the possibility of vacuum decay. For example, one of these phenomena is the

inflation with a high Hubble rate [7, 8, 9, 10, 11].
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Now, there is an interest how gravitational back-reaction affect the vacuum

decay in the Standard Model. Using the thin-wall approximation, Coleman and

de Lucia proved that the change from a zero-energy-density, false vacuum to a

negative-energy-density, true vacuum suppress the decay rate, due to the warped

geometry of the nucleated bubbles [12]. Some authors investigated this phe-

nomenon perturbatively [13, 14] and some others investigated vacuum decay in

a black-hole background and they found that a black hole can effectively occur a

vacuum decay [15, 16, 17].

An easy way to manipulate vacuum decay with gravitational effects is to use

polynomial model potentials. In this thesis, we use these potentials so as to get

some general conclusions.

1.2 Vacuum Decay by Instanton Approach

We know that quantum tunnelling causes vacuum decay, both with and without

gravity. In classical physics, the false vacuum state of Standard Model is surely

stable as its barrier is at high energy scales and no natural process present in the

universe has enough energy to exceed it. However, in quantum mechanics, a vac-

uum decay can occur since the false vacuum state is not an energy eigenstate. It is

a superposition of different energy eigenstates, which evolve in time independently.

Therefore, there is a tiny probability to observe the field in the true vacuum state

at any point in space-time.

Now, we will show how can we compute the probability of decay of the false

vacuum per unit time per unit volume, Γ/V , using the instanton approach [12,

18, 19, 20]. By insanton, we mean a classical solution to equations of motion with

an action that is finite and non-zero, either in quantum mechanics or in quantum



Chapter 1 Introduction 5

field theory. More specifically, it is a solution to the equations of motion of the

classical field theory on a Euclidean spacetime.

It is worth noted that if the universe was infinitely old, it would be in a true

vacuum. However, the universe has a finite age. At the beginning of it, at the big

bang, the energy per unit volume was too high so the universe was neither in the

true nor in the false vacuum. Then, as the universe expanded and cooled down,

it might have moved to a false vacuum instead of a true one.

Firstly, we consider the quantum field theory of a single scalar field in four-

dimensional space-time,

S =

∫
d4x

[
1

2
(∂µφ)2 − U(φ)

]
, (1.2.1)

where the U(φ) is the potential of the theory which has two local minima: the

absolute minimum i.e. true vacuum, φtv, and the other minimum i.e. false vacuum,

φfv. We can also define the Euclidean action as minus the analytic continuation

of (1.2.1) to imaginary time,

SE =

∫
d4x

[
1

2
(∂µφ)2 + U(φ)

]
, (1.2.2)

with a positive-definite metric.

In the semiclassical limit (small ~), the expression of Γ/V is of the form [19],

Γ/V = A e−B/~(1 +O(~)), (1.2.3)

where A and B are coefficients that depend on the theory that we study and we can

compute them using some algorithms. For instance, in the limit of small energy-

density difference between the false and true vacuum, it is possible to calculate B

in closed form.
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At this point, we study the vacuum decay using the instanton approach which

exploits the fact that the energy E of a false vacuum, which is a metastable state,

can be regarded as complex. The time evolution of the amplitude squared of the

wave function for such energy with complex value has the following form

|ψ(x, t)|2 = |ψ(x, 0)|2 e2Im(E)t, (1.2.4)

and we conclude that the expression of Γ/V can be estimated from the imaginary

part of this energy, Im(E). As we Wick rotate time to imaginary values (τ = it),

the false vacuum state evolves as

|ψfv(τ)〉 =
∑
n

〈n|ψfv(0)〉 e−Enτ |n〉, (1.2.5)

and by taking imaginary time τ to infinity, we notice that only the lowest-lying

energy state, E0, dominates the sum

|ψfv(τ)〉 = 〈0|ψfv(0)〉 e−E0τ |0〉. (1.2.6)

It is noteworthy that E0 is the false vacuum state for distributions starting around

the false vacuum.

Now, we can use a Euclidean functional integral and we can compute the

vacuum to vacuum transition amplitude

|ψfv(τ)|2 = 〈ψfv(0)|e−Ĥτ |ψfv(0)〉 =

∫ φfv

φfv

Dφe−SE [φ] , (1.2.7)

where we integrate over all configurations for φ with φfv at the boundaries. We

can always evaluate this path integral by using the semi-classical approximation,

which assumes that the path integral is dominated by classical solutions called
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instantons, or bounces, which are stationary points of the Euclidean action

∫ φfv

φfv

Dφe−SE [φ] ≈
∑
i

det
[
S ′′[φi]

]−1/2
e−SE [φi] , (1.2.8)

where φi are the aforementioned stationary points of SE[φ] and prime on the action

indicates functional derivative. This is essentially performing a 1-loop approxima-

tion of the path integral and the proof for the calculation of this integral can

be found in appendix A. Coleman and Callan demonstrated that this gives the

probability of the decay of a false vacuum state per unit volume per unit time [18]

Γ/V ≈
(
B

2π~

)2∣∣∣∣det′
[
S ′′E[φB]

]
det
[
S ′′E[φfv]

] ∣∣∣∣−1/2 e−B/~ , (1.2.9)

where the coefficient B is the difference

B = SE[φB]− SE[φfv], (1.2.10)

and φB is the stationary point that lowers the action. Thus, φB is a bounce-solution

of the Euclidean equations of motion since the Euclidean equations of motion are

the Euler-Lagrange equations associated with SE. The prime on the determinant

shows that all its zero values were removed. These zero values correspond to

symmetries of the action, especially translations of the bounce solution around

the 4D Euclidean space. There is also a negative value in this determinant which

causes the energy of the vacuum being imaginary.



Chapter 2

Vacuum Decay without Gravity

2.1 Barrier Penetration in Quantum Mechanics

One way that we can calculate the probability of false vacuum decay per unit

time per unit volume is by using a WKB approximation of the wave function. In

ordinary quantum mechanics, it is well known that the transition rate of a particle

with total energy E through a barrier in potential U(x) with a minimum point x1

and a maximum point x2 is [21]

T ∝ exp

(
− 2

∫ x2

x1

dx
√

2(U(x)− E)

)
. (2.1.1)

The equation of motion of this particle is

d2x

dt2
+ U ′(x) = 0, (2.1.2)

and if you multiply this expression by dx
dt

and integrate it, you will find

1

2

(
dx

dt

)2

+ U(x) = E , (2.1.3)

8
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where the total energy E is the constant of the integration. Now, changing the

real time to imaginary time (τ = it), we have

2

∫ x2

x1

dx
√

2(U(x)− E) = 2

∫ x2

x1

dx

√(
dx

dt

)2

, (2.1.4)

and then, we change the variables of the integration

2

∫ τ2

τ1

dτ

(
dx

dτ

)2

= 2

∫ τ2

τ1

dτ

[
1

2

(
dx

dτ

)2

+ U(x)− E
]
. (2.1.5)

Since we know that Euclidean action is

SE[x] =

∫
dτ

[
1

2

(
dx

dτ

)2

+ U(x)

]
, (2.1.6)

the transition rate of the particle is

T ∝ exp

[
−
(
SE[xB]− SE[xfv]

)]
, (2.1.7)

where xB and xfv are solutions of the associated Euler-Lagrange equation when

we substitute τ = it in (2.1.2)

d2x

dτ 2
− U ′(x) = 0. (2.1.8)

xB is periodic and it is called the ‘bounce solution’ as it starts at x1(τ1) = x1,

bounces off x2(τ2) = x2 and finally, it reaches x1 again. xfv is called the ‘false-

vacuum solution’ and it is constant since it sits in the false vacuum for all integrated

time.

We can generalize this one-dimensional process of one particle to more di-

mensions and more particles with N degrees of freedom, qi. Now, we use the

WKB approximation to find transition rate for a particular route q(s) through
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the barrier

T ∝ exp

(
− 2

∫ q2

q1

√√√√ N∑
i

(
dqi
ds

)2

ds
√

2(U(q(s))− E)

)
. (2.1.9)

Obviously, the route that has the dominant contribution for tunnelling is the route

that produces the largest T and it has the smallest Euclidean action

SE =

∫
dτ

[ N∑
i

(
1

2

(
dqi
dτ

)2

+ U(q(τ))

)]
. (2.1.10)

In the case that there are many bounces with the same Euclidean action, we sum

the contributions for of all these bounces.

2.2 Barrier Penetration in Field Theory

At this point, we correspond the previous section to the field theory problem.

As we saw before, a particle can tunnel through a barrier and emerge on the

other side at a point in space while the energy is conserved. The same process is

true for a field. However, the field does not emerge at a point in space but in a

field configuration over the spatial degrees of freedom. This field configuration is

the nucleated bubble of true vacuum, and after forming it will begin to expand

with almost the speed of light. We know that many authors have investigated

vacuum instability in a Minkowski background [22, 23, 24]. The simplest case is a

relativistic scalar field, φ(x), in flat space-time with the Euclidean action

SE(φ) =

∫
d4x

[
1

2
∂µφ∂

µφ+ V (φ)

]
, (2.2.1)

where x = (τ,x). The equation of motion of the field is

(
d2

dτ 2
+∇2

)
φ(x) = V ′(φ), (2.2.2)
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where the prime denotes differentiation with respect to φ(x). We note that the

field does not penetrate V (φ) but the potential

U(φ) =

∫
d3x

(
1

2
(∇φ)2 + V (φ)

)
, (2.2.3)

since we can write the action of (2.2.1) as

SE(φ) =

∫
dτ

[(∫
d3x

1

2

(
dφ

dτ

)2)
+

(∫
d3x

(
1

2
(∇φ)2

)
+ V (φ)

)]
. (2.2.4)

V (φ) is the potential energy density.

Generally, we should evaluate the path integral to find the probability of the

decay of false vacuum including all the contributions from each solution of (2.2.2).

Nonetheless, the most important contribution to path integral is the bounce that

lowers the action, with other solutions giving exponentially small contributions

compare to this.

The boundary conditions for the bounce are

φ(±∞,x)→ φtv (2.2.5)

and
∂φ

∂τ
(0,x) = 0. (2.2.6)

We have an other boundary condition

φ(τ,±∞)→ φfv (2.2.7)

so as the Euclidean action to be finite.
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Solutions of these equations are not invariant under spatial translations. How-

ever, they are invariant under four-dimensional Euclidean rotations (O(4) symme-

try) i.e. the solution φ is a function of ρ only, where

ρ =
√
τ 2 + x2. (2.2.8)

This is proven in [25].

Now, we can use an O(4) symmetric polar-coordinate system and we can

simplify the equation of motion to

d2φ

dρ2
+

3

ρ

dφ

dρ
− V ′(φ) = 0. (2.2.9)

The Euclidean action of (2.2.1) takes the form

SE(φ) = 2π2

∫ ∞
0

dρ ρ3
[

1

2

(
dφ

dρ

)2

+ V (φ)

]
. (2.2.10)

The boundary conditions become also simpler with the (2.2.5) and (2.2.7)

become a single condition

φ(ρ→∞)→ φfv (2.2.11)

and ensure that the action of (2.2.10) converges. Furthermore, φ(ρ) should not be

singular at the origin so

φ̇(0) = 0, (2.2.12)

where dot indicates differentiation with respect to the radial parameter, ρ (φ̇ = dφ
dρ
).

Note that we can correspond the equation (2.2.9) with the motion of a particle

rolling down an inverted potential, −V (φ), with ρ being the time and the second

term behaving like a time dependent friction term. We understand from the
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boundary conditions that the particle is released initially at rest. We also tune

the position at time zero so as the particle will come to rest at φfv at time infinity.

Evidently, there is no a unique solution to these equations as it is a two-

point boundary value problem. For instance, one solution is φfv, the false vacuum

solution and an other solution that do not satisfy the boundary conditions is φtv,

with the φ being constant in the true vacuum. However, in flat space there is a

unique non-trivial solution.

2.3 The Overshoot/Undershoot Method without

Gravity

In this section, we will use the shooting method to solve (2.2.9) having in mind that

the potential appears inverted since we did a Wick rotation. We should choose

properly the initial field φ(0) so as to satisfy the (2.5.13). Noted that, if φ(0) is

between the range (φfv, φtv), the solution will roll towards the top of the barrier,

φbar, and will eventually cross it. Obviously, φ(0) has to be at the range (φbar, φtv)

for satisfying the (2.5.13). The solutions, which start from φfv or close to φfv, will

fall back but they cannot reach φfv due to the friction removing energy term.

Therefore, if φ(0) is between the range (φbar, φtv), there are two possibilities.

The first possibility is the ‘undershoot’ solution: if φ(0) is too close to φbar, the

solution will not have enough energy to climb to φfv and it will oscillate forever

around φbar losing its energy. The contribution of this solution to the action is

infinite. The other possibility is the ‘overshoot’ solution: if φ(0) is closer to φtv, the

solution will overshoot and pass φfv at some finite time. Then, the solution may

oscillate about an other barrier, escape to infinity, or reflect backwards depending

on the potential. Thus, we understand that by continuity, there must be an
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Figure 2.3.1: Overshoot, undershoot and bounce solutions of the equation
(2.2.9). This is the case in which the overshoot solution oscillates about an
other barrier.

intermediate initial position for which the solution comes to rest at φfv. This is

the ‘bounce’ solution that dominates vacuum decay.

In order to determine this bounce solution, firstly, we determine one initial

value φ(0) for an overshoot solution and one for an undershoot solution. After-

wards, using the method of bisection, we reduce the range between them and we

know that the initial value φ(0) of the bounce solution is in this range. We repeat

the same procedure so as to obtain more accurate bounce solution.

Overshoot, undershoot and bounce solutions are shown in figure 2.3.1. It is

worth noting that the exact bounce solution cannot be determined numerically.

We also note that these are the solutions of the equation (2.2.9) with a potential

that has at least two minimums and two maximums since the overshoot solution

starts near the true vacuum (first maximum) passes the barrier (first minimum)
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and false vacuum (second maximum) and then oscillates about a second minimum.

The undershoot solution oscillates about the barrier and the graph illustrates an

undershoot solution that is not near the bounce solution. Obviously, we can find

an undershoot solution closer to the bounce solution.

Uniqueness of Flat Space Bounces

Now, we will prove the aforementioned statement that there is a unique non-

trivial solution in flat space using a single energy argument first given by Coleman

[19]. Changing the form of the equation (2.2.9) to

d

dρ

(
φ̇2

2
− V (φ)

)
= −3

ρ
φ̇2 , (2.3.1)

we notice that the friction term is always negative. Consequently, the energy of

the system is monotonically decreasing. When we say the energy of the system,

we mean the terms in the brackets of the left hand side of the equation (2.3.1).

Although, this is different from the common definition of the energy as the poten-

tial has opposite sign due to Wick rotation, it does not affect our result, that is,

the monotonically decreasing of the energy. For instance, when φ(0) = φ1 and we

have an undershoot solution as there is no enough energy to reach φfv, all solutions

with φ(0) between the range (φbar, φ1) will not have enough energy, and thus they

will be undershoot solutions. A bounce solution always lies between a range of

undershoots and a range of overshoots so we will not have a bounce solution with

φ(0) closer to the barrier as it is always an undershoot solution. Therefore, we

conclude that the bounce solution is unique because if there is a second solution,

overshoot solutions are required on one side of it.
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2.4 Thin-Wall Approximation

We can compute an approximate solution φaprx in the limit of small energy-density

difference between the true and false vacuums [12, 19]. Let us consider a positive

number

ε = V (φfv)− V (φtv) (2.4.1)

and a symmetric potential

V0(φ) = V0(−φ) (2.4.2)

with two minimums at points ±a0. Therefore, in this case, we have

φfv ≈ −a0, (2.4.3)

φtv ≈ a0 (2.4.4)

to the lowest non-trivial order in ε. We can break the symmetry of the potential

by adding to it a term proportional to ε

V = V0 + ε(aφ+ b) , (2.4.5)

where a and b are constants. Obviously, if the ε term vanishes, we will not have

vacuum decay due to degeneracy.

Now, we will show that we can calculate the decay exponent B of the equation

(1.2.3) in closed form if we consider the thin-wall approximation.

From the mechanical side of view, we should choose the initial position of the

particle φ(0) near the true vacuum and thus, the particle remains a lot of time

there. In some large time ρ = R, the particle starts rolling down and then it goes

to false vacuum and stays there forever. From the field-theoretic side of view, the

solution looks like a large spherical four-dimensional bubble with a radius equal to

R. Inside the bubble there is the true vacuum state and outside the false vacuum
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state with a thin wall separating these two states. This wall has very small thick

compared to the radius R and this is the reason why the approximation is called

"thin-wall approximation".

We can discard the term which is proportional to ε in

φ̈+
3

ρ
φ̇− V ′(φ) = 0, (2.4.6)

since we are in the limit of small energy-density difference between the vacuums.

When ρ ≈ R, we can neglect the term which is proportional to φ̇ as we are in

the limit of large ρ = R. Away from the wall, φ̇ is also negligible. Therefore, the

approximate φ obeys the equation

d2φ

dx2
= V ′0(φ) , (2.4.7)

where x is the spatial variable in one-dimensional theory.

Now, we can solve the equation (2.4.7) analytically. First, we integrate it

1

2

(
dφ

dx

)2

= V0(φ) + c, (2.4.8)

where c is a constant that can be specified by the condition φ(∞) = φfv. The

approximate solution φaprx is defined by

x−R =

∫ φaprx

[φtv+φfv]/2=0

dφ

[2(V0(φ)− V0(φfv))]
1
2

, (2.4.9)

where we choose R to be the point at which the field φ is the average of its two

extreme values. Evidently, the form of the action of this solution is

Saprx =

∫
dx

[
1

2

(
dφ

dx

)2

+ V0(φ)− V0(φfv)

]
(2.4.10)

=

∫ a0

−a0
dφ

[
2(V0(φ)− V0(φfv)

] 1
2

.



Chapter 2 Vacuum Decay without Gravity 18

Now, we will compute the only thing missing from this description, the value

of radius R, by calculating the value of coefficient B in closed form. The four-

dimensional action is

SE(φ) = 2π2

∫ ∞
0

dρ ρ3
[

1

2

(
dφ

dρ

)2

+ V (φ)

]
. (2.4.11)

At first, we should realize that this coefficient is divided into three parts:

outside the wall, inside the wall and the wall itself. As we know, outside the wall

(ρ ∈ (R,∞)) φ = φfv so

Boutside = 0, (2.4.12)

inside the wall (ρ ∈ (0, R)) φ = φtv and thus:

Binside = −1

2
π2R4ε. (2.4.13)

Within the wall, the coefficient is

Bwall = 2π2R3

∫
dρ

[
1

2

(
dφ

dρ

)2

+ V0(φ)− V0(φfv)

]
(2.4.14)

= 2π2R3Saprx. (2.4.15)

The total B is

B = −1

2
π2R4ε+ 2π2R3Saprx. (2.4.16)

Note that, we can determine the value of R by finding the point that the coefficient

B is stationary
dB

dR
= −2π2R3ε+ 6π2R2Saprx = 0. (2.4.17)

Hence,

R = 3Saprx/ε, (2.4.18)

and this can justify our approximation since when ε becomes small, R becomes
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Figure 2.5.1: Simple polynomial potential of the equation (2.5.1)

large. By determining the value of R, we can obtain the desired closed-form

expression for the coefficient B in this approximation

B = 27π2S4
aprx/2ε

3. (2.4.19)

From this expression, we can compute now the probability of the false vacuum

decay.

2.5 Application to a Polynomial Potential

In this section, we apply some notions that we discussed in the previous sections

and we present numerical calculations of the bounce solutions. We firstly consider

a simple polynomial potential

V (φ) = −1

2
φ2 +

1

4
φ4 − 0.1φ (2.5.1)

that is demonstrated in figure 2.5.1.
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Afterwards, we determine the exact values of true and false vacuum by finding

the points of the two minimums of the potential. The true and the false vacuums

are at

φtv = 1.04668053 (2.5.2)

and

φfv = −0.94564927, (2.5.3)

respectively. In this case, the equation of motion of (2.2.9) takes the form

d2φ

dρ2
+

3

ρ

dφ

dρ
= −φ+ φ3 − 0.1 . (2.5.4)

Now, using the overshoot/undershoot method, we try to find the initial con-

dition φ(0) of the solution having in mind that φ̇(0) = 0. Specifically, the bounce

solution can be computed by means of a binary search on the boundaries between

overshoot and undershoot regions as it was described in section (2.2). Hence, we

determine that

φundershoot(0) = 1.046680379, (2.5.5)

φovershoot(0) = 1.046680380 (2.5.6)

and thus, the φ(0) for the exact solution is between these two values. We can see

the undershoot and overshoot solutions for this example in figure 2.5.2. We notice

that the undershoot solution oscillates around the top barrier and the overshoot

solution goes over the false vacuum and to infinity. Of course, using this approach

we never find a solution that actually satisfy the boundary condition of the equa-

tion (2.5.13), and instead, we try to find a solution that stays close to the false

vacuum as long as possible. We consider that the bounce solution is the same

to overshoot and undershoot solutions up to the point that these two solutions

become different. Obviously, in this case, this point is ρ = 18.
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Figure 2.5.2: The undershoot and overshoot solutions for the potential of the
equation (2.5.1)

Finally, we calculate the decay exponent B for the undershoot and overshoot

solution. This exponent will help us to compute the probability of the false vacuum

decay. We apply this example to equations (1.2.10) and (2.2.10) having in mind

that we should integrate up to ρ = 18 and we determine the values of coefficient

B as

Bundershoot = 12358.1, (2.5.7)

Bovershoot = 12359.2 . (2.5.8)

It is worth mentioning that these two results are the same up to a numerical error.

Thin-Wall Approximation

Now, we use the thin-wall approximation in order to verify our previous solu-

tion. As we mentioned, we can find our solution analytically in this approximation.

The first thing that we should do is to determine the parameter ε of the equation

(2.4.1) for this simple polynomial potential

ε = 0.199747. (2.5.9)
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As we discussed in the previous section, we neglect some terms in equation (2.5.4)

and now our approximate equation of motion is

d2φ

dρ2
= −φ+ φ3, (2.5.10)

like the equation (2.4.7). Note that, the symmetric potential is a double well

potential

V0(φ) = −1

2
φ2 +

1

4
φ4, (2.5.11)

with two minimums at φ = ±1. Then, we integrate the equation (2.5.10) and we

end up with the following equation

1

2

(
dφ

dρ

)2

= −1

2
φ2 +

1

4
φ4 +

1

4
, (2.5.12)

with the constant of integration equal to 1/4 due to the boundary condition

φ(ρ→∞)→ φfv. (2.5.13)

When we manipulate this equation, it takes this form

ρ−R = −
∫ φaprx

0

√
2 dφ

1− φ2
. (2.5.14)

Writing the solution as an integral of an odd function is the real benefit of the

thin-wall approximation. For this specific potential, we can solve analytically this

integration

ρ−R = −
√

2 arctanh(φaprx). (2.5.15)

Hence, we get the solution of the thin wall approximation

φaprx(ρ) = − tanh

(
ρ−R√

2

)
. (2.5.16)
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Figure 2.5.3: The thin-wall solution compared with the undershoot and over-
shoot solutions

We can also determine the value of R numerically from equation (2.4.18)

R = 14.160066830, (2.5.17)

and thus,

φaprx(ρ) = − tanh

(
ρ− 14.160066830√

2

)
. (2.5.18)

The approximate solution is shown in figure (2.5.3) where we can compare it with

undershoot and overshoot solutions.

By calculating the action Saprx of this approximate solution

Saprx =

∫ 1

−1
dφ

[
1

2
(1− φ2)

]
, (2.5.19)

and by using the equation of the closed-form expression for the coefficient B

B = 27π2S4
aprx/2ε

3, (2.5.20)

we can find the numerical value of the decay exponent B

Bapproximate = 13209.6 . (2.5.21)
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We notice that it is almost the same to the overshoot and undershoot decay

exponent and thus, we verify our solution. The difference between the three decay

exponents is due to numerical errors.



Chapter 3

Vacuum Decay in Curved Spacetime

3.1 Barrier Penetration in Field Theory with Grav-

ity

In this section, we extent the theory of the previous chapter to a theory of a scalar

field interacting with gravity. Many authors conducted research on this topic,

especially how gravity affects vacuum bubbles [13, 26, 27, 28, 29, 30].

The expression for the probability of decay of the false vacuum per unit time

per unit volume in this theory is the same as before i.e. the same to the equation

(1.2.3). However, for computing the coefficients A and B, we consider the following

Euclidean action [31]

SE[φ, gµν ] =

∫
d4x
√
|detg|

[
1

2
∇µφ∇µφ+ V (φ)−

M2
p

2
R

]
, (3.1.1)

where Mp is the “reduced Planck mass”, Mp = 1√
8πGN

, and R is the Ricci scalar.

Specifically, coefficient A can be determined by calculating functional determinant

fluctuations around a bounce solution of this action. This prefactor A is known

in the flat-space case [32], but has yet to be computed in a curved background.

25
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The decay exponent B is the difference of the action of a bounce solution and the

action of the “false-vacuum solution”

B = S[φ, gµν ]− S[φfv, gfvµν ]. (3.1.2)

The “false-vacuum solution” is a solution where the field is always constant and it

is equal to the false vacuum state. As before, the bounce solution is the solution

that contributes to the decay since it has the smallest action and thus, the smallest

decay exponent B. In order to find the bounce solution, we need to solve the

Euclidean equations of motion obeying appropriate boundary conditions.

In the action of the equation (3.1.1), we can add a cosmological constant but

here we absorb this constant in the potential V (φ). We also neglect boundary

terms since we can add a Gibbons-Hawking-York term to the action [33]. It is

worth mentioning that these boundary terms do not contribute to the decay rate

as the two solutions are identical on the boundary of the Euclidean spacetime [34].

The aforementioned Euclidean equations of motion of the action (3.1.1) that

should be solved are

∇µ∇µφ− V ′(φ) = 0, (3.1.3)

Rµν −
1

2
Rgµν =

1

M2
P

(
∇µφ∇νφ−

1

2
gµν

[
1

2
∇ρφ∇ρφ+ 2V (φ)

])
. (3.1.4)

At this point, we assume that the bounce is invariant under four-dimensional

rotations so as to simplify these equations. We can assume this O(4) rotational

symmetry as there is no reason for gravitation to break the symmetries of the

theory in the absence of gravity [35, 36]. Under this assumption, the form of the

Euclidean metric is

ds2E = dρ2 + a(ρ)2dΩ2
3 , (3.1.5)
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where dΩ2
3 is the unit of three-sphere metric, ρ is the radial coordinate and a(ρ)

gives the radius of curvature of each three-sphere of coordinate radius ρ. It is

worth mentioning that by assuming O(4) symmetry, we reduce our ten unknown

functions of four variables to one unknown function of one variable. We also reduce

the equations of motion to

φ̈+
3ȧ

a
φ̇− V ′(φ) = 0, (3.1.6)

ȧ2 = 1− a2

3M2
P

(
− φ̇2

2
+ V (φ)

)
, (3.1.7)

ä = − a

3M2
P

(
φ̇2 + V (φ)

)
, (3.1.8)

where dots represent differentiation with respect to the radial coordinate ρ. Evi-

dently, when you differentiate the equation (3.1.7), which is similar to Friedmann

equation of cosmology but with different interpretation, the result is the equation

(3.1.8). The latter is preferable as we do not need to choose the sign of the equa-

tion and thus, it is easier to use it numerically. Not choosing the sign is important

since a changes continuously sign in de Sitter space.

As we assume O(4) symmetry, the surfaces of constant ρ have always positive

curvature and of course, they are three-dimensional spheres. Therefore, the first

term of the equation (3.1.7) is always one and the “spatial” curvature is always

positive. However, the full four-dimensional curvature can be either positive or

negative. The form of the Ricci scalar is

R =
φ̇2 + 4V (φ)

M2
P

=
6(1− ȧ2)

a2
− 6ä

a
. (3.1.9)

We notice here that the curvature can be negative when the potential becomes

negative. This can happen in the interior of the bubble where the true vacuum

state is.
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Additionally, for these equations of motion, after some manipulation, the

action is given by

S[φ, a] = −2π2

∫ ρmax

0

dρ a3(ρ)V (φ(ρ)), (3.1.10)

and thus, the decay exponent B is

B =
24π2M4

P

V0
− 2π2

∫ ρmax

0

dρ a3(ρ)V (φ(ρ)) , (3.1.11)

where V0 = V (φfv) is the value of the potential in the false vacuum state and ρmax

is the maximum value that the radial coordinate can be in this coordinate system.

It may be either finite or infinite.

Boundary Conditions

Now, we impose boundary conditions in order to be sure that the decay ex-

ponent B is finite. At first, we impose a(0) = 0 so as to define that ρ = 0 is

at the centre of the bounce. Specifically, we know that a describes the radius of

the curvature of a surface with a specific ρ and the surface at ρ = 0 is a single

point. In addition, we desire smoothness of the solution at the a(0) = 0 coordinate

singularity so we imply φ̇(0) = 0 like in the flat space. Finally, we require a second

boundary condition for the field φ so as our problem is fully specified.

For this boundary condition, there are two cases depending on the sign of the

potential in the false vacuum, V (φfv). In the first case, when V (φfv) is positive

and the solution is compact, there is a finite point ρmax > 0 where a(ρmax) = 0.

Therefore, we impose

φ̇(ρmax) = 0, (3.1.12)

since we also want a smooth solution at this second coordinate singularity. Note

that, this compact manifold is a three-sphere where ρ = 0 can be the north pole

and ρ = ρmax can be the south pole. In the second case, when V (φfv) is negative
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or equal to zero, the the solution is non-compact and we require

φ(ρ→∞)→ φfv, (3.1.13)

in order to have a finite decay exponent B. Imposing this boundary condition, we

require a3(ρ)V (φ(ρ)) to approach zero sufficiently fast since a(ρ→∞) is non-zero

so as to have a finite decay exponent B.

3.2 Types of Gravitational Solutions

Flat False Vacuum Bounce

When the potential in the false vacuum is equal to zero, V (φfv) = 0, we have

a non-compact solution, the flat false vacuum bounce. As we mentioned in the

previous section, this is the case in which the boundary conditions are φ̇(0) = 0

and φ(ρ → ∞) → φfv. Therefore, this solution is quite similar to the solution in

the absence of gravity as they have similar properties.

We notice that at large ρ, the field approaches the false vacuum state and

thus, a(ρ)→ ρ which transforms the metric to the flat space metric. This happens

outside of the bounce. Hence, the gravity is restricted inside the bounce where the

scalar field is the deepest so we expect more significant gravitational corrections.

Inside the bounce, the space is an anti-de Sitter space with a negative Ricci scalar

as the potential is less than zero. For this reason, there is a possibility for a bubble

to experience a gravitational collapse.

Hawking-Moss Bounce

Hawking-Moss solution is a simple solution which is constant at the top of the

barrier [37]

φ(ρ) = φHM. (3.2.1)
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Solving the equation (3.1.7), we find

a(ρ) =
1

HHM
sin
(
HHMρ

)
, (3.2.2)

where H2
HM = V (φHM)

3M2
P

. The decay exponent B for this solution is trivial

B = S[φHM ]− S[φfv] = 24π2M4
P

(
1

V0
− 1

V (φHM)

)
. (3.2.3)

Now, when ∆V (φHM) = |V (φHM)− V0| << |V0|, we can compute an approximate

B

B ≈ 8π2∆V (φHM)

3H4
HM

. (3.2.4)

We observe that this is the ratio of the energy that is required to excite a sphere

with Hubble volume (a volume with radius 1
HHM

) to the top of the barrier over the

Gibbons-Hawking temperature HHM
2π

. Therefore, the Hawking-Moss solution can

be explained by a thermal interpretation and it has a completely thermal character

[38].

Coleman-de Luccia Bounce

Now, when V (φfv) > 0, there may or may not exist a non-trivial solution that

satisfies the boundary conditions φ̇(0) = 0 and φ̇(ρmax) = 0. The existence of this

solution depends on the form of the potential and it is called Coleman-de Luccia

solution [12]. We define that this non-trivial bounce crosses the barrier only once.

CdL solution only satisfies φ̇ = 0 at the boundaries and nowhere else and thus

it is a monotonic bounce between φ(0) and φ(ρmax). It is worth mentioning that

according to Weinberg and Hackworth [39], some shapes of potential can lead to

multiple CdL bounces crossing the barrier only once.

Oscillating Bounce

There is also a bounce that satisfies the same boundary conditions as a CdL

solution (φ̇(0) = 0 and φ̇(ρmax) = 0) but this bounce crosses the barrier more than
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once. This solution is called the Oscillating bounce and it is not monotonic in the

range (0, ρmax) i.e. there are additional turning points between the aforementioned

interval.

At first glimpse, it seems that such solution contribute to the probability of the

decay rate. However, Oscillating bounce has more than one negative eigenvalue in

the space of linear fluctuations so it does not contribute to the vacuum decay [40,

41, 42]. Note that, the number that bounce crosses the barrier is the number of

the negative modes of the bounce. Otherwise, CdL solution has only one negative

mode and it can contribute to the decay rate.

3.3 The Critical Threshold and the Existence of

Bounce Solutions

In this section, we present the critical Hubble rate and we discuss when each type

of solution starts existing. At first, we define the background Hubble rate as

H2 =
V0

3M2
P

(3.3.1)

and the critical background Hubble rate as

H2
crit =

V0crit

3M2
P

= −V
′′(φHM)

4
− [V (φHM)− V0]

3M2
P

, (3.3.2)

where φHM is the Hawking-Moss solution. The critical Hubble rate is very im-

portant in the subject of vacuum decay in de Sitter space since below of it, the

Hawking-Moss solution starts having additional negative modes so it stops con-

tributing to the tunneling process [38, 43]. As we mentioned before, when we have

more than one negative mode there is always a bounce with lower action which

contribute to vacuum decay.
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Therefore, when H < Hcrit, CdL solutions always exist and dominate the

decay rate of a false vacuum. However, when H > Hcrit, CdL solutions may or

may not exist and this depends on the form of the potential. For instance, in the

potential of Standard Model, there are CdL solutions above the critical threshold.

If there are not any CdL solutions when H > Hcrit, the Hawking-Moss solution

controls quantum tunneling. In this case, by continuity, we conclude that the

CdL solution should tend to the Hawking-Moss solution when the Hubble rate H

approaches its critical value. In the other case, where CdL solutions exist when

H > Hcrit, we know that CdL solutions must me more than one [31].

According to [31] and [44], there is a quantity ∆ that can determine if there

are CdL solutions when H > Hcrit. This quantity has the following form

∆ = −(φ(0)− φHM)2

14H2

[
V (4)(φHM) +

V (3)(φHM)2

12H2

]
, (3.3.3)

where V (4)(φHM) and V (3)(φHM) are the third and fourth derivatives of the potential

at the top of the barrier. If this quantity is positive, CdL solutions exist for

H > Hcrit. For instance, this is the case for the Standard Model potential.

3.4 The Overshoot/Undershoot Method with Grav-

ity

In this section, we discuss the shooting method with gravity which is a bit trickier

than the shooting method without gravity. The main difference is that in curved

space, the friction term can also be negative and it is transformed to an anti-

friction term that gives energy to the system. This is the case when ȧ < 0 in the

following equation
d

dρ

(
φ̇2

2
− V (φ)

)
= −3ȧ

a
φ̇2. (3.4.1)
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Therefore, the statement that if φ(0) is near the top of the barrier, we will have

an undershoot solution, is not valid anymore.

In general, it is common that when you choose a specific φ(0), you have a

solution of equations of motion that does not satisfy the bounce boundary condi-

tions. Therefore, we tune the initial value φ(0) to find undershoot and overshoot

solutions in the same way as in the section (2.3).

In the presence of gravity, overshoot and undershoot solutions have different

notion. The former is a noninstanton solution that diverges on the opposite side

of the barrier to that on which they start and the latter diverges on the same

side of the barrier. An easier way to consider overshoot and undershoot solutions

is to define them by the number of times N that they cross the barrier. Balek

and Demetrian argue that if we have two noninstanton solutions and one of them

crosses the barrier one more time than the other (N+1), continuity demands a

bounce solution between them which crosses the top of the barrier N times [45].

Therefore, we can find bounce solutions by the method of bisection.

As we are only interested in CdL solutions since they contribute to the vac-

uum decay, we concentrate only to solutions that cross the barrier once or twice

because CdL solution crosses the barrier once. In this case, we define the overshoot

solution as a noninstanton solution that does not undergo φ̇ = 0 before the second

coordinate singularity, where a = 0, i.e. its derivative φ̇ has no nodes since it is

a monotonic solution. We also define the undershoot solution as a noninstanton

solution that has derivative φ̇ with one node.



Chapter 4

Vacuum Decay with Fixed De Sitter

Background

4.1 Barrier Penetration in Field Theory with Fixed

De Sitter Background

In this chapter, we discuss the notions of the previous chapter but now with a fixed

de Sitter background. Obviously, the calculation of solutions in a fixed background

is simpler as we assume that the background is unaffected by back-reaction of the

bounce solution.

We use the fixed background approximation by assuming that the function of

a(ρ) takes the same form of a(ρ) of the false-vacuum solution

a(ρ) =
1

H0

sin(H0ρ), (4.1.1)

where

H2
0 =

V0
3M2

P

, (4.1.2)

34
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where again V0 = V (φfv). In this way, we manage to ignore the effects of back-

reaction from the bounce solution on the metric.

The form of the Euclidean action is the same as the equation (3.1.1), but

now the Ricci scalar R has a constant value. Therefore, we can ignore it as we

are interested only in the difference of two actions in order to calculate the decay

exponent B by considering the equation (3.1.2).

Now, we have only one differential equation

∇µ∇µφ− V ′(φ) = 0, (4.1.3)

and by assuming O(4) rotational symmetry, this equation takes the following form

φ̈+
3ȧ

a
φ̇− V ′(φ) = 0. (4.1.4)

Substituting (4.1.1) in the action and assuming O(4) symmetry, we get the follow-

ing simple form of the action

S[φ, a] = 2π2

∫ ρmax

0

dρ
sin3(H0ρ)

H3
0

(
φ̇2

2
+ V (φ(ρ))

)
, (4.1.5)

where now the radial coordinate ρmax is finite as we consider non-zero, positive V0

and thus we have compact solutions. The value of ρmax is equal to

ρmax =
π

H0

, (4.1.6)

since in this point we have coordinate singularity (a( π
H0

) = 0) for the first time

after a(0) = 0. Hence, the decay exponent B is

B = 2π2

∫ π
H0

0

dρ
sin3(H0ρ)

H3
0

(
φ̇2

2
+ V (φ(ρ))

)
− 24π2M4

P

V0
. (4.1.7)
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As our solution is compact, the boundary conditions for φ are

φ̇(0) = 0, (4.1.8)

φ̇

(
π

H0

)
= 0. (4.1.9)

However, we use shooting method and we tune the initial value φ(0) in order to

get overshoot and undershoot solutions as we mentioned in the previous chapter.

In this case, the expression of the decay exponent B of the Hawking-Moss

solution is different from the general case in which a(ρ) is dynamical. As we know,

Hawking-Moss solution is a constant solution at the top of the barrier. Now, in-

stead of considering this equation (3.2.2), we assume this equation (4.1.1) as we

demand a fixed de Sitter background. Consequently, according to the equation

(4.1.7), the decay exponent B of the Hawking-Moss solution with a fixed back-

ground takes the form

B = 24π2M4
P

(
V (φHM)− V0

V 2
0

)
. (4.1.10)

An other notion that is slightly different in the case of the fixed background

approximation is the critical Hubble rate. Now, it has the following form [31]

H2
crit =

V0crit

3M2
P

= −V
′′(φHM)

4
, (4.1.11)

where φHM is the Hawking-Moss solution.

4.2 Application to a Polynomial Potential

The aim of this section is to apply the notions of the previous section to a polyno-

mial potential so as to present the bounce solutions and the decay exponents B in
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a fixed de Sitter background. We study the following simple polynomial potential

V (φ) = −1

2
φ2 +

1

4
φ4 − 0.1φ+ V1, (4.2.1)

where V1 is a constant term. The true and the false vacuums as well as the position

of the top of the barrier are the same as in section (2.5) since the only difference

between the two potentials is a constant term. Note that

V1 > 0.152639 (4.2.2)

in order for the false-vacuum potential to be a non-zero, positive potential. There-

fore, we have a compact space and CdL solutions. We also note that in this section,

we work in units that MP = 1.

Using the equation (4.1.11), we can determine the value of Hcrit in this simple

potential

Hcrit = 0.492285. (4.2.3)

Therefore, we can calculate the value of V0crit

V0crit = 0.727034 (4.2.4)

for the false-vacuum potential. When we apply this potential to the quantity ∆

in equation (3.3.3), we notice that this quantity is negative so we conclude that

CdL solutions do not exist for H > Hcrit.

Following the shooting method that was discussed in previous sections, we

determine the CdL solutions for various values of V0 of the polynomial potential

(4.2.1). Specifically, the constant term V1 is varied so as to get different values of

false-vacuum potential V0. These solutions are presented in figure 4.2.1. From the

aforementioned figure, we observe that as V0 → V0crit from bellow, the amplitude
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Figure 4.2.1: CdL solutions for various values of V0 of the polynomial potential
(4.2.1) in a fixed background

of the solution decreases and reaches zero as V0 is raised past the critical value.

In other words, in the limit of V0 → V0crit from bellow, CdL solution approaches

smoothly the constant Hawking-Moss solution. On the flip side, in the limit of

V0 → 0 (V1 → 0.152639), the amplitude of CdL solution increases and approaches

the flat-space solution. This phenomenon is apparent in figure 4.2.2. Although, we

know that the CdL solution of V0 = 0 should be exactly the same as the flat-space

solution, we can notice from figure 4.2.2 that they start deviating from each other

when we go to higher ρ. Evidently, the numerical effects cause this deviation since

we use different set of equations to determine these two solutions.

It is worth mentioning that each CdL solution with a positive value of φ(0)

corresponds to a CdL solution with a negative initial value. These two solutions

have the same value of decay exponent B and they are considered as the same

solution. This has to do with a symmetry in our compact manifold, the symmetry

between the south and the north pole of the sphere.

In addition, the decay exponents B for various values of V0 are computed

and illustrated in two graphs. The first graph 4.2.3 shows the relation between

the decay exponent B and the false-vacuum potential V0. The second graph 4.2.4
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Figure 4.2.2: CdL solution in the limit of V0 → 0 (V1 → 0.152639) compared
to the flat-space solution of the same potential
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Figure 4.2.3: Decay exponent B vs false-vacuum potential V0 graph in a fixed
background. The dashed blue vertical line indicates the position of V0crit.

demonstrates the difference between the decay exponent of Hawking-Moss solution

and CdL solution for a given false-vacuum potential V0. The dashed blue vertical

line indicates the position of V0crit.

Approaching the critical threshold, we notice that the decay exponent B of

CdL solution merges with the decay exponent B of Hawking-Moss solution. From

figure 4.2.4, we can verify the previous state as we observe that when V0 → V0crit,

the difference of the two exponents smoothly tends to zero. The reason for this
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Figure 4.2.4: Difference between the decay exponent of Hawking-Moss solution
and CdL solution vs false-vacuum potential V0 graph in a fixed background. The
dashed blue vertical line indicates the position of V0crit.

is the fact that no CdL solution exists and the Hawking-Moss solution dominates

above V0crit.

In this section, we verify the idea that bellow Hcrit, CdL solutions domi-

nate and as we reach the critical threshold, CdL solutions smoothly merge the

Hawking-Moss solution until they stop existing at Hcrit. Consequently, above Hcrit,

Hawking-Moss solution dominates. We call this phenomenon the CdL-Hawking-

Moss transition and as we mentioned again this is not a universal phenomenon.



Chapter 5

Vacuum Decay with Dynamical

Gravity

5.1 The Overshoot/Undershoot Method in De Sit-

ter Space

At this point, we present the overshoot/undershoot method in de Sitter space with

dynamical gravity i.e. we do not assume the fixed background approximation. Of

course, now, the shooting method is more difficult as we have to determine not only

the initial value φ0 = φ(0) but also the final value φ1 = φ(ρmax). The feature that

makes this shooting method harder is that there are two coordinate singularities,

a(0) = 0 and a(ρmax) = 0, from which the second one is movable. Note that, in

order to avoid divergences, we have to impose φ̇ = 0 at both of them.

Now, we describe the procedure for finding a bounce solution in de Sitter

space with dynamical gravity which demands two shooting methods in both sides.

At first, we choose arbitrary values for φ0 and φ1. The value of φ0 has to be in the

range (φfv, φbar) and the value of φ1 has to be in the range (φbar, φtv). Afterwards,

41
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we calculate two solutions φtrue and φfalse with the initial conditions φtrue(0) = φ1,

φ̇true(0) = 0 and φfalse(0) = φ0, φ̇false(0) = 0. These two solutions do not satisfy

the required boundary conditions.

Therefore, we use shooting method in both solutions as we described in section

(3.4). Then, we match the two sides of the solution in order to find the entire

solution. The point at which the two solutions connect can be chosen arbitrarily

but here, we choose a point where ȧ(ρmid) = 0 which always exist as our solution

in de Sitter space is compact.

Finally, we can compute ρmax = ρmid,true+ρmid,false. The entire bounce solution

is: φtrue(ρ) when ρ is between (0, ρmid,true) and φfalse(ρmax − ρ) when ρ is between

(ρmid,true, ρmax). We note that φfalse is flipped by the transformation ρ→ ρmax − ρ

so as to match with φtrue. Similarly, we can calculate a(ρ) and thus we are ready

to calculate the action. This procedure helps us to avoid a(ρmax) = 0 coordinate

singularity as we integrate solutions from each side up to their middle. If this

does not occur, we will integrate into a singularity and we will get an unstable

numerical result.

5.2 Application to a Polynomial Potential

In this section, we apply the ideas of chapter 3 with dynamical gravity to a poly-

nomial potential which has the following form

V (φ) = −1

2
φ2 +

1

4
φ4 − 0.1φ+ V1, (5.2.1)

where V1 is a constant term. The true and the false vacuums as well as the

position of the top of the barrier are again the same as in section (2.5) since the

only difference between the two potentials is a constant term. We work once more

in units that MP = 1.



Chapter 5 Vacuum Decay with Dynamical Gravity 43

Firstly, we calculate the false-vacuum critical value but now we use the equa-

tion (3.3.2) as we consider gravitational back-reaction

V0crit = 0.569369. (5.2.2)

The corresponding critical Hubble rate is

Hcrit = 0.435648. (5.2.3)

Afterwards, we use the overshoot/undershoot method that was described in

the previous section to solve these two equations of motion

φ̈+
3ȧ

a
φ̇− V ′(φ) = 0, (5.2.4)

ȧ =

√
1− a2

3M2
P

(
− φ̇2

2
+ V (φ)

)
, (5.2.5)

where dots represent differentiation with respect to the radial coordinate ρ. Note

that, we choose the positive root in the latter equation. In this way, we calculate

the solution up to ρmid where ȧ(ρmid) = 0. Knowing ρmid, we can modify the

equation (5.2.5)

ȧ = sgn(ρmid − x)

√
1− a2

3M2
P

(
− φ̇2

2
+ V (φ)

)
, (5.2.6)

where sgn(x) is the sign function, which is -1 for negative numbers and +1 for

positive numbers. Consequently, using the shooting method in both sides, we

determine φ0 = φ(0) and φ1 = φ(ρmax) for each solution. Finally, we match

together the solutions and we get entire CdL solutions for various values of false-

vacuum potential V0. These solutions are illustrated in figure 5.2.1.

Again, we conclude that the amplitude of CdL solutions decreases as V0 in-

creases. In the limit of V0 → V0crit from below, the amplitude of CdL solutions
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Figure 5.2.1: CdL solutions for various values of V0 of the polynomial potential
(5.2.1) with gravitational back-reaction
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Figure 5.2.2: Decay exponent B vs false-vacuum potential V0 graph with
gravitational back-reaction. The dashed blue vertical line indicates the position
of V0crit.

tends smoothly to zero and thus CdL solutions approach the constant Hawking-

Moss solution. An other important conclusion is that there are no CdL solutions

above the critical threshold of the false-vacuum potential.

We also compute the decay exponents B for a given false-vacuum potential

V0. Figure 5.2.2 represents the relation between the decay exponent B and false-

vacuum potential V0 while figure 5.2.3 indicates the difference between B of the
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Figure 5.2.3: Difference between the decay exponent of Hawking-Moss solution
and CdL solution vs false-vacuum potential V0 graph with gravitational back-
reaction. The dashed blue vertical line indicates the position of V0crit.

Hawking-Moss solution and B of CdL solution for a specific value of V0. The

dashed blue vertical line indicates the position of V0crit.

We notice once more that the decay exponent B of CdL solution merges

smoothly with the decay exponent B of Hawking-Moss solution when we ap-

proach the critical threshold from below. We verify this with figure 5.2.3 since

the difference between these two decay exponents B tends smoothly to zero when

V0 → V0crit.

The important conclusion of this section is that when we have gravitational

back-reaction, above Hcrit, there are no CdL solutions and thus Hawking-Moss

solution dominates. Below the critical threshold, CdL solutions dominate. This

conclusion is the same as the conclusion of the case of a fixed background.



Chapter 6

When is Dynamical Gravity

Necessary?

In this last chapter, varying some parameters of the potential, we compare the

solutions with a fixed de Sitter background with the solutions with dynamical

gravity. When we use the fixed background approximation, there is no actual

gravitational interaction with our solutions but in the dynamical gravity case,

there is. Noticing these comparisons, we can conclude when dynamical gravity is

necessary and when the fixed background approximation is a good approximation.

To study the impact of gravity on the nucleation rate of a bubble of true

vacuum, we consider the following polynomial potential:

V (x) = ax4 + bx2 + cx+ d, (6.0.1)

where a, b, c and d are four parameters that allows to explore all possible cases.

In the first section, we vary only the parameter d so as to vary the false

vacuum potential V0 and thus we compare the decay exponents B of fixed de

Sitter background with the decay exponents B with dynamical gravity for a given
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V0. In the second section, we vary the parameters c and d in order to vary the

difference ∆V between the false vacuum potential and the potential at the top of

the barrier and keep the V0 constant. Then, we compare the decay exponents B

of fixed de Sitter background with the decay exponents B with dynamical gravity

for a given ∆V . Finally, in the last section, we end up with some important

conclusions.

6.1 Decay Exponent B vs False Vacuum Potential

V0

In this case, the potential has the following form

V (x) =
1

4
x4 − 1

2
x2 − 0.1x+ d, (6.1.1)

where d is a constant. We vary this constant so as to vary the false vacuum

potential V0. The positions of the true and false vacuums and the position of the

top of the barrier are the same for all values of V0.

At first, we notice from the equation of the critical Hubble rate of a fixed de

Sitter background and from the equation of the critical Hubble rate of a dynamical

background

H2
crit =

V0crit

3M2
P

= −V
′′(φHM)

4
, (6.1.2)

H2
crit =

V0crit

3M2
P

= −V
′′(φHM)

4
− [V (φHM)− V0]

3M2
P

(6.1.3)

that the critical Hubble rate and the critical potential of the false vacuum are

constant when we vary the false vacuum potential V0.
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The numerical value of the false-vacuum critical value with a fixed de Sitter

background is

V0crit = 0.727034 (6.1.4)

and the numerical value of the false-vacuum critical value with dynamical back-

ground is

V0crit = 0.569369. (6.1.5)

The latter value is smaller than the former as in the equation (6.1.3), there is an

extra negative term which reduces the false-vacuum critical value. Therefore, we

conclude that when we ignore dynamical gravity, we overestimate the false-vacuum

critical value.

At this point, we plot graphs that illustrate the relation between the decay

exponents B and V0 with and without gravitational back-reaction. From figure

6.1.1, we note that when V0 increases, the difference between the decay exponent B

of Hawking-Moss solution with fixed background and with dynamical background

decreases. This verifies the following expression

Bfg −Bdg = 24π2M4
P

∆V (φHM)

V0

(
1

V0
− 1

V (φHM)

)
, (6.1.6)

and
Bfg −Bdg

Bdg
=

∆V (φHM)

V0
, (6.1.7)

where Bdg and Bfg are the decay exponents of the Hawking-Moss solution with

and without gravitational back-reaction, respectively.

From figure 6.1.2, we notice that the difference between the decay exponent

B of CdL solution with fixed background and with dynamical background stays

almost constant.
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Figure 6.1.1: Decay exponent B of Hawking-Moss solution vs false-vacuum
potential V0 graph with and without gravitational back-reaction
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Figure 6.1.2: Decay exponent B of CdL solution vs false-vacuum potential V0

graph with and without gravitational back-reaction

6.2 Decay Exponent B vs Difference ∆V between

False Vacuum Potential and Potential at the

Top of the Barrier

Now, the potential has the following form

V (x) =
1

4
x4 − 1

2
x2 − cx+ d, (6.2.1)
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Figure 6.2.1: False-vacuum critical values V0crit vs ∆V graph with and without
gravitational back-reaction

where c and d are constants. We vary these two constants so as to vary the

difference ∆V and keep the false vacuum potential V0 constant. In this case, we

calculate the positions of true and false vacuums and the position of the top of

the barrier for each value of ∆V since they are different.

Firstly, we present the relation between the false-vacuum critical value V0crit

and the difference ∆V for the cases with and without gravitational back-reaction.

This relation is shown in figure 6.2.1. We observe that the two false-vacuum

critical values V0crit deviate from each other while the difference ∆V increases.

Consequently, we conclude again that when we ignore dynamical gravity, we over-

estimate the false-vacuum critical value.

Afterwards, we plot graphs that demonstrate the relation between the decay

exponents B and ∆V with and without gravitational back-reaction. From figure

6.2.2, we notice that when ∆V decreases, the difference between the decay ex-

ponent B of Hawking-Moss solution with fixed background and with dynamical

background decreases. This verifies once more the following expression

Bfg −Bdg

Bdg
=

∆V (φHM)

V0
, (6.2.2)
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Figure 6.2.2: Decay exponent B of Hawking-Moss solution vs ∆V graph with
and without gravitational back-reaction
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Figure 6.2.3: Decay exponent B of CdL solution vs ∆V graph with and
without gravitational back-reaction

where Bdg and Bfg are the decay exponents of the Hawking-Moss solution with

and without gravitational back-reaction, respectively.

From figure 6.2.3, we observe that when ∆V increases, the two curves of the

decay exponents B of CdL solutions deviate from each other.
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6.3 Conclusions

In this section, we present the conclusions from the observations of the last two

sections.

One big question is when does dynamical gravity become important? For

instance, Coleman and De Luccia proved that when the gravitational effects are

weak, the probability of materialization of a true vacuum bubble is close to the

flat space-time result. However, a strong gravitational field can stabilize the false

vacuum, preventing the formation of true vacuum bubbles. These results are

investigated when the energy density difference ∆V is small, the thin-wall regime.

Here, we vary this ∆V to understand more than this as we know that the Standard

Model does not fulfill the condition of small ∆V [14].

Importantly, we conclude that the false vacuum potential V0 does not give

us any clue whether the dynamical gravity is necessary or not. Varying the false

vacuum potential V0, we observe from figure 6.1.2 that we have a constant signifi-

cant difference between CdL solutions with and without back-reaction. Since this

difference is constant, we can conclude that we should vary other parameters to

investigate when gravitational effects are important.

Therefore, we subsequently vary the difference ∆V which can be considered

as the difference of the energy density. From figures 6.2.2 and 6.2.3, we conclude

that the higher the value of energy density difference ∆V is, the stronger the grav-

itational effect is. Consequently, dynamical gravity is necessary when the value

of the energy density difference ∆V is significantly large. In contrast, when the

value of the energy density difference ∆V is small compared to the value of the

false-vacuum potential V0, background fixed approximation is a good approxima-

tion.
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Observing the two figures 6.2.2 and 6.2.3, we can also conclude that when

we ignore dynamical gravity, we overestimate the value of decay exponent B and

thus, we underestimate the decay rate. In other words, including dynamical gravity

enhances the decay rate i.e. increases the probability for the false vacuum decay.

This situation is clearer when the energy density difference ∆V is much larger of

the value of the false-vacuum potential V0.

For instance, noticing the large depth of the Standard Model effective po-

tential for the Higgs mass Mh = 125.09 ± 0.25 GeV and the top quark mass

Mt = 173.21 GeV, we conclude that the fixed background approximation does not

hold. For this reason, if we want to calculate the bounce solutions, we should

include all these back-reaction effects, without assuming that the metric is a fixed

de Sitter background. Thus, it is worthwhile understanding these gravitational

corrections that we calculate, even if we expect that ultimately new physics will

change the situation. From the point of view of the future state of the universe,

this is significantly important since the large negative Ricci curvature leads to a

collapsing AdS region with a big-crunch like singularity. This effect cannot be

predicted using a fixed background approximation [21].

The gravitational back-reaction is also relevant during inflation as the depth

of the Standard Model vacuum, at least that reached by vacuum bubbles in flat

space, is far larger than the cosmological constant [21].

Possible Future Directions

In this thesis, we calculate the results when the reduced Planck mass is equal

to 1 (MP = 1). For a future extent of this thesis, we can vary the value of MP and

see if we have the same conclusions for different energy scales. We can also add

to the potential higher powers of the Higgs field (e.g. φ6 and φ8) and a fermionic

and bosonic field with large masses. In this way, we will detect if the presence of

new physics can have an impact on the vacuum stability condition [46]. Last but
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not least, a term like 1
2
ξφ2R can be added to the action so we can investigate if

the nonminimal coupling ξ between the scalar field and gravity will affect when

dynamical gravity is necessary.



Appendix A

The Semi-classical Approximation

When we refer to semiclassical physics, we mean that one part of a system can be

described classically and the other part can be described quantum mechanically.

There is also an approximation technique, which is called the semi-classical ap-

proximation as the wave function is written as an asymptotic series with ascending

powers of the Planck constant, h, with the first term being purely classical.

We can use this technique to evaluate this integral:

∫
Dφe−S[φ] (A.0.1)

having in our minds that the semi-classical approximation assumes that the path

integral is dominated by classical solutions called instantons, or bounces, which

are stationary points of the Euclidean action. Firstly, we expand the action around

the instanton, φ = φB + η:

∫
Dφe−S[φ] ≈

∫
Dη exp

(
− S[φB]− 1

2

∫
d4x

∫
d4y η(x)

δ2S[φB]

δφ(x)δφ(y)
η(y) + ...

)
.

(A.0.2)

We know that:
δS[φB]

δφ(x)
= 0 (A.0.3)
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since φB is a stationary point of the Euclidean action. We also neglect higher

order terms in (A.0.2) as they give small corrections. Then, we expand η(x) in

terms of the eigenfunctions of δ2S[φB ]
δφ(x)δφ(y)

:

∫
Dη exp

(
− 1

2

∫
d4x

∫
d4y η(x)

δ2S[φB]

δφ(x)δφ(y)
η(y)

)
(A.0.4)

=

∫
Dη exp

(
− 1

2

∫
d4x

∫
d4y

∑
n,m

cncmδφn(x)
δ2S[φB]

δφ(x)δφ(y)
δφm(y)

)
.

Now, we use the eigenvalue equation:

δ2S[φB]

δφ(x)δφ(y)
δφm(y) = δ(4)(x− y)λmδφm(y) (A.0.5)

and the orthogonality of the eigenfunctions in order to evaluate the integral:

∫
Dη exp

(
− 1

2

∫
d4x

∫
d4y

∑
n,m

cncmδφn(x)δ(4)(x− y)λmδφm(y)

)
(A.0.6)

= N
∏
n

(∫
dcne

−λnc
2
n

2

)
,

where N is the ratio between the two measures: Dη and
∏

n dcn.

Finally, knowing the result:

∫ ∞
−∞

dcne
−λnc

2
n

2 =

√
2π

λn
, (A.0.7)

we can calculate the functional integral:

∫
Dφe−S[φ] ≈ Ne−S[φB ]

∏
n

(
2π

λn

) 1
2

= N det
(
S ′′[φB]

2π

)− 1
2

e−S[φB ]. (A.0.8)

It is worth noted that this result is infinite as the path integral diverges. Therefore,

we consider only ratios of functional determinants.
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