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Abstract

Casimir energy is object of growing interest in physics, mainly due to recent techno-
logical advances in condensed matter theory that might allow the study of quantum
field theories in controlled lab conditions, but also for its possible applications in
the gravity sector. Recent results seem to suggest that a (2 + 1)-dimensional non-
interacting scalar field has its Casimir energy maximised, at least locally, by the
round sphere with respect to arbitrarily big axisymmetric deformations. After re-
viewing the theoretical background surrounding the topic of Casimir energy, we
generalise such results, by extending the analysis to a more general family of dis-
tortions. We deploy spectral numerical methods to calculate the Casimir energy of
a free scalar field living on a R × Σ static spacetime, where Σ is a spatial manifold
with S2 topology. We investigate the free energy for various geometries Σ, finding
that the scalar disfavours the spherical configuration. We further systematically ex-
plore the effect that non-minimal coupling to the background geometry has on the
free energy, having it received little attention in previous works. We find that this
extra contribution manifests itself as a secondary peak in the heat kernel profile,
and observe the system to transition to a curvature dominated regime around the
ξ = 1/6 value for the coupling. Suggestively, this is also the value of the coupling
for which the massless scalar becomes conformally invariant. The effects of non-zero
temperature and mass on the computed free energy are also considered.
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Chapter 1

Introduction

1.1 Motivations and Objectives

It had been long believed that matter in the Universe had to obey some form of a
‘positive energy’ constraint in the context of general relativity, with many impor-
tant results assuming the so called null energy condition (NEC). The discovery of
the Casimir effect turned the tables, uncovering the fact that quantum effects can
actually cause matter field to develop a negative zero point-energy, breaking these
commonly assumed energy conditions. The finding put the phenomenological impli-
cations that vacuum energy can have under the spotlight, especially in the gravity
sector. It has indeed been suggested that a negative Casimir energy could play a
role in sourcing exotic solutions to Einstein’s equations, such as wormholes [1] [2] [3].
More notably, the vacuum energy of QFTs has been proposed as a natural candidate
for Dark Energy, but it has lead to disastrous predictions and as of now there is no
consensus that this could in fact be the right approach [4]. On the other hand, the
effective description of electrons on 2D materials such as graphene in terms of mass-
less Dirac fermions, together with the technological development of optical lattices,
might enable in the foreseeable future the long-awaited opportunity to carry out ex-
periments that allow the study of quantum fields on curved spacetime in controlled
conditions [5] [6] [7].

It is the much anticipated role of vacuum energy in the research that will take
place in the years to come that motivates our study. In the present analysis, we
numerically study the Casimir energy, and its thermal generalisation (the Helmholtz
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2 Chapter 1. Introduction

free energy), for a free minimally and non-minimally coupled scalar field on a (2+1)-
dimensional static spacetime via spectral methods. In particular, we consider the
spatial geometry Σ to be topologically equivalent to the unit sphere S2, studying how
the free energy changes as Σ is non-axisymmetrically deformed away from the round
sphere. In order to perform the computations described, we resort to the heat kernel
representation of the free energy. We gather new results that reinforce the conjecture
that the round sphere maximises the free energy of quantum field theories, a proposal
that sparked from a recent series of papers [8] [9] [10] [11]. We crucially extend
the findings in the literature to encompass more general deformations. Moreover,
we characterise in detail the effects that non-minimal coupling has on the Casimir
energy of the free scalar field, something that did not receive much attention in
previous studies.

1.2 Overview

Chapter 2 opens the dissertation with a review of the theory surrounding the topic
of Casimir energy. After some mentions on the history of the Casimir effect, we dive
into an overview of Casimir’s original derivation, discussing the physical significance
of the divergences that arise in the calculations along with an outline of dimensional
regularisation. We also describe non-zero mass and temperature corrections to the
celebrated result. After a brief summary of how to couple the classical Klein Gor-
don field to gravity, we go over the canonical quantisation of a scalar field in fixed
curved background, highlighting the implications that this has for the concept of
particle. We then discuss Casimir energy on curved spacetime. In doing so, we
introduce the heat kernel method to compute the vacuum energy, and mention the
advantages that this approach brings when the problem has to be translated into a
computational task. At this point, we review attempts to study the backreaction
of the vacuum energy on the spacetime geometry, along with the limitations to the
most commonly used semi-classical limit of Einstein’s equations. We then present
solutions to this semi-classical version of general relativity, discussing in particular
the role that Casimir energy is proposed to have in sourcing wormhole solutions. We
conclude the first chapter showing how the vacuum energy of a quantum field could
cause instability of certain geometrical configurations for 2D layers of graphene-like
materials.

The third chapter sets the scene for the numerical analysis. We first introduce
the physical setup, describing the Laplacian and the Ricci scalar on a spatial foliation
with geometry conformal to the round sphere. We successively show in detail how
to obtain the free energy of the quantum field for our problem from the heat kernel,
illustrating why taking the difference with respect to a reference configuration can
regulate the Helmholtz energy of our theory. We further discuss the heat kernel
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asymptotics, and how they guarantee the positivity of the kernel in the small and
large kernel time limits. We conclude the chapter by reviewing recent results for
free Klein-Gordon and Dirac fields. These have numerically shown the sphere to
maximise the free energy with respect to big axisymmetric deformations of Σ and
analytically proved that the same is true for small deformations of any form. We
also outline a recent paper that proved the free energy to be maximised by S2 with
respect to perturbations of any size and form in the case of a strongly interacting
conformal field theory, exploiting the AdS/CFT correspondence.

We present our numerical methods in Chapter 4, where we briefly review the
advantages of spectral methods with respect to equispaced finite difference methods.
After discussing how to implement the boundary conditions, we describe how to
translate our physical problem into a numerical task. We then benchmark our
method by analysing the spectrum of the Laplacian on both a 1D interval and on
the round sphere. We further study how changing shape and density of the 2D
computational grid affects accuracy of the numerically computed spectra.

Chapter 5 contains the novel results obtained in our study. We begin by men-
tioning the issue of convergence of the numerically evaluated kernel for small kernel
time. We then validate the numerical method by showing that the computed kernel
curves approach the perturbative predictions for small deformations of the spatial
geometry. We successively present the results for the renormalised free energy of
both the minimally and non-minimally coupled scalar. We further investigate how
the vacuum energy is affected by thermal effects and by adding a mass to the previ-
ously massles K-G field. The significance of the results obtained is then highlighted
in the last chapter, where we also mention possible interesting extensions of this
study.

1.3 Units

Throughout the discussion, we adopt Planck units G = c = ~ = kb = 1, in order to
simplify the expressions.





Chapter 2

Theoretical Background

We now present the theoretical background that surrounds our study. We first
review the topic of Casimir energy in flat space, discussing its physical significance
and outlining different approaches to compute it. We then cover the subject of
QFTs in (fixed) curved spacetime, focusing on the non-interacting minimally and
non-minimally coupled scalar. We successively introduce the heat kernel, and how it
can be used to compute Casimir energy in curved background geometry. From here,
we take a short detour on what happens when we let this vaucum energy backreact
on the spacetime by including it as a source in Einstein equations, discussing its
proposed role in wormhole solutions. We then introduce some practical applications
of our research, reviewing the effective QFT descriptions of electrons on a 2D layer
of graphene and how vacuum energy could affect the stability of certain geometrical
configurations for graphene-like materials.

2.1 Casimir Energy in Flat Space

2.1.1 A (Brief) History of the Casimir Effect

The realisation that the zero point energy of quantum fields can lead to interesting
physical phenomena traces back to the formulation of the famous Casimir effect
by Hendrik Casimir in 1948. Casimir first stumbled upon it while he was trying
to give a consistent theoretical explanation to the form of the interaction between
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6 Chapter 2. Theoretical Background

non-polar molecules. Thanks to the (at the time) recently developed quantum the-
ory, the German physicist Fritz London had managed to successfully compute the
attraction between non-polar molecules by 1930, but experimental results showed
that for very large distances London’s prediction failed, as the potential energy fell
quicker than the theorised R−6 behaviour (where R is the intermolecular separa-
tion). Some twenty years later, as QED was formulated and refined, Casimir and
the Dutch scientist Dirk Polder had all the tools to address the problem. After the
long calculations needed to evaluate the forces on an atom in an electromagnetic
cavity with perfectly conducting walls using the full QED machinery, they managed
to successfully predict the R−7 trend for large distances that had been observed in
experiments. After reading the paper by Casimir and Polder, Niels Bohr realised
that the result was much more profound, and tipped Casimir in the right direction
by suggesting that the zero point energy of the Maxwell field could be the origin of
such attraction. Inspired by Bohr’s remark, Casimir re-derived his results, this time
in just 2 pages of calculations, by considering the vacuum energy of the EM field
only. He then continued on the same route, and, by the end of 1948, published the
famous paper in which he predicted the attraction between two perfectly conducting
plates. The Casimir effect was first (accurately) experimentally measured in 1997
[12] [13].

2.1.2 Mode Summation

We now follow Casimir’s original mode summation treatment for the calculation of
the force between parallel conducting plates [14], outlining alternative approaches
that lead to the same result.

Casimir considers a cubic cavity bounded by perfectly conducting walls of side
L, with a further conducting square plate of side L a distance a away from the wall
given by the x − y plane. The role of the cube is to regulate our space, making
it finite. Indeed, for any non zero vacuum energy density, we are bound to have
an infinite total zero-point energy if the field lives in an infinite ambient space.
He therefore introduces this space cutoff, taking the L → ∞ limit at the end of
the calculations and focusing on the vacuum energy per unit area. Casimir further
assumes that within the cavity lives a Maxwell field, but, since we’ll mostly talk
about the scalar field in our discussion, we consider a massless Klein-Gordon field
instead (the treatment is virtually identical, recalling that each polarisation mode
of the Maxwell field behaves as a massless scalar). Key ingredients when discussing
vacuum energy are the conditions that the field φ obeys at the boundary, that
Casimir assumes to be homogeneous Dirichlet (i.e. φ = 0 on the plates, as they are
taken to be perfectly conducting). Recall that the Hamiltonian for a scalar field of
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mass M is given by:
Ĥ = 1

2
∑
k

ωk
(
â†kâk + âkâ

†
k

)
, (2.1)

where the sum is formal and over all modes, ~k is the wavevector and

ωk =
√
~k2 +M2. (2.2)

This highlights the useful physical picture of the scalar field being represented by a
system of uncoupled 1D quantum harmonic oscillators. Exploiting the usual commu-
tator relations for the creation/annihilation operators and introducing the number
operator n̂k = â†kâk, we see that we can rewrite Equation 2.1 in the more explicative
form:

Ĥ =
∑
k

ωk

(
n̂k + 1

2

)
, (2.3)

emphasising that the zero point energy of the field (namely 〈0|Ĥ|0〉, with |0〉 being
the vacuum state) is infinite, and has to be renormalised. In general, two approaches
are usually taken to fix this. Either we normal order the operators (effectively moving
all the â to the right and â† to the left) forcing the vacuum energy to be zero, or we
add a constant in our Lagrangian (and, consequently, Hamiltonian). The latter can
always be done, and there’s no reason not to! This c-number can then be chosen so
that it cancels the divergences in the zero-point energy, making it finite and, if one
wishes, zero. The reason why we can safely discard the divergent contribution to the
energy resides in the fact that, in a Poincaré invariant theory, the physics is never
affected by the absolute value of the energy of a physical system. Only differences
between, for example, the potential energy of distinct configurations of the same
system can have physically measurable effects, meaning that a redefinition of the
energy scale should never affect physical predictions. If we want our Hamiltonian
to be the generator of time translation (and not some shifted version of Ĥ), its
vacuum expectation value should actually vanish, but in the end this is an arbitrary
choice and any finite vacuum expectation value (VEV) will do. There is, however, a
caveat: gravity. Indeed, the zero-point energy of a physical field contributes to the
expectation value of its stress-energy tensor, and should be included (if one were to
know how to do it) when evaluating the curvature that the quantum field imprints
on the ambient space. Here, we’re not free to choose the zero-point energy as we
please anymore, since its value has physical consequences. We briefly touch on this
issue later, and focus now on how to explicitly evaluate the Casimir force in the
original setup.

Let’s consider two configurations, one where the moving plate is close (i.e. a�
L) to the x − y plate and one where the two are a significant distance away (e.g.
a = L/2). The reason why we want to look at two distinct positioning of the plates is
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that we take the approach of looking at the difference between the zero-point energies
of the two arrangements to normalise the vacuum energy, instead of normal ordering
the Hamiltonian or adding to it infinite constants to absorb the divergences. Doing
so, the divergent (geometry invariant) contribution is cancelled in the subtraction
and we end up (as we shortly see) with a finite physical quantity. This is illustrative
since it is exactly how we renormalise the free energy in our numerical investigations.
Note, however, that this this does not always happen when talking about Casimir
energy: the cancellation is dependent on the geometry of the problem and on the
boundary conditions. Conveniently, the infinite contributions happen to drop out
from the energy difference both in the standard parallel plates arrangement and in
our deformed sphere case [15]. Given that we are ultimately interested in the L→∞
limit, we take the components of the wavevector kx and ky in the x and y direction
to be continuous, while kz has a discrete spectrum due to the confinement caused
by the plates, i.e.:

kz = π

a
n, (2.4)

with n an integer. Then, the formal sum when taking the VEV of Equation 2.3 is
given by:

E = 1
2
L2

π2

∫ ∞
0

dkx
∫ ∞

0
dky

∞∑
n=1

√
n2π

2

a2 + k2
x + k2

y. (2.5)

It is now convenient to change variables, introducing polar-like coordinates for the
kx − ky plane. Calling k the magnitude of the component of ~k parallel to the plates
and θ the angle with respect to the kx axis (recall that we are integrating on the
positive-positive quadrant), we get:

E = L2

2π2

∫ π/2

0
dθ
∫ ∞

0
dk

∞∑
n=1

√
n2π

2

a2 + k2 k (2.6)

= L2

4π

∫ ∞
0

dk
∞∑
n=1

√
n2π

2

a2 + k2 k. (2.7)

Now, in the big L limit, the a = L/2 configuration can be approximated as having
continuous kz spectrum as well. Taking the difference between the energies of the
two setups leads to:

∆E = L2

4π

∫ ∞
0

dk

 ∞∑
n=1

√
n2π

2

a2 + k2 −
∫ ∞

0
dkz

√
k2
z + k2 a

π

 k. (2.8)

This expression is naively divergent due to the high energy modes. In his treatment,
Casimir opts to introduce a high frequency cutoff, motivating the choice with the
argument that big |~k| modes (e.g. X-rays in the case of the photon field) have such a
significant penetration depth inside the conducting plates that they actually do not
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see them at all (when in experiments the perfectly conducting idealisation does not
hold). A more profound rationale for this approach would be the sensible statement
that we do not expect our low energy physics to be affected by the UV physics.
We then modify our theory in the high energy regime with a regulator such that
Equation 2.14 is finite, hoping that the final answer turns out to be non-divergent
as well and, crucially, independent from such regulator once we remove it! If this
happens, we can be confident to have in our hands a meaningful physical result. A
further motivation for this approach is that it would be presumptuous to assume
that our theory is valid for all energy scales, so we simply don’t! Following Casimir’s
treatment, we hence introduce a cutoff scale Λ above which the modified energy-
momentum relation quickly decays to zero. In particular, we multiply our integrand
with a function f(k) which gives unity for k � Λ, but rapidly dies off as k → ∞.
This effectively turns Equation 2.14 into:

∆E = L2

4π

∫ ∞
0

dk

 ∞∑
n=1

√
n2π

2

a2 + k2 −
∫ ∞

0

√
k2
z + k2 a

π
dkz

 k f(k). (2.9)

The details of this function eventually turn out not to be important, as we hoped, so
that our calculations are indeed physically meaningful. Skipping a few steps which
involve making use of the Euler-Maclaurin formula to turn the discrete sum into a
continuous integral, we find the difference in vacuum energies per unit area between
the two plates configurations as Λ→∞ to be given by:

∆E/L2 = − π2

1440a3 , (2.10)

which is indeed finite and regulator (both space and momentum cutoff) independent!
Furthermore, it has an explicit dependence on the separation between the plates,
which manifests itself as an attractive force between the walls that goes as a−4 (as
one can see by simply differentiating Equation 2.10).

2.1.3 Dimensional Regularisation

Although it gives a clean physical picture of the regularisation procedure, the high
momentum cutoff approach is sometimes deprecated due to the fact that it breaks
Lorentz invariance by picking a preferred energy scale (until, of course, the reg-
ulator is removed). An alternative approach that preserves the Lorentz group is
dimensional regularisation, which sacrifices the number of dimensions of our physi-
cal reality in the name of finiteness. A detailed derivation is not of interest for the
present discussion, but the underlying idea is to deform the number of dimensions d
of the physical space away from the 3 spatial dimensions of the cubical cavity. The



10 Chapter 2. Theoretical Background

integral is then calculated by using the relation:

∫
ddkf(|~k|2) = 2πd/2

Γ(d/2)

∫
dk|~k|d−1f(|~k|2), (2.11)

where f is some function that depends solely on the magnitude of the wavevector and
Γ(x) is the gamma function. To take this alternative route, instead of subtracting the
vacuum energy from some reference configuration, one simply considers the Casimir
energy given in Equation 2.14 (which needs to be appropriately modified for a d
dimensional cavity, with the conducting walls becoming conducting hyperplanes).
One then exploits Equation 2.11 to transform the multidimensional integral into
an integral over the magnitude of the wavevector only. Jumping to the result, we
obtain:

E = 1
2

(
L

2

)d−1 π(d+1)/2

ad
Γ(−d/2)
Γ(−1/2)ζ(−d), (2.12)

where ζ(x) is the Riemann zeta function. While the Γ function is defined for negative
non-integers (it has, however, simple poles at negative integers and 0), the ζ function
is not! Nonetheless, it can be analytically continued to those values, obtaining:

E = −L
d−1

2ad (4π)−(d+1)/2 Γ
(
d+ 1

2

)
ζ(d+ 1). (2.13)

The last step is, then, to return to our 3-dimensional space, taking the limit d→ 3
[16]. In doing so, we realise the result is already finite and agrees with Equation 2.10.
But where did all the divergences go? They were dropped when we analytically
continued the Riemann zeta function to negative arguments. Indeed, ζ(x) is defined
for x > 1 and, having a simple pole at x = 1, it is not analytic from x > 1 all
the way down to x = −3! Since only the finite contributions are captured by the
analytic continuation, all the divergences are removed in the process.

2.1.4 Mass and Temperature

Generalising Equation 2.10 for massive scalar fields is trivial. Indeed, the only
modification one needs to do to the above discussion is not to set M = 0! Doing so,
Equation 2.14 clearly becomes:

∆E = L2

4π2

∫ ∞
0

dk

 ∞∑
n=1

√
n2π

2

a2 + k2 +M2 −
∫ ∞

0
dkz

√
k2
z + k2 +M2 a

π

 k.
(2.14)

This has to be renormalised as before. In the interest of time, we once more skip a
few steps and jump to the result after the regulator is removed, namely:

∆E = − L2

8π2
M2

a

∞∑
n=1

1
n2K2(2aMn). (2.15)
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Here, K2 is the second modified Bessel function. To understand what this implies
for small masses, we use the expansion

K2(2Man) = 2
(Man)2 −

1
2 +O(M2). (2.16)

Up to order M2, we obtain:

∆E = ∆E/L2 = − π2

1440a3 + L2M2

96a + ..., (2.17)

showing that a small mass gives a positive contribution that opposes the massless
negative vacuum energy. Indeed, in the M � a limit, we instead obtain:

∆E = − L2

16π2
M2

a

(
π

Ma

)1/2
e−2Ma, (2.18)

showing that as M → ∞ the poistive contribution coming from the mass effects
makes the Casimir energy approach zero [16].

The story of thermal corrections is a bit different. Indeed, a thermal states
corresponds to real quanta being excited in the field, meaning that the latter will
no longer be in a vacuum state. If a large number of states are occupied, then
a quantum statistical description is required, and we can borrow concepts from
classical thermodynamics to study the system. In the case of a classical system at
temperature T , we can extract the free energy (and, really, all the relevant physical
quantities) of the ensemble by looking at the partition function:

Zc =
∑
i

e−Ei/T , (2.19)

where the sum is over all the microstates of the system and Ei is the energy of the
ith microstate. Then, the classical Helmholtz free energy of the system is given by:

Fc = −T ln(Zc). (2.20)

For the case of a quantum field, the generalisation to Equation 2.19 is given by the
following functional integral:

Z =
∫
Dφ eiS , (2.21)

with S being the action of our theory. The quantum Helmholtz free energy is then
simply:

F = −T ln(Z). (2.22)

If we assume the thermal state of the field to be statistically independent to its
vacuum fluctuations, Z factorises as Z = Z0ZT , with Z0 and ZT being the partition
functions of the vacuum fluctuations and the excited quanta respectively. Indeed,
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assuming such factorisation to occur, we can rewrite:

F = −T ln(Z0)− T ln(ZT ) = E + FT . (2.23)

We then interpret the Casimir energy as the Helmholtz free energy in the limit
T → 0. To derive the thermal correction for the scalar field in the Casimir setup,
we model the field as a series of independent (meaning that the partition function
for each mode factorises) oscillators with the usual KG dispersion relation. Then,
the partition function is given by:

Z =
∏
k

(∑
n

e−
1
T
ωk(n+ 1

2 )
)

=
∏
k

e−
1

2T ωk

1− e− 1
T
ωk
, (2.24)

leading to
F =

∑
k

(
ωk
2 + T ln

[
1− e−

ωk
T

])
. (2.25)

As expected, we immediately recognise the first term in Equation 2.25 as the usual
zero-point energy of the scalar field, which we know to diverge. We still need to
regulate the free energy as explained before, both with a space regulator and by
taking the difference with respect to a reference configuration (i.e. the one with
a ≈ L/2). The second term is what instead gives the thermal corrections. To see
what these amount to, we need to evaluate them at both large and small separation
of the plates and take the difference of the results. Note that there was in principle
no need to regulate the second term, being it manifestly finite. Nonetheless, since we
need to do it to get a finite vacuum energy, we need to consider the energy difference
also for the thermal corrections. For a ≈ L/2, we take again the approximation of
kz having a continuous spectrum. Then, making the formal sum over k an integral
over ~k we see that:

FT = T
L2a

(2π)3

∫
d3k ln

(
1− e−

ω(~k)
T

)
= T 4L2a

2π2

∫ ∞
0

dk ln
(
1− e−x

)
k2

= −L
2a

π2 ζ(4)T 4

= − 1
90π

2T 4L2a.

(2.26)

Repeating the same calculations for the a � L limit (i.e. with kz quantised as in
Equation 2.4) and taking the difference between the two configurations, we eventu-
ally obtain:

∆FT = L2π

2a2

[
−ζ(3)

2 T

(
aT

π

)2
+
∞∑
n=1

b(a, T, n) + 2ζ(4)T
(
aT

π

)3
]
, (2.27)
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where we have defined

b(a, T, n) = 1
2T

∫ ∞
n2

dy ln
[
1− exp

(
−
π
√
y

aT

)]
. (2.28)

Analytically, we cannot go beyond this since the sum cannot be written in a nice
closed form, unless we take the small or big temperature limits. For aT � 1 we can
expand the logarithm in b and resum to obtain:

∞∑
n=1

b(a, T, n) = −T
[(

aT

π

)2
+ aT

π

]
e−

π
aT +O

(
e−

2π
aT

)
. (2.29)

From this we see that, interestingly, for small temperatures the thermal effects first
cause the free energy to become more negative. As T increases, the T 4 term even-
tually starts dominating, inverting the trend. The high temperature regime is even
more suggestive. Indeed, expanding b for aT � 1, one can show that up to order
O(e−4πaT ):

∆FT = L2π2
[ 1

1440a3 −
ζ(3)T
16π4a2 + T

8π3

( 1
a2 + 4πT

a

)
e−4πaT

]
. (2.30)

Curiously, the first term exactly cancels the negative Casimir energy! It is possible
to show that this cancellation is not even unique to the parallel plate setup, but it
is a more general result [16].

2.2 QFT in Curved Spacetime

2.2.1 Classical Fields

Before jumping into an overview of the basics of quantum fields in curved spacetime,
it’s worthwhile to spend some time discussing classical fields living in fixed curved
geometry.

The case of the scalar field is quite straightforward, and moving from Minkowski
to curved spacetime does not cause any major conceptual difficulty. The main idea
is that the actions for the classical fields (Klein Gordon and Dirac fields, for exam-
ple) in flat space are not diffeomorphism invariant, which is clearly problematic. To
deal with this issue we treat the flat space action as the action that an observer
sees in a local inertial frame, and follow the usual approach used to move from local
to covariant equations in GR. To obtain the full curved space action, we then just
need to promote partial derivatives to the covariant derivatives appropriate for the
object they’re operating on (recall that for scalar fields they are the partial deriva-
tives themselves) and the Minkowski metric ηµν to the metric tensor gµν describing
the geometry of spacetime. We also need to replace the integration measure with
the usual GR covariant volume element involving the determinant of the metric g.



14 Chapter 2. Theoretical Background

Therefore, we perform the following substitutions:

∂µ → ∇µ, ηµν → gµν , d4x→ d4x
√
−g. (2.31)

obtaining for the K-G field:

S[φ] = 1
2

∫
d4x
√
−g(gµν∂µφ∂νφ−m2φ2). (2.32)

The story is, however, is a bit more complex. Indeed, one can also couple φ to the
scalar curvature, i.e. the Ricci scalar R, obtaining the action:

S[φ] = 1
2

∫
d4x
√
−g(gµν∂µφ∂νφ− ξRφ2 −m2φ2), (2.33)

where ξ is just a number that governs the strength of this higher order coupling of the
field to the curvature. There is no reason not to include such term, since it is both
diffeomorphism invariant and dimensionally consistent. With little thought one sees
that both Equation 2.32 and Equation 2.33 reproduce the usual flat space action
with the choice gµν = ηµν (as R = 0 for Minkowski). What is the correct way to
couple the scalar field to gravity, one may then ask? Both, and neither! In the end,
there is no a priori answer: our physical world is only locally Minkowski, so the real
physics is encapsulated by the action in curved spacetime, which cannot be uniquely
inferred just by observing phenomena in a locally flat portion of the manifold. This
mirrors the problem of the ordering of the operators in quantum mechanics: the
real physics is given by the quantum Hamiltonian which has a definite ordering,
but as we take the classical limit that information is lost and cannot be recovered
just by looking at classical phenomena. All we can do as theorists is to make a
choice and let the experiments decide. The simplest one, i.e. the choice made in
Equation 2.32, takes the name of minimal coupling as φ couples to the gravitational
field through the lowest possible number of objects (volume element and metric).
In our study we’ll consider both ξ = 0 and non-minimally coupled fields, studying
how the Casimir energy changes as we vary ξ. The scalar curvature term becomes
particularly interesting in the case of a massless field, as for ξ = 1/6 the action (and,
hence, the equations of motion) become invariant under:

(gµν , φ)→ (Ω2gµν , φ/Ω), (2.34)

for any non-zero conformal factor Ω(x). The non-minimally coupled model is of
increasing interest in cosmology for various reasons, from Quintessence to its pro-
posed role in inflation [17] [18]. For the non-minimally coupled field, the equation
of motion is given by:

(�+m2 + ξR)φ = 0, (2.35)
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where the d’Alambertian in curved spacetime acting on a scalar field is

�φ = ∇µ∂µφ. (2.36)

A key object when we introduce backreaction of the Casimir energy on the spacetime
geometry is the stress-energy tensor Tµν associated to φ. For the classical non-
minimally coupled scalar this is given by:

Tµν = ∂µφ∂νφ−
1
2gµν((∂φ)2−m2φ2)+ξ

(
Rµν −

1
2gµνR+ gµν�−∇µ∇ν

)
φ2. (2.37)

As our numerical analysis focuses only on the scalar field, there’s no point in spending
time talking about fermions. It is worth mentioning, however, that when one couples
spinors to curved spacetime, the picture gets a bit more complicated. Indeed, the
presence of spinors necessarily implies non-zero torsion, meaning that the connection
has to deviate from the Levi-Civita one. This leads to subtleties completely absent
for the case of the scalar.

2.2.2 Canonical Quantisation of the Scalar Field

It is now time to try to quantise our scalar field on fixed curved spacetime (no
backreaction of the field on the geometry for now) and see if anything interesting
happens. Spoiler alert, it does. For our numerical investigations, such effects are
not terribly relevant. It is however illustrative to mention them, as they underline
the curious consequences that curvature can imprint on quantum fields.

Let’s go back to our old friend, the KG field. While canonical quantisation is
neither the most elegant nor the most useful approach to quantise a field in curved
spacetime, it provides a nice place to start as it highlights some conceptual differences
that arise with respsect to the Minkowski case. Before starting the quantisation
procedure, let’s recall that the conjugate field momentum is given by:

π(x) = ∂L
∂(∇tφ) =

√
−g gµt∇µφ. (2.38)

Consider now a folitation of our manifold at time t which gives a spacelike hyper-
surface Σt. There exists a natural inner product between two solutions φ1 and φ2

to Equation 2.35, namely the Klein-Gordon inner product, defined as:

(φ1, φ2) := −i
∫

Σt
d3x
√
h(φ1∇µφ∗2 − φ∗2∇µφ1)nµ, (2.39)

where nµ is the vector perpendicular to the spacelike hypersurface and hij is the
metric induced on Σt by the foliation. The inner product so defined can also be
shown to be independent on the foliation chosen. As Equation 2.35 is linear, we can
expand any solution in a complete basis of modes {fi}, which can be taken to be
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orthonormal with respect to the KG inner product:

(fi, fj) = δij , (f∗i , f∗j ) = −δij , (fi, f∗j ) = 0. (2.40)

Note that the complex conjugate modes have to be included, since they are linearly
independent from the other modes and if f solves Equation 2.35 then f∗ does as
well. In order to build our Fock space, we now need to identify positive and negative
frequency solutions, as they allow a proper definition of the vacuum state and of the
creation and annihilation operators. If the spacetime admits a global timelike Killing
vector K (i.e. it is static), then it is easy to see that we can choose a coordinate
system such that the e.o.m. in Equation 2.36 is separable into a pure time derivative
term and a term that involves spatial derivatives and functions of space only. We
can therefore find separable solutions that obey:

LKfi = −iωifi, LKf
∗
i = iωif

∗
i , (2.41)

where LK indicates the Lie derivative with respect toK. When this happens, we can
assign the label positive/negative energy modes to fi and f∗i respectively (note that
really ω > 0 in both cases). Obviously, exactly the same happens for the usual flat
space solutions, whose basis is given by f(p) = e−ip.x (where the continuous label p
is the 4-momentum). However, there is no guarantee that such Killing vector exists,
and for most spacetime it doesn’t, so let’s assume for now that the geometry is not
static. Without Equation 2.41, the condition given by Equation 2.40 is not enough
to fix the subspace of solutions {fi} uniquely. There are many possible choices
of frames (and hence basis) where the separation between positive and negative
frequencies can be done, but without a timelike Killing vector none of these is a
natural choice. Let’s nonetheless let our observer, that we call Alice, choose one of
the possible orthonormal sets, and see what an happens. Alice can build the general
classical solution as a superposition of the basis modes:

φ(x) =
∑
i

[aifi(x) + a∗i f
∗
i (x)] , (2.42)

where the sum is formal and over all basis functions (it is an integral if the label i
is continuous as in Minkowski) and the ai are just coefficients (note that we have
already imposed the reality condition on φ). Plugging Equation 2.42 into Equa-
tion 2.38 one can then obtain the form of the conjugate momentum π. It is now
time to put the party hats on and start the main event: second quantisation. Analo-
gously to the flat space quantisation, Alice promotes φ and π to quantum mechanical
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operators, and force them to obey the bosonic equal time commutator relations:

[φ̂(t, ~x), π̂(t, ~y)] = i√
−g

δ(3)(~x− ~y),

[φ̂(t, ~x), φ̂(t, ~y)] = [π̂(t, ~x), π̂(t, ~y)] = 0.
(2.43)

What are really being promoted to operators here are the coefficients of the basis
functions in Equation 2.42. The field operator is then given by:

φ̂(x) =
∑
i

[
âifi(x) + âi

†f∗i (x)
]
, (2.44)

and the explicit form of the conjugated momentum follows from Equation 2.38. In
order for Equation 2.43 to be satisfied, one finds that âi and âi† must obey:

[âi, âj†] = δij , [âi, âj ] = [âi†, âj†] = 0, (2.45)

reminiscent of the quantum harmonic oscillator commutator relations, from which
we can identify âi as the annihilation operator and â†i as the creation operator. From
here Alice can also define the vacuum state with respect to the basis {fi} as the one
that satisfies:

âi |0〉f = 0 ∀i, (2.46)

The vacuum can then be used to build n-particles states for the ith eigenmode by
acting n times with â†i (and appropriately normalising). The number operator with
respect to the basis {fi} can be finally defined as:

N̂i|f := â†i âi. (2.47)

We have repeatedly emphasised that the states (and operators) Alice is building are
with respect to a basis. What does this mean? Shouldn’t any correctly normalised
basis choice lead to the same answer? In curved spacetime the answer is surprisingly:
no! In flat space, the vacuum state and the mentioned operators are invariant
under Poincaré transformations. This resides on the fact that neither translations,
rotations nor Lorentz boost change the sign of the frequencies of the modes: positive
and negative frequencies separated with respect to the global timelike Killing vector
(i.e. the Minkowksi time coordinate) are well defined. However, there is no such
thing as Poincaré symmetry in curved spacetime (outside a local inertial frame,
that is), and positive and negative frequencies have no covariant meaning in general
relativity [19]. Consider a second observer, Bob, that lives on the curved geometry
but might be using a different coordinate system. As there is no natural time
direction, he can pick an alternative basis {ga} and repeat the same procedure. He
will have his own Fock space, with a (possibly) different vacuum state |0〉g that is
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annhilated by the new annihilation operators b̂a. Bob’s number operator is N̂a|g =
b̂†ab̂a. However, the two observer are describing the same scalar field, which is itself
invariant under general coordinate transformations! This gives a route to uncover
the linear relation that exists between the two complete basis (the KG equation is
still linear, after all):

ga =
∑
i

[αaifi + βaif
∗
i ] , fi =

∑
a

[α∗aiga − βaig∗a]. (2.48)

Again, the sums here are formal and αai and βai, called Bogoliubov coefficients, are
just formal matrix elements. These relations take the name of Bogoliubov transfor-
mations and the coefficients are obtained through the KG inner product:

αai = (ga, fi), βai = −(ga, f∗i ), (2.49)

which can be seen using orthonormality of the basis functions. They also satisfy the
following normalisation conditions:

∑
k

(αakα∗ik − βakβ∗ik) = δai,
∑
k

(αakβik − βakαik) = 0. (2.50)

From these expressions we can relate the two sets of ladder operators via:

âi =
∑
a

[αaib̂a + β∗ai b̂
†
a], b̂a =

∑
i

[α∗aiâi − β∗ai â
†
i ], (2.51)

and, hence, the states of one observer to the ones of the other. A question naturally
arises: how does the observer in the basis {ga} see the vacuum state |0〉f? The
answer is easily found by computing the expectation value of N̂a|g for such a state,
which turns out to be:

f 〈0| N̂a|g |0〉f =
∑
i

|βai|2. (2.52)

It is (unless βai = 0) indeed filled with particles [20]! Curvature strikes again:
after energy and momentum, also particles lose their privileged place in the universe
and become (at best) observer-dependent physical objects! With no natural time
direction to use in order to separate between positive and negative frequencies, each
observer can choose its own set of basis modes and obtain a different vacuum (and,
hence, Fock space). The process is all too arbitrary and artificial, so there is little
reason to talk about particles at all. Of course, in a region of spacetime in which
the curvature does not vary significantly (i.e. in a LIF), it still makes sense to talk
about particles (otherwise what is CERN doing, one might ask), but the key point
is that we can do so only locally. For the case of static spacetimes, all observers
have a recipe to divide the basis modes between positive and negative frequencies,
so they can meaningful compare their Hilbert spaces. This does not mean, however,
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that they will all see the same particles: as said, the sign of the frequencies is not
covariant, so two observers related by a general coordinate transformation will not
usually agree with each other’s separation. This strikingly results in the Unruh
effect: an accelerated observer in flat space (i.e. and observer in Rindler space) sees
the ordinary Minkowski vacuum as a thermal state filled with particle! Clearly, the
spacetime is the same for both observers, so they both enjoy the same timelike Killing
vector. Nonetheless, the change of coordinates causes a different identification of
positive and negative frequencies with respect to K, resulting in a different vacuum
for the two observers [21]. Other than in small portions of spacetime and in static
spacetimes, one can also talk about particles in a space that is asymptotically flat
or with only a compact region (both in time and space) of non-vanishing curvature.
In this cases, we also have a natural time direction (i.e. the asymptotic timelike
Killing vector), which give to all observers a recipe to separate between positive
and negative frequencies when in the asymptotically flat portion of spacetime. The
latter situation is considered by Wald [21], who describes a toy model of particle pairs
(and, in the case of complex fields, particle-antiparticle pairs) production by gravity.
The main idea behind the process is that, while in the curved region the concept
of particle breaks down, we can still define positive and negative frequency modes
in the asymptotic past and future, where the spacetime is isometric to Minkowski.
Then, evolving in time the field and comparing the asymptotic in and out states
(much like in a scattering problem) one can count the number of particle produced
(the key concept here is that the localised curvature changes the natural basis {fi}
so that, as before, the vacuum state and the observed number of particles change as
well). The mathematical reason is still the same: if (originally) positive and negative
frequencies get mixed by the change of basis, then particles are produced, even if
we started with a vacuum state in the first place. Virtually all time-dependent
gravitational fields induce such mixing, hence the proposal by cosmologists that
such process could be the reason why we ended up with particle after the Big Bang,
during inflation. This process of particle creation by a gravitational field is also
what causes the theorised Hawking radiation from black holes [19].

2.3 Casimir Energy in Fixed Curved Spacetime

When talking about Casimir energy in curved spacetime, it is natural to start from
its thermal generalisation: Helmholtz free energy. Indeed, as discussed before, we
can see the Helmholtz free energy for a non-interacting quantum field as composed
by the Casimir zero-point energy plus thermal correction. As usual, the free energy
of a field is given by:

F = −T lnZ, (2.53)
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where recall we have set the Boltzmann constant to one, T is the temperature and
Z is the partition function of the physical system. For a free scalar field this is given
by the functional integral

Z =
∫
Dφ eiS =

∫
Dφ ei

∫
d4x
√
−g 1

2φ(�−m2)φ =
[
det(�−m2 − ξR)

]− 1
2 , (2.54)

where in the last step we have simply performed the standard path-integral Gaussian
integration. We immediately see the expected divergences starting to appear: the
determinant of the differential operator (as for the determinant of a matrix) is given
by the product of all the eigenvalues which, in the case of Equation 2.54, are infinite!
Z is UV divergent and we will have to regulate it. Let’s move on, for now, and
reformulate the partition function in what will turn out to be a much more useful
form. For any elliptic (suitably linear) differential operator D, we can define the
related ζ-function as:

ζD(s) =
∑
i

λ−si = TrD−s, (2.55)

where the sum is formal and is intended to be over all eigenvalues λi of D. The famil-
iar Riemann ζ-function arises (up to a multiplicative factor of two) when we choose
D = −∂2

θ , i.e. for the Laplacian on the circle S1 [22]. It is then straightforward to
see that

dζD
ds

∣∣∣∣
s=0

= −
∑
i

ln(λi)λ−si |s=0 = −
∑
i

lnλi = ln
(∏

i

λi

)
= − ln det(D), (2.56)

which means that the Helmholtz free energy for a non-minimally coupled scalar can
be expressed as [23]:

F = −T2
d
dsζ�−m2−ξR

∣∣∣∣
s=0

. (2.57)

2.3.1 Heat Kernel Method

We then see that all we need to do to evaluate the free energy is to compute the
ζ-function related to its differential operator D. Let ψλ be the eigenfunction of
D associated to the eigenvalue λ. We introduce the heat kernel KD, namely the
function satisfying the following heat equation:

DKD(x, x′; tk) = − ∂

∂tk
KD(x, x′; tk), (2.58)

subject to the initial condition

KD(x, x′; 0) = δ(x− x′). (2.59)
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Here, we have added a fifth auxiliary spacetime coordinate tk that we’ll refer to as
kernel time. It can be proved that such kernel exists and it’s unique on a Riemannian
manifold without boundary, such as the ones we consider later in the study [24]. It
is readily seen that this heat equation is satisfied by:

KD(x, x′; tk) =
∑
i

ψλi(x)ψ∗λi(x
′)e−λitk . (2.60)

The heat kernel encodes much our QFT. For example, it follows that KD provides
an integral representation for the propagator D:

D−1(x, x′) =
∫ ∞

0
dtkKD(x, x′; tk). (2.61)

More to the point with regards to our discussion, it is possible to show with little
work that ζD(s) can be expressed in terms of the heat kernel as

ζD(s) = 1
Γ(s)

∫ ∞
0

dtkts−1
k

∫
d4x
√
−gKD(x, x; tk)

= 1
Γ(s)

∫ ∞
0

dtkts−1
k KD(tk),

(2.62)

where in the last step we have defined:

KD(tk) :=
∫

d4x
√
−gKD(x, x; tk) = Tr

(
e−tkD

)
(2.63)

We have then reduced the issue of finding the free energy of a quantum field to
the one of evaluating the heat kernel of the associated differential operator [23]. To
make further progress, it is necessary to additionally specify the physical problem.
This is done in the next chapter, where we discuss the heat kernel for the case of a
scalar field on a (2+1)-dimensional spacetime.

2.4 Backreaction Effects: Wormholes

Ever since its discovery, the Casimir effect attracted much attention also for its
potential applications in the gravity sector. Indeed, many results in general relativ-
ity assume the so-called null energy condition (NEC), namely that any physically
meaningful stress-energy tensor Tµν should obey:

Tµνn
µnν ≥ 0, (2.64)

where nµ is any null vector. On its most basic essence, the NEC is just the general
relativity statement that corresponds to positivity of the energy for the matter
content of the Universe. The (likely) most important result that assumes the NEC
is the Penrose singularity theorem, which states that for a spacetime obeying the
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NEC with a closed trapped null surface T and a non-compact connected Cauchy
surface, then either the spacetime is geodesically incomplete or there exist closed
timelike curves. The theorem is essentially the proof that singularities and black
holes are robust predictions of general relativity [25]. It had been long believed
that the NEC would not be violated by any form of matter content in the Universe,
but the stress-energy tensor of the famous Casimir setup showed otherwise. Indeed,
its expectation value is given by (for the case of the massless scalar field at zero
temperature):

〈T̂µν〉 = diag(−1, 1, 1,−3) π2

1440a4 , (2.65)

which clearly violates the null energy condition. However, it does satisfy the achronal
averaged null energy condition, stating that for every achronal integral curve C(λ)
(with λ parametrising the curve) of a null vector field k, the stress-energy tensor
obeys: ∫

C
dλ Tµνkµkν ≥ 0, (2.66)

where by achronal we mean that no two points on the null curve are timelike sepa-
rated. As it turns out, this averaged condition is satisfied by the stress energy tensor
of all the usual QFTs, and it is expected to hold for any matter field in the Universe
[26].

Exotic matter (i.e. matter content that violates the NEC) gained some traction
in recent years for its possible role in the construction of suggestive solutions of
Einstein’s equations, such as wormholes and warp drives. It is however important
to emphasise that Casimir energy is not always negative! As we have discussed,
the vacuum energy is dependent on the geometry and topology of the spacetime
where the quantum field lives. Famously, it has been shown that for a scalar field
confined in a spherical conducting shell (rather than by parallel planar plates), the
Casimir energy is positive [16]. Nonetheless, the fundamental point is that for certain
configurations, the vacuum energy of the quantum field can be negative, opening
the doors to interesting physical phenomena.

2.4.1 The Semi-classical Approach to GR and its Limitations

Before discussing the effects that a negative vacuum energy can have as a source
for gravity, we need to first to understand how to couple a quantum field to a
classical gravitational field in a sensible physical way. Indeed, the classical Einstein’s
equations

Gµν = 8πTµν (2.67)

do not make much sense once we quantise the matter content of the universe, with
the left hand side being a classical tensor (i.e. a c-number) and the right and side
being an operator. One might expect this issue not to be fundamental (if a quantum
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theory of gravity is indeed what we will eventually find as a deeper description of
reality), but even from a practical point of view, it would be useful to have a semi-
classical approximation to Equation 2.67. This hybrid theory could be useful in
order to describe the physics at energy scales where the spacetime is effectively
classical but the quantum effects in the matter fields are non neglegible. Indeed,
the backreaction of the vacuum energy of quantum fields can be the solution to
many unsolved problems in cosmology. A famous example is its candidacy as the
origin of Dark Energy. Indeed, since the vacuum energy is expected to gravitate and
anything that adds to the vacuum energy density of the universe behaves exactly as a
cosmological constant, it is a natural guess. Precisely because the actual value of the
energy density matters in general relativity, we cannot lightheartedly renormalise it.
If we decide not to do so, we then need to add all the zero point energies of our
QFT up to a (big) cutoff energy scale Λc, where we believe our theory to break
down. Back of the envelope QFT calculations give a discrepancy as high as 120
orders of magnitudes between the experimental results and theoretical predictions,
when taking the Planck scale as Λc [27]. This is one of the biggest failed predictions
in the history of physics, and it is known as Cosmological Constant Problem. Of
course, a solution would be to just renormalise the vacuum energy density, treating
it as a parameter that has to be experimentally measured and not theoretically
derived. This is, however, unsatisfactory to many, who claim such fine-tuning to be
too artificial [4].

There are currently some proposed ways to generalise Equation 2.67 in order to
make the QFT backreact on the spacetime. In the naive approach, the most widely
used in the literature, we take the semi-classical equation to be just Equation 2.67
but with the stress-energy tensor being replaced by its expectation value with respect
to the quantum state of matter |ψ〉. This amounts to the replacement Tµν → 〈T̂µν〉,
leading to:

Gµν = 8π 〈ψ| T̂µν |ψ〉 , (2.68)

and it is what we implicitly assumed in the previous subsection when discussing
the NEC for the scalar field confined between parallel plates. While the simplicity
of this approach might seem appealing, its drawbacks are non-negligible. Indeed,
the limitations have been evident since it was first proposed as a way to avoid
quantising gravity altogether, with a very influential paper [28] highlighting the
contradictions and unphysical prediction that arise when trying to evaluate the
backreaction of a quantum system in a superposition (or even a classical mixture)
of states. In particular, through a thought experiment involving shooting classical
gravitational waves of very short wavelength to a localised quantum particle, it has
been shown that Equation 2.68 allows for either superluminal signalling or violation
of the Heisenberg uncertainty principle. Even though there is some criticism [29]
about both the argument and the conclusions of [28] which present this as strong
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evidence for the necessity of a quantum theory of gravity, over the years other issues
with this approach have been uncovered. For example, it has been proved that if
one assumes collapse of the state upon measurement (as in standard QM), then the
right hand side of Equation 2.68 would not be covariantly conserved, contrary to the
LHS which is automatically so thanks to the Bianchi identities [30]. The effect that
matter has on the spacetime geometry when the superposition is achieved for states
of significantly massive particles displaced one from the other is further issue of
this semi-classical limit. In such a situation, Equation 2.68 would cause the metric
to be influcenced as if there were two bodies of half the mass of the particle in
both locations, which is clearly unphysical. While alternative methods have been
recently put forward, like approaches that propose to couple classical and quantum
degrees of freedom stochastically [31] , it is yet unclear what the best way to couple
quantum fields to a classical background is. Hence, for the present discussion, we
assume Equation 2.68 to be hold in order to present recent results that take this
semiclassical limit to be valid. This is justified by the fact that we consider our field
to be in a definite state (i.e. the vacuum), avoiding the complications that we briefly
mentioned above.

2.4.2 Features of Traversable Wormholes

As exotic as they might sound, wormholes are present in many of the most famil-
iar solutions to Einstein’s equations. Indeed, they even appear in the very first
solution to Equation 2.67 ever found: the Schwarzschild spacetime. When maxi-
mally extended through Kruskal coordinates as shown in Figure 2.1, Schwarzschild
spacetime can be seen as composed by 4 regions. Regions I and III are isomet-
ric asymptotically flat portions of the manifold, while region II corresponds to the

Figure 2.1: Penrose diagram for the maximally extended
Schwarzschild spacetime. Reproduced from [32].
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interior of a Schwarzschild (non-rotating, neutral) black hole and region IV repre-
sents the interior of a Schwarzschild white hole. One can see the two asymptotically
flat regions as effectively two distinct Minkowski universes, that, for constant time
hypersurfaces, are connected by a region of space corresponding to a Riemannian 3-
manifold with topology R×S2. We refer to this throat as an Einstein-Rosen bridge.
While it might seem at first sight an appealing wormhole to travel between two oth-
erwise disconnected universes, it has to be emphasized that it is a spacelike surface,
so it cannot be casually traversed by any observer (nor light)! Indeed, to traverse
it, one would have to go through the r = 2M hyperplane which, in Schwarzschild
spacetime, corresponds to the event horizon of the black hole: definitely not FDA
approved, contrary to Pfizer’s COVID vaccine. Furthermore, regions III and IV
are not really relevant when discussing black holes originated via gravitational col-
lapse, since they disappear from the solution once the non-zero stress-energy tensor
of the interior of the star is taken into consideration. We therefore do not expect
such wormholes to be at all present in the Universe. A similar throat appears in
sub-extremal magnetically charged black holes that, in natural units, have the mag-
nitude of their charge P smaller than their massM , i.e. |P | < M . As the black hole
approaches extremality (i.e. |P | → M) the throat becomes infinitely long. Again,
this is still not causally not traversable.

The main issue with the aforementioned examples of wormholes is that they are
non-traversable, and, consequently, of little practical interest. When one restricts
its attention to traversable wormholes, Casimir energy enters the scene. To simplify
calculations, traversable wormholes are tipically assumed to be spherically symmet-
ric and static. The line element of the solution describing such objects can then
generally be written as:

ds2 = −e2Φ(r)dt2 + 1
1− b(r)/rdr2 + r2dΩ, (2.69)

where b(r) and Φ(r) are two arbitrary functions, which determine respectively the
shape of the wormhole and the gravitational redshift. For this reason, we call b(r)
the shape function and Φ(r) the redshift function. By a traversable wormhole, we
intend an object described by the metric in Equation 2.69 and that guarantees the
possibility of causal trips between two asymptotically flat regions (both ways). The
form of Φ(r) and b(r) is then constrained by requiring that there are no horizons
(which would prevent two-ways trips), that the trip is safe for human travel (rea-
sonable tidal forces and crossing time) and that the spacetime geometry is sourced
by a physically meaningful stress-energy tensor. A careful analysis shows that the
first two requirements constraint the shape and redshift functions so much that the
stress-energy tensor that sources the wormhole solution is bound to have negative
energy density (at least as measured by obeservers travelling at speeds close to c,
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but one can choose to make it so for any observer) [1]. A natural candidate to pro-
vide this negative energy density source is obviously the vacuum state of quantum
fields. A possible option would be to source the wormhole by concentrating most of
the exotic matter through the throat, but with its density falling off rapidly away
from the mouths. Solutions of this type give the so-called Casimir wormholes, and
generalisations of the stress energy tensor of a scalar confined by planar plates have
been shown to be able to source in principle traversable throats [3]. If one adds the
achronal averaged null energy condition into the mix (since, as mentioned earlier,
all quantum matter fields are expected to obey it), one further finds the restriction
that the throat has to be ‘long’, meaning that it takes longer to go through the tho-
rat rather than through the ambient space, protecting causality. We now review a
very interesting solution recently published, which provides an appealing traversable
wormhole sourced by the vacuum energy of Standard Model fields.

2.4.3 A Traversable Wormhole allowed by the Standard Model

The wormhole we now consider, presented by Maldacena, Milekhin and Popov in
a recent paper [2], can be seen as given by two extremal magnetically oppositely
charged black holes, whose throats, with geometry AdS2 × S2 are joined together.
This configuration has no event horizon, as required, and is indeed ‘long’ preserv-
ing causality. To build such solution, we exploit the fact that a massless charged
fermion gets its cyclotron orbits quantised in the so called discrete Landau levels
when immersed in a magnetic field. Being the wormhole traversed by magnetic field
lines, this splitting happens inside the throat as well. One can show that the lowest

Figure 2.2: Schematic of the magnetic field lines in a wormhole con-
structed from two oppositely magnetically charged extremal black

holes. Reproduced from [33]
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Landau level has zero energy on the S2 direction, while it gives rise to q effective
massless 2D fields in the time and radial directions, provided that the integer q
(specifying the quantised magnetic flux through the sphere) is big. This large num-
ber of fields is what provides the negative energy required to source the wormhole
and to make it stable.

We can picture each of these fields as localised along one of the q magnetic field
lines that go through the wormhole, constraining the QFT to live on S1 in the spatial
direction, as shown by Figure 2.2. This is crucial, since for a (1+1)-dimensional field
on a circular spatial topology the Casimir energy we obtain is indeed negative. In
particular, for q complex fermions living on a circle of length L with both right and
left moving modes, the vacuum energy is given by:

E = − q

12
2π
L
. (2.70)

However, our field is not really living on the flat R × S1, but rather in AdS2. We
then need to account for the two dimensional conformal anomaly, which turns out
to be:

Eanomaly = q

24
π

L
. (2.71)

We further assume that the two mouths of the throat are very close together with
respect to the length of the pipe itself. Doing so, we ignore the contribution coming
from the field lines in the region of the ambient space between the two mouths,
taking L = Lthroat. One can show this to be given by:

Lthroat = πl (2.72)

where l = t/τ , with t and τ being the time coordinates of respectively the asymptotic
Minkowski portion of the manifold and the wormhole region. Putting all together
we obtain:

Ewormhole = Eanomaly + E = − q8l , (2.73)

which turns out to be negative non-withstanding the positive contribution from the
conformal anomaly. For reference, the expectation value of the stress-energy tensor
that sources the solution can be proved to be:

〈Ttt〉 = 〈Txx〉 = − q

32π2l2r2
e

, (2.74)

which has already been corrected for the conformal anomaly. Here we have defined:

re := π2q2

g2 , (2.75)

which can be interpreted as the radius of the entrance of the wormhole, and where
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g is the coupling constant of the U(1) gauge field. In order to work out l for the
equilibrium configuration of the wormhole, one could directly solve the semiclassical
Einstein’s equation with the so specified matter content. A faster route, is just to
minimise the overall energy of the system given by Etot = Eclassical + Ewormhole,
where the classical contribution is the energy of the two unconnected near extremal
black holes with temperature T = 1/(2πl) (since at this temperature the t = 0
hypersurface of a near extremal black hole looks similar to the t = 0 slice of our
wormhole geometry). Adding the classical and quantum energies together we obtain:

Etot = r3
e

l2
− q

8l , (2.76)

which turns out to be minimised by

l = 16r3
e

q
= 16π3/2q2

g3 . (2.77)

Being this the minimum energy configuration we expect the wormhole to eventually
settle down to this geometry, no matter in which arrangement it first comes into ex-
istence. One might ask how stable this wormhole is against positive energy intakes.
The energy gap in the throat can be shown to be Egap ∝ 1/l ∝ 1/q2. Furthermore,
the binding energy of the throat is of order 1/q. We then see that quantum fluc-
tuations are not expected to spoil our solution. However, external object can (and
most likely will). Indeed, an object that has a Compton wavelength of the order re
outside the throat has already the required energy to break the two mouths apart,
restoring them to the two unconnected black holes. As human travellers would need
a re much larger than their Compton wavelength to fit through the mouths, we see
that the solution really describes a wormhole that can be crossed only by low energy
objects and waves without it collapsing.

As the two ends have opposite magnetic charge, they would naturally attract
each other, destroying the wormhole. A straightforward way to keep them apart
would be to make them orbit each other with some frequency Ω. Including both
gravitational and magnetic attraction, one can use the classical Kepler thrid law to
show this to be given by:

Ω = 2
√
re
d3 , (2.78)

with d being the distance between the two mouths. In order for the wormhole not
to break apart, we however need the rotational energy provided by the orbit to
be smaller than the binding energy of the throat, meaning Ωl � 1. While this
can be easily achieved, there is a further effect that might cause the solution to
collapse. Indeed, as the mouths rotate, the fermions will feel extra forces, such as
the Coriolis force and the quantum Hall force. These forces might push a particle
to neighbouring field lines as it goes round, meaning that it could potentially take



2.5. The Case for Graphene 29

more than a cycle to return to the original starting point as the fermion jumps
from line to line. This effectively lengthens the loop on which the particles live,
lowering the negative Casimir energy contribution and making the wormhole more
fragile. Furthermore, because of the rotation of the two mouths (which can be
approximated as extremal black holes for all purposes), radiation is bound to play
a role. Indeed, both electromagnetic and gravitational radiation lowers the total
energy of the system with a rate of:

dEg
dt = 2r2

ed
4Ω6

15 ∝ q5

d5 ,
dEEM

dt = 2π
3g2 q

2d2Ω4 ∝ q4

d4 . (2.79)

Considering only the dominating EM radiation, one gets a finite lifetime for the
system of:

Tlifetime ∝
d3

q2 . (2.80)

This is much larger than the expected time required to go through the wormhole,
which, as measured in terms of the asymptotically flat spacetime coordinate t is given
by l (hence meeting the traversability condition). One might also worry whether
some of this radiation can fall into the mouths and break the configuration, but for
the regime of validity of the solution the energy emitted by the orbit is much smaller
than the binding energy of the wormhole. While, as we have discussed, the described
wormhole is not safe for human travellers, its main achievement is to give a practical
example of how the Standard Model fields themselves could source these solutions.
Although it is unclear whether two black holes could dinamically merge into such
wormhole or not, the reviewed proposal could highlight some of the features that
we could encounter if wormholes were to exist in the Universe. This is in contrast
with most of the other solutions in the literature, where the source is represented
by some artificial Casimir-like cavity [2].

2.5 The Case for Graphene

As mentioned, the study has potentially practical applications beyond the pure
theoretical exploration. As an example, we make a case for graphene, the famous
2D material, consisting of a single layer of graphite, that has been the object of
extensive research ever since its discovery in 2004 due to its unique properties [34].
Interestingly, its electronic band structure might prove to be the perfect arena to
experimentally study the free energy of QFTs on a (2+1)-dimensional space.

2.5.1 Effective Dirac Fermions

The simplest approach to extract the electronic band structure of graphene is, as
always, the tight binding model. Here, we treat the electron as bound to a specific
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atom (hence the name), but with some probability (parametrised by the so called
hopping integral t) to being transferred to the nearest neighbours only. Because
of the honeycomb structure of graphene, we see that we can actually interpret the
hexagonal lattice as being composed by two sublattices, that we denote A and B,
as shown by Figure 2.3. The three nearest neighbours to an atom belonging to the
A-sublattice at ~x are given by ~x+ ~δi (for i = 1, 2, 3) with:

~δ1 = a

2(1,
√

3), ~δ2 = a

2(1,−
√

3), ~δ3 = −a(1, 0), (2.81)

where a ≈ 1.42Å is the lattice C-C spacing. For the case of an atom belonging to
the B-sublattice, the nearest neighbours would instead be positioned at ~x−~δi. With
this in mind, the general tight binding Hamiltonian can be written as:

Ĥ = −t
∑
~x,n,σ

â†~x,σ b̂~x+ ~δn,σ
+ h.c., n = 1, 2, 3 (2.82)

where â~x,σ and b̂~x,σ are the annihilation operators of an electron with spin σ around
the atom at position x on respectively the A and B sublattices. It is, however, more
convenient to work with the Hamiltonian in k-space. Expanding in Bloch waves we
have:

â~x =
∑
~k∈BZ

ei
~k.~xâ~k, b̂~x =

∑
~k∈BZ

ei
~k.~xb̂~k, (2.83)

where the sum is over all wavevectors ~k belonging to the 1st Brillouin zone of the
lattice. Recall that the expansion in Bloch waves is allowed because of the (discrete)
translational symmetry of the lattice. Plugging those in and representing a state
with a 2D vector where in the top slot we have the amplitude on the A sublattice
while on the bottom one the amplitude on the B sublattice (basically we treat the
full Hilbert space of the electrons on graphene as a tensor product between the
Hilbert space on the A-sublattice and the one on the B-sublattice), it can be shown

Figure 2.3: Graphene honeycomb lattice, reprinted from [35]
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that the Hamiltonian for graphene in k-space is given by:

Ĥ~k =

 0 ∆~k

∆∗~k 0

 , (2.84)

with

∆~k
= −t

[
1 + 4 cos

(3kxa
2

)
cos

(√
3kya
2

)
+ 4 cos2

(√
3kya
2

)]− 1
2

. (2.85)

The energy bands are then trivially given by the dispersion relation E~k = ±|∆k|. A
very important feature of the bands is that the positive and negative levels meet at
the so called Dirac points, i.e. where ∆~k

= 0. This happens at the 6 corners of the
hexagonal first Brillouin zone, which fall into two inequivalent groups of 3 (much
like the 2 sublattices). We take as representatives of the two groups the points in
momentum space:

~K = 2π
3a

(
1, 1√

3

)
, ~K ′ = 2π

3a

(
1,− 1√

3

)
. (2.86)

To understand the reason behind the name ‘Dirac points’ for ~K and ~K ′, let’s expand
Equation 2.85 near ~q := ~k − ~K = 0 to obtain:

∆~q ≈
√

3
2 |~q|e

−i(π/2+θ), (2.87)

with θ being the angle that ~q makes with the kx-axis in the kx − ky plane. We then
see that near the Dirac points the disperion relation is linear in |~q|, with the bands
inheriting a conical shape in this region. We consequently call this portion of the
bands Dirac cone. More interestingly, plugging Equation 2.87 into Equation 2.84
we see:

Ĥ~q ≈ −
√

3
2 at

(
0 qx − iqy

qx + iqy 0

)
= vF ~σ.~q, (2.88)

with ~σ being the formal vector of the usual Pauli matrices (note that we are working
in 2D here, so σz is not included) and vF is the Fermi velocity in graphene. Ex-
perimentally, it has been found that vF is not really a constant as this treatment
suggests, but by introducing space-dependent strain into the model it is possible to
obtain a variable Fermi velocity that matches the experimental observations. What
is really curious, however, is that Equation 2.88 is just the Dirac equation for a
massless fermion living in a (2+1)-dimensional spacetime (where c→ vf )! Further-
more, a similar result would have been obtained by expanding the Hamiltonian near
~K ′ instead, with ∆~q| ~K′ = ∆∗

~q| ~K . The physical interpretation is that we have two
Dirac Hamiltonians, one for each inequivalent set of cones, with the helicity of the
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effective particle living near ~K ′ reversed with respect to the one near ~K. We then
see that electrons occupying the Dirac cones behave for all purposes as massless
Dirac fermions (at each inequivalent Dirac point we obviously have particles and
antiparticles, corresponding respectively to electrons and holes). It is also interest-
ing to look at the eigenfunctions of the Hamiltonian near the Dirac points, which
are given by:

ψ±
~q| ~K

= 1√
2

(
eiθ/2

±e−iθ/2

)
, (2.89)

where the + state corresponds to a mode with positive energy (that we interpret as
the electron) while the − state corresponds to a mode with negative energy (that
we interpret as the hole). Of course, upon second quantisation, we would lose the
disturbing negativity of the energy for the antiparticle. Staring at Equation 2.89 we
notice two compelling features. First, as expected for fermions, the wavefunctions
exhibit a 4π period on θ, meaning that they pick up a minus sign after a 2π rotation
in q-space. Secondly, we see that it is a different phase between the modes on the A
and B sublattices that leads us to interpret the particle as hole or electron [36].

It would be natural to ask how close to reality this model really is. Would the
effective Dirac Hamiltonian still arise as we make the description more complex and
realistic? As it turns out [36], the result does not change if we include, for example,
second nearest neighbour hopping. Furthermore, including space dependent strain
does not alter the Dirac-like behaviour of the electron near the Dirac points [37].
Indeed, Dirac points in graphene have been experimentally verified [38], demonstrat-
ing the high level of stability that these features possess. While we have mentioned
only graphene so far, other 2D materials such as silicene, germanene, boron and
MoS2 could theoretically exhibit Dirac cones, with compelling evidence in silicon
found in recent works [39].

2.5.2 Stability of the Membrane

The study of the free energy of a quantum field living on a (2+1)-spacetime can
then be used to elucidate the stability of certain 2D membranes, such as a layer of
graphene. Indeed, a geometrical arrangement of a lattice is stable if such configura-
tion minimises the free energy of the material. For the case of graphene near a Dirac
cone, F has a two-fold origin: a classical contribution Fc, given by the Landau free
energy of the geometry, and a quantum contribution Fq which originates from the
effective massless Dirac fermions living on the lattice.

We’ve already discussed the free energy of a quantum field (a scalar, actually,
but the story for fermions is quite similar modulo some subtleties about how they
couple to the curved spacetime). Let’s then give a brief overview on the nature of the
Landau energy, and what this looks like for the case of graphene. Landau theory is an
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effective theory that describes what happens to a system near a critical point. In our
case, the critical point we are interested in represents the transition point between
a ‘flat’ and crumpled phase of the lattice. It was formulated by Lev Landau, who
built on the experimental evidence that different systems exhibit similar features
near phase transitions, suggesting that a universal description could be achieved.
The simplest and most illustrative example of the efficacy of Landau theory is given
by the description of the phase transition in the Ising model through the mean field
approximation. Landau’s approach can be summarised by the assumption that,
near phase transition, the free energy of the system is analytic, meaning that it can
be expressed as a Taylor expansion in terms of a parameter governing the physics,
called the order parameter. The only other restriction placed on the form of the free
energy is that it must follow the symmetries of the Hamiltonian of the system.

It is interesting to see how the classical free energy changes as we deform a
spherical lattice, since this gives the competing energy that might balance the change
in the Helmholtz energy of the quantum field living on it. We assume diffeomorphism
invariance, even though this is not technically valid for a crystalline material such
as graphene due to its discrete symmetries. Moreover, we take as sole contribution
to the Landau energy the bending free energy of the material, which we assume to
be minimised by the sphere (at least locally, compared to fluctuations around it).
Hence, to second order, the difference in bending free energy between a geometry
with mean curvature H and bending rigidity κ, and sphere of radius r0, is given by
[40]:

∆Fc = κ

∫
d2x
√
h

(
H − 2

r0

)2
, (2.90)

with gij being the metric with which Σ, the 2D spatial sub-manifold with sphere
topology, is endowed. Note that, in some conventions, H is given by the average of
the principal curvatures, but here we take it to be just the sum. Consider now a
surface slightly deformed from a sphere of radius r0, parametrised by

r = r0[1 + εχ(θ, φ)], (2.91)

where χ is the deformation function and ε is a small parameter. The metric induced
by flat space on such Σ is then given by:

ds2
Σ = r2

0(1 + 2εχ)dΩ2 +O(ε2), (2.92)

where dΩ2 is the metric on the unit sphere (we show this later, but one can under-
stand its origin by recalling that any 2D metric can be written in terms of the round
sphere metric multiplied by an appropriate Weyl exponential factor). Inserting the
determinant of the metric and the mean curvature evaluated for Equation 2.91 in
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Equation 2.90, we get to leading order in ε:

∆Fc = ε2κ

∫
dθdφ

(
2χ+∇2

χ)
)2

+O(ε3), (2.93)

with ∇2 being the Laplacian on the unit sphere. It is then useful to decompose ξ
using the spherical harmonics Yl,m(θ, φ):

χ(θ, φ) =
∑
l,m

χl,mYl,m(θ, φ), (2.94)

where χl,m are coefficients and |m| < l. Mathematically, the fact that deforming
the lattice does not increase its surface area is enforced by setting χ0,0 = 0. Then,
plugging the expansion back in Equation 2.93, we see that the leading order change
on the Landau energy caused by the perturbation is given by:

∆Fc = ε2κ
∑
l,m

|χl,m|2(l − 1)2(l + 2)2. (2.95)

To understand the balance between classical and quantum free energy in such setup,
we consider the example of a CFT living on the lattice. This is somewhat realistic, as
the electrons near the Dirac cones do behave as excitations of a CFT if the graphene
layer is flat or slightly perturbed away from it. We assume that this description is
valid for a spherical arrangement as well (as it makes the discussion that follows
easier). It can be shown that the difference in the zero-temperature Helmholtz free
energy of the CFT (i.e. the Casimir energy) between the spherical lattice and the
perturbed one is [11]:

∆Fq = −ε2π
2cT vF
48r0

∑
l,m

|χl,m|2
(l2 − 1)(l + 2)

l

Γ
(
l+1
2

)
Γ
(
l
2

)
2

+O(ε3), (2.96)

where vF is the Fermi velocity of the material acting as effective speed of light for
the relativistic degrees of freedom living on the lattice and cT is the central charge
of the theory (defined as the coefficient of the two point function of the stress tensor
of the CFT). In the case of a Dirac CFT, it takes the value of cT = 3/(32π2).

At this point, we can see two key differences between Equation 2.95 and Equa-
tion 2.96. First of all, in Equation 2.95 the length scale r0 dropped out, meaning
that it is insensitive to the size of the sphere. This is not true, however, for the
quantum contribution, which is proportional r−1

0 , suggesting that for very small r0

it might dominate the free energy (note, however, that the analysis is valid only for
length scales well above the lattice spacing where the discrete nature of the crystal
is masked). Secondly, we note that the classical contribution is proportional to l4

for big l, while Equation 2.96 grows as l3 (note that a further l factor comes from
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the ratio of the Γ-functions), indicating that for big enough l the positive classical
Landau energy is the leading term. Furthermore, the surface area preserving condi-
tion imposes χ00 = 0, meaning that only l > 1 contribute. However, the l = 1 term
vanishes as well, since those deformations are equivalent to infinitesimal diffeomor-
phism (under which we have assumed our systems to be invariant). Note that close
to l = 1 the quantum contribution vanishes linearly in l while the classical Landau
energy does so quadratically. This means that there is some region with l > 1 where
∆F = ∆Fc + ∆Fq < 0 (taking l continuous). Nonetheless, l must be an integer,
meaning that to effectively see the free energy go negative it is necessary to have
this holding all the way up to l = 2. Summing Equation 2.95 and Equation 2.96 and
choosing a function with χl,m = 0 for l 6= 2, we then see that we achieve a negative
∆F for:

r0 ≤
3π3cT vF

1536κ . (2.97)

In the case of graphene, we tipically have κ ≈ 1 eV and vF ≈ 106 m/s. Furthermore,
recall that we need to multiply the central charge of the Dirac CFT by 2 since we
really have 2 inequivalent Dirac points (hence two Dirac fields living on the lattice).
Reinstating the factor of ~, we see that for the negative CFT contribution to domi-
nate we would need r0 / 0.01a, with a being the lattice spacing in graphene. Clearly
an unphysical result, highlighting that for a CFT leaving on graphene it is always
the case that the sphere is a stable configuration. One could nonetheless conceivably
engineer the membrane by modifying its Fermi velocity [37] and bending rigidity [41]
in such a way that for a reasonably sized sphere the quantum energy dominates over
the classical contribution, making the the spherical geometry unstable.

It is also interesting to note that the quantum contribution seems to indicate
that the CFT prefers to crumple rather than to stay on the sphere. Is this be-
haviour universal for all quantum fields and valid for all deformations? We’ll discuss
recent analytical results in the next chapter, but all evidence seems to point in that
direction. Numerical studies seem to support this tendency also for deformation
non treatable with pen and paper, and we come to a similar conclusion with the
numerical results we obtained.





Chapter 3

Setup and Previous Results

In this section, we formalise the problem of computing the free energy of a scalar field
on a deformed sphere. We first discuss the Laplacian on the sphere, and how this
changes as we deform the geometry. We then tackle the computation of the Helmoltz
energy analytically, discussing how to regulate the divergences that naturally arise
when calculating the zero point energy of the field and presenting the form of the
heat kernel for this particular setup. We then review recent findings on the topic,
both analytical (for a strongly coupled CFT) and numerical (fermion and scalar field
on axysimmetrical deformed spheres).

3.1 Geometry of the Physical Space

We focus on a static (2+1)-dimensional geometry R× Σ, where Σ is a 2D manifold
with sphere topology. The general line element in such geometry can then be written
as:

ds2 = dτ2 + gij(~x)dxidxj , (3.1)

where τ = it is the Wick rotated time coordinate, i, j = 1, 2 and gij(~x) is the spatial
metric on Σ that depends only on the spatial components of x. In particular, we
want to consider Σ to be some kind of deformed sphere, which may (or may not) be
embeddable in a 3D ambient space. We make use of the results that any 2D metric
is conformally flat and that the n-dimensional round sphere Sn is conformally flat,

37
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to consider, without loss of generality, the metric g on Σ to be:

gij = e2f ḡij , (3.2)

where ḡij is the metric on S2 and f(θ, φ) is a smooth function that represents our
deformation. Recall that for the unit 2-sphere the line element is given by:

ds2
S2 = dθ2 + sin θdφ2. (3.3)

3.1.1 Laplacian on a Deformed 2-Sphere

In order to perform the numerical calculations, we need an explicit expression for
the Laplacian on Σ. As it turns out, it is straightforward to relate the Laplacian
of two conformally equivalent metrics. Recall that the Laplace operator acting on a
scalar field in curved space is given by:

gij∇i∂jφ = gij
(
∂i∂j − Γkij∂k

)
φ, (3.4)

with Γkij being the Christoffel’s symbols giving components of the Levi-Civita metric
connection on Σ. With some algebra, it can be readily shown that for two metrics
related by a conformal factor as in Equation 3.2, the components of the Levi-Civita
connection are given by:

Γkij = Γ̄kij + δki ∂jf + δkj ∂if − ḡij ∂̄αf, (3.5)

where Γ̄kij are the components of the connection for ḡij and ∂̄α is just the partial
derivative with the index raised by ḡij . Plugging Equation 3.5 into Equation 3.4
and using δii = 2 (since we are working on a 2D manifold), we see that the extra
terms cancel and we are left with:

∇2φ = e−2f ḡij(∂i∂j − Γ̄kij∂k)φ = e−2f∇2
φ, (3.6)

i.e. the two Laplacians are related by the inverse of the conformal factor. Fur-
thermore, one can show that a similar relationship holds for the Ricci scalar [42]:

R = e−2f R̄− 2(n− 1)−2f∇2
f − (n− 2)(n− 1)e−2f |df |2, (3.7)

with df indicating the exterior derivative acting on the deformation function and n
the dimensions of the manifold. For the case of ḡij being the metric on the 2-sphere
(and, consequently, n = 2) this reduces to:

R = 2e−2f (1−∇2
f), (3.8)
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where we have used the fact that R̄ = 2. For reference, recall that the Laplacian on
the unit sphere is given by:

∇2 = ∂2
θ + 1

sin2 θ
∂2
φ + cot θ∂θ. (3.9)

3.1.2 Embedding of Σ

Not all geometries defined by Equation 3.2 can be embedded in R3, and can be
then physically seen as properly deformed sphere. Nonetheless, we now consider an
embeddable 2D surface slightly perturbed away from the unit sphere, illustrating
that the metric induced by flat Euclidean space on Σ is indeed of the form shown
in Equation 3.2. The motivation behind this excursion is to visualise the physical
implications of different f , so that the reader can have a clearer picture of the type
of deformations we are considering.

Consider a surface defined by

r = R(θ, φ) := c[χ, ε](1 + εχ(θ, φ)), (3.10)

where r is the radial coordinate in R3, ε is a numerical parameter that governs the
strength of the deformation described by χ and c[χ, ε] is a functional that acts as a
normalisation for the surface area of Σ. In particular, c is chosen such that for any
deformation the surface area of the geometry described by R(θ, φ) is 4π, i.e. the
one of the unit sphere. Note that for Equation 3.10 to describe a valid embedding,
we must require R(θ, φ) ≥ 0, meaning that, for each χ, there is a different range
of values ε can take, i.e. ε ∈ [εmin, εmax] ⊂ R. Now, recall that an m-dimensional
manifold (M, g) induces a metric gN = h∗g on an embedded submanifold N , where
the embedding is defined by the smooth map h : N →M, via the pull-back h∗ (i.e.
a map induced by h that allows us to to map the cotangent space on N to M).
Now, taking h to be defined by x = x(y) (where {xµ} are the coordinates onM and
{yα} are the coordinates on the embedded submanifold), we have that the induced
metric on N is given by:

(h∗g)αβ = ∂xµ

∂yα
∂xν

∂yβ
gµν . (3.11)

For the case of the embedding shown in Equation 3.10 we have {xµ} = {r =
R(θ, φ), θ, φ} and {yα} = {θ, φ}, leading to the line element:

ds2
Σ = (R′2 +R2)dθ2 + (Ṙ2 +R2 sin2 θ)dφ2 + 2ṘR′dθdφ, (3.12)

where a dot and a prime indicate respectively partial derivative with respect to φ and
θ. For illustration purposes it is now easier to work with axisymmetric deformation
(which avoids us the trouble of diagonalising the metric). This amounts to setting
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Figure 3.1: Comparison of the deformation function for different ε on
the upper hemisphere (lighter surface corresponds to bigger ε). The
x and y Cartesian coordinates correspond to the ones obtained from
a polar system with 0 ≤ θ ≤ π/2 treated as radial coordinate and

0 ≤ φ ≤ 2π as azimuthal angle.

Ṙ = 0, obtaining:

ds2
Σ = R2

[(
R′2

R2 + 1
)

dθ2 + sin2 θ dφ2
]
. (3.13)

Finally, we see that keeping only terms up to order ε (i.e. considering small defor-
mations), and choosing:

f = lnR = ln [cχ,ε(1 + εχ(θ, φ))] (3.14)

we do recover the conformal gauge in Equation 3.2 for ε � 1 (even though higher
order terms break the conformal form of the metric). It is then clear what we mean
when we say that f defines the deformation of the sphere: with the prescription
given in Equation 3.14, we see that r = ef defines for small ε the same embedding
of the perturbed sphere given by Equation 3.10.
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Later, in our numerical analysis, we focus on non-axisymmetric deformations.
We take the function f to be of the form of Equation 3.14, and we choose:

χ(l,m)(θ, φ) =


√

2 Yl,m m = 0

(−1)mYl,m + Yl,−m, |m| > 0
(3.15)

With these choice of normalisation factors, we both guarantee reality of χ and ob-
tain deformations of comparable size between axisymmetric and non-axisymmetric
distortions (as one can check by looking back at the perturbative results for a CFT
in Equation 2.95 and Equation 2.96). Furthermore, as we discuss later, we consider
only perturbations that are even with respect to the equatorial line θ = π/2. This
allows us to solve the problem on half of the sphere only, in order to reduce the
computational cost of the numerical calculations. For the deformations to enjoy this
symmetry, we exploit the spherical harmonics property that:

Yl,m(θ, φ) = (−1)l+mYl,m(θ − π, φ), (3.16)

from which we see that the deformations with the required reflection invariance with

Figure 3.2: Deformation function for different l and m on the upper
hemisphere. The x and y Cartesian coordinates correspond to the
ones obtained from a polar system with 0 ≤ θ ≤ π/2 treated as

radial coordinate and 0 ≤ φ ≤ 2π as azimuthal angle.
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respect to the x− y plane have the same parity for l and m. Figure 3.1 shows some
examples of such non-axisymmetric deformation functions, illustrating how these
change as ε increases. A comparison between deformations with same l but different
m is instead shown in Figure 3.2, where we also see an example of axisymmetric
distortion, i.e. the one with l = 4 and m = 0.

3.2 Scalar Field on a Deformed Sphere

We now consider a scalar field living on our spacetime. We first analyse the UV
and IR divergences of the theory, showing how these are manifest in the form of
the heat kernel. We then discuss how we can extract finite physical quantities that
can be calculated numerically. Successively, we introduce previous analytical and
numerical results on the subject, exploring the sign of the difference in free energy
between deformed and undeformed sphere in various regimes. We describe that small
deformations of the sphere always reduce the free energy for a non-interacting scalar
field, and that the same is valid for deformations of any size for a strongly interacting
CFT. Finally, we discuss the sign of the heat kernel in different tk regimes.

3.2.1 UV and IR Divergences

All the physics of our theory is as always encapsulated by the Euclidean (since we
have Wick rotated time) action:

SE [φ] = 1
2

∫
dτ
∫

d2x
√
gφ(M2 + ξR−�)φ, (3.17)

where we have used the fact that the metric is static in order to isolate the τ

integration. As usual, the free energy is divergent. We can however introduce
counterterms in the action to absorb those infinities, regulating our theory using a
UV momentum cutoff Λ. On dimensional grounds, we can immediately see that the
most general counterterms that are covariant (and that we can therefore add to the
action) are:

c1Λ3, c2µΛ2, (c3µ
2 + c4R)Λ, (3.18)

where µ is the sum of any parameter in Equation 3.17 with mass dimension 1, while
the ci are dimensionless coefficients independent on both Λ and the geometry. With
counterterms, the action reads:

Sc.t.[φ] = SE [φ] +
∫

dτ
∫

d2x
√
g
[
c1Λ3 + c2µΛ2 + (c3µ

2 + c4R)Λ
]
. (3.19)
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We can now perform the spacetime integration on the counterterms, noting that the
first three terms are just constants in x. We make use of the known integrals:∫

d2x
√
g = Vol[g] (3.20)

and ∫
d2x
√
gR = 4πχΣ, (3.21)

where the χΣ is the Euler characteristic of Σ, a topological invariant that for ge-
ometries with sphere topology is given by χΣ = 2. This shows that the regulated
free energy of the field takes the form (dropping the q subscript on Fq since we only
focus on the quantum contribution from now on):

F = Vol[g](c1Λ3 + c2µΛ2 + c3µ
2Λ) + 4πχΣΛ + Ffin. (3.22)

Here Ffin is the finite contribution to the free energy as Λ → ∞. Therefore, the
difference in free energy between fields living on distinct Σ, but with same topology
and surface area, is actually a finite quantity! Hence, from now on, we renormalise
the free energy by considering ∆F = FΣ − FΣ=S2 , i.e. taking as control the field
living on the unit 2-sphere with standard S2 metric ḡ. We also choose Σ such that
Vol[g] = Vol[ḡ] (note that this also conveniently replicates what happens when we
deform an actual lattice, as mentioned earlier).

In order to compute the free energy, we resort to the heat kernel method. The
reasond behind this choice is two-fold: first of all it makes the UV divergences
manifest in the analytical treatment, and secondly it allows for numerical com-
putations (contrary to ζ-function regularisation, where the implementation of the
analytic continuation as a numerical task is nontrivial). For a scalar field described
by Equation 3.17 we obtain the following heat kernel integral representation for the
Helmholtz free energy:

F = −T2

∫ ∞
0

dtk
KD(tk)
tk

, (3.23)

with D = −∂2
τ + L + M2 being the differential operator acting on the field. Here

we have defined L = −∇2 + ξR, with ∇2 the Laplacian on the spatial Σ geometry.
From Equation 3.8 we see also see that L for the non-minimally coupled scalar is
explicitly given in terms of the deformation function f by:

L = e−2f
[
−∇̄2 + 2ξ

(
1−∇2

f
)]
. (3.24)

Crucially, we can extract the contributions due to thermal effect and mass of the
field, and rewrite F in terms of the heat kernel KL associated with L instead:

F = −T2

∫ ∞
0

dtk e−M
2tkΘ−1/2(T 2tk)

KL(tk)
tk

, (3.25)
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where
Θσ(x) :=

∞∑
n=−∞

e−(2π)2(n−σ+1/2)2x. (3.26)

From Equation 3.23 we see that there are two natural regimes where the divergent
contributions to F can come from: tk � 1 and tk → ∞. Let’s briefly analyse the
latter. As mentioned earlier, we can formally express the heat kernel for L as:

KL(tk) = Tr
(
e−Ltk

)
=
∑
i

e−λitk , (3.27)

with λi being the ith eigenvalue of L and the sum being over all such eigenvalues.
It is evident that if L were to have zero or negative eigenvalues, then the integral in
Equation 3.23 would diverge in the tk →∞ regime, resulting in tachyonic instabili-
ties if, when the mass term is accounted for, such eigenvalue amounts to a negative
effective mass. To be more precise, the presence of the vanishing eigenvalue would
only cause divergence for M = 0, a typical feature of IR divergences. Nonetheless,
we know that for the minimally coupled case we avoid negative eigenvalues due to
the conformal form and to the properties of the Laplacian on S2. λ = 0, however,
is indeed an eigenvalue of the Laplace operator for both the deformed and under-
formed sphere when ξ = 0 since the constant function is killed by both. However,
consider the difference between the free energy of Σ and of the unit sphere, which
from now on we refer to as subtracted free energy. This is trivially given in terms of
the respective heat kernels by:

∆F = Tσ

∫ ∞
0

dtk e−M
2tkΘσ(T 2tk)

∆KL(tk)
tk

, (3.28)

where we have introduced σ = −1/2 to adopt the same notation of [9] and we have
defined the subtracted heat kernel

∆KL(tk) := KL(tk)−KL(tk) =
∑
i

(
e−λitk − e−λ̄itk

)
, (3.29)

with KL being the heat kernel for the scalar on the control geometry. The integral in
Equation 3.28 is now regulated in the big tk limit, as the contributions from the zero
eigenvalues cancel in Equation 3.29. For the non-minimally coupled case, instead,
all eigenvalues are positive for vanishing deformations. Indeed, the eigenvalues for
the non-minimal Laplacian on the unperturbed sphere are given by:

λ = l(l + 1) + 2ξ, l = 0, 1, 2, ... (3.30)

Nonetheless, inspecting Equation 3.6 we see that the perturbations can potentially
cause at some point a sign change for at least the lowest eigenvalue, leading to the
catastrophic divergences. We will then have to carefully choose the deformation
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function when considering the non-minimally coupled scalar. Even without IR in-
finities, UV divergences would still force us to consider ∆F rather F itself! To see
this more explicitly, consider the small tk behaviour of KL, where those divergences
are encapsulated. As mentioned earlier, there is a theorem that guarantees the ex-
istence (and crucially uniqueness) of the heat kernel on a compact n-dimensional
Riemannian manifoldM without boundary (such as Σ) for any elliptic differential
operator D. It can also be proved that such heat kernel admits a small tk asymptotic
expansion:

KD(tk, x, x) = t
−n/2
k (α0(x) + α1(x)tk + α2(x)t2k + ...), t→ 0+, (3.31)

where αi(x) are smooth functions on the manifoldM. One can then integrate this
overM to get:

KD(tk) = t−n/2
∞∑
i=0

ait
i, (3.32)

where
ai =

∫
M
αi. (3.33)

As it turns out, the coefficients ai are locally computable in terms of geometric
invariants [24]. Precisely for this reason, and because one cannot construct odd-
dimensional topological invariants for manifolds without boundaries, we have that
the odd-numbered coefficients vanish:

a2i+1 = 0. (3.34)

For the specific case of the scalar field on the 2D geometries under consideration,
i.e. for D = D it can be shown that this reduces to [9]:

KD(tk) = 1√
4πt3/2T

∞∑
n=0

b2nt
n, (3.35)

where the new coefficient b2n can still be expressed in terms of objects depending
on the geometry. In particular, we have:

b0 ∝
∫

d2x
√
g = Vol[g], b2 ∝

∫
d2x
√
gR = 4πχΣ, (3.36)

which we saw in our dimensional arguments are the terms that control the UV
divergences! It is in this sense that we mean that small tk regime governs the high
energy behaviour of our theory, while the big tk encapsulates the IR physics. The
next order coefficients are not equal for all area preserving Σ. To see more explicitly
that these two contributions do indeed give UV divergences, note that, when plugged
into Equation 3.28, the integral of the heat kernel expanded up to n = 2 blows up
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in the t → 0 limit. However, the third term (i.e. the one governed by the b4
coefficient) goes as t−1/2, meaning that its integral does give a finite contribution
even in the tk = 0 limit. Since the two coefficients in front of the divergent terms
are proportional to the surface area of Σ and to a topological invariant, we again see
that considering ∆F for area and topology preserving deformations of the sphere
leads to a UV finite quantity. Extracting the dependence on temperature and mass,
the short time asymptotics of the subtracted heat kernel for the reduced operator L
is given by:

∆KL(tk) = t
∞∑
n=0

∆b2n+4t
n, (3.37)

with ∆bi being the difference of the heat kernel coefficients of between the deformed
and undeformed sphere (note we used ∆b0 = ∆b2 = 0). Therefore, the leading order
behaviour for the subtracted kernel in the small tk is linear and corresponds to

∆KL(tk) = t∆b4 +O(t2), (3.38)

where for a non-minimally coupled scalar field we have [9]:

∆b4 = 1
1440π [5(6ξ − 1)2 + 1]

∫
d2x

(√
gR2 −

√
ḡR

2)
. (3.39)

As we discuss later, the fact that we have an explicit expression for ∆KL for any
deformation at small tk makes the task of evaluating the subtracted kernel a little
easier, being the computational burden required to compute ∆KL numerically for
tk / 10−2 significant.

At this point we pause briefly to describe the effects of mass and temperatures
that we can extract from Equation 3.25. First of all, the T → 0 limit can be inferred
by using the fact that through Poisson resummation one can show:

lim
T→0

TΘσ(T 2tk) = 1√
4πtk

. (3.40)

For non-zero T , however, we see that Θ−1/2 does not decay to zero as tk →∞, but
instead approaches 1 (since all terms die off exponentially, except from the n = −1
that gives unity for all non-zero times). For both zero and non-zero temperatures,
however, as tk → 0 we see Θ−1/2 →∞. This is useful to note in order to extract the
T →∞ limit. Indeed, in this case, the tk → 0 and T →∞ limits do not commute.
However, we know that for all finite temperatures Θ−1/2 diverges as tk approaches
zero, indicating that the correct ordering of the limit is to let first tk go to zero and
to later take T →∞. Apart from the measure zero point tk = 0, we see that in the
infinite temperature limit:

lim
T→∞

Θ−1/2 = 1. (3.41)
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Hence, we see that the free energy per unit temperature in the ‘hot’ limit is given
by:

lim
T→∞

∆F
T

= −1
2

∫ ∞
0

dtk e−M
2tk

∆KL(tk)
tk

. (3.42)

Another interesting regime is the long-wavelength limit, obtained when M` � 1,
with ` being the typical curvature scale of the geometry. The heat kernel coefficients
∆b2n scale with such parameter as `−2n for n ≥ 2, which imply that in the long-
wavelength regime we obtain [9]:

∆F = −1
4

∆b4
M

coth
(
M

2T

)
+ ... . (3.43)

Now, considering ∆F0 to be the subtracted free energy obtained for a small defor-
mation (as we discuss later we have an analytic expression for such cases) with the
same temperature and mass, we obtain:

∆F
∆F0

= ∆b4
∆b(0)

4
, (3.44)

where ∆b(0)
4 is the linear coefficient for the case of the small distortion. Also, note

that Equation 3.28 shows the same exponential suppression due to finite mass that
we observed in the parallel plates configuration.

3.2.2 Sign of the Subtracted Heat Kernel

It is now a good place to stop and look at the information we can extract from
the analytic expressions that we have for the subtracted heat kernel. Starting from
the small tk regime, we can trivially see that ∆b4 is a positive coefficient. Indeed,
we can use the volume conservation condition, together with Equation 3.20 and
Equation 3.21 (and the fact that R = 2 is a constant) to derive the statement:∫

d2x
(√

gR2 −
√
ḡR

2) =
∫

d2x
(
R2 −R2)

=
∫

d2x
√
g
(
R−R

)2
− 2

∫
d2x
√
gR

2 + 2
∫

d2x
√
gRR

=
∫

d2x
√
g
(
R−R

)2
≥ 0.

(3.45)

We therefore see that, for small enough tk, the subtracted heat kernel is guaranteed
to be positive.

The large tk regime is instead governed by the smallest eigenvalue of L, as the
other contributions to Equation 2.63 vanish more quickly as tk → ∞. Now, this is
not quite true for the minimally coupled scalar, where we have seen that the constant
function is an eigenmode of both the perturbed and unperturbed Laplacian, meaning
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that the two contributions exactly cancel in Equation 2.63. To understand the large
time asymptotics for the ξ = 0 case, it is hence necessary to look at the second
smallest eigenvalue for L and L. In the case of the unperturbed Laplacian, this is
given by λ = 2 (it has degeneracy 3, but this does not matter since it just amounts
to a mutliplicative factor which clearly does not change the qualitative large tk
behaviour). The second smallest eigenvalue for the deformed case is known to be
bounded by [9]:

λ2 ≤
8π

Vol[g] = λ̄2, (3.46)

i.e. it is guaranteed to be smaller than the unperturbed eigenvalue. Going back
to the non-minimally coupled scalar, the lowest eigenvalue is non-zero and different
for the deformed and undeformed geometry. It can be shown to be given by the
Reyleigh-Ritz formula [9]:

λmin = infφJ [φ], J [φ] :=
[∫

d2x
√
gφ2

]−1 ∫
d2x
√
gφ(−∇2 + ξR)φ, (3.47)

with the infimum intended to be taken over all square-integrable test functions φ.
We see that we can bound λmin from above with a constant test function, and using
the relations in Equation 3.20 and Equation 3.21 one can show such a bound to be:

λmin ≤ J [φ = const] = 4πξχΣ
Vol[g] = λ̄min, (3.48)

meaning again that the smallest eigenvalue for the undeformed sphere is bigger than
the one for the deformed geometry. This has the implication that for both the min-
imally and non-minimally coupled scalar, the subtracted heat kernel is greater than
zero also in the big tk regime. The sign of the intermediate tk region is up to grabs
for general deformations, which is the reason why we use numerical calculations to
compute it. Nonetheless, it is possible to study it analytically for specific config-
urations. We shortly review some of such results for the mid tk range for small
deformation and for deformations of any size in the case of a conformal field theory.

The sign of the subtracted heat kernel is important as it gives hints on the
sign of the subtracted free energy. Of course it’s not necessary for ∆KD to be
positive everywhere for ∆F to be negative (recall there is an overall minus sign in
Equation 3.23), but showing positivity of ∆KD for all tk guarantees the negativity
of the energy (and, consequently, the preference of the quantum field to live on the
deformed geometry).

3.2.3 Small Deformations

We now summarise analytical results regarding a scalar field living on a geometry
only small perturbations away from the unit sphere [9]. We start by considering the
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metric in conformal gauge in Equation 3.2 and expanding the deformation function
in the small parameter ε that governs the strength of the perturbation:

f = εf (1) + ε2f (2) +O(ε3), (3.49)

with ε = 0 clearly corresponding to the reference S2 metric. Now, the area preser-
vation condition amounts to:∫

d2x
√
ḡf (1) = 0 ∧

∫
d2x

√
ḡ
(
(f (1))2 + f (2)

)
= 0. (3.50)

Note that keeping the expansion of f to second order is crucial in order not to have
f (1) = 0 fixed by the volume preservation condition. We can similarly expand the
Laplacian L, its eigenvalues λI , its eigenfunctions hI and the subtracted heat kernel
in powers of ε:

L = L̄+ εL(1) + ε2L(2) +O(ε3),

hI = εh
(1)
I + ε2h

(2)
I +O(ε3),

λI = ελ
(1)
I + ε2λ

(2)
I +O(ε3),

∆KL = ε∆K(1)
L + ε2∆K(2)

L +O(ε3).

(3.51)

It follows from homogeneity of the round sphere that ∆K(1)
L (tk) = 0, meaning that

the leading contribution to the subtracted heat kernel from the perturbation is
quadratic. For a more rigorous treatment, please refer to [9]. However, it can be
proved that:

∆K(2)(tk) = t
∑
I

e−λ̄I tk
[
tk
2
(
λ

(1)
I

)2
− λ(2)

I

]
. (3.52)

We now take L in the form of Equation 3.24, i.e. for a non-minimally coupled scalar
field. Recall that on the round sphere (i.e. f = 0), the eigenvalues are given by
λ̄l = l(l + 1) + 2ξ with l a non-negative integer. Then, expanding f (1) in spherical
harmonics

f (1) =
∑
l,m

fl,mYl,m, (3.53)

with fl,m being the coefficients of the expansion, one can show that:

∆K(2)(tk) =
∑
l,m

al(tk)|fl,m|2, al(tk) := tk

∞∑
l′=0

e−λ̄l′ tk(αl,l′ + βl,l′tk), (3.54)
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where αl,l′ and βl,l′ are numerical coefficients. For general l, these are given by:

αl,l′ =



(2l′+1)(λ̄l′−ξCl)2

πCl

( 2+l
2 )

l′( l2 )−l′
( 3+l

2 )
l′( 1+l

2 )−l′
, l′ < l

2(2l′ + 1)
(
λ̄l′ − ξCl

)2

2π
(
Hl′− l

2
−Hl′+ l

2

+Hl′+ l+1
2
−Hl′− l+1

2
− 2

2l′ + 1

)

−
(2l′ + 1)2

(
λ̄l′ − ξCl

)
π

 l l′ l′

0 0 0

2

l′ ≥ l
2

(3.55)

and

βl,l′ = (2l′ + 1)(λ̄l′ − ξCl)2

2π

(
l l′ l′

0 0 0

)2

, (3.56)

where Cl := l(l + 1), (x)n = Γ(x + n)/Γ(x) are the Pochhammer symbols, Hn are
the harmonic numbers and (

l1 l2 l3

0 0 0

)
(3.57)

is the 3j symbol. An interesting thing to note from Equation 3.54 is that the per-
turbative result is insensitive to the value of m from which we build our deformation
function, as the result is only dependent on l and on the coefficients of the spherical
harmonics expansion.

Later, in the presentation of our numerical solutions, we will want to benchmark
our numerical results with the analytical predictions. However, Equation 3.54 seems
to suggest that we have to numerically evaluate an infinite sum of terms to compute
the analytical result. We have to truncate such sum in l′, and the exponential terms
in Equation 3.54 give us a rough idea of the ideal place to do it. Figure 3.3 shows the
magnitude of the α and β coefficients and exponential prefactor for different l, l′ and
kernel times. Figure 3.3a compares these coefficients at t = 10−3 for different l as
a function of l′, showing that the contributions to Equation 3.2.3 become neglegible
for l′ ' l′cut = 200. Figure 3.3b helps to visualise the fact that in order to compute
∆K(2)

L for smaller and smaller tk a significant increase in l′cut is required. Fortunately,
we do not necessarily need to compute the subtracted heat kernel this way for small
tk: we can patch it with the small tk expansion in Equation 3.38, so that it is
sufficient to truncate the sum as soon as ∆K(2)

L approaches such linear behaviour.
The situation is even simpler for odd l, however, since the 3j symbol vanishes if
l + 2l′ is an odd integer! Hence, for the case of odd l, the α and β coefficients are
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Figure 3.3: Coefficients for the perturbative expansion of the sub-
tracted heat kernel. (a) Magnitude of the α (solid coloured lines)
and β (dashed coloured lines) as a function of l′ for different l. The
inverse of the (inverse) exponential prefactor is plotted for compar-
ison (black solid line) for tk = 10−3. (b) Magnitude of the inverse
exponential prefactor as a function of l′ for different heat kernel times.

given by the reduced expressions:

αl,l′ =


(2l′+1)(λ̄l′−ξCl)2

πCl

( 2+l
2 )

l′( l2 )−l′
( 3+l

2 )
l′( 1+l

2 )−l′
, l′ < l

2

0 l′ ≥ l
2

(3.58)

and
βl,l′ = 0, (3.59)

effectively transforming the infinite sum in into a finite one. In the paper, big
axisymmetric deformations are then studied numerically for a scalar and a Dirac
free field. The results can be shortly summarised by the statement that σ∆K, with
σ = −1/2 for the scalar and σ = 1 for the fermion, is found to be always negative,
showing that the free energy is maximised by S2 for the deformations considered.
Furthermore, it is found that ∆F behaves suggestively similar between the fermionic
and scalar field, a feature further discussed in [10].

3.2.4 Strongly Coupled Conformal Field Theories

So far, we have studied a scalar free theory, with no interaction whatsoever. In-
deed, one might naively expect that introducing interactions would only complicate
the picture, and would not help in the search of general analytical results. While
this would be right in most cases, this is not what happens for a strongly coupled
(2+1)-dimensional conformal field theory thanks to the incredibly powerful tool of
holography. While we do not have much time to go into details, we briefly touch
on CFTs and the AdS/CFT correspondence, and then summarise a recent result of
interest.
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A conformal field theory is a quantum field theory which is invariant under
the conformal group. The conformal group is an extension of the Poincare’ group
that includes dilatations (x→ λ(x)x) and special conformal transformations (which
amount to an inversion, followed by a translation and a further inversion), and it is
isomorphic to SO(1, d+1) in an Euclideanised d-dimensional spacetime. Effectively,
conformal transformations are coordinate transformations xµ → x̃µ(x) that cause
the metric to change as:

gµν(x)→ Ω2(x)gµν(x). (3.60)

The statement of invariance under a conformal transformation, is really the state-
ment that the physics is insensible to length scales. CFTs have recently been the
centre of much attention due to the formulation of the AdS/CFT correspondence,
i.e. the conjectured (but now widely accepted) possibility of translating a physical
problem in a d+1-dimensional quantum theory of gravity (string theory) in Anti-de
Sitter background geometry to one in the conformal quantum field theory without
gravity living on its d-dimensional boundary. This is formally stated by equating
the generating function of the connected correlation functions for the CFT with the
string/gravity partition function on AdS space. The correspondence can be used
both ways, i.e. to solve quantum gravity problems by studying the CFT and vice
versa. In our case, we make use of the fact that, the bulk (d + 1)-gravitational
theory is effectively classical in the strong coupling limit for the CFT, so that we
can use Einstein’s equation to analyse the otherwise intractable strongly correlated
CFT [43].

A recent paper has studied the Casimir enegry for a CFT living on the same
(2+1)-dimensional spacetime that we consider in our analysis [8]. The static space-
time for the boundary CFT is taken to be, without loss of generality, in the ultra-
static frame (as in our case). This is justified by the fact that we can bring the
metric in such ultrastatic frame via a conformal transformation, which is shown not
to change the Casimir energy of the CFT. Such energy, is given by:

E =
∫

Σ

√
gTCFT

µν nµvν , (3.61)

where v = ∂t is the global timelike Killing vector of the static spacetime, n is
the unit vector normal to a constant t hypersurface and TCFT

µν is the stress-energy
tensor of the CFT. A thermal state at finite temperature T of the CFT is assumed
to be described in the bulk by a gravitational solution that is smooth away from the
conformal boundary and that ends only either on such boundary or on smooth killing
horizons with a Hawking temperature of T with respect to v. The Casimir energy
is then evaluated as the limit of E as T → 0. Without getting into much detail,
the AdS/CFT dictionary then dictates the expectation value of the stress-energy
tensor of the CFT to be determined by the asymptotic approach of the bulk metric
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solution to the conformal boundary. The final result is that the Casimir energy for a
strongly coupled CFT is always non-positive, and is maximised by a Σ with constant
curvature (which, in the topology we are considering corresponds to the sphere).
This means that strongly coupled (2+1)-dimensional CFTs prefer to crumple and
disfavour the simpler spherical geometry! Contrary to the results earlier discussed
(which were valid only for small perturbations), this is valid for any Σ geometry
and, hence, for deformations of any size. It is curious that, conterintuitively, the
most general analytical result up to date has been obtained for a strongly coupled
field rather than for a (naively simpler to treat) free field. This is an excellent proof
of the incredible power of the AdS/CFT conjecture.





Chapter 4

Numerical Methods

In this section we present our approach to the numerical calculations. We first
introduce spectral methods, highlighting the advantages that these techniques bring
with respect to the standard equispaced finite difference approach. We then examine
the discretisation of the physical space, describing Chebyshev nodal collocation and
illustrating how to implement the boundary conditions. In order to clarify this
as much as possible, an application of the method to a toy model is successively
presented, where the eigenvalues and eigenfunctions of the 1D Laplacian are found.
We conclude with an analysis on the performance of the numerical methods, looking
at how the density and geometry of the computational grid affects the accuracy of
the calculations in different regimes.

4.1 Spectral Methods

4.1.1 Runge’s Phenomenon

Consider a periodic function f(x) defined on the closed interval x ∈ I[a, b] on the real
line. Suppose now that we discretise such an interval, obtaining a set of N+1 nodes
{xj}Nj=0, which may or may not be equidistant. An interesting question would be:
how can I reconstruct the function through polynomial interpolation as faithfully as
possible using the sampled values fj = f(xj)? This query, basic as it might seem,
opens the door to spectral methods (we’ll define them carefully soon) by highlighting
how important the collocation of nodes is when approximating a function.

55
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A naive approach would be to just place the lattice points evenly spaced and
interpolate them with a polynomial of as high degree as possible. As it turns out,
this approach is not only inefficient, but potentially disastrous. It is a known result
[44] that the difference at a point x ∈ I between a function g which is CN+1 in the
interval I and the interpolating polynomial PN (x) of degree at most N is given by:

eN (x) := g(x)− PN (x) = g(N+1)(η)
(N + 1)!

N∏
i=0

(x− xi) (4.1)

where η is some point in the interval and the xi is the (i + 1)th node. To simplify
notation, we define:

wN (x) :=
N∏
i=0

(x− xi). (4.2)

Equation 4.1 provides a quantitative way to check whether our interpolating poly-
nomial gives a better and better approximation as the number of lattice points (and,
consequently, degree of the polynomial) increases. Changing N affects both wN (x)
and the prefactor involving the (N + 1)th derivative of g. The factorial on the
denominator could suggest that a bigger number of nodes achieves a better approx-
imation, but really both the derivative and product terms can step in to reverse
that behaviour. This is what’s commonly known as Runge’s phenomenon (similar
in looks, but not in origin, to the Gibbs’ phenomenon ubiquitous in signal analy-
sis). The effect is named after the mathematician Carl Runge, who first presented
the canonical example, that we now illustrate, in which increasing the order of the
interpolating polynomial makes the error grow without bounds [45]. Consider:

g(x) = 1
1 + 25x2 , x ∈ [−1, 1]. (4.3)

A careful, but lengthy, analysis on wN (x) and on the derivatives of g(x) shows
that for certain x the error diverges as N → ∞ if we take uniform spacing for the
nodes [44]. An elegant alternative approach to achieve the same result is instead
to analytically continue f to the complex plane. For complex z, the analogous
expression to Equation 4.1 is given by the following contour integral:

eN (z) := g(z)− PN (z) = 1
2πi

∫
C

wN (z)
wN (η)

g(η)
η − z

dη, (4.4)

with C being the boundary of a domain R where f is analytic and where both z

and the nodes are contained. It is also useful to define:

σN (z) := |wN (z)|1/(N+1) (4.5)

and its limiting value:
σ(z) := lim

N→∞
σN (z), (4.6)
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which in the case of equidistant points can be shown to be [44]:

σ(z) = exp
{

1
b− a

∫ b

a
log |z − t|dt

}
. (4.7)

Consider now the family of curves

C(ρ) = {z ∈ C|σ(z) = ρ} , (4.8)

which for the case of uniform node spacing correspond to smooth curves about the
midpoint of the real interval I. In general, we have that for η ∈ C(ρ) and z ∈ C(ρ′)

lim
N→∞

∣∣∣∣wN (z)
wN (η)

∣∣∣∣ = 0 (4.9)

if ρ > ρ′. This has the key implication that if we can find a curve C(ρ) containing z
and that bounds a region of the complex plane where g is analytic, the polynomial
interpolation will indeed converge for big enough N . If g is entire, this guarantees
convergence on any domain I. This is not true, however, if g has poles. Indeed, let
g have a simple pole at z∗, and suppose that there is no curve C(ρ) that encloses z
but not the pole. Since Equation 4.4 is valid only if the integration contour bounds
a region of the complex plane where g is analytic, we cannot use any member of the
family of curve given by Equation 4.8 by itself to estimate the error at z. Nonetheless,
we can integrate along C(ρ), if we are careful to make a deviation Γ to avoid z∗.
Doing so, we have:

eN (z) = 1
2πi

∫
C(ρ)

wN (z)
wN (η)

g(η)
η − z

dη +
∫

Γ

wN (z)
wN (η)

g(η)
η − z

dη (4.10)

As discussed earlier, the first integral gives a vanishing contribution as N → ∞,
while the second one can be trivially evaluated using the residue theorem, leading
to:

lim
N→∞

eN (z) = wN (z)
wN (z∗)

Resg(z∗)
z∗ − z

=
(
σN (z)
σN (z∗)

)N+1 Resg(z∗))
z∗ − z

. (4.11)

Here Resg(z∗) indicates the residue of the function g at the pole z∗. Taking N big
enough, σN (z)→ σ(z) = ρ and, considering z ∈ C(ρ′) and z∗ ∈ C(ρ∗) with ρ∗ < ρ′,
we see that:

lim
N→∞

(
σN (z)
σN (z∗)

)
= ρ′ − ε
ρ∗ + ε

> 1, (4.12)

with ε small. Consequently, not only convergence is not guaranteed, but actually
the error of the interpolating polynomial blows up exponentially with N outside the
region bounded by C(ρ∗) (i.e. the curve where the pole lies). This is reflected on
our real interval I by the fact that the error grows without bounds outside Ic, i.e.
the portion of I enclosed by C(ρ∗). If g has multiple poles, the same applies, with
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the error blowing up outside C(ρ∗min), where ρ∗min is the minimum ρ such that C(ρ)
crosses a pole. Going back to Runge’s function in Equation 4.3, we see that it has
simple poles at z∗ = ±i/5. In this case, one can work out that ρ∗ ≈ 0.494 and,
consequently, that the error grows without bounds on the real line for |x| ' 0.727,
i.e. at the edges of the domain (as it is always the case for Runge’s distortion)

4.1.2 Chebyshev Nodal Collocation

There are few approaches to mitigate Runge’s phenomenon, but the solution we
adopt (and, arguably, the most elegant one) is to change the collocation of the nodes.
While in theory it would be enough to choose {xj} such that the generated C(ρ)
completely enclose the interval I on the real line without containing any poles, this
is easier said than done. Instead, we go back to Equation 4.1 and try to envisage
a discretisation that minimises the error for a given N , optimising the function
wN (x). As it turns out, this will not only solve the distortion in Runge’s example,
but also provide a collocation of points that guarantees a much faster convergence
for smooth enough functions compared to the uniformly spaced grid in all cases,
laying the foundations for spectral methods.
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Figure 4.1: The first 5 Chebyshev polynomials (darker corresponds
to lower order).
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Let’s introduce the Chebyshev polynomials of order N as a function of the aux-
ilary variable θ = cos−1(x):

TN (x) = cos(Nθ(x)). (4.13)

The first 5 Chebyshev polynomials are show in Figure 4.1. This form is particularly
useful, since it elucidates the geometrical interpretation of the so called Chebyshev
nodal collocation, where the set of nodes {xj} corresponds to the set of roots of
the Nth degree Chebyshev polynomial. Geometrically, the Chebyshev grid on the
interval [−1, 1] can be seen to be obtained by projecting on the real line equally
spaced points on the unit upper semicircle, as displayed by Figure 4.2. An explicit
expression for the Chebyshev nodes for an Nth order polynomial interpolation is
given by:

Figure 4.2: Chebyshev collocation.
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xj = cos
[(2j + 1)π

2N

]
. (4.14)

To help with the visualisation of this alternative collocation methods, Figure 4.3
shows the comparison between the interval x ∈ [−1, 1] discretised with uniform
spacing and the same interval latticised with Chebyshev nodes. The latter has
evident clustering of lattice points at the edges of the domain.

Using the identity

(x− x0)(x− x1)...(x− xN ) = TN+1(x)
2N , (4.15)

where the xi are the Chebyshev roots, and applying the result that TN+1/2N is the
polynomial of order N + 1 and leading coefficient 1 with smallest supremum norm
||·||∞, one can easily see that choosing Chebyshev collocation minimises Equation 4.1

-1 -0.5 0 0.5 1

-1 -0.5 0 0.5 1

Figure 4.3: x ∈ [−1, 1] interval discretised with N = 20 Chebyshev
(top) and equispaced (bottom) nodes.
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for fixed g and N [46]. Furthermore, we can see that:

||eN (x)||∞ =
∣∣∣∣∣
∣∣∣∣∣g(N+1)(ξ)

(N + 1)!

N∏
i=0

(x− xi)
∣∣∣∣∣
∣∣∣∣∣
∞

=

∣∣∣∣∣∣g(N+1)(ξ)
∣∣∣∣∣∣
∞

(N + 1)!
||TN+1(x)||∞

2N

≤

∣∣∣∣∣∣g(N+1)(ξ)
∣∣∣∣∣∣
∞

(N + 1)!2N ,

(4.16)

showing that, for the Chebyshev case, the error decays exponentially with N . This is
a significant improvement from the uniformly spaced grid, and it’s what goes by the
name of spectral convergence. The deep reason behind the faster convergence is that
the family of curves C(ρ) that one generates with such a choice of nodes is the one
of ellipses with foci at x = ±1 [44]. This allows us to find a contour that avoids the
pole but contains the entirety of the domain, hence guaranteeing a bounded (and,
crucially, decaying) error as N →∞. Comparison between the convergence for the
interpolation of Runge’s function using uniform and Chebyshev grid is shown in
Figure 4.4, where the advantage of using Chebyshev nodal collocation is extremely
noticeable near the edges of the domain.
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Figure 4.4: Polynomial interpolation of Runge’s function (sampled by
the red markers) with polynomials of order N = 7, 13, 25 (solid lines,
darker means smallerN). A uniform collocation of nodes (left) causes
a fail to converge to the desired function for |x| ' 0.727 (blue vertical
lines), which is amplified as N increases. The opposite happens for
Chebyshev spacing (right), with a better approximation achieved for

higher order polynomial.
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4.1.3 Differentiation Matrices

The advantage of unevenly spaced grids to interpolate functions on an interval means
that an equispaced grid is inefficient even when evaluating the derivative of a func-
tion. In particular, the differentiation matrix obtained through a finite difference
scheme (uniformly spaced grid) gives an approximation for the derivative that typ-
ically converges as O(N−m) for some m that depends both on the order of the
interpolant from which the matrix is obtained and on the smoothness of the func-
tion. On the other hand, differentiation matrices obtained via spectral methods
(e.g. Chebyshev collocation) converge at least as O(N−m) for every m, which is
faster than what finite difference schemes give. Moreover, if the function is suitably
analytic, one can achieve the even faster convergence of O(cN ) with 0 < c < 1 (recall
that when we say h(x) = O(k(x)) we mean that there exists some constant α such
that for x→∞ we have that |h(x)| < α|k(x)|) [47]. Spectral methods reside on the
idea of appropriately choosing an orthonormal basis to approximate the solution of a
differential equation defined on the interval of interest. Different (generally smooth)
basis functions can be chosen, from which a variety of differentiation matrices can
be extracted. The choice is made taking into consideration the expected properties
and symmetries of the solutions. For the case of a periodic function, a Fourier basis
is the natural choice, while orthogonal polynomials (among which Chebyshev are
the most commonly used) are the best options for non-periodic solutions. For a
detailed analysis on how choosing the right basis can significantly improve stability
and convergence of the numerical method, please refer to Chapter 4 of Trefethen
[47].

As shown earlier, non-periodic functions can be accurately approximated via
polynomial interpolation on a Chebyshev grid on the [−1, 1] domain (and, in fact on
any domain by appropriate rescaling of the polynomials). Constructing our differen-
tiation matrix from Chebyshev discretisation, we can then exploit the convergence
advantages that such approach brings with respect to the standard finite difference
techniques. For a grid of N + 1 points, the matrix DN representing the linear
operation that gives the derivative of a function sampled following the Chebyshev
prescription has entries given by:

(DN )00 = 2N2 + 1
6 = −(DN )NN ,

(DN )jj = − xj
2(1− x2

j

j = 1, 2, ..., N − 1,

(DN )ij = ci
cj

(−1)i+j
xi − xj

j 6= i,

(4.17)
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with:

ci =

1, i = 0, N

2 otherwise.
(4.18)

To understand the origin of the differentiation matrix, consider a grid function ~u

sampled on the Chebyshev nodes (effictively, a vector with N + 1 entries). Then,
to read off the coefficients of the matrix, one would find the unique interpolating
polynomial PN (x) of order at most N that interpolates the data {uj}, differentiate
it and rewrite the result in a matrix multiplication of the form:

~w = DN~u, (4.19)

where we impose that wj = P ′N (xj).
From the differentiation matrix for the first derivative we can obtain the one for

the nth derivative simply by elevating the former to the nth power. DN is then the
building block from which we construct any differential operator of interest.

4.1.4 Boundary Conditions

It is at the level of the differentiation matrix that we need to impose the boundary
conditions of the physical problem at hand. To better explain how this is done, we
solve a simple 1D toy model, and successively move on to the more complex case of
the Laplacian on a sphere.

Let’s pretend that we want to find the spectrum of the Laplacian on the intevral
x ∈ [−1, 1] on the real line, subject to a mixture of Dirichlet and Neumann homoge-
neous boundary conditions at the extremal points. Effectively we want to solve the
following eigenvalue problem:

d2yn
dx2 = −λnyn, φ(yn(−1), y′n(−1)) = χ(yn(1), y′n(1)) = 0, (4.20)

where yn and λn are respectively the nth eigenfunction and eigenvalue of the 1D
Laplacian, while φ and χ are some functions of yn and its derivative at the bound-
ary giving the homogeneous boundary conditions. This example is familiar to any
physicist, as it is exactly the first problem that students meet in all the introductory
courses on quantum mechanics: the particle in a box (which can be seen by iden-
tifying y with the wavefunction and λ with energy). To mirror what we do when
looking at the 2D Laplacian on the sphere, we focus on two basic cases:

• homogeneous Dirichlet boundary conditions, i.e. y(−1) = y(1) = 0, for which
we obtain the following set of non-trivial eigenfunctions (up to an irrelevant
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factor A) and eigenvalues:

yn(x) =

A cos
(
nπx

2
)
, n odd

A sin
(
nπx

2
)
, n even

, λn = n2π2

4 , n = 1, 2, ... (4.21)

• homogeneous Neumann boundary conditions, i.e. y′(−1) = y′(1) = 0, that
instead result in:

yn(x) =

A sin
(
nπx

2
)
, n odd

A cos
(
nπx

2
)
, n even

, λn = n2π2

4 , n = 1, 2, ... (4.22)

It is useful to think about any homogeneous boundary condition as a matrix
multiplication of the form:

~0︸︷︷︸
m× 1

=
m×M︷︸︸︷
B ~y︸︷︷︸

M × 1

, (4.23)

where the matrix B acting on ~y gives the equations for such constraints. This can
be generalised for the case of non-homogenous conditions substituting the vector of
zeros with a vector ~c containing the inhomogeneous part of the constraints. The
dimensions highlighted in Equation 4.23 assume M grid points and m constraints,
which in our 1D example would translate into ~0 being a 2×1 column vector, B being
a 2 ×M matrix and the vector of sampled function values ~y a M × 1 vector. To
impose the boundary conditions at the level of the differential operator, we rewrite
the entries ~yB of ~y that correspond to the boundary points as a function of the
interior points ~yI [48]. We can rearrange B into a formal row vector in order to
visualise what’s going on:

~0︸︷︷︸
m× 1

=

m×m︷︸︸︷
BB ,

m× (M −m)︷︸︸︷
BI




m× 1︷︸︸︷
~yB

~yI︸︷︷︸
(M −m)× 1

 = BB ~yB +BI ~yI .

Here, BB and BI are respectively a square and a rectangular matrix obtained from
B itself, such that the resulting constraints are left invariant by this formal rear-
rangement. It is immediately evident why the reorganisation is useful, since we can
now isolate ~yB provided that BB is non-singular. Rewriting:

~yB = −BB−1BI ~yI = A~yI (4.24)

we can then successfully reduce the degrees of freedom of the problem, finally im-
plementing the constraints.
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The next step is to modify the differential operator such that it only acts on
the interior points, while still taking into account the conditions on the boundary
points. Take the discretised version of the Laplace equation:

L~y = 0,

where L is the discretised Laplacian (which in the simple example of Equation 4.20
is just the Chebyshev differentiation matrix squared). Let’s once more rearrange ~y
and, consequently, L to visualise better the procedure:


m×m︷ ︸︸ ︷
LBB

m× (M −m)︷︸︸︷
LBI

LIB︸︷︷︸
(M −m)×m

LII︸︷︷︸
(M −m)× (M −m)




m× 1︷︸︸︷
~yB

~yI︸︷︷︸
(M −m)× 1

 = ~0.

Since we will work only with the interior points, we can discard the top entry of the
formal vector that results from this matrix multiplication, and instead focus on the
bottom component. Plugging in Equation 4.24 we obtain:

0 = LIB ~yB + LII ~yI = (LIB A+ LII)~yI = L̃ ~yI ,

where L̃ is the effective differential operator where the boundary conditions have
been implemented. The problem of finding the eigenvalues and eigenfunctions of
the differential operator subject to boundary conditions φ and χ is then reduced
to the one of finding the eigenvalues and eigenvectors of the matrix L̃ [48]. Of
course, we are limited to finding the M −m smallest eigenvalues, but theoretically,
as M →∞, one can capture the full spectrum of the operator.

Let’s go back to the example of the Laplacian on a line, considering the case of
homogeneous Neumann boundary conditions. Here the matrix B corresponds just
to the two rows of DM−1 that give the derivatives at the boundaries. Explicitly, for
a grid with M = 3 points the Chebyshev differentiation matrix is given by:

D2 =


3
2 −2 1

2
1
2 0 −1

2
−1

2 2 −3
2


The first and last rows of D2 are the ones that give the derivative evaluated at
the boundary points x0 and x2. Hence, we can extract the required B matrix and
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rewrite the constraints for this example as:

( 3
2 −2 1

2
−1

2 2 −3
2

)
y0

y1

y2

 =
(

0
0

)
.

It is helpful to note that to implement homogeneous Dirichlet boundary conditions it
is enough to delete from the differential operator columns and rows that respectively
act on and give the boundary points. Therefore, for a grid vector of the form
~y = (y0, y1, ..., yM ) with y0 and yM boundary points, we would take our Laplacian L
and obtain L̃ by deleting the 1st and Mth columns and rows, i.e. keeping the green
portion of the matrix below:

L =


L00 L01 ... L0M

L10 L11 ... L1M
... . . . . . . ...

LM0 LM1 ... LMM


Following the outlined procedure, we can then solve the eigenvalue problems

given by Equation 4.21 and Equation 4.22, as shown in Figure 4.5a and Figure 4.5b
respectively. Indeed, Figure 4.5 shows the first 4 non-trivial eigenfunctions and
eigenvalues, obtained with a grid of N = 100 points for both Neumann and Dirichlet
boundary conditions. The accuracy of the eigenvalues computed numerically for
both sets of boundary conditions is then shown in Figure 4.6, where the relative error
for various grid resolutions is displayed. Here we start to see the incredible precision
of spectral methods: even with only 10 points, we get the smallest eigenvalues
accurate up to a part in 1010. We see that the error stays somewhat constant for
most of the spectrum, until a threshold is hit, after which it rapidly increases. This
can be explained by the fact that as n grows, the eigenfunctions oscillate faster and
faster. At some point, we incur in aliasing, i.e. the nodal spacing are not fine enough
to resolve the eigenfunctions (especially in the centre, where the separation between
lattice points is larger), leading to a rapidly increasing error.

4.2 Computational Set Up

4.2.1 Tensor Product Grid

A crucial difference between the 1D toy model that we just discussed and the case
of the Laplacian on a sphere is obviously the dimensionality of the problem. Indeed,
the sphere being two dimensional requires a 2D grid, which we naturally obtain by
formally performing a tensor product between two 1D grids. Effectively, we can
take a 1D grid in one direction and replace all its points with a 1D grid in the other
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Figure 4.5: The 4 smallest eigenvalues and eigenfunctions of the 1D
Laplacian on the interval [−1, 1] subject to (a) homogeneous Dirich-
let and (b) homogeneous Neumann boundary conditions. Results

obtained with N = 100 nodes.
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Figure 4.6: Relative error with respect to the theoretical values λ∗n
for the eigenvalues λn of the 1D Laplacian. We compare the results
obtained with a grid of N = 10, 20, 50, 100, 200 (darker corresponds
to smaller N) points for homogeneous (a) Dirichlet (b) Neumann

boundary conditions.

direction. First, however, we must pick a coordinate system on the sphere. We make
the choice covering S2 with two charts, each representing one hemisphere. Since we
restrict ourselves to deformations which are symmetric about the equator, we can
focus our attention to one of the two charts, spanning the region:

θ ∈ [0, π/2], φ ∈ [0, 2π].

We can see this chart as covering a disk, where the role of the radial coordinate
is played by the θ direction, as shown in Figure 4.7. We now follow the standard
approach in spectral methods when dealing with 2D polar coordinates on a disk [47],
namely we use a Chebyshev nodal collocation in the radial coordinate and a periodic

θ

φ

0

π/4

π/2

3π/4

π

5π/4 7π/4

3π/2

φ

θ

Figure 4.7: Choice of chart covering the sphere. Due to the symmetry
of the problem with respect to the equatorial plane, only the top
hemisphere is considered and treated as a disk, with the role of radial

coordinate played by θ ∈ [0, π/2]
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Fourier grid in the angular direction. A Fourier grid is really an equispaced grid, with
the difference that the differentiation matrices are evaluated not with polynomial
interpolants (which would amount to a standard finite difference method), but in the
Fourier basis (hence encapsulating periodicity on the φ direction). With the choice
made for the θ grid, we end up with a clustering of points both near the equator and
near the centre of the disk (representing either our North or South pole). While this
would be fine in theory, in practice it is rarely of any use to have such a high density
of nodes near the origin, being it a very small region. Indeed, since with spectral
methods we always implicitly assume smoothness of our solutions (because the basis
functions chosen are smooth), we would be wasting precious computational power,
oversampling a not so interesting portion of the domain. A workaround to this is to
extend the radial coordinate (in our case θ) to negative values, i.e. considering the
coordinate system:

θ ∈ [−π/2, π/2], φ ∈ [0, 2π].

Of course, this means that there is some redundancy in our coordinate choice, since
we are mapping each point twice! Indeed, the map from (θ, φ) to (x, y) is 2-to-1
(excluding the origin where it really is ∞-to-1, but taking an even number of nodes
on the θ direction we’ll knowingly avoid that point). To solve this issue, we must
impose that our solution has the symmetry:

u(θ, φ) = u(−θ, (φ+ π)(mod2π)), (4.25)

which forces single-valuedness of the function. Here we are just requiring u(θ, φ) =
u(θ, φ + 2πm) for any integer m (i.e periodicity in the φ direction, which is what
motivates the use of the Fourier grid for that coordinate in the first place) and that
the reflection of the radial coordinate θ → −θ really amounts to a rotation by π in
the azimuthal direction. We now show how to implement the latter symmetry condi-
tion numerically, restricting ourselves once more to 1D. Consider our state vector ~u
sampled on 2N grid points with Chebyshev nodal collocation, and divide it into two
sub-vectors ~u+ and ~u−, representing respectively u sampled at positive and nega-
tive radial coordinate. Clearly, the condition given by Equation 4.25 really amounts
to ~u+ = ~u− (if entries are reordered such that if ui corresponds to coordinate θ,
then ui+N corresponds to coordinate −θ). With this in mind, consider a matrix A
representing any linear operation:

A~u =

A++ A+−

A−+ A−−

(~u+

~u−

)
=
(
~w+

~w−

)
. (4.26)

The vector ~w so obtained must necessarily possess the same symmetry as ~u with
respect to θ → −θ. Imposing both the symmetry conditions and Equation 4.26, we
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Figure 4.8: Computational 10 × 10 grid, shown (a) on the x − y
plane and (b) on the θ − φ plane. In (b) we show how the grid
is formally generated, first collocating 20 Chebyshev nodes on the
interval θ ∈ [−π/2, π/2] and discarding then the reduntant θ < 0
region such that the neighborhood of the pole is not oversampled.

obtain:
~w+ = (A++ +A+−)~u+ = (A−+ +A−−)~u+, (4.27)

from which we see that for any 2N × 2N differential operator, the symmetry re-
quirements restrict our matrix to a N ×N one given by the sum of the top two (or,
equivalently, bottom two) blocks and acting only on ~u+.

The last piece of the puzzle needed before constructing the Laplacian on the
sphere is to understand what the differentiation matrix with respect to only one
of the two coordinates is on a tensor product grid. Suppose we have a 2N ×M
grid with 2N lattice points in the θ direction and M nodes for the φ coordinate.
The required operator is easlily obtained by taking the Kronecker tensor product
(namely the usual tensor product between two matrices) between the differentiation
matrix with respect to the desired coordinate and the identity matrix defined on the
other direction. For example, if we want to construct the operator giving the 1st
partial derivative with respect to θ, we would take the 2N × 2N Dθ

2N−1 Chebyshev
differentiation matrix and tensor it with the M ×M identity matrix 1M , i.e.:

Dθ = Dθ
2N−1 ⊗ 1M ,

obtaining a 2MN × 2MN matrix acting on the full tensor product grid. This is
intuitive, and reminiscent of when, in quantum mechanics, we want to construct an
operator that acts on a subspace of our Hilbert space, leaving the rest unaltered.
Similarly, the matrix giving the partial derivative with respect to φ is obtained
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through:
Dφ = 12N ⊗Dφ

M ,

where Dφ
M is the differentiation matrix on the M -point Fourier grid. The careful

reader will realise that while the 1D diferentiation matrices are not sparse, the
operators acting on the full grid will be! Working with such big matrices can in
practice be very expensive with regards to memory, but there are routines optimised
for sparse matrices that can minimise the storage costs.

In reality, the story is a bit more complicated. Indeed, we’ve forgotten about the
symmetry condition given by Equation 4.25, which we still need to apply following
Equation 4.27! However, there is a further tweak we need to do before imposing it.
When we generate the grid points for the θ coordinate they will naturally arrange
themselves monotonically with θ, meaning that ~u− is equal to ~u+ only when its
order is reversed. To implement this reversal, we can tensor the +− block of Dθ

M

with: (
0 1M/2

1M/2 0

)
.

We can consequently see that the actual N × M matrices that give the partial
dervivatives on our tensor product grid are (dropping the dimensionality subscripts
on the differentiation matrices for neatness):

Dθ = Dθ
++ ⊗ 1M +Dθ

+− ⊗
(

0 1M/2

1M/2 0

)
, Dφ = 1N ⊗Dφ. (4.28)

The same can be done for the partial second derivative matrices, which means that
we now have all the ingredients to construct the discretised Laplacian on the sphere.
Calling ∆θ

2N−1 the matrix giving the second derivative on the θ direction, and once
again ignoring the dimensionality subscripts for tidiness, the differential operator
required is represented by:

L = (Dθ
++ +C∆θ

++)⊗1M +(Dθ
+−+C∆θ

+−)⊗
(

0 1M/2

1M/2 0

)
+S2⊗Dφ2

, (4.29)

where:
C = diag(cot θj), S = diag(csc θj) j = 1, 2, ..., N.

To obtain the Laplacian on the deformed sphere, we can just multiply L with a
diagonal matrix whose diagonal entries are given by the vector of sampled values
of the exponential conformal factor. Note that, from now on, when we talk about
a N ×M grid, we actually mean the grid after the θ → −θ symmetry has been
implemented, so N can be indiscriminately even or odd. Figure 4.8 displays the
tensor product grid we discussed, with Figure 4.8b in particular illustrating how the
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lattice is set up not to incur in oversampling of the pole region.

4.2.2 Round Sphere

Now that we have the discretised Laplacian, the last thing we need to do before
extracting the eigenvalues is to enforce the boundary conditions. This is trivially
done by extending the procedure discussed in 1D.

For the physical situation at hand, we are interested in enforcing either homoge-
neous Neumann or homogeneous Dirichlet boundary conditions at the equator. This
is motivated by the fact that, focusing only on half of the sphere, we are assuming
that the deformation function is symmetric with respect to the equatorial plane.
In order to obey the symmetry of the problem, the eigenfunctions will necessarily
be either even or odd with respect to such a plane, corresponding respectively to
homogeneous Neumann (with respect to the partial derivative in the θ direction)
or homogeneous Dirichlet boundary conditions at θ = π/2. Indeed, this is also
true for the trivial deformation (i.e. χ = 0): the eigenmodes of the Laplacian on
a sphere (i.e. the spherical harmonics) are either even or odd with respect to the
equator. Enforcing Neumann boundary condition amounts to having the matrix of

Figure 4.9: 4 eigenmodes of the Laplacian on the unit hemisphere.
The left column was obtained imposing homogeneous Dirichlet BC’s
on the equator, while the right one follows homogeneous Neumann

BC’s. The computation was performed on a 25× 50 grid.
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Figure 4.10: Relative error with respect to the theoretical results λ∗n
for the eigenvalues of the Laplacian on the unit hemisphere λn evalu-
ated with aN×N grid withN = 10, 30, 50, 70, 90 (darker corresponds

to smaller N).

constraints B composed of the rows of Dθ that give the θ partial derivative on the
θ = π/2 points. On the other hand, deleting the rows and columns of the Laplacian
that correspond to the equatorial nodes imposes homogeneous Dirichlet boundary
conditions. The periodic conditions on φ are already accounted for by the Fourier
grid.

To benchmark our method, we numerically evaluated the spectrum of the Lapla-
cian on the undeformed sphere, similarly to what we have done before with the 1D
Laplacian. Results are shown in Figure 4.9, where we’ve plotted 4 of the evaluated
eigenfunctions, and in Figure 4.10 where the relative error of the estimated eigen-
values is shown. Here, the precision of spectral methods is once more manifest.
Indeed, even with a 50× 50 grid we obtain the 200 smallest eigenvalues correct with
a part in 1013. The error then increases, albeit still remaining very small, with the
1000th eigenvalues deviating from the theoretical result by only 1% of its magni-
tude. Again, we see the error steeply increasing once a threshold is hit, suggesting
that aliasing on the φ direction should be the main cause for the accuracy dropping
so quickly. To investigate this hypothesis, we compared the spectra of eigenvalues
obtained with rectangular grids of various sizes in Figure 4.11. In Figure 4.11a we
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Figure 4.11: Relative error with respect to the theoretical results
λ∗n of the eigenvalues λn of the Laplacian on the unit hemisphere
estimated with a N × 50 grid for N = 10, 30, 50, 70, 90 (darker cor-
responds to smaller N). The two panels show: (a) fixed number of
nodes on the φ coordinate and (b) fixed number of nodes on the θ

coordinate.

see that increasing the density of nodes on the θ coordinate has mainly an effect
on the maximum precision of the estimated eigenvalues, but does not change the
threshold after which the error on the eigenvalues grows significantly. On the con-
trary, Figure 4.11b displays the effect of increasing the number of lattice points in
the φ direction, which pushes that boundary further and further. This reinforces
the idea that the failure to encapsulate the biggest eigenvalues to high precision is
mainly due to aliasing, and suggests that the best geometry for the grid (for fixed
total number of nodes) is rectangular, with higher density on the φ direction. In
particular, a N/2 ×N mesh seems to be an ideal compromise and we will adopt it
going forward.



Chapter 5

Results

In Chapter 3 we reviewed recent analytical and numerical results that suggest the
counterintuitive conclusion that S2 maximises the free energy of the scalar field
(and, possibly, higher spin fields as well), making it an unstable configuration. We
now present new findings obtained through the computational methods described
in Chapter 4, that extend the above results to a more general class of deforma-
tions for the non-interacting scalar. We first mention the difficulties of calculate the
subtracted heat kernel for small tk, discussing how we can go around it by patch-
ing the analytical small time asymptotics to the numerically evaluated kernel. We
then move on to the novel results, starting with an analysis of the behaviour of the
subtracted heat kernel under deformations of increasing strength, followed by a com-
parison between axisymmetric and non-axisymmetric distortions. We then evaluate
the subtracted free energy for such perturbations, further studying the effect that
adding a mass term to our field or introducing a non-zero temperature have on the
system. We finally repeat most of the above analysis for a non-minimally coupled
scalar, finding that the contribution from the coupling to the Ricci scalar appears
as a noticeable peak in the profile of the subtracted heat kernel.

5.1 Limitations: the Small tk Regime

We now turn our attention to the evaluation of the subtracted heat kernel, the key
object in our numerical investigations. As shown in Equation 2.63, this can be
computed from the eigenvalues of the Laplacian on the deformed and undeformed

75
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sphere. Of course, we do not have access to the full spectra of the differential op-
erators due to the discrete (and finite) nature of the matrices we use to represent
them. It’s then natural to ask how the evaluation of ∆K (we drop the L subscript
from now on) is affected in different regimes. As discussed in Chapter 3, only the
smallest (non-trivial) eigenvalue contributes for big enough tk. Working backwards
from tk →∞, an ever increasing number of eigenvalues start to give a non-negligible
contribution, until for very small time our truncated spectra are not enough to accu-
rately evaluate the kernel. Therefore, we expect that the number of eigenvalues that
we have access to inevitably affects our ability to compute the small tk behaviour.
The size of the spectra that we can numerically produce is fundamentally limited
by the dimensions of the matrix representing our Laplacian, which are in turn fixed
by the dimensions of the computational grid. Fortunately, we know what the small
tk behaviour must be for any deformation, thanks to the kernel expansion given
by Equation 3.38. This means that, as long as we have large enough spectra that
allows us to compute ∆K until it approaches the linear behaviour, we can patch
the numerically evaluated kernel with the small tk expansion to successfully capture
all of the physics. In order to reproduce the linear regime, we can just evaluate
the coefficient of the kernel expansion by numerically integrating Equation 3.39.
Nonetheless, it is sometimes computationally very expensive to compute a sufficient
number of eigenvalues to get to small enough time such that the patching can be
done, especially for the big deformation cases.
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Figure 5.1: Comparison between the perturbative analytical results
(red line) and the numerical computation (grayscale lines) of ∆K(tk)
for a small deformation with l = 3, m = 1 and ε = 0.001. Nu-
merical calculations are performed on a N/2 × N grid with N =
10, 50, 100, 200 (darker corresponds to smaller N). (a) Semilog plot
of the calculated heat kernel profile. (b) Loglog plot of the small
tk region, with the linear theoretical behaviour in blue. In the right
panel, the red line corresponding to the analytical perturbative curve
is completely overlaid by the linear approximation for t / 10−1 and,
as it diverges from the small tk behaviour and the numerical results
converge to the theoretical results, by the computational calculations.
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Figure 5.1 illustrates the performance of the numerical methods in reproducing
the perturbative analytical results for small ε deformations. In particular, Figure 5.1
shows the relative error between the numerically computed kernel ∆K and the the-
oretical perturbative result ∆K0 for different grid densities in the case of a l = 3,
m = 1 deformation with ε = 0.001. While it demonstrates once more the power of
spectral methods, which give extremely accurate results for tker ' 0.1 with already
a 5 × 10 grid, it also shows that even a 100 × 200 mesh struggles to reproduce the
subtracted kernel for tker / 10−2. A closer look at the linear regime is displayed
in Figure 5.1b, a loglog plot of the interval 10−4 < tk < 1. It is first important to
notice that the linear small tk expansion is valid only for tk / 10−1, after which the
perturbative analytical results deviates from the linear behaviour (recall that in a
loglog plot the a straight line corresponds to polynomial function, with the slope
being the order of the polynomial and the vertical offset giving the leading coeffi-
cient). Further, we see that it becomes progressively harder to compute the kernel
for small tk, with the 100× 200 grid only managing to get slightly below tk ≈ 10−2,
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Figure 5.2: Comparison between analytical results and numerical
computations of ∆K(tk) for small tk. Each of the 4 panels shows the
subtracted heat kernel a l = 4, m = 2 deformation with a different ε.
Grayscale lines show the result evaluated with a N/2×N grid with
N = 50, 100, 150, 200 (lighter corresponds to bigger N). The solid
blue line gives the analytical small tk behaviour extracted from the

heat kernel expansion.
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notwithstanding the high computational burden. Since we expect high ε deforma-
tion to anticipate significantly the deviation from the linear regime, it is possible
that we will not be able to cover adequately the small tk region in order to patch
the numerical result with the linear expansion in those cases. An example of this is
given by Figure 5.2, where we compare the numerically calculated ∆K against the
linear asymptotics at small tk in the case of a l = 4, m = 2 deformation. We see that
we struggle to reach the linear behaviour even with the extremely computationally
expensive 100 × 200 mesh already for a ε = 0.8 deformation. On the contrary, we
observe that also the 50× 100 grid manages to achieve such regime comfortably for
ε = 0.5. In light of this analysis, we restrict our attention to deformations below
ε = 0.5 when calculating the subtracted free energy, so that we are able to patch our
numerical result with the analytical expansion at small tk with a reasonable compu-
tational burden. Nonetheless, we are still allowed to investigate the behaviour of the
subtracted heat kernel for bigger deformations, keeping in mind that, when we do
so, we are not able to capture the high energy contributions coming from tk / 10−2.

5.2 Minimally Coupled Scalar

We begin by studying the simpler case of the minimally coupled scalar field. Recall
that we use perturbations of the form given by Equation 3.14 and Equation 3.15, in
order to both guarantee reality of χ(l,m) and at the same time to have equal strength
for axisymmetric and non-axisymmetric deformations. Furthermore, due to the fact
that we are working with one ‘hemisphere’ of Σ only, keep in mind that we are forced
to consider even m for even l and odd m for odd l, meaning that we are able to take
into consideration the axisymmetric m = 0 deformations only if l is even. Moreover,
we avoid l = 1 distortions since, to lowest order, they correspond to diffeomorphisms
of the round sphere, giving a vanishing subtracted heat kernel.

5.2.1 Subtracted Heat Kernel

We just discussed that for the tensor product grid we deploy it is more efficient to use
a rectangular N/2×N lattice, with N being the number of points in the φ direction.
For the current analysis, we take N = 200. Even though such a dense grid requires
extensive computational resources, it is illustrative to adopt it for now since it allows
for computation of the kernel up to tk ≈ 10−3, enabling the possibility to look at
more significant deformations. It is however impractical to go much below such
limit, contrary to what other studies that restricted their attention to axisymmetric
deformations have been able to do. This is due to the fact that, because of the
axisymmetry, in those cases it is enough to look at a φ = constant slices, making
the problem 1D and therefore more tractable.
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Figure 5.3 shows the profile of the subtracted heat kernel (normalised by the
square of the deformation parameter to ease visualisation) for different l while vary-
ing ε (lighter corresponds to bigger ε). Here we took m = 1 and m = 2 for odd
and even l respectively. Recall that we have defined σ = −1/2. The first thing that
jumps to the eye is that ∆K is positive throughout the domain for the deformations
considered. While this is harder to state with certainty for the highest ε studied,
where the numerically evaluated kernel doesn’t quite reach the linear behaviour be-
fore failing at tk ≈ 10−3, it is definitely true for the other distortions. If for the
ε = 1 case (for example) it does become negative outside the domain of validity of
our computational result, it has to do so in a very small region below tk / 10−3,
before becoming positive again and only then approach the linear behaviour (which
we now to have ∆K ≥ 0 from the heat kernel expansion). Not only this seems
unnatural, but it is even harder that, if it were to happen, upon integration such
negative would area more than offset the contribution from the positive region. As
expected, the effect that increasing the parameter of the deformation seems to have
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Figure 5.3: subtracted heat kernel for a minimally coupled scalar for
l = 2, 3, 4, 5, normalised by the square of the deformation param-
eter. We use m = 1 and m = 2 for respectively even and odd l.
Each panel shows the perturbative result (red line) and the numeri-
cal calculations (grayscale lines) for ε ∈ [0.01, 0.3, 0.5, 0.8, 1] (lighter
corresponds to bigger ε). Results obtained for a computational grid

with N = 200.



80 Chapter 5. Results

on the heat kernel is to significantly anticipate the cutoff time after which the linear
behaviour fails, by effectively moving the maximum of the curve to earlier times.
Furthermore, while the peak becomes relatively smaller (recall that we’re normal-
ising by ε2, so the maximum is not actually decreasing), it also gets significantly
wider. From this behaviour it is sensible to anticipate that we expect the absolute
value of the subtracted free energy to increase as the deformation becomes stronger.
Note that we see the curves approach the perturbative expansion for decreasing ε
(the red solid line in the figure, almost completely overlaid by the small distortion
results), as expected. At this stage, no significant deviation is observed between
the ∆K computed with different l, apart from the l = 2 case. Indeed, we see that
contrary to the other perturbations considered, l = 2 deformations develop a sec-
ondary peak for smaller tk as ε increases. Why this does not happen for higher l
requires further analysis, but it might be related to the fact that l = 2 is the lowest
value of l such that the subtracted heat kernel is non-zero up to non-trivial order.
This maybe allows contributions that become negligible for bigger l to be instead
noticeable here. Further, we see that increasing l has also the effect of inflating the
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Figure 5.4: subtracted heat kernel for a minimally coupled scalar for
l = 2, 3, 4, 5, normalised by the square of the deformation parameter
and ε = 0.8. Each panel shows the perturbative result (red line) and
the numerical calculations (grayscale lines) for 0 ≤ m ≤ l (lighter
corresponds to bigger m). Recall, that we take only m of the same
parity of l. Results obtained for a computational grid with N = 200.
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overall magnitude of the subtracted kernel, mirroring the naive expectation that
higher l correspond to more energetic configurations.

We can see the effect that changing the m parameter has on the kernel in Fig-
ure 5.4. Here the subtracted heat kernel for deformations with the same set of l
as before and ε = 0.8 is displayed, with the grayscale lines represent the numerical
solutions for different m (lighter corresponds to increasing m). As discussed earlier,
the perturbative solution is really insensitive to m, so we expect that, if there is any
difference between ∆K obtained with distinct m, it should be evident only for big
enough deformations. Looking at Figure 5.3, we see that ε = 0.8 is the highest we
can go without throwing away potentially interesting parts of ∆K with the chosen
resolution, hence the choice. First of all, looking at the even l curves, we notice a
significant difference between the axisymmetric and non-axisymmetric deformations,
with the latter subtending a larger area and hence corresponding to a more negative
subtracted free energy. Moreover, we see that increasing l while leaving ε invariant
enhances the differences between curves of distinct m. In the l = 3 case, the m = 1
and m = 3 heat kernels are practically overlaid, while for l = 5 we can clearly see
three distinct functions. Furthermore, the differences become more evident in the
small tk limit, suggesting that they originate from how high energy modes interact
with the geometry. It is counterintuitive that the curves do not change ‘monoton-
ically’ with m in the l = 5 case. It might be interesting to see whether this holds
for bigger l as well, i.e. whether it turns out that there is just no hierarchy with
increasing m.

5.2.2 Subtracted Free Energy

We now turn our attention to computing the actual subtracted free energy of the
scalar field. This is easily achieved by integrating numerically the subtracted heat
kernel as shown by Equation 3.28. As mentioned earlier, we patch the computational
result with the small tk behaviour at tc (i.e. the cutoff time below which we cannot
trust our numerical solution), but to do so we need a dense enough grid such that
the evaluated ∆K has indeed approached the linear regime at the cutoff. For the
present discussion, we opted to focus on deformations up to ε = 0.5 and we use
a computational grid with N = 120, since we have seen before that such choice
does manage to reasonably approach the linear behaviour by the chosen cutoff time
of tc = 6 × 10−3. From now on, unless otherwise stated, we stick with the choice
N = 120. Hence, we integrate the analytic expression for the small tk expansion
up to tc, and then add the integral of the numerically estimated kernel. The latter
integral is truncated at tk = 103, after which the contribution is negligible. We start
by considering a massless scalar field at zero temperature, recalling that in this ‘cold’
limit we obtain the Casimir vacuum energy, i.e. ∆F → ∆E. Figure 5.5 shows the
result as a function of ε for deformations of different l and m. As before, darker
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markers correspond to smaller m, while the red circles are used to highlight the
axisymmetricm = 0 case. Solid lines are just splines interpolants drawn to guide the
eye. We further normalise the subtracted free energy by both ε2 and the perturbative
result ∆E0/ε

2
0 (with ε0 being the parameter at which ∆E0 is calculated). Note that

the perturbative subtracted energy is negative, meaning that all the calculated data
points do indeed correspond to negative ∆E. Qualitatively, we observe exactly what
we could have expected from Figure 5.3 and Figure 5.4, namely that the subtracted
free energy is more negative for non-axisymmetric perturbations, showing that the
field disfavours the more symmetric configuration. It also has to be emphasised
that although the axisymmetric curves seem suggest that there is a local minimum,
with ∆E/∆E0 first decreasing, this is actually not the case, since recall that we
are normalising by ε2/ε20. In fact, all curves show a monotonically decreasing ∆E.
It is also interesting to note that, for the l = 5 deformation, the behaviour of the
subtracted free energy is extremely close between m = 1 and m = 5 in the interval
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Figure 5.5: subtracted free energy for a massless minimally coupled
scalar at zero temerature for l = 2, 3, 4, 5 as a function of ε. The
subtracted free energy is first normalised by the ε at which it is cal-
culated, and then by the perturbative result ∆E0. Each panel shows
the numerical results (grayscale markers) for 1 ≤ m ≤ l (lighter
corresponds to bigger m). The red markers display the m = 0 ax-
isymmetric results. Note that the solid lines are splines interpolators,

drawn to guide the eyes.
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Figure 5.6: Subtracted free energy as a function of ε for the repre-
sentative example of l = 3 and m = 1 with non-zero masses and tem-
peratures. The grayscale markers correspond to fields with (a) M =
0.5, 1, 2, 4, 8, 16 and T = 0 and (b) M = 0 and T = 0.5, 1, 2, 4, 8, 16,
with smaller value of the changing parameter being represented by a
darker circle. The red markers indicate the M = 0, T = 0 results.
The dashed blue and green lines give the long-wavelength and small
temperature limits respectively. Note that most of the high T curves

in (b) are overlaid in the hot limit.

under consideration, with m = 3 significantly deviating. It could be potentially
interesting to look at other families of perturbations, and see whether this is just a
feature of our particular choice of deformation function or if there is some significance
for this result.

Let’s now consider the effects of having non-zero mass M and temperature T
for our theory by varying them independently as displayed by Figure 5.6 for the
representative case of a l = 3, m = 1 deformation. In both figures, the red mark-
ers indicate the M = 0, T = 0. The blue dashed line gives the long wavelength
behaviour, while the green one shows the ‘hot’ asymptotics. In Figure 5.6a the
grayscale markers show the calculated subtracted free energy for a range of non-zero
masses (lighter corresponds to bigger mass). We know that negativity of the free
energy for a given configuration is bounded by the long wavelength limit given by
Equation 3.43, and we indeed observe large M curves approach such bound from
below, interpolating between the massless and long wavelength limits. The effect of
thermal correction can be instead observed in Figure 5.6b, where we the greyscale
markers indicate the calculated energy difference for a range of non-zero tempera-
ture (lighter corresponds to higher T ). Here, we know that as T → ∞ the curves
should approach the limiting value given by Equation 3.42. This is indeed what we
obtain, with the non-zero temperatures interpolating between the M = 0, T = 0
result and the ‘hot’ limit.
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5.3 Non-minimal Coupling

We now proceed to study the effect of non-minimal coupling for the free scalar
field. We repeat a similar analysis as for the minimally coupled case, first looking
at how the subtracted heat kernel is modified by the new term and later computing
the subtracted free energy as a function of ε. However, before jumping into the
computation of the kernel, it is important to analyse the spectrum of the modified
Laplacian for the non-minimally coupled field. Indeed, as discussed, for big enough
deformations we expect the smallest eigenvalue to potentially become negative. This
would amount to an effective negative mass which would mean incurring into an ill-
defined theory with tachyonic instabilities. Figure 5.7 shows the lowest eigenvalue
λmin of the differential operator in Equation 3.24 for l = 3, m = 1 and l = 4,
m = 2 deformations as a function of ε. Grayscale markers show the numerically
computed eigenvalue for distinct ξ (lighter corresponds to a bigger coupling), while
solid lines are drawn to guide the eye. As expected, for ξ → 0 we obtain λmin → 2ξ.
Moreover, we see that for increasing ε the eigenvalue monotonically decreases, with
bigger rapidity as either the coupling to the Ricci scalar or l increases. Crucially, we
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Figure 5.7: Lowest eigenvalue of non-minimally coupled scalar as
a function of ε for l = 3, m = 1 and l = 4, m = 2 defor-
mations. Grayscale markers illustrate the computed eigenvalue for
ξ = 0.01, 0.05, 0.1, 1/6 (lighter corresponds to greater coupling) and

the solid lines are interpolating splines drawn to guide the eye.
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indeed observe negative eigenvalues for the ξ = 1/6 case even for a deformation with
ε = 0.9 and l = 3, and even sooner for the l = 4 perturbation. As later we consider
l = 4 deformations with the same values of ξ as studied in Figure 5.7, we restrict
ourselves to 0 < ε ≤ 0.7, so that we are protected by the tachyonic instabilities and
the theory is well behaved.

5.3.1 Subtracted Heat Kernel

We now compute ∆K for different values of the coupling constant ξ, so to understand
how the contribution from the extra term shows up in the profile of the subtracted
kernel.

The 4 panels of Figure 5.8 show the numerically computed heat kernel for a
l = 4, m = 2 deformation with different ε (lighter corresponds to bigger ε) for the
cases ξ = 0.01, 0.05, 0.1, 1/6. As usual, we normalise by ε2 to aid visualisation and
the red solid line is the perturbative result. The biggest difference in the profile of
∆K with respect to the minimally coupled case in Figure 5.3 is the presence of a
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Figure 5.8: Subtracted heat kernel normalised by the square of
the deformation parameter for a non-minimally coupled scalar with
ξ = 0.01, 0.05, 0.1, 1/6 and a l = 4, m = 2 perturbation. Each
panel shows the perturbative result (red line) and the numerical cal-
culations (grayscale lines) for ε = 0.01, 0.1, 0.3, 0.5, 0.7 (lighter corre-
sponds to bigger m). Results obtained for a computational grid with

N = 100.
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secondary peak. This crest manifests itself for larger tk than the original peak, and
it is completely absent for ξ = 0. As ξ increases, its magnitude as well increases
with respect to the other bell, and eventually ‘eats’ the latter. We can interpret
this as a phase transition to a curvature dominated regime. It is suggestive that the
transition from one to two crests happens slightly before ξ = 1/6 ≈ 0.17, which is the
value of the coupling for which the massless scalar becomes conformally invariant.
Moreover, while bigger ε causes the normalised original peak to flatten, in the case
of the crest related to the non-minimal coupling we see the opposite behaviour for
the deformations under consideration. Furthermore, the variations to the profile
of the curvature crest are much more pronounced, suggesting that we expect the
subtracted free energy to be more negative for the non-minimally coupled scalar
when comparing equivalent perturbations.

We further analyse the effect of m for the l = 4 deformations to the non-
minimally coupled field in Figure 5.9. Here, the solid red line is again the perturba-
tive result, while the grayscale lines display the computed heat kernel for m = 0, 2, 4
(lighter corresponds to bigger m) and ε = 0.7. We observe distinct behaviours for
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Figure 5.9: Subtracted heat kernel for a non-minimally coupled scalar
for ξ = 0.01, 0.05, 0.1, 1/6 and ε = 0.7, normalised by the square of
the deformation parameter. Each panel shows the perturbative result
(red line) and the numerical calculations (grayscale lines) for l = 4
and m = 0, 2, 4 (lighter corresponds to bigger m). Results obtained

for a computational grid with N = 100.
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the two peaks. The leftmost crest, i.e. the one present also in the ξ = 0 case,
behaves equivalently to what seen in Figure 5.4, with the axisymmetric deformation
sottending a much smaller area with respect to the m = 2 and m = 4 modes. Fur-
thermore, there is little difference between the two non-axisymmetric perturbations.
Conversely, the curvature peak discriminates more significantly between deforma-
tions of different m. We observe that bigger m corresponds to a significantly higher
peak, even though the most pronounced difference is still between axisymmetric and
non-axisymmetric deformations.

It is worth highlight again that we see no evidence of the subtracted heat kernel
going negative for any of the considered deformation even for the non-minimally
coupled case. This reinforces still the idea that the sphere does indeed maximise (at
least locally) the Casimir energy of a free scalar field.
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Figure 5.10: Subtracted free energy for a massless non-minimally
coupled scalar at zero temerature for ξ = 0.01, 0.05, 0.1, 1/6 as a
function of ε. The subtracted free energy is first normalised by the ε2
at which it is calculated, and then by the perturbative result ∆E0.
Each panel shows the numerical results (grayscale markers) for m =
2, 4 (lighter corresponds to bigger m). The red markers display the
m = 0 axisymmetric results. Note that the solid lines are splines

interpolators, drawn to guide the eyes.
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5.3.2 Subtracted Free Energy

We finally turn our attention back to the free energy, this time for the non-minimally
coupled field. We start by considering the massless field at zero temperature, and
then compute the finite mass and temperature corrections.

Figure 5.10 shows the computed Casimir energy for ξ = 0.01, 0.05, 0.1, 1/6. We
display the results for axisymmetric (red markers) and non axisymmetric (grayscale
markers, lighter corresponds to bigger m) deformations as a function of ε. As ex-
pected from Figure 5.8 and Figure 5.9, we observe the non-axisymmetric perturba-
tions to produce a more negative subtracted energy with respect to the axisymmetric
one. It is interesting to note that, even though they have significantly different heat
kernel profiles, distinct ξ produce a staggeringly similar behaviour for ∆F once
appropriately normalised.

Figure 5.11 shows the subracted free energy when non-zero masses and tem-
peratures for are considered for the representative case of a non-minimally coupled
scalar with ξ = 1/6 and deformation given by l = 3 and m = 1. As in the minimally
coupled case, for increasing M the numerical results approach the analytical long
wavelength limit (blue dashed line), while for big T they reproduce the hot limit
(green dashed line). We observe no significant difference between the behaviour of
minimally and non-minimally coupled scalar.
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Figure 5.11: Subtracted free energy as a function of ε for the rep-
resentative example of l = 3, m = 1 and ξ = 1/6 with non-zero
masses and temperatures. The grayscale markers correspond to fields
with (a) M = 0.5, 1, 2, 4, 8, 16 and T = 0 and (b) M = 0 and
T = 0.5, 1, 2, 4, 8, 16, with smaller value of the changing parameter
being represented by a darker circle. The red markers indicate the
M = 0, T = 0 results. The dashed blue and green lines give the long-
wavelength and small temperature limits respectively. Solid lines are
splines drawn to guide the eye. Note that most of the high T curves

in (b) are overlaid in the hot limit.



Chapter 6

Conclusions

In this dissertation, the Helmohltz free energy of a free scalar quantum field on a
curved (2+1)-dimensional spacetime was studied. In particular, we placed our K-G
QFT on a R×Σ spacetime, with Σ being a spatial manifold topologically equivalent
to S2, and studied how such free energy changed as Σ was deformed away from the
round sphere. We deployed numerical techniques involving spectral methods and the
heat kernel representation to compute such energy. We also reviewed recent results
that seem to point in the direction that the round sphere maximises the free energy
of QFTs. Our study generalises some of these findings, extending the analysis to
non-axisymmetric deformations.

6.1 Summary of the Main Results and Future Studies

Before jumping into the physically relevant results, we first benchmarked our com-
putational technique, studying the Laplacian on a 1D interval and on a 2-sphere
which have well known analytical solutions. We further investigated the effects that
the geometry of the computational grid has on the estimation of the spectra of such
operators, finding that the optimal configuration is a rectangular lattice with more
density of nodes in the azimuthal direction, which reduces the impact of aliasing.

We then presented our novel results, starting with a minimally coupled scalar un-
der non-axisymmetric deformations defined in terms of spherical harmonics. While
similar studies have been recently conducted on the subject, they limited their in-
vestigations to axisymmetric perturbations. Our research extends their results to

89
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a more general family of deformations. We first demonstrated the positivity of the
subtracted heat kernel for distortions with a wide range of intensities. We further
described the effects that different values of the m parameter of the deformation
function have on the profile of the kernel. We observe that the difference between
modes with distinct m are more evident in the small kernel time regimes, showing
that the IR physics is mostly insensitive to it. We then computed the subtracted
free energy of the field, with our results confirming that, for all the perturbations
considered, the free scalar field prefers to live on a crumpled geometry rather than
on the round sphere. We further found that non-axisymmetric deformations pro-
duce a significantly more negative subtracted free energy than their axisymmetric
counterparts. We concluded the discussion by repeating the same analysis on a field
with non-minimal coupling to the Ricci scalar. Again, we found negativity of the
subtracted free energy in all cases. We also described the effect that non-minimal
coupling has on the profile of the subtracted kernel, showing up as an extra crest in
the big kernel time regime that gets amplified as the non-minimal coupling increases,
until it completely dominates the other contributions. We also suggestively find this
transition to happen silghtly before ξ = 1/6, namely the value for which a (2+1)-
dimensional massless scalar field becomes conformally invariant. Interestingly, we
also observe that, while the profile of the heat kernel varies significantly between
ξ = 0 and ξ = 1/6, the behaviour of the subtracted free energy as a function of ε,
once normalised by the perturbative results, stays effectively invariant throughout
the whole range of the values of ξ considered.

Even though we do not provide a formal proof, the novel results we obtained,
along with the recent findings that we reviewed in Chapter 3, give good reasons
to believe that the free scalar field (and the statement seems to be generalizable
to any quantum field theory) prefers deformed geometries to the round sphere: an
extremely counterintuitive conclusions. S2 seems to (at least locally) maximise the
free energy of QFTs. Thanks to recent technological developments in the field of
material engineering, it is coinceivable that in the near future it will be possible to
devise an experiment in laboratory in which such properties of QFTs can be tested.
As discussed, exploiting the flexibility of optical lattices, one can already imagine
designing a 2D material with the right properties such that the quantum zero-point
energy of the effective fields can have measurable effects. Theorywise, it would be
interesting to assess whether the similarity in the behaviour of the subtracted free
energy between a free scalar and free fermion field observed in previous works [10]
still holds for non-axisymmetric deformations of Σ. Our method can be straightfor-
wardly adapted to study fermionic fields by appropriately changing the Laplacian,
so it is indeed a natural extension of this study.
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