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Abstract

This thesis extends the work of Johnston [19] and Yazdi [21] by considering scalar quantum �eld
theories de�ned on a 3-dimensional causal diamond. The Pauli-Jordan operator is de�ned for both
discrete and continuous space-times and it's eigen-decomposition is calculated using causal set
methods. The results from the discrete theory are then discussed in relation to possible solutions
for the corresponding continuous case.
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Introduction

The main goal of 21st century Theoretical Physics, in one form or another, has been to unite the
ideas of General Relativity (GR) and Quantum Field Theory (QFT) - the two most successful
scienti�c theories to date. It is believed that at some small distance (high frequency) scale (at
minimum the Plank scale ∼ 10−23cm), the gravitational �elds of Einstein must produce quantum
�uctuations if they are to properly describe the manifestation and propagation of matter which we
observe. Over the course of the last sixty years many theories have been developed with the aim
of unifying these two pillars of modern Physics; most notably, String Theory and Loop Quantum
Gravity etc see [1�3] . Causal Set Theory (CST) is another such theory that has the advantage
of being based on a simple set of axioms, derived from the causal structure of space-time, and
reconstructs from these the laws of nature we observe in the universe. Causal set theory, in e�ect,
is the idea that space-time itself is fundamentally discrete. In so far that a space-time manifold is
the large scale approximation of a countable number of individual space-time elements - in which
each element is related to another by its causal relationship. For more on the foundations of causal
set theory see [4�9].

In fact, the idea that space and time could be discrete concepts is not a new one, and has been
a problem pondered by many mathematicians and physicists from Riemann to Einstein. But it is
how these elements relate to one another - in order to produce the complex structures we observe
in the universe - which is of greatest interest. Thanks to the work done by Hawking and Ellis
[10] it is known that in order to recover the conformal metric of any space-time one only needs
information about the causal nature or distribution of light-cones within that space. Once one
knows the conformal metric then all that is left is to de�ne a suitable scale factor to retrieve the
complete metric of the space. It is based on this knowledge that Rafael Sorkin coined the term
"Order + Number = Geometry". Pairing the ideas of discreteness and causality into a picture of
space-time as a set of elements endowed with a partial ordering (a poset), which implements the
causal relations between elements, one arrives at causal set theory. The question remains, however,
if nature does indeed exhibit the type of fundamental discreteness described above.

There are many open questions in modern physics which lay just outside our current knowledge,
in which only a theory of Quantum Gravity will su�ce to answer. Some of these problems we know
very little about, but for others there is enough information available to us that we can begin to
test possible candidate theories in these regimes. The study of Black holes is one of these areas,
and as such Black holes have garnered much interest from both the theoretical and experimental
community over recent decades. The exterior of a Black hole is in a sense the border of our current
knowledge, and for this reason it is a rich environment to look for clues about a deeper theory of
nature. With this in mind we turn our attention to Black Hole entropy, to see if a discrete theory
of space-time is applicable within this framework.

It is known that the entropy of a black hole obeys an area law, whereby the area is de�ned to
be the area of the event-horizon of the black hole [11�13]. However, if our current understanding
is correct, the space-time in which the black hole manifests is the same either side of the event-
horizon. In fact, an observer passing through an even horizon of a black hole would not be able to
distinguish the di�erence between the exterior and interior - the di�erence being a purely causal
one. That is, anything inside the black hole event-horizon may not e�ect the anything to the
exterior of the horizon. Here we have two separate, causally distinguishable, regions of space-time.
The border of which being the area of the event horizon - the same area which determines the
entropy of the black hole. Since the event-horizon is not anything other than a border of causally
separated space-times, one is led to the conclusion that the area must surely be a measure of the
space-time itself. Then, if the only thing distinguishing the two regions of space-time is a space-
time surface - that surface resulting in a �nite area law for the entropy of a black hole - then it
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CHAPTER 1. INTRODUCTION

is natural to assume that space-time itself must be made up of a (possibly in�nite) collection of
�nite sub-volumes; the connections between these di�erent patches of space-time being determined
by the causal structure of the space. Indeed, this line of reasoning was one of the main drivers
in the development of causal set theory. Work has since been done to describe black hole entropy
from causal sets in which it is proposed that the entropy comes from the number of links crossing
the horizon [14]. Research into 2-dimensional causal diamonds in M2 also recovers an area law for
space-time entanglement entropy [15].

The potential for causets to be a possible candidate for nature when considering black hole
entropy has been eluded to above, but applying the idea of a causal set to other theories also
shows promise. The most immediate application is to the problem of the in�nities one encounters
when re-normalising quantum �eld theories. However, a discrete space-time inherently supplies a
small distance, or UV cut-o� for the theory, see [16]. Also, by applying the ideas of causets to other
areas of research new solutions may be found for existing problems with experimentally veri�able
predictions. Cosmology is one such area of research where causets may o�er new insights. Indeed,
using a causal set framework a heuristic description of the origin of the cosmological constant
has been outlined by R.Sorkin [17], and further work within Cosmology is being undertaken with
regard to the evolution of universes, see [18].
Developments have also been made by Sorkin and Johnston in setting up a method for realising
quantum �elds on a �xed causal set background [19, 20]. Within the framework outlined by
Johnston further analysis has been carried out by Yazdi [21], where it has been shown that in 2-
dimensions the causal set approach does indeed agree with the continuum - in the large density limit
- when compared to analytic results know for the continuum case . These approaches have worked
with scalar quantum �eld theories in �at Minkowski space. However, work is also being undertaken
to de�ne an action principle for scalar �elds on causal sets approximating curved space-times, See
[22].

The aim of the current work is to expand on the results in [21] to further our understanding of
the relationship between continuum and discrete scalar quantum �eld theories in �at Minkowski
space. We do this by studying causets in 2+1 dimensional M3. We also hope to learn more about
the structure of the continuum theory by using causal sets as a guide. In fact, it is often much
easier to work with causal sets to �nd approximate or limiting results - which can prove di�cult to
�nd analytically in continuum theories. In this regard even if nature is not fundamentally a causal
set, we can nevertheless use computational methods to provide insights for continuum QFT.
We start in Chapter 2 by introducing some of the key mathematical and conceptual structure of
CST in more detail, before going on to review the relevant theorems and results from Johnston
and Yazdi. We brie�y talk about how one might arrive at a causal set which could represent
a Lorentzian manifold and discuss current work within this �eld of research. In Chapter 3 we
turn our attention to the 3-dimensional causal diamond and approach the problem from both the
causal set and continuum view point. We set up a causal set and calculate the eigenvalues and
eigenfunctions of quantum mechanical operators on this set, analogously to the work done by [21]
in M2. We then use these results to try and predict the form of their continuum counterparts
which are yet to be determined analytically. Finally, we conclude with some remarks about what
we have found and discuss further avenues of research regarding causal sets in 2 + 1 dimensions
and beyond.
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Causal Set Theory

2.1 Principles of Causal Set Theory

Often when one tries to construct a model of the universe (or part of it) a good starting point is
to �rst try to de�ne a metric describing the space. From the metric one can recover the causal
properties of the space-time 1. It is this manifold picture of space-time that Einstein derived his
�eld equations on - placing causality is at the heart of general relativity. However, when quantising
such a theory one runs into various complications which arise from this picture [17]. Therefore,
starting with a metric is fraught with di�culty if the goal is to then quantise gravity. However,
it is known thanks to Hawking and Malament [23, 24], that one can retrieve the conformal metric
just from information of the light-cones - in other words from the causal relationship (or order)
between space-time points alone. This way of thinking elevates the role of causality and allows
one to de�ne a new topology away from the usual manifold like topology in which GR was �rst
conceived. Therefore, with knowledge of the conformal scale factor - in essence a number - one
can fully recover the metric of a Lorentzian space-time. Causal set Theory postulates a space-time
constructed from a number of discrete elements whose relation to one another is de�ned by their
causal order. Mathematically, a causal set is a set, C of endowed with a partial ordering, ⪯ which
obeys the following axioms:

1. Re�ective: x ≺ x.

2. Transitivity: If x ≺ y and y ≺ z, then x ≺ z ∀x, y, z ∈ C.

3. No loops: If x ≺ y and y ≺ x then x = y ∀x, y ∈ C.

4. Finiteness: For any pair of points x, z ∈ C, the set {y|x ≺ y ≺ z} of elements between x and
y is of �nite size.

Here we distinguish x ≺ y to be where x causally precedes y written as x ⪯ y but where x ̸= y.
Transitivity ensures the causal structure is preserved throughout the set. The condition of 'no
loops' is needed to exclude independent, self contained (possibly in�nite) causal loops, which are
both mathematically and philosophically undesirable features of a physical theory. Finally, �nite-
ness relates to the assumption made that space-time volumes are taken to be �nite - motivation for
which was given in the previous chapter. More precisely this is the statement that the cardinality
of the Alexandrov set between two elements is �nite, or that || [v1, v2] || <∞ , where v1, v2 ∈ C .
Given the conditions above which a causet must obey, one is immediately led to think about the
dynamics of a causal set, and how one might retrieve a causal set which resembles a Lorentzian
manifold. Key to this discussion is the conjecture that if a causal set resembles a Lorentzian man-
ifold (M, g) then at large scales this mapping is unique, such that all other causal sets which also
resemble (M, g) are equivalent. This is called the 'Hauptvermutung' conjecture. See also [25] for
more a detailed discussion on how continuum topologies are recovered from causal sets.

1by which it is meant that one can �nd the light-cones at each point on the manifold
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CHAPTER 2. CAUSAL SET THEORY

There are a number of di�erent ways one might imagine causal set Kinematics and Dynamics.
One such model for the emergence of these structures from causal sets is via a 'sequential growth
model' (SGM) whereby new elements of a causal set are born from previous elements, and the set
evolves to form a Lorentzian manifold-like structure [26, 27]. So far the work on SGMs is purely
classical. However, the ideas discussed give one a picture of the type of processes required to
form physically meaningful causal sets. Another approach led by Steven Wolfram and his team to
describe the world from an initial �nite number of elements endowed with simple update procedures
has shown to be akin to some of the ideas of CST. These models are similar to SGMs but could
possibly describe the quantum mechanical dynamics of causet-like objects, see [28] for a more in-
depth discussion 2. More work is required within the area of causet kinematics and for this project
we will circumvent this by taking a di�erent approach in setting up our causal set in 3D Minkowski
space-time.
The approach adopted in this thesis is that of a 'sprinkling' of causal elements onto a 3D Minkowski
manifold. A sprinkling is a process whereby elements of a given Lorentzian Manifold are selected
randomly via a Poisson process of density ρ. These points are then taken to be the elements of the
causet. By a Poisson process (or distribution) we mean that the probability of �nding N points in
a region of volume V is given by;

P (N) =
(ρV )

N

N !
e−ρV . (2.1)

The advantage of using a Poisson process is that the generated causet is manifestly Lorentz
invariant [29]. Following a boost or rotation the points in the system are still randomly distributed,
and therefore the system has no unique frame dependence. This is in opposition to the case of say
Lattice �eld theory, where the lattice points are warped by the boots and a clear frame dependence
exists. By utilising a Poisson process to generate the causet elements one also by-passes the
subtleties of causal kinematics mentioned above.

2.2 Scalar Quantum Field Theory on a Causal Set

In the previous section we discussed how one could retrieve a causet of a Lorentzian Manifold
via a sprinkling. What remains is how one proceeds to describe quantum mechanics, and more
speci�cally QFT, in relation to the causet under study. In this regard we follow the methods
developed by Johnston and Sorkin [19, 20]. We will work with a Gaussian QFT - one in which a
wick rotation is well de�ned - in a globally hyperbolic space. If these two conditions are met then
we may use the methods developed by Johnston and Sorkin to develop a QFT on our sprinkled
causet. For future reference we will refer to this method as the Sorkin-Johnston method or SJ-QFT
for short.

Next we introduce a number of key de�nitions which we will make extensive use of in the fol-
lowing sections. Namely, we introduce the causal and link Matrices - both of which are adjacency
matrices. For a set C of �nite length n endowed with a partial ordering ≺, we may represent the
causet by an n× n matrix of two classes, either by;

The causal matrix,

Cxy :=

{
1 if vx ≺ vy
0 otherwise

(2.2)

Or link matrix,

Lxy :=

{
1 if vx ≺ ∗vy
0 otherwise.

(2.3)

Where x, y = 1, 2, . . . n and v1, v2, . . . vn label the elements of C. The symbol ≺ ∗ denotes the
nearest neighbour, such that if x ≺ y where x, y ∈ C and there exist no w ∈ C for which x ≺ w ≺ y
then x, y are called nearest neighbours and we write this x ≺ ∗y. Before developing a quantum
�eld theory on a causal set let us �rst review the basic approach when de�ning a quantum �eld
theory in the continuum, and discuss what might happen if we try to apply these methods directly
to causal sets.

2This research is still on-going but it is included nevertheless as interest for the reader.
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CHAPTER 2. CAUSAL SET THEORY

2.2.1 Canonical Quantum Field Theory

A common approach, and often the simplest, is to set up a canonical quantum �eld theory. This
is done by �rst solving the �eld equations, which for our case is just the Klein-Gordan equation
for a scalar �eld (

□+m2
)
ϕ(x̄) = 0, (2.4)

where x̄ = (t, x1, x2, x3), and □ = ∂µ∂
µ = ηµν∂µ∂ν . With signature (−++ . . . ) used through-

out. From here one would seek to impose commutation relations on the �eld operator ϕ(x̄) and its
momentum conjugate π(x̄) such that for d-dimensional space-times ,

[ϕ(x̄1), π(x̄2)] = iℏδd(x1 − x2) (2.5)

[ϕ(x̄1), ϕ(x̄2)] = 0, [π(x̄1), π(x̄2)] = 0 (2.6)

where δ(x1 − x2) is the Dirac-delta function as de�ned in [30]. Solutions for the �elds ϕ which
obey these conditions are usually expanded out in a basis of plane waves

ϕ(x̄) =

∫
dp4

(2π)4

(
â(p̄)e−ixµp

µ

+ â†(p̄)eixµp
µ
)
. (2.7)

Imposing conditions (2.5) and (2.6) on (2.7) we get relations for â(p̄) and â†(p̄), in terms of ϕ(x̄)
and π(x̄), which allow us to identify them as so-called raising and lowering operators for positive
and negative frequency states of the �eld respectively. All that remains is to de�ne a suitable
vacuum for the system |0⟩ and then states of momentum p may be constructed by acting on the
vacuum with â(p̄)† such that

|p̄⟩ = â(p̄)†|0⟩ (2.8)

and,

|p̄1, p̄2, . . . p̄n⟩ = â(p̄1)
†â(p̄2)

† . . . â(p̄n)
†|0⟩. (2.9)

Operators de�ned in terms of ϕ(x̄) and π(x̄) may then be calculated at any time via a time-
evolution de�ned by the Hamiltonian of the system H, such that

O(t, x) = eitHO(x)e−itH . (2.10)

For a full review of this procedure see [31]. It is the aim of causal set theory at this stage to
agree with the continuum case, in the in�nite density limit, if it to be a successful candidate theory
of nature. Therefore, one would like to be able to compare results from both the discrete and
continuous theories. However, due to the fundamental discretisation of the temporal structure of
space-time the Hamiltonian is ill-de�ned - along with the phase-space mechanics upon which the
theory rests. Therefore, one really wishes to de�ne a QFT via a sum over histories or path integral
method �rst devised by Dirac and then later formulated by Feynman [30, 32]. Progress has been
made in de�ning a sum over histories formalism for scalar �elds on causal sets, see [33], but a full
description is still needed. With this in mind we wish to recast the theory into a framework of QFT
that is de�ned through intrinsic space-time quantities and independent of the Hamiltonian. Such
an approach has been developed by Johnston and Sorkin [19, 20]. Wherein the Greens function
of the theory takes centre stage and is de�ned through a space-time volume 3. The theory has
also been shown by Dowker et al. [34] to be well de�ned by the proper time τ between space-time
event, for which a discrete analogue exits in continuation of the stop-hop method introduced by
Johnston.

2.2.2 Sorkin-Johnston QFT

We now introduce the construction developed by Johnston and Sorkin which utilises the Peierls
bracket to determine the space-time propagator of a free massless scalar �eld in 1+2 dimensions
in a manifestly covariant manner, without introduction of canonical variables [35]. We start by
de�ning the retarded Greens function Gd

R in d-dimensions by requirement that it satisfy

3In the case of a causal set the sapce-time volume is de�ned as the number of causal elements within a region.
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CHAPTER 2. CAUSAL SET THEORY

(
□−m2

)
Gd

R(x, x
′) = −δ(d)(x− x′). (2.11)

If one also de�nes the Pauli-Jordan function to be

△(x, x′) := GR(x, x
′)−GA(x, x

′), (2.12)

where GA is the advanced Greens function, which for a Gaussian theory is simply equal to the
transpose of the retarded Greens function, such that GA(x, x

′) = GT
R(x, x

′) = GR(x
′, x). Then the

commutator obeys

[ϕ(x), ϕ(x′)] = i△(x, x′). (2.13)

Now i△ is anti-symmetric and hermitian and admits positive and negative eigenvalues ±λi.
Working with a Gaussian quantum �eld theory it is su�cient to �nd a two-point function or
Wightman function, from which all n-point correlation functions may be derived byWick's theorem.
If one takes only the positive part of i△ it has been shown in [20] that one retrieves the Wightman
function,

W := Pos(i△). (2.14)

Since the eigenvalues of i△ are comprised of positive and negative pairs ±λi the Wightman function
may be expanded out as a sum of positive eigenvalues λi, along with a product of eigenfunctions
ui, such that

W =
∑
i

λiuiu
†
i . (2.15)

Now all that is left is to de�ne the Feynman propagator in terms of the expressions we have
de�ned above. From [36] we can �nd,

GF = GR − iW. (2.16)

2.2.3 3D Continuous Theory

We start by looking at the SJ method applied to a 3-dimensional continuous theory. Unlike the
2-dimensional case previously studied - where an analytic solution of the continuum Pauli-Jordan
function was found - no such analytic result has yet been found for 3-dimensions. Nevertheless,
the form of the retarded greens function is known from [36] to be,

G
(3)
R (x, x′) = θ(△t)θ(τ2) 1

2πτ
, (2.17)

where τ is the proper time de�ned in the usual way such that τ2 = △t2 −△x⃗2. From (2.17)
it would be desirable to calculate the Pauli-Jordan function via (2.12). Once we have found an
expression for△ within a space-time region V we can start looking for the eigenvalues and functions
of i△. One can achieve this by investigating the Hilbert space of square integrable functions L2(V )
associated to V . We de�ne the integral operator on functions within this space to be

(i△ψ)(x) =
∫
V

dy i△(x, y)ψ(y). (2.18)

Thanks to (2.18) one may look for eigenfunctions of i△ - as was demonstrated for 1 + 0 and
1 + 1 dimensions in [19]. Firstly, we would like to simplify (2.17) and the choice is now made to
go to radial light-cone coordinates which are de�ned as follows,

t =
1√
2
(u+ v) , (2.19)

x =
1√
2
(u− v) cos θ, (2.20)

y =
1√
2
(u− v) sin θ. (2.21)
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CHAPTER 2. CAUSAL SET THEORY

The Jacobian for this transformation is calculated to be,

J =

∣∣∣∣∣∣∣
1√
2

1√
2

0
1√
2
cos θ − 1√

2
cos θ − 1√

2
(u− v) sin θ

1√
2
sin θ − 1√

2
sin θ 1√

2
(u− v) cos θ

∣∣∣∣∣∣∣ ,
=

1√
2
|u− v|.

(2.22)

Such that, ∫∫∫
V

dtdxdy =

∫∫∫
V

1√
2
|u− v|dvdudθ,

=

∫ 2π

0

∫ h√
2

0

∫ u

0

1√
2
|u− v|dvdudθ.

(2.23)

A visual representation of this change of variables is given in �gure 2.1 where the boundaries
of the causal diamond are shown to correspond to u = h/2 and v = −h/2 from equations (2.19),
(2.20) and (2.21) along with a sprinkled causet of size N = 2000 and h = 1.

Figure 2.1: A plot of the functions t+
√
x2 + y2 = u = h/2 and t−

√
x2 + y2 = v = −h/2 along

with the a causal set diamond of size N = 2000 and height h = 1.

After this change of coordinates the Pauli-Jordan function takes the simpli�ed form;

△(u, v) = [θ(u) + θ(v)− 1]
1

4πτ
, (2.24)

where now τ2 = 2uv, whereby

10



CHAPTER 2. CAUSAL SET THEORY

△(u, v) =
1

4
√
2π

[
θ(u) + θ(v)− 1√

uv

]
(2.25)

Finally, we may express (2.18) in terms of u and v as follows,

(i△ψ)(u, v) =
∫ 2π

0

∫ h√
2

0

∫ u

0

i

8π

|(u− u′)− (v − v′)|√
(u− u′)(v − v′)

[θ(u− u′) + θ(v − v′)− 1]ψ(u′, v′)dv′du′dθ̂,

(2.26)

where θ̂ ≡ θ has been introduced as not to cause confusion with the Dirac-delta function θ(x).
We now have an equation for determining the eigenvalues and vectors using a coordinate system
more suited to the space we are considering. However, equation (2.26) is di�cult to solve exactly.
The problem arises from the 1/τ factor and the change of coordinates we have chosen doesn't help
in simplifying this term. It is possible that another more complicated change of variables could
help, but we will not consider any here. A potential method for �nding solutions to this problem
may be to consider the methods discussed in Appendix A of [37]. For such calculations it would be
bene�cial to know the general structure of the eigenvalues and eigenfunctions beforehand. With
this in mind we now turn our attention to the discrete theory, where computational calculations
of causal set operators are much easier to perform. We hope to learn about the spectrum of i△ in
a discrete setting before returning to the continuous case.

2.2.4 3D Discrete Theory

As outlined above there remains a di�culty in determining exact analytic solutions for the eigenspace
spanned by i△ in 3 dimensions; we wish to be able to solve this with the aid of causal set theory.
Thus far every test of CST in the in�nite density limit has agreed with the continuum. Therefore,
it is reasonable to assume that clues about the behaviour of the continuous theory may be deduced
from analysing the spectrum of eigenvalues and functions for the discrete counterpart of i△. Indeed
�gure 5.5 in [21] demonstrates the agreement between the discrete and continuous approaches in
a 2-dimensional causal diamond. It also turns out to be easier in 3-dimensions to compute causal
set functions - this being a great advantage of the theory.

It remains to introduce the causal set equivalent of the theory outlined in section 2.2.2. In this
thesis we follow the approach taken by Johnston in de�ning the causal set analogue of (2.17) via a
'stop-hop' calculation of the path integral. The main idea behind this approach is that the prop-
agator of a particle going from one point in space-time, say from x, to another x′, is determined
by the complex amplitudes of a path from x to x′, summed over all possible paths available to
that particle 4. This principle can be readily carried over to causal sets, where now the integrals
are �nite sums over all possible chains - or paths - from one causal element to another. Thinking
of a particle as moving along one of these paths its amplitude of propagation may be calculated
by noting how many 'stops' and 'hops' there are in that particular causal chain. Since no causal
element should take precedence over any other the amplitudes for each hop should be the same
at all points along the chain; similarly for amplitudes assigned to each stop. Not counting the
beginning and end of points of each path, for a n-element path there are n hops with amplitude a,
and n− 1 stops with amplitude b. The total amplitude for one path of length n is therefore given
by the product anbn−1, from standard probability theory.
For a causal set with n elements let us de�ne

Φ := aC. (2.27)

Then the massive propagator K(x, x′) from one causal element vx to another vx′ along a path
of any length is given by

K := I +Φ+ bΦ2 + . . . (2.28)

= I +Φ(I − bΦ)
−1

(2.29)

4Here we are taking the particle viewpoint of quantum mechanics following Feynman's original work.
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for a �nite causal set. Where we note that,

(Cn)xx′ = The number of chains of length n from vx to vx′ . (2.30)

For the massless propagator K
(3)
0 , however, one may simply take (2.17) and express it in terms

of causet expressions. In [19] this was achieved by noting that the volume between two causal
elements x and x′ in 3-dimensions is such that V (x − x′) ∝ τ3(x − x′). Given that the discrete

volume between two elements of the causal set vx and vx′ satis�es Vxx′ = 1
ρ (C + I)

2
xx′ Johnston

de�nes the massless propagator

K
(3)
0 :=

{
1
2π

(
πρ
12

) 1
3 ((C + I)2)

− 1
3

xx′ if vx ≺ ∗vy
0 otherwise

(2.31)

To further simplify our calculations we will utilise the association �rst made by Brightwell [38]
and developed further by Dowker [34] whereby τ is shown to be approximated by the longest chain
lxx′ of causal elements between points x and x′ such that

τ = lim
ρ→∞

⟨lxx′⟩
(πρ
12

)−1/3 1

m3
, (2.32)

where,

m3 = lim
ρ→∞

⟨lxx′⟩ (ρV ) , 1.77 ≤ m3 ≤ 2.62. (2.33)

All calculations presented in this thesis were obtained after �xing m3 = 1.854. Putting all this
together we are able to de�ne the causal set Greens function,

K
(3)
R xx′ :=

{
m3

2π

(
πρ
12

)1/3 1
lxx′

for x ≺ x′

0 otherwise
(2.34)

Where K
(3)
R xx′ is a NxN matrix spanning over all N5 elements of the the causet. Finally, we

have arrived at a prescription for �nding the propagator for the causet in 3 dimensions6;

1. Sprinkle N elements onto a �xed Lorentzian manifold to create a causet via a Poisson process
de�ned by (2.1).

2. Calculate the Causal and link matrices from (2.2) and (2.3) respectively.

3. Determine the longest chain matrix lxx′ and the Causet propagator K
(3)
R xx′ from (2.34).

4. Determine the corresponding eigenvectors and values by diagonalising K
(3)
R xx′ .

For the massive propagator one simply takes Φ = K
(3)
0 in (2.29) and b = m2

ρ . Having outlined
the method we can now apply the prescription to a space-time of our choosing. We choose to work
within the framework of a 3-dimensional.

5Note a change in notation, where now the size of the causet is N instead of n to avoid confusion with the notation

introduced in describing the stop-hop method.
6This method may be easily generalised to space-times of arbitrary dimension d > 2 by substitution of the

appropriate functions.
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Causal Diamonds in 2D and Beyond

As mentioned earlier we have chosen to work within the framework of a causal set generated by a
sprinkling of causal elements intoM3. Speci�cally, we wish to investigate the form of the space-time
propagator - by construction of a Greens function as outlined in sections 2.2.3 and 2.2.4.

3.1 2D Causal Set Theory

It will be bene�cial to review the results from M2 as calculated by Yazdi and Sorkin as these
may give us some hints about the behaviour of the propagator in higher dimensions. In [21],
the propagator for 2-dimensional �xed causal diamond was studied. The bene�t of choosing to
study the propagator on such a structure is apparent, as every possible (causally related) path
between two distinct elements in the set lies within the diamond, no information is lost outside the
boundary of the diamond. An example is shown in �gure 3.1 where the causal interval between two
elements (being the intersection of the future and past light-cones of said elements) is completely
self contained within the boundary of the diamond.

Figure 3.1: Example of causal interval - bound by solid green lines - between two elements of a
sprinkled causal set of size N = 500, onto a 2-dimensional Minkowski background diamond - bound
by solid black lines.

Staying with the 2-dimensional case it was found by Johnston that the 2-dimensional Green's
function may be used to calculate the eigen-decomposition of i△, which was shown to admit two
classes of eigenfunction;

fk(u, v) := eiku − eikv, withk =
nπ

L
, n = ±1,±2, . . . (3.1)

gk(u, v) := eiku + eikv − 2 cos(kL), tan(kL) = 2kL, k ̸= 0 (3.2)

both with eigenvalue L/k such that,
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(i△fk)(u, v) =
L

k
fk(u, v), (i△gk)(u, v) =

L

k
gk(u, v). (3.3)

where,

△(u, v) =
1

2
(θ(u) + θ(v)− 1) (3.4)

A change of variables was made such that u = 1√
2
(t+x), and 1√

2
v = (t−x). The corresponding

causal set Pauli-Jordan function calculated by Yazdi was shown to agree with the continuum above
a minimum threshold, as can be seen in �gure 5.5 of [21]. For agreement with the continuous theory
the causal set eigenvalues were scaled by a factor of 1/ρ. In fact, it has been shown that fk(u, v)
and gk(u, v) are the only eigenfunctions for the 2-dimensional case and span the whole space of
solutions, see [19]; page 109.

3.2 3D Causal Set Theory

Now we wish to extend this scheme to the case of a 3-dimensional causal diamond, following the
same reasoning as outlined in section 3.1. We start in the same way: by sprinkling elements, via
a Poisson process, onto points in M3 restricted to the region of a causal diamond de�ned by the
boundaries t−

√
x2 + y2 = −h

2 and t+
√
x2 + y2 = h

2 , where h is the height of the diamond with

volume V = πh3

12 . Figure 3.2 illustrates such a sprinkling of 2000 elements into a diamond of height
h = 1.

Figure 3.2: An example sprinkling of 2000 elements into a causal diamond on M3 of hight h = 1,
shown from three di�erent viewpoints.

3.2.1 Eigenvalues of Pauli-Jordan function

Following the steps outlined at the end of section 2.2.4 we are able to calculate the discrete Pauli-
Jordan function and �nd the corresponding eigenvalues and eigenfunctions satisfying △fn = λnfn,
computationally. In Figure 3.3 a log-log plot of the nth positive eigenvalues of the Pauli-Jordan
function λ+n ( ≡ λ), are given against n. Just as with the positive eigenvalues of a 2-dimensional
causal diamond the spectrum of eigenvalues shows a compact linear behaviour above a certain
threshold, with the eigenvalues spacing out more for lower values of n. We expect to see this
behaviour for much the same reasons as outlined in previous work for 2-dimensions where the non-
linear behaviour is due to eigenfunction �uctuations for distances beyond the discreteness scale of
the causet. Therefore, one wishes to impose a cut o� to exclude these points from the spectrum.
For the 2-dimensional theory this cut-o� was deduced by analysing the dimensionality of λ between

the continuous and discrete theories. In 3-dimensions the continuum i△ eigenvalues λ
(3)
cont have

dimensionality of volume, whereas the causal set analogue eigenvalues λ
(3)
cs are dimensionless. The

question remains as to what space-time quantity relates the two functions?
Regarding the actual dependence of the eigenvalues on n we can simply impose a high cut-o� and
read the gradient of the linear part of �gure 3.3 to �nd a power-law relation between λn and n.
Indeed one �nds λn ∝ 1√

n
, whereas, for a 2-dimensional causal diamond it was found that λn ∝ 1

n .

Once the n dependence on λn is known we may try and �t the spectra to a a curve of λn = k√
n
,

14
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for some constant k to be determined. This procedure is shown in �gure 3.4 for a causal set of
200 elements sprinkled into a diamond of height h = 1; in this instance k = 350.25. One can now
use this �t to approximate a more precise cut-o� by looking at where the two lines in �gure 3.4
diverge. We would like to make this cut-o� more precise by analysing the continuum eigenvalues.

Figure 3.3: A log-log plot of the eigenvalue spectrum of the Pauli-Jordan function calculated from
a causet of 2000 elements - sprinkled into a causal diamond of height h = 1 in M3.

Figure 3.4: The eigenvalues λ are plotted against n for a 2000 element causal set of height h = 1
and compared to the function k/

√
n with k = 350.25. Agreement is shown up to a value of λ = 19

represented by the dashed line.

So far we have only presented data of a 2000 element causal diamond of height h = 1. However,
we would also like to know whether the spectra of i△ depends on the density of the causet, or
indeed the size of the causal diamond itself. We would expect some dependence on the density
ρ up to a point where the theory should level o� to agree with the continuous case - this being
the high density limit. However, the sensitivity of this progression is something which one may
investigate further for clues to the precise analytic dependence of the spectra in the continuous
case. Figure 3.5 is a log-log plot of the eigenvalues of i△ for causal sets of h = 1, with density
ρ =

{
12000

π , 24000π , 36000π , 48000π , 60000π , 72000π , 84000π , 96000π

}
, from left to right respectively. As one

might expect the eigenvalues for of the Pauli-Jordan function tend to di�er less and less as the
density increases and the spectra tend toward the continuous limit. Since this bunching can be
seen for a causal diamond of 8000 elements it is reasonable to assume for a diamond of height
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h = 1 a sprinkling of 10,000-20,000 elements should yield results which can be compared to the
continuous case - after an truncation has been performed to remove the smallest eigenvalues of i△.

Figure 3.5: eigenvalues of i△ for causal sets of h = 1, with density ρ increasing from ρ = 12, 000/π
to ρ = 96, 000/π in steps of 12, 000/π from left to right.

In as far as one can analyse the spectrum of eigenvalues of i△ we have two immediate questions
we would like to answer:

How many independent functions make up the full spectrum of eigenvalues?

For the 2-dimensional case it can be seen from (3.1) and (3.2) that there are two independent
functions of eigenvalues which have been shown to make up the full spectrum. Naturally one
would like to know how many independent functions make up the full spectrum in 3-dimensions?
One potential way to discern exactly how many functions there are is to analyse the periodicity or
composite periodicity of the spectrum.

What is the factor in relating between continuum and causal set eigenvalues?

As mentioned in the previous chapter the continuum Greens function has dimensions of volume - as
it is a measure relating to the causal interval between two space-time points. For the discrete theory,
however, the propagator is dimensionless so a purely space-time factor1 of relevant dimension is
needed if calculations between the two theories are to agree in the high density limit. One such
candidate is the density ρ. It is known that for the case of 2-dimensions λcon = λcs/ρ. This
begs the question of what this factor may be for three dimensions; could it be a power of ρ or a
combination of ρ with some other expressions?

1By this we mean intrinsic properties of the space-time for which causal set analogues are well de�ned.
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3.2.2 Eigenfunctions of the Pauli-Jordan function

As well as studying the form of the eigenvalues, as was done in the previous section, one may also
investigate the eigenfunctions of i△ obtained by direct computation of the causal set. The analytic
eigenfunctions of 2-dimensions are given by (3.1) and (3.2). Let us �rst start by applying the steps
outlined in section 2.2.4 to a 2-dimensional causal diamond to �nd the causal set eigenfunctions as
was done in [21].

In �gure 3.6 the real parts of fk(u, v) and gk(u, v) are shown plotted together for the values of
k = 1, 2, 3, 4 respectively, for a 2-dimensional causal diamond where we have taken L = 1. Let us
then compare this with the eigenfunctions of the Pauli-Jordan function as calculated from a causal
set of 1000 elements and density ρ = 250. After diagonalizing the propagator one is left with 1000
eigenvalues and eigenvectors. Choosing to focus on pairs of adjacent eigenvectors we can see an
immediate correlation between the discrete and continuous functions. For a causal set of size N
we take the set of all N eigenvectors to be V such that V = v1, v2, . . . vN , then each vi ∈ V is a
list of 2-dimensional coordinates of length N . Denoting then the ith and jth pair of eigenvectors
in V to be (vi, vj), we have in �gure 3.7 the real parts of the superimposed plots for (a) : (v2, v3),
(b) : (v6, v7). (c) : (v9, v10) and (d) : (v11, v12).

(a) (b)

(c) (d)

Figure 3.6: The real parts of fk(u, v) and gk(u, v) plotted together for values of (a) : k+1, (b) : k+2,
(c) : k + 3 and (d) : k + 4 for a diamond of Length L = 1.
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(a) (v2, v3) (b) (v6, v7)

(c) (v9, v10) (d) (v11, v12)

Figure 3.7: The real parts of eigenvectors (a) : (v2, v3), (b) : (v6, v7). (c) : (v9, v10) and (d) :
(v11, v12) plotted for a causal diamond of length L = 1 and size N = 1000

So far we have only visualised the results already obtained by Yazdi and have done nothing new.
However, what the above does is illustrate again how results from a causal framework may be used
to investigate the continuous counterpart and visa versa. When going up to 3-dimensions we know
that the problem of solving the eigenfunctions and values of the Pauli-Jordan function becomes
much harder, primarily due to the addition of 1/τ in the retarded Greens function. However, it
could also be possible that the behaviour of the eigenfunctions show similarities with those of two
dimensions when one looks at cross-sections in the spatial planes. If so then an appropriate ansatz
may be used to simplify the problem. It is also interesting to ask if there is any symmetry in
the functions as this may ease the di�culty of �nding exact solutions to 3-dimensional continuous
theories.

In order to analyse the 2-dimensional behaviour of the 3-dimensional eigenfunction we need to
de�ne an appropriate cross-section of the causal diamond. As the set is not continuous we cannot
simply take an exact cross-section as this would have a very low probability of containing any causal
elements. Instead, we require a slice of thickness b to retrieve a 'block diamond' of a 2-dimensional
surface. Such an example of this is illustrated in �gure 3.8. To determine the behaviour of the
functions under investigation slices of both the spatial directions x and y are taken - �rst centred
in the middle of the diamond such that the midpoint of the slice is aligned with the origin of the
respective axes. This is done to begin with as, the closer to the origin the more causal set elements
there will be contained within the slice. Slices centred about planes further from the origin will
be of smaller causal diamonds; the size of these diamonds may then e�ect the behaviour of the
spectrum of i△. For an accurate comparison one would need to study slices analogous to the size of
a 2-dimensional diamond with a similar density of points. As mentioned earlier a causal diamond
of 10,000 - 20,000 elements should give reliable results to analyse for a diamond of height h = 1.
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(a) {0,−2, 0}

(b) {1.3,−2.4, 2}

(c) {0, 0, 2}

Figure 3.8: An example of a cross-section taken from a 15,000 element causal set with the slice
taken in the x, t plane centred about y = 0, where b = 0.1 and NR = 2807.

We choose to take cross-sections of a 15,000 element causal set of density ρ = 180′/π. We
also require quite a large density causet, as this reduces the interference that is inevitable when
performing a cross-section of this nature. An example of how the cross-sections change due to
the location of the plane slice are shown in �gure 3.9. To properly analyse the dependence of the
functions on the position of the cross-section, one would need to look at increasingly large sets as
to keep the number of elements at each section within the same order of magnitude. Due to the
symmetry of the causal diamond between the x and y directions we see that cross-sections taken
in the (y, t) exhibit the same dependence on position.
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(a) (x, t) plane at y = 0.1, NR = 2533 (b) (x, t) plane at y = 0.2, NR = 1908

(c) (x, t) plane at y = 0.3, NR = 1134 (d) (x, t) plane at y = 0.4, NR = 446

Figure 3.9: Slice of thickness b = 0.1, taken on the (x, t) plane at y = {0.1, 0.2, 0.3, 0.4} of a causal
set of size N = 15, 000. Where NR is the size of the reduced causal set contained within the
boundaries of the cross-section.
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Keeping in mind the form of the eigenfunctions for i△ as seen in �gures 3.6 and 3.7, for 2-
dimensions, we now look at the eigenfunctions in 3-dimensions for cross-sections of thickness b = 0.1
on a N = 15, 000 causal set, such that NR = 2807.2 In order to show the form of the functions
clearly, plots are given of only one eigenvector at a time. Figure 3.10 shows the 3-dimensional
representation of a the eigenvectors v7, v15, v27, v35, v45 and v57 de�ned in the same way as pre-
viously.3 A 2-dimensional density plot of the corresponding functions is presented in �gure 3.11.

Looking at �gures 3.10 and 3.11 it is clear the the eigenfunctions for these cross-sections show
similar traits to those in �gures 3.6 and 3.7; both demonstrate periodic behaviour with increasing
frequency. This is encouraging to see as it suggest that the form of the eigenfunctions may be sim-
ilar to those of the 2D theory when taken in isolation. Due to the symmetry of the problem it is
also noted that the eigenfunctions for the other spatial direction shares similar characteristics when
analysed. This leads to the possibility that the eigenfunctions of the 3-dimensional Pauli-Jordan
operator are comprised of the superposition of eigenfunctions of the corresponding 2-dimensional
theory. There could also exist other terms dependent on the whole 3-dimensional space and not
seen in lower dimensions.

As eluded to in 2.2.3 a method for determining the eigenvalues of i△ as discussed in Appendix
A of [37] utilises a complete basis of states to iteratively �nd eigenvalues and eigenfunctions. This
method may not always simplify the problem or produce analytically 'tidy' functions as seen in
(3.1) and (3.2). However, if one has an insight into the form that the eigenfunctions may take,
then choosing an appropriate complete basis should make the process more e�cient. It has been
shown that the spectrum of i△ in 3-dimensions shares similarities to the 2D case (for appropriately
de�ned cross-sections), such that the eigenfunctions resemble plane waves in M2. Then it could
also be bene�cial to try a 3D plane-wave basis of states. The 3D plane-wave basis forms a complete
basis, as well as the added bonus of being easily reduced to lower dimensions by ignoring behaviour
in one or more of the spatial directions.

Analysing the eigenfunctions found for the discrete theory could also allow one to determine
how many independent periodic functions make up the whole spectrum of i△. As with the 2D case
the eigenvectors dependence on n may be related to the to the wave-number k, of the functions.
The exact relation of n to k is something which would be of interest for further study. One could
use the results above to help determine the periodicity of n, as well as the methods outlined in
section 3.2.1 - which suggest using eigenvalues to �nd the periodicity of n and its relation to the
wave-number.

2NR is the size of the reduced causet obtained from taking slices of the original causet of size N .
3The plots are presented as 3-dimensional scatter plots as the noise due to the nature of the cross-section limits

the interpolating capabilities of Mathematica 12.3.1.
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(a) v7 (b) v15

(c) v27 (d) v35

(e) v45 (f) v57

Figure 3.10: A 3D scatter plot of the eigenfunctions (a) = v7, (b) = v15 ,(c) = v27, (d) = v35,
(e) = v45 and (f) = v57 for a reduced causal diamond of size NR = 2807 obtained after taking a
cross-sectional slice of a N = 15, 000 causet in the (x, t) plane centred at y = 0.
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(a) v7 (b) v15

(c) v27 (d) v35

(e) v45 (f) v57

Figure 3.11: A 2D density plot of the eigenfunctions (a) = v7, (b) = v15 ,(c) = v27, (d) = v35,
(e) = v45 and (f) = v57 for a reduced causal diamond of size NR = 2807, obtained after taking a
cross-sectional slice of a N = 15, 000 causet in the (x, t) plane centred at y = 0.
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Conclusion

In the quest to �nd a theory of Quantum Gravity, physicists have been led to question the very
nature of space and time in which the universe unfolds. The ideas of Einstein's Special and Gen-
eral Relativity changed the way in which scientists imagined these concepts and their relationship
to each other. Since then, great success has been made in evolving these principles into rigorous
mathematical frameworks of Geometry and Topology. The introduction of the so called 'Standard
Model' of particle physics and the development of Quantum Field Theory again furthered our
understanding of how matter behaved and interacted in nature. Now at the beginning of the 21st
century physicists and mathematicians are again questioning our understanding of space and time.
Causal set theory has emerged as a seemingly natural way to explain many of the problems facing
modern physics. Although still in its infancy, great success has been made in relating ideas of
discrete and continuous theories.

In this thesis the foundations and motivations of causal set theory have been outlined and a
basic review of the theory has been presented. Ideas about how one might represent a causet via
a sprinkling of space-time elements have been presented, as well as calculating such a causet for a
3-dimensional causal diamond in 2+1 Minkowski space. A review of the work done in de�ning a
quantum �eld theory via the so called Sorkin-Johnston approach has been discussed. The potential
for using causets to make breakthroughs in continuum theories has been eluded to throughout the
work. With this in mind the eigenvalues and eigenfunctions of the Pauli-Jordan operator for this
space were calculated via computation methods outlined in section 2.2.4. These quantities are as
yet unde�ned in the continuous theory, and it is hoped that causal sets may provide useful insights
to this unknown. Indeed, the eigenfunctions show a close resemblance to the 2-dimensional theory
- for which precise analytic functions have been found - when appropriate cross-sections were taken.

Using the known form of the eigenvalues and eigenvectors of i△ from analysis of causal set
operators de�ned in section 2.2.4, further questions arise about how the continuous spectrum may
appear. Future avenues of research could be conducted in this area. Speci�cally, one may ask what
dimensional parameters need to be included to scale the eigenvalues if agreement is to be made
between the two approaches. As well as this, one may investigate how many independent functions
make up the full spectrum by looking at the periodicity of both the eigenvalues and eigenfunctions
found. With continuing research one could look to investigate the relationship between n and k.

Having elevated the theory to 3-dimensions we now have a better understanding of the form that
i△ may take. Further research in this area is sure to expand our understanding of both continuous
and discrete theories, and ultimately allow us to gain greater knowledge of the importance of
causality at the most fundamental level.

24



Bibliography

[1] Rafael D. Sorkin. Forks in the road, on the way to quantum gravity. Int. J. Theor. Phys., 36
(12):2759�2781, 1997. ISSN 00207748. doi: 10.1007/BF02435709.

[2] Pietro Doná and Simone Speziale. Introductory lectures to loop quantum gravity. jul 2010.
URL http://arxiv.org/abs/1007.0402.

[3] Joseph Gerard Polchinski. String theory. Joseph Polchinski. Cambridge Monogr. Math. Phys.,
2005.

[4] Eitan Bachmat. Discrete spacetime and its applications. pages 347�359. 2008. doi: 10.1090/
conm/458/08946.

[5] Luca Bombelli, Joohan Lee, David Meyer, and Rafael D Sorkin '. Space-Time as a Causal
Set. 59(5), 1987.

[6] Fay Dowker. Causal sets and the deep structure of spacetime. In 100 Years Relativ. Space-
Time Struct. Einstein Beyond, pages 445�464. World Scienti�c Publishing Co., jan 2005. ISBN
9789812700988. doi: 10.1142/9789812700988_0016.

[7] E. H. Kronheimer and R. Penrose. On the structure of causal spaces. Math. Proc. Cambridge
Philos. Soc., 63(2):481�501, 1967. ISSN 14698064. doi: 10.1017/S030500410004144X.

[8] Cristopher Moore. Comment on Space-time as a causal set, 1988. ISSN 00319007.

[9] Rafael D. Sorkin. Causal Sets: Discrete Gravity (Notes for the Valdivia Summer School). sep
2003. URL https://arxiv.org/abs/gr-qc/0309009v1.

[10] S. W. Hawking and G. F. R. Ellis. The Large Scale Structure of Space-
Time. Large Scale Struct. Space-Time, may 1973. doi: 10.1017/CBO9780511524646.
URL https://www.cambridge.org/core/books/large-scale-structure-of-spacetime/

1E6B961EC9878EDDBBD6AC0AF031CC93.

[11] Jacob D. Bekenstein. Black holes and entropy. Phys. Rev. D, 7(8):2333�2346, 1973. ISSN
05562821. doi: 10.1103/PhysRevD.7.2333.

[12] S. W. Hawking. Black holes and thermodynamics. Phys. Rev. D, 13(2):191�197, 1976. ISSN
05562821. doi: 10.1103/PhysRevD.13.191.

[13] Luca Bombelli, Rabinder K. Koul, Joohan Lee, and Rafael D. Sorkin. Quantum source of
entropy for black holes. Phys. Rev. D, 34(2):373�383, 1986. ISSN 05562821. doi: 10.1103/
PhysRevD.34.373.

[14] D. Dou. Causal Sets, a Possible Interpretation for the Black Hole Entropy,and Related Topics.
jun 2001. URL http://arxiv.org/abs/gr-qc/0106024.

[15] Mehdi Saravani, Rafael D. Sorkin, and Yasaman K. Yazdi. Spacetime entanglement entropy
in 1 + 1 dimensions. Class. Quantum Gravity, 31(21), nov 2014. ISSN 13616382. doi:
10.1088/0264-9381/31/21/214006.

[16] G. 't Hooft. Quantum Gravity: A Fundamental Problem and Some Radical Ideas. Recent
Dev. Gravit., pages 323�345, 1979. doi: 10.1007/978-1-4613-2955-8_8. URL https://link.

springer.com/chapter/10.1007/978-1-4613-2955-8{_}8.

25

http://arxiv.org/abs/1007.0402
https://arxiv.org/abs/gr-qc/0309009v1
https://www.cambridge.org/core/books/large-scale-structure-of-spacetime/1E6B961EC9878EDDBBD6AC0AF031CC93
https://www.cambridge.org/core/books/large-scale-structure-of-spacetime/1E6B961EC9878EDDBBD6AC0AF031CC93
http://arxiv.org/abs/gr-qc/0106024
https://link.springer.com/chapter/10.1007/978-1-4613-2955-8{_}8
https://link.springer.com/chapter/10.1007/978-1-4613-2955-8{_}8


BIBLIOGRAPHY

[17] R Sorkin. Spacetime and causal sets. J.C. D'Olivo, E. Nahmad-Achar, M. Rosenbaum, M.P.
Ryan, L.F. Urrutia, F. Zertuche (Eds.), Relativ. Gravit. Class. Quantum, Proc. SILARG
VII Conf. Cocoyoc, Mex. December 1990, World Sci. Singapore, 1991, pages 150�173. URL
http://www.perimeterinstitute.ca/personal/rsorkin/some.papers/66.cocoyoc.pdf.

[18] Fay Dowker and Stav Zalel. Evolution of Universes in Causal Set Cosmology. mar 2017. doi:
10.1016/j.crhy.2017.03.002. URL http://arxiv.org/abs/1703.07556http://dx.doi.org/

10.1016/j.crhy.2017.03.002.

[19] Steven Johnston. Quantum Fields on Causal Sets. oct 2010. URL http://arxiv.org/abs/

1010.5514.

[20] Rafael D. Sorkin. From Green Function to Quantum Field. Int. J. Geom. Methods Mod.
Phys., 14(8), mar 2017. doi: 10.1142/s0219887817400072. URL https://arxiv.org/abs/

1703.00610v1.

[21] Rafael D. Sorkin and Yasaman Kouchekzadeh Yazdi. Entanglement entropy in causal set
theory. Class. Quantum Gravity, 35(7), 2018. ISSN 13616382. doi: 10.1088/1361-6382/aab06f.

[22] Dionigi M. T. Benincasa and Fay Dowker. The Scalar Curvature of a Causal Set. Phys. Rev.
Lett., 104(18), jan 2010. doi: 10.1103/physrevlett.104.181301. URL https://arxiv.org/

abs/1001.2725v4.

[23] David B. Malament. The class of continuous timelike curves determines the topology of
spacetime. J. Math. Phys., 18(7):1399�1404, 1976. ISSN 00222488. doi: 10.1063/1.523436.

[24] S. W. Hawking, A. R. King, and P. J. McCarthy. A new topology for curved space-time which
incorporates the causal, di�erential, and conformal structures. J. Math. Phys., 17(2):174�181,
1975. ISSN 00222488. doi: 10.1063/1.522874.

[25] Seth Major, David Rideout, and Sumati Surya. On recovering continuum topology from a
causal set. J. Math. Phys., 48(3), 2007. ISSN 00222488. doi: 10.1063/1.2435599.

[26] D. P. Rideout and R. D. Sorkin. Classical sequential growth dynamics for causal sets. Phys.
Rev. D - Part. Fields, Gravit. Cosmol., 61(2), 2000. ISSN 15502368. doi: 10.1103/PhysRevD.
61.024002.

[27] D. P. Rideout. Evidence for a continuum limit in causal set dynamics. Phys. Rev. D, 63(10),
2001. ISSN 05562821. doi: 10.1103/PhysRevD.63.104011.

[28] Jonathan Gorard. Algorithmic Causal Sets and the Wolfram Model. nov 2020. URL http:

//arxiv.org/abs/2011.12174.

[29] Fay Dowker, Joe Henson, and Rafael D. Sorkin. Quantum gravity phenomenology, Lorentz
invariance and discreteness. Mod. Phys. Lett. A, 19(24):1829�1840, aug 2004. ISSN 02177323.
doi: 10.1142/S0217732304015026.

[30] P A M Dirac. The Principles of Quantum Mechanics (1995 reprint of 4th ed). 1930. URL
http://www.worldcat.org/isbn/0198520115.

[31] Steven Weinberg. The Quantum Theory of Fields. The Quantum Theory of Fields, jun
1995. doi: 10.1017/CBO9781139644167. URL https://www.cambridge.org/core/books/

quantum-theory-of-fields/22986119910BF6A2EFE42684801A3BDF.

[32] R. P. Feynman. Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys.,
20(2):367�387, 1948. ISSN 00346861. doi: 10.1103/RevModPhys.20.367.

[33] Rafael D. Sorkin. Scalar Field Theory on a Causal Set in Histories form. In J. Phys. Conf. Ser.,
volume 306. Institute of Physics Publishing, 2011. doi: 10.1088/1742-6596/306/1/012017.

[34] S. Nomaan Ahmed, Fay Dowker, and Sumati Surya. Scalar �eld Green functions on causal sets.
Class. Quantum Gravity, 34(12), may 2017. ISSN 13616382. doi: 10.1088/1361-6382/aa6bc7.

[35] R. E. PEIERLS. The commutation laws of relativistic �eld theory. pages 367�382. apr 1997.
doi: 10.1142/9789812795779_0039. URL http://www.worldscientific.com/doi/abs/10.

1142/9789812795779{_}0039.

26

http://www.perimeterinstitute.ca/personal/rsorkin/some.papers/66.cocoyoc.pdf
http://arxiv.org/abs/1703.07556 http://dx.doi.org/10.1016/j.crhy.2017.03.002
http://arxiv.org/abs/1703.07556 http://dx.doi.org/10.1016/j.crhy.2017.03.002
http://arxiv.org/abs/1010.5514
http://arxiv.org/abs/1010.5514
https://arxiv.org/abs/1703.00610v1
https://arxiv.org/abs/1703.00610v1
https://arxiv.org/abs/1001.2725v4
https://arxiv.org/abs/1001.2725v4
http://arxiv.org/abs/2011.12174
http://arxiv.org/abs/2011.12174
http://www.worldcat.org/isbn/0198520115
https://www.cambridge.org/core/books/quantum-theory-of-fields/22986119910BF6A2EFE42684801A3BDF
https://www.cambridge.org/core/books/quantum-theory-of-fields/22986119910BF6A2EFE42684801A3BDF
http://www.worldscientific.com/doi/abs/10.1142/9789812795779{_}0039
http://www.worldscientific.com/doi/abs/10.1142/9789812795779{_}0039


BIBLIOGRAPHY

[36] Steven Johnston. Feynman Propagator for a Free Scalar Field on a Causal Set. Phys. Rev.
Lett., 103(18), oct 2009. ISSN 00319007. doi: 10.1103/PhysRevLett.103.180401.

[37] Fay Dowker. Boundary contributions in the causal set action. Class. Quantum Gravity, 38
(7), apr 2021. ISSN 13616382. doi: 10.1088/1361-6382/abc2fd.

[38] Graham Brightwell and Ruth Gregory. Structure of random discrete spacetime. Phys. Rev.
Lett., 66(3):260�263, jan 1991. ISSN 0031-9007. doi: 10.1103/PhysRevLett.66.260. URL
https://link.aps.org/doi/10.1103/PhysRevLett.66.260.

27

https://link.aps.org/doi/10.1103/PhysRevLett.66.260

	Introduction
	Causal Set Theory
	Principles of Causal Set Theory
	Scalar Quantum Field Theory on a Causal Set
	Canonical Quantum Field Theory
	Sorkin-Johnston QFT
	3D Continuous Theory
	3D Discrete Theory


	Causal Diamonds in 2D and Beyond
	2D Causal Set Theory
	3D Causal Set Theory
	Eigenvalues of Pauli-Jordan function
	Eigenfunctions of the Pauli-Jordan function


	Conclusion
	Bibliography

