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Abstract

Conformal field theories, Anti-de Sitter spacetime and superstring theory are reviewed. The

duality between open and closed strings and the ensuing interpretation of Dp-branes motivates

the AdS/CFT correspondence. The conjectured map between observables in the two theories

is presented. Strongly-coupled thermal plasma is explored via a 5-dimensional black hole.

Results for its entropy and shear viscosity are compared with QCD and lead to a possible

universality of gauge theories.

1 Introduction

There has been ongoing research for a theory consistent with quantum mechanics and general
relativity since the early twentieth century. Dirac’s quantisation method leads to field theories
describing electromagnetism and the strong and weak nuclear forces. However, attempts to quant-
ise gravity this way lead to a theory that is non-renormalisable. One of the modern approaches
to a consistent framework of quantum gravity is string theory. Ideas from string theory motiv-
ated Maldacena to propose the AdS/CFT correspondence. This states that certain field theories in
d-dimensions, without gravity, are dual to specific gravitational theories in d+1 dimensions; the
physics described by a gravitational theory is equivalent at the full quantum level to a field the-
ory in flat spacetime on the boundary. The correspondence makes manifest ideas of holography
and that gravity and quantum mechanics are inextricably linked. The aim of this dissertation is
to present the AdS/CFT correspondence as originally proposed by Maldacena [17]. The conjec-
ture is that a supersymmetric Yang-Mills (’SYM’) gauge theory in four dimensions, a conformal
field theory (’CFT’), is dual to a type IIB gravitational theory which has local asymptotics of a
five-dimensional Anti-de Sitter (’AdS’) spacetime. The correspondence is a conjecture with no
rigorous mathematical proof however, strong evidence suggests the duality is valid [43]. Motiv-
ation for the conjecture and the context of theoretical developments at the time it was proposed
begins with some background knowledge and history of string theory.

String theory was initially formulated to describe strong interactions. Strings, as extended objects,
vibrate. Different vibrational modes give rise to different particles. Strong interactions were sub-
sequently explained in the field theoretical context of QCD [51]. QCD is a Yang-Mills theory with
gauge group SU(3). It is well known that QCD is asymptotically free; the coupling constant runs
with energy. At low energies the theory is non perturbative. ’t Hooft proposed [39] that general
gauge theories simplify when the gauge colour N is large. The planar and non-planar expansion
demonstrated that in the limit N → ∞ there is a controllable coupling, the ’t Hooft coupling,
λ = g2N that is kept finite. More importantly, it was suggested that in this limit there is a dual de-
scription of a weakly-coupled string theory. This provided evidence that there exists a connection
between gauge theories and string theory.

The ’t Hooft argument was valid for gauge theories in general. One is then prompted to con-
sider field theories that have desirable properties, albeit not present in QCD. One such class are
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conformal field theories. CFTs have a symmetry group that includes the familiar Poincaré trans-
formations. In addition, the theory is invariant under scale transformations (and special conformal
transformations). Overall, a conformal field theory in four-dimensional Minkowski space has fif-
teen operators that define the Lie algebra SO(2,4) [31]. Scale invariance means that the coupling
constant does not run with energy [48]. The dynamics of the theory can be further constrained if
it is supersymmetric. The candidate theory for the prototypical example of the AdS/CFT corres-
pondence is the maximally SYM gauge theory, with gauge group SU(N). In four dimensions, the
theory has four supercharges [3]. The N = 4 SYM also has an SU(4) ∼ SO(6) R-symmetry that
rotates the scalars and fermions present in the theory.

In the 1980s, string theory was recast as a theory of quantum gravity. The spectrum of closed
strings naturally gives rise to massless states of spin two, the graviton. In a way, closed strings
predict gravity [51]. In general relativity, gravity includes black holes. Consideration of the ther-
modynamic laws of black holes motivated the AdS/CFT correspondence [18, 19]. Fundamental
string theory was expanded to include massive, extended, dynamical objects that curve spacetime
and can lead to black holes in the higher-dimensional background that string theory predicts. The
point-particle and string were generalised to p-dimensional objects called a p-branes. These couple
to a p + 1 gauge potential and have a p + 2 field strength; similar to the Maxwell field-strength
F = dA. Black holes in p-dimensions are solutions in the low-energy, semi-classical limit of
closed string theory, i.e. supergravity (’SUGRA’) [35]. These solutions are analogous to the ex-
tremal Reissner-Nordstrom black hole in four dimensions.

Polchinski [30] considered D-branes in open string theory. D-branes are dynamical hypersurfaces
on which open strings can end i.e. open strings with Dirichlet boundary conditions. These were
identified with the p-brane solutions of the supergravity limit of closed string theory and led to
a duality between open and closed strings [34]. The most important property of D-branes for
the purposes of this thesis is that gauge theories are realised on their world volume. Witten [45]
showed that a system of N coincident D-branes will have a maximally supersymmetric U(N) gauge
theory. In the low energy limit, N D3-branes will carry aN = 4, SU(N) SYM theory. On the other
hand, D3-branes embedded into a closed type IIB string theory are described by a metric with a
near-throat geometry that is AdS5 ×S5 [35]. AdS spacetime in d+ 1 dimensions is the maximally
symmetric space which is a solution to Einstein’s field equations with a negative cosmological
constant [49] and has a d-dimensional Minkoswki conformal boundary. Symmetry considerations
provide some immediate evidence in favour of the duality between a gravity theory in AdS space
and a CFT. In five dimensions, the isometry group of AdS5 is SO(2,4) which acts on any theory
living on the Minkowski boundary as the conformal group [49]. The symmetries of the five-sphere
in the near-throat geometry also match the R-symmetry of the gauge theory.

Considerations of the duality between open and closed strings in describing interactions of D-
branes lead to the conclusion that a duality between gravity and gauge theories is holographic
[34]. Ideas of holography were first presented by Bekenstein and Hawking [10] who showed that,
quantum mechanically, black holes emit radiation at a temperature proportional to the surface
gravity and have an entropy proportional to the area of the horizon. The holographic principle was
further developed by t’Hooft [40] and Susskind [38]. The AdS/CFT correspondence proposed by
Maldacena [17] is a concrete manifestation of the holographic principle.

Maldacena’s conjecture was that type IIB string theory withAdS5×S5 geometry is dual to theN =
4 SYM theory. Since the original formulation of the AdS/CFT conjecture, research has expanded
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the nature of theories that are dual. These include field theories with less supersymmetry that do
not exhibit conformal invariance and where the bulk space is not AdS or a five-sphere. Therefore,
the research area is more generally known as gauge/gravity duality [25]. It was further conjectured
[13,15,46] that there exists a one-to-one correspondence between gauge-invariant operators on the
field theory side to bulk fields in the AdS space. Calculating correlation functions for fields in AdS
space provides a testing ground, but not a proof, for the validity of the correspondence.

The duality between gauge theories and gravity gives profound insights into the real physical
world. Firstly, its holographic nature suggests that spacetime is an emergent property [43]. Further,
it has already been mentioned that research in black holes motivated the AdS/CFT correspondence.
Indeed, since the 1996 seminal paper of Andrew Strominger and Cumrun Vafa [37], string theory
has been used to count the microstates of black holes as a way of providing a statistical mech-
anics interpretation of the entropy - an area Maldacena worked on prior to his formulation of the
correspondence [16]. A long-standing problem of black hole thermodynamics is the information
paradox; the loss of information as it falls past the event horizon. Since the gravity theory however,
is dual to a unitary field theory on the boundary, black holes must also evolve in a unitary way and
obey the laws of quantum mechanics [28]. Finally, the duality provides a relation between the two
sets of parameters. The relations show that the AdS/CFT correspondence is a useful method to
providing physical insights into strongly-coupled gauge theories, where QCD is non-perturbative,
but where the dual description is a a semi-classical supergravity regime [32].

Recent research is presented that aims to use the AdS/CFT correspondence to get a better under-
standing of strong interactions governed by QCD [9, 36]. In particular, the duality of a strongly-
coupled gauge theory to a semi-classical description of gravity has prompted the exploration of
the thermal properties of strongly-coupled quark-gluon plasma (’sQGP’) observed at RHIC [7].
Finite temperature field theory with broken supersymmetry is achieved by placing a black hole in
the AdS5 space [47]. The gravitational entropy of the near-extremal black hole at strong coupling
is identified with the entropy of a free gauge theory and compared with results from lattice QCD.
Similar results from calculations of the shear viscosity of the plasma suggests there is a universality
of phenomena for gauge theories at finite temperature [25].

The structure of this dissertation is as follows. Chapter two extends the familiar Poincaré symmet-
ries of QFTs to include scale invariance and special conformal transformations. The Lie algebra
of the conformal group is presented along with restrictions on the observables, namely the form
of two- and three-point correlation functions. Chapter three introduces AdS spacetime and its iso-
metries. The geometry of the space is explored via different coordinate charts. It is shown that
AdS has a conformal boundary where the metric is asymptotically flat. Chapters four and five
provide a brief overview of string theory. The spectra of open and closed strings are discussed.
Open strings can have their endpoints fixed on dynamical membranes, D-branes; gauge theories
live on the membrane’s world volume. Closed strings necessarily include gravity. Lorentz invari-
ance and supersymmetry heavily constrain superstring theory. However, different formulations of
string theory exist. For the purposes of this review, the objects supported by type IIB superstring
theory are discussed, specifically D3-branes.

The duality of open and closed strings is explored via the modern interpretation of D-branes.
The comparison of a stack of D3-branes and the curved backgrounds they produce motivate the
AdS/CFT correspondence in chapter six. The holographic dictionary is presented along with de-
tailed calculations of the two- and three-point correlation functions of bulk scalar fields in AdS.
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Finally, chapter seven describes how a finite temperature is introduced in field theories and the
laws of thermodynamics of black holes. The thermal properties of sQGP is computed from the
AdS/CFT correspondence and compared to lattice QCD results.

Throughout this dissertation ~ = 1 = c. The Minkowski metric is mostly positive, ηµν =
diag(−,+,+,+) unless stated otherwise.
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2 From Poincaré to conformal symmetry

2.1 Conformal transformations

Scale transformations in quantum field theory play an important and subtle role in the context of
renormalization. Integrating out the Fourier modes of the field in question over a specified energy
cutoff leads to an effective Lagrangian and action. The running of the coupling parameter with the
scale is quantified by the β function:

β(λ, ε) = µ
dλ

dµ
(2.1)

where ε is the cutoff and µ is the renormalization scale [29]. Scale invariance means that the β
function is zero. It must either be zero everywhere (Feynman diagrams cancel and no infinities) or,
the β function is non-trivial but can have zero fixed points which corresponds to scale invariance
and leads to a CFT.

Besides Lorentz transformations and translation, there are additional transformations that can be
applied to spacetime. For example, it was noted early on that Maxwell’s equations, ∂µFµν = 0 are
invariant under scale transformations xµ → λxµ.

The set of transformations that preserves angles between two line segments generates the con-
formal algebra [50]. Consider a change of coordinates x → x′ where infinitesimally this is given
by x′µ = xµ + εµ(x). A d-dimensional metric, under the coordinate change, transforms as a two-
tensor g′µν(x

′) = ∂xα

∂x′µ
∂xβ

∂x′ν
gαβ(x). Imposing the condition that such a coordinate transformation

leaves the metric unchanged up to a scale, locally:

g′µν(x
′) = Λ(x)gµν (2.2)

then the generators of the conformal group are found by looking at an infinitesimal coordinate
transformation that leaves the metric invariant: Λ(x)gµν = gµν + ∂µεν + ∂νεµ.

Figure 2.1: An example of two metric tensors related by a scale transformation. It preserves the
angles, but not necessarily the distance, between all lines [41].

It follows that the infinitesimal conformal transformations obey the conformal Killing vector equa-
tion: ∂µεν +∂νεµ = 2

d
(∂.ε)gµν . Here, setting the scale factor Λ(x) = 1 corresponds to the Poincaré
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group of translations and Lorentz transformations. For d > 2, the solution to this differential
equation is given by Eq. 2.3

εµ = αµ + λxµ + ωνµx
ν + bµx

2 − 2(b.x)xµ. (2.3)

The solutions are enumerated below as follows:

1. εµ = αµ describes an infinitesimal translation with corresponding generator the mo-
mentum operator Pµ = ∂µ.

2. εµ = ωνµx
ν . ωµν is an antisymmetric tensor and describes the infinitesimal Lorentz trans-

formations: rotations and boosts. The generators are the angular momentum operators
which, in differential form, are written as Jµν = (xµ∂ν − xν∂µ). Together with transla-
tions, they form the Poincaré subgroup of the conformal group.

3. εµ = λxµ, where λ is a number, corresponds to infinitesimal scale transformations with
corresponding generator the dilation, D = xµ∂µ.

4. εµ = bµx
2 − 2(b.x)xµ are called special conformal transformations and describe an infin-

itesimal inversion followed by a translation and then another inversion [50]. The generator
is Kµ = (ηµνx

2 − 2xµxν)∂
ν .

In summary, the generators of the conformal group are:

Pµ = ∂µ (2.4)

Jµν = (xµ∂ν − xν∂µ) (2.5)

D = xµ∂µ (2.6)

Kµ = (ηµνx
2 − 2xµxν)∂

ν (2.7)

and the associated algebra of the group is:

[Pµ, Pν ] = 0, [Kµ, Kν ] = 0
[D,Pµ] = −Pµ, [D,Kµ] = Kµ [D, Jµν ] = 0
[Jµν , Kρ] = −ηµρKν + ηνρKµ, [Jµν , Pρ] = −ηµρPν + ηνρPµ
[Jµν , Jλρ] = −ηµλJνρ − ηνρJµλ + ηνλJµρ + ηµρJνλ
[Kµ, Pν ] = 2(ηµνD + Jµν)

The translation and special conformal transformation operators on the first line commute with
themselves. The dilation can be considered as ”counting” the length dimension [50] and gives the

9



second line of the algebra while the third line states K and P transform as vectors. The commutation
of the angular momentum operators gives the usual Lorentz algebra. Further, the fact that the
translation operator does not commute with the dilation operator means that m2 = −P µPµ is no
longer a Casimir operator as it was in the Poincaré group. Hence, a field with a mass is not a good
representation [31].

Overall, there are (d+2)(d+1)
2

generators in the conformal group. The conformal algebra is iso-
morphic to SO(2,d) [50]. This can be made more manifest by redefining the generators and pack-
aging them in a group defined by a (d + 2) × (d + 2) antisymmetric matrix. Denote the SO(2,d)
generators by JMN , (M,N = 0, 1, ...d+ 1 and µ, ν = 0, 1, ...d− 1) satisfying the algebra

[JMN , JPQ] = −ηMPJNQ − ηNQJMP + ηNPJMQ + ηMQJNP .

The dilation generator, D, is a scalar and transforms as such while the momentum and special
conformal operators transform as vectors, as shown in the algebra. Redefining the vectors as:

Jµ,d+1 =
Kµ − Pµ

2
, Jµ,d =

Kµ + Pµ
2

,

then:

JMN =


Jµν Jµ,d+1 Jµ,d

−Jν,d+1 0 D

−Jν,d −D 0


Therefore, conformal invariance in flat Minkowski space with symmetry group SO(1,d-1) is iso-
morphic to SO(2,d). It will be shown that the symmetry group SO(2,d) is the same as that for
a d + 1-dimensional Anti-de Sitter space, AdSd+1. The fact that the symmetry group of a d-
dimensional CFT and a d+1 AdS space is the same provides a strong argument - and necessary
condition - in favour of the duality of a gravity theory in the bulk space and a CFT at its bound-
ary [25].

It’s briefly stated that in two-dimensions, the conformal algebra is isomorphic to the Virasoro
algebra, where the Virasoro operators are the operators for the transverse oscillations of a quantum
relativistic string and generate reparametrizations of the worldsheet of the string [51].

2.2 Representations of the conformal group

One defines representations of the conformal group by the action of the scaling operator D on
a scalar field with eigenvalue −∆, where ∆ is the scaling dimension [25], i.e. as xµ → λxµ,
Φ(x)→ Φ′(x) = λ∆Φ(λx). Acting with the momentum and dilation operators on Φ and using the
conformal algebra:

D(PµΦ) = [D,Pµ]Φ + PµDΦ = −(∆ + 1)(PµΦ)
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and

D(KµΦ) = [D,Kµ]Φ +KµDΦ = −(∆− 1)(KµΦ).

In as sense, Pµ and Kµ act as raising and lowering operators, respectively. The representation
is then obtained by acting with these operators. The lowest dimension is at the origin x = 0,
Φ(0), called the conformal primary field. It follows that KµΦ(0) = 0 and the spectrum is built by
successive action of the ”raising operator” and by the action of Jµν which fills the spin states [25].

2.3 Conformal symmetry in field theory

2.3.1 Correlation functions and constraints

Quantities of interest in any field theory are vacuum correlation functions which, in a way, describe
how the theory behaves. For real scattering, one can relate correlation functions to S-matrices via
the LSZ reduction formalism [29]. Further, correlation functions are important within the context
of evidence for the AdS/CFT conjecture when calculated from both sides of the duality.

In the path integral formalism of QFTs, the n-point function for a scalar field is defined as in Eq.
2.8

Gn(x1, ..., xn) =< 0|TΦ̂(x1)...Φ̂(xn)|0 > (2.8)

with a similar expression for objects with tensor indices. By defining a partition function

Z[J ] =

∫
Dφ expiS[φ]+i

∫
ddxJ(x)φ(x) (2.9)

the correlation functions are obtained by appropriate differentiation of the generating function [29]:

Gn(x1, ..., xn) = (−i)n δnln[Z[J ]]

δJ(x1)...δJ(xn)

∣∣∣∣
J=0

. (2.10)

The required symmetry of a theory imposes constraints on correlation functions. Already Poin-
caré invariance constraints the one-point function, < φ̂(x) > to be a constant due to translation
invariance of the vacuum. The two-point function, which describes how a field propagates from
one point in spacetime to another, must be a function of the norm of the difference in spacetime
positions: < φ̂(x1)φ̂(x2) >= f(|x1 − x2|) [29].

Scale invariance imposes additional constraints. A scale-invariant theory requires the action to be
scale invariant. Therefore, a field (considering only a scalar field, suppressing any tensor indices)
must transform as follows: Φ′(x) = λ∆Φ(λx). That is, the field transforms as a scalar quantity up
to an overall scaling where ∆ is the scale dimension, as aforementioned. Therefore, in a CFT, the
one-point function must vanish because if the field has a scale, the constant obtained from Poincaré
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invariance will also have a scale and would break scale invariance. The vacuum expectation value
of the two-point function of two scalar fields of scaling dimensions ∆1 and ∆2 transforms as [35]:

< 0|Φ̂(x1)Φ̂(x2)|0 >→ λ∆1λ∆2 < 0|Φ̂(λx1)Φ̂(λx2)|0 > (2.11)

As mentioned, invariance under translations and rotations implies the two-point function only de-
pends on the absolute difference |x1 − x2|. Scale invariance further implies:

< Φ̂(x1)Φ̂(x2) >=
c12

|x1 − x2|∆1+∆2
(2.12)

where c12 is a constant [25]. Similar analysis leads to the three-point function,

< Φ̂(x1)Φ̂(x2)Φ̂(x3) >=
c123(

r∆1+∆2−∆3
12

)(
r∆2+∆3−∆1

23

)(
r∆1+∆3−∆2

13

) , (2.13)

where c123 is another constant and rij denotes the absolute distances. Therefore, conformal invari-
ance restricts the two- and three-point functions but not higher order functions.

2.3.2 Stress-energy tensor

Finally, one can define the stress-energy tensor to be [41]:

Tµν =
2√
−g

∂S

∂gµν
. (2.14)

This is obtained by varying the action with respect to the metric tensor,

δS =
1

2

∫
ddx
√
−g(δgµν)Tµν .

In a scale-invariant theory the stress-energy tensor is traceless, at least classically, or for a flat
spacetime [35]. From the variation of the action, it is clear that the stress-energy tensor must have
dimension d = ∆ since the action is dimensionless. The two-point correlation function of the
stress-energy tensor will also depend on a constant but will further depend on an object built from
scale invariant tensors:

< Tµν(x)Tαβ(y) >=
c

|x− y|2∆
Iµν,αβ. (2.15)

Here c is called the central charge and counts the degrees of freedom of the CFT. In string theory
(discussed in a later chapter), and in particular bosonic string theory, the central charge is c = 26.
For a special class of CFTs, the central charge can be considered as a spacetime dimension. This
means that string theory is constrained to be Lorentz invariant only if the string propagates in a
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background spacetime of d=26 dimensions [35, 51].

2.4 QCD, supersymmetry and N = 4 SYM

The theory describing strong interactions is quantum chromodynamics (QCD). It is a non-abelian
theory of gauge group SU(3). The gauge fields are in the adjoint representation. On-shell, fer-
mions obey the Dirac equation and are in the fundamental representation. Unlike the mediator of
electromagnetism, the photon, gluons carry colour charge; the non-abelian nature of SU(3) means
QCD describes self-interacting gauge fields as opposed to the abelian U(1) theory of quantum elec-
trodynamics. Famously, the beta function is negative and so QCD is asymptotically free. At low
energy levels the coupling constant is high and the theory is strongly coupled and non-perturbative.

Generalising the above description, one considers an SU(N) theory with the gauge fields in the
adjoint representation given by an N × N matrix and four supercharges. This is the (N = 4)
super Yang-Mills theory. The Lagrangian is then completely determined by supersymmetry [20].
In schematic form the action is given by Eq. 2.16

S = − 1

4g2
YM

∫
d4xTr

[
F 2 + 2(DµΦ)2 +χ /Dχ+χ[Φ, χ]−

∑
I,J

[
ΦI ,ΦJ

]2]
+

θ

8π2

∫
Tr

[
F ∧F

]
.

(2.16)

The coupling constants are g2
YM and θ; the latter couples to a topological factor. It can be shown

that the coupling constant of this theory doesn’t run with the energy [48]. The beta function is
given by

β = − g3

16π2
(
11

3
c(A)− 2

3

∑
c(weyl)− 1

6

∑
c(scalar))

where c denotes the second Casimir of the representations of the gauge fiels, fermions and scalars,
respectively. In N = 4 SYM, all the fields are in the adjoint. The theory has four fermions, χα
and six scalars ΦI . Hence the β function is zero and finite at all orders. This means the coupling
constant does not run with the energy scale. Since the coupling does not run it can be fixed to a
value. The effective coupling will turn out to be the ’t Hooft coupling λ = g2

YMN where N arises
because there are N mediators that can be exchanged between two fields.

In contract to QCD, the fermions and scalars in SYM are also in the adjoint – a supersymmetric
theory relates bosons to fermions and vice versa - and the two types of matter fields must be in the
same representation. The theory also has a global SO(6) or SU(4) R-symmetry that rotates the six
scalars into each other, and also rotates the fermions. This R-symmetry is related to the symmetry
of S5 in AdS5 × S5 [20]. A detailed formulation of supersymmetry, superspace and the N = 4
SYM Lagrangian is found in [3].

The efficacy of the AdS/CFT correspondence is that the duality between the gravity theory and
gauge theory in question is defined in regimes where the coupling constants are of different mag-
nitude. That is it relates a perturbative gravity theory where calculations are easier to do to a non-
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perturbative gauge theory. Since QCD has a strong coupling and is non-pertubative, one would like
to extend the conjecture to make a dual description of strong interactions. However, super Yang-
Mills theory is a conformal field theory with a SU(N) gauge group with maximal supersymmetry.
Its physics is different from that of QCD, a gauge theory with no supersymmetry. Further, the
AdS/CFT correspondence is best described when the gauge theory has large degrees of freedom.
Nevertheless the literature on the correspondence has been extended since the original work by
Maldacena. A discussion on applications to QCD is included in the last chapter of this thesis.
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3 Anti-de Sitter spacetime

Anti-de Sitter spacetime is best understood by comparing and contrasting with the more familiar
(and arguably more relevant to our observed universe) de Sitter spacetime.

3.1 de Sitter space

Analogous to the embedding of a d-dimensional sphere, Sd, of radius L in d+1 Euclidean space,
Ed+1, de Sitter spacetime, dSd, with length L can be defined as the embedding in d+1 Minkowski
spacetime, M (1,d). The metric is

ds2 = ηMNdX
MdXN ; M,N = 0, 1, ..d (3.1)

and satisfies

ηMNX
MXN = L2; M,N = 0, 1, ..d. (3.2)

The X0 coordinate is endowed with a minus sign as opposed to the Euclidean metric for the
embedding of Sd. With the X0 coordinate (taken to be the time coordinate) running from −∞ to
+∞, the de Sitter spacetime is a hyperbola where every point on the hyperbola is a Sd−1 sphere.
A familiar schematic of de Sitter spacetime is shown in figure 3.1.

Figure 3.1: de Sitter spacetime embeds as a hyperboloid in Minkowski spacetime [49].

The manifest isometry group is SO(1,d) i.e. Lorentz transformations leave the metric invariant.
As mentioned above, a constant time coordinate in Eq. 3.2 results in spheres of ever-expanding
radii hence, the topology of de Sitter is R × Sd−1 [49], namely a point is dSd is left invariant
by SO(1, d − 1), the Lorentz subgroup of SO(1, d). One concludes that de Sitter spacetime is a
maximally symmetric space. This constraints the Riemann curvature tensor to the form in Eq. 3.3

Rµνλσ =
κ

d(d− 1)

(
gµλgνσ − gµσgνλ

)
. (3.3)
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Here, κ is the curvature constant [5]. For de Sitter space, the curvature constant is given by κ =
d(d−1)
L2 , where L is the radius. Hence, the Ricci tensor, Ricci scalar and Einstein tensor are fixed:

Rµν =
(d− 1)

L2
gµν , R =

d(d− 1)

L2
, Gµν = −(d− 1)(d− 2)

2L2
gµν . (3.4)

The Einstein tensor in Eq. 3.4 states that de Sitter spacetime is a solution to Einstein’s field equa-
tion Rµν = 8πGΛgµν with a positive cosmological constant. The field equations with a positive
cosmological constant are described as an exponentially expanding universe that is homogeneous
and isotropic in space.

3.2 Anti de Sitter space

The metric of d-dimensional AdS spacetime, AdSd, of length L is

ds2 =
(
− f(r)dt2 + f(r)−1dr2 + r2dΩ2

d−2

)
(3.5)

where f(r) = 1 + r2

L2 and dΩ2
d−2 is the round metric on the (d-2)-sphere. The metric in these static

coordinates is written similar to the Schwarzschild metric but the asymptotic behaviour differs.
At r = 0 the spacetime is flat. In the limit r →∞ the metric looks like:

ds2 = L2
(

exp2r(−dt2 + dΩ2) + dr2
)
.

The metric on the sphere and g00 grow. One can analyse this space by tracing geodesics along the
spacetime. Massless and massive geodesics are best analysed in Poincaré coordinates introduced
later in the chapter.

The manifest isometry group of AdS in static coordinates is R× SO(d). However, a larger sym-
metry group is found by recasting the metric - in an analogous way to de Sitter - as the embedding
in a d+1 dimensional Minkowski space with two time coordinates, M2,d−1 i.e. a spacetime metric

ds2 = −
(
dX0

)2
+

d−1∑
i=1

(
dX i

)2
+
(
dXd

)2 (3.6)

satisfying

(
X0
)2−

d−1∑
i=1

(
X i
)2)

+
(
Xd)2 = L2. (3.7)

The full isometry group of AdSd is then SO(2,d-1) as opposed to SO(1,d) for de Sitter space. Like
de Sitter spacetime, AdS is maximally symmetric and has a Riemann tensor of the form
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Rµνλσ =
−1

L2

(
gµλgνσ − gµσgνλ

)
. (3.8)

The Ricci tensor, Ricci scalar and Einstein tensor have the same form as de Sitter and differ only
by a sign:

Rµν = −(d− 1)

L2
gµν , R = −d(d− 1)

L2
, Gµν =

(d− 1)(d− 2)

2L2
gµν . (3.9)

Hence, AdS spacetime is a solution to Einstein’s field equation Rµν = 8πGΛgµν with a negative
cosmological constant, Λ = − (d−1)(d−2)

16L2 . Substituting for the length in Eq. 3.5 and suppressing
some constants, the metric in terms of the cosmological constant in four spacetime dimensions is:

ds2 = −
(

1− Λr2

3

)
dt2 +

dr2(
1− Λr2

3
r2

) + r2dΩ2
d−2. (3.10)

This form of the metric will be useful later when considering charged black holes. Another co-
ordinate transformation for AdSd is in conformal coordinates [49]:

ds2 =
L2

cos2 θ

(
− dt2 + dθ2 + sin2 θdΩ2

d−2

)
=

L2

cos2 θ

(
− dt2 + dΩ2

d−1

)
(3.11)

where dΩ2
d−i is the round metric on the d-i-sphere. Note the time coordinate is arbitrary while

0 ≤ θ ≤ π/2.

The boundary of AdS
The fact that θ is between 0 and π/2 and not π means that only half the Sd−2 sphere is covered i.e.
the spatial component of AdSd is bounded by Sd−2. With a time dimension, the critical statement
is that AdSd is bounded by R× Sd−2. Specifically, in a four-dimensional universe, d = 4, AdS5

has the isometry group SO(4,2) with a boundary M1,3. As mentioned in the previous chapter, the
conformal group in flat Minkowski space is also SO(4,2). [49].

The asymptotic behaviour at the boundary is best understood in Poincaré coordinates. The AdSd

metric is then

ds2 =
L2

z2

(
− ηµνdxµdxν + dz2

)
, µ, ν = 0, 1, ...d− 1. (3.12)

Here the conformal boundary is at z = 0. Up to a conformal factor, Eq. 3.12 is the flat Minkowski
space. The Penrose diagram is then given by a triangle. Note that the Poincaré coordinates do not
cover the whole of the AdSs space but slices that display the Poincaré symmetry [20]. The con-
formal boundary is manifestly invariant under spacetime translations and Lorentz transformations.
Further, the metric in Eq. 3.12 is invariant under rescaling (t, ~x, z)→ λ(t, ~x, z). As a result, at the
conformal boundary the metric is Minkowski and the action of the isometries on the boundary is
the conformal group.
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3.2.1 Geodesics in AdS

In these coordinates photons travelling from a fixed point along the radial z-axis towards the bound-
ary at z = 0 return back at a finite time. A massive particle in the (t,z) plane is described by the
differential

(
dt
dτ

)2 −
(
dz
dτ

)2
= z2

L2 . The Killing vector ∂t gives the conserved quantity and in partic-
ular g00

dt
dτ

is proportional to a constant, E [5]. The motion of the particle is then described in an
analogous way to experiencing a Newtonian potential:

(
dz

dt

)2

+

(
L

Ez

)2

= 1.

Therefore, a massive particle with finite energy will not reach the boundary but will turn back.
Thus, the Penrose diagram ofAdSd is a cylinder with time at the vertical and a conformal boundary
in the limit r → ∞. The boundary contains the time direction and a Sd−2 as shown in figure 3.2.
The Poincaré patch is a slice of the full AdS space with manifest SO(1,d) and scale symmetry.

Figure 3.2: a) The AdSd spacetime is a cylinder. Time runs in the vertical. The boundary at
r = ∞. The boundary contains the time direction and Sd−2. b)Massless geodesics reach the
boundary and back in a finite time. Massive geodesics don’t reach the boundary [20].
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4 String Theory

String theory describes the dynamics of relativistic open and closed strings and their interactions.
The AdS/CFT conjecture, a gauge/gravity duality, is in some sense a duality between open and
closed string theories.

Open strings have endpoints that are either free to move in the background space or are fixed to
higher-dimensional hyperplanes called D-branes. The endpoints carry non-abelian charges, ana-
logous to the SU(3) colour charges of Yang-Mills theory [35]. Polchinski’s work on D-branes
showed they are dynamical objects and can be thought of as the source of these charges [30]. On
the other hand, closed strings propagate freely in space. Their excitations includes a state that con-
tains the graviton, together with a scalar and an antisymmetric tensor, the Kalb-Ramond field. At
low energy, supersymmetric string theories are approximated by supersymmetric gravity theories
(SUGRA) [35]. These theories include the familiar Einstein-Hilbert action as well as additional
matter fields, bosonic and fermionic, that can transform into each other according to supersym-
metry. The equations of motion resulting from the SUGRA action describe p-branes which are a
generalisation of a point particle and a string. These turn out to have black hole solutions in higher
dimensions and can have the geometry of AdS spacetime [8].

A quantum relativistic string is a one-dimensional object which sweeps out a two dimensional
worldsheet as it propagates through the target space [41]. The worldsheet is parametrized by a
time-like coordinate τ and a space-like coordinate σ, where σ is periodic. The fields Xµ are
parametrized by the worldsheet coordinates and describe how the string propagates in the D-
dimensional background spacetime, µ = 0, 1, ...D − 1. For now, in the classical theory, the
dimension of the background spacetime D is arbitrary and unconstrained. Strings have tension
hence the action must minimise the worldsheet area. It is given by the Polyakov action in Eq. 4.1

SPOL = −T
2

∫
dτdσ

√
−hhαβ ∂X

µ

∂α

∂Xν

∂β
ηµν . (4.1)

Here, T is the string tension, sometimes written as T = 1
2πα′ . hαβ is the induced metric on the

worldsheet surface and ηµν is the metric in the background spacetime taken to be Minkowski. The
fields Xµ are bosonic and the Polyakov action describes the motion of a bosonic string.

The symmetries of the Polyakov action are:

• Global Poincaré invariance on the world sheet;

• Local reparamertisation invariance, a gauge symmetry on the worldsheet; and

• Weyl invariance - local rescaling of the metric.

As aforementioned in the section on CFTs, the stress energy tensor of a theory that is invariant
under Weyl transformations is traceless. Using the redundancies of the degrees of freedom and
Weyl invariance, one can fix a gauge so that the intrinsic metric on the worldsheet is the two-
dimensional flat metric [35]. By varying the action with respect to the fields,

δSPOL = T

∫
dτ

∫
dσ
√
−hδXµ∂α∂

αXµ − T
∫
dτ
√
−hδXµ∂σXµ

∣∣∣∣∣
π

0

(4.2)
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the equations of motions describe a free wave. Setting the boundary condition in Eq. 4.2 to
zero defines the type of strings in the theory. For closed strings, one requires that Xµ(σ, τ) =
Xµ(σ + π, τ). For open strings, the boundary condition is either Neumann,

∂σX
µ(τ, σ) = ∂σX

µ(τ, σ + π) = 0 (4.3)

which means the endpoints of the string are free to propagate at the speed of light, or Dirichlet,

δXµ(τ, σ) = δXµ(τ, σ + π) = 0. (4.4)

The string endpoints with Dirichlet boundary conditions are constrained on fixed points. One
is free to specify a string with both Neumann and Dirichlet boundary conditions so that some
endpoints are constrained on hypersurfaces and some are free to propagate. This type of objects
are called Dp-branes and will be discussed in the next section as they play a crucial role in the
AdS/CFT correspondence.

The field equations and their constraints are more easily solved by defining light-cone coordinates
on the worldsheet. Following [35], σ± = τ ± σ. In these coordinates the field equations of free
waves are written as ∂+∂−X

µ = 0. Varying the action with respect to the induced metric in the
manner of Eq.2.15 one finds two constraints to the free wave equations:

T++ = ∂+X
µ∂+Xµ = 0, T−− = ∂−X

µ∂−Xµ = 0.

The field equations are linear in σ+ and σ− hence, the general solution to the field equations for
Xµ(σ+, σ−) is obtained by a linear combination of left and right movers defined as:

Xµ = Xµ
R(σ−) +Xµ

L(σ+).

Expanding the solution for a closed string i.e. no boundary conditions, in Fourier modes, the mode
expansion of a closed string is as follows:

Xµ = xµ +
1

2
τ l2sp

µ +
i

2
ls
∑
n6=0

1

n
αµne

(2inσ) + ᾱµne
(−2inσ), . (4.5)

Here xµ and pµ are constants called the centre of mass and total momentum of the string, respect-
ively. These describe the motion of a string analogous to a point particle. The infinite summed
series describes the vibrational modes of the string; strings possess an infinite number of vibra-
tional modes. In an analogous way to the harmonic oscillator’s modes, strings support an infinite
stack of massive particles and some massless particle excitations. The string length is also a con-
stant and is given by the relations T = 1

2πα′ , α
′ = 1

2
l2s [35]. One notes that closed strings include left

and right movers with distinct Fourier modes with coefficients α and ᾱ. The distinction between
the two becomes important upon quantisation. A similar expression is obtained for the mode ex-
pansion of an open string satisfying appropriate boundary conditions. Open strings however are
furnished with only one type of Fourier mode coefficient.
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The Hamiltonian and canonical momentum are found as the components of the conserved current
corresponding to a translational symmetry. One starts with the classical Poisson brackets for the
field Xµ and its canonical momentum P µ and derives the Poisson brackets for the modes αµm and
ᾱµm.

The constraints are also expanded in Fourier modes, defined as:

T−− = 2l2s

∞∑
m=−∞

Lme
−2im(τ−σ), Lm =

1

2

∞∑
n=−∞

αm−n.αn, (4.6)

and

T++ = 2l2s

∞∑
m=−∞

L̄me
−2im(τ+σ), L̄m =

1

2

∞∑
n=−∞

ᾱm−n.ᾱn. (4.7)

where Lm and L̄m are called the Virasoro operators. The zero modes of the constraints give the
classical mass formula for a bosonic string

L0 + L̄0 = −pµpµ = M2 =
2

α′

∞∑
n=1

(
α−n.αn + ᾱ−n.ᾱn

)
. (4.8)

The constants in the Fourier mode expansion of the field, α and ᾱ, have a real physical effect in
determining the spectrum of the theory. For a quantum string, these turn out to be analogous to the
creation/annihilation operators of the harmonic oscillator and the summation of terms like α−n.αn
analogous to the number operator which counts the excited modes. Further, since left and right
movers are furnished with different modes and since the zero modes are equal, there is a level
matching condition that relates the number of right moving and left moving excitations.

4.1 Quantization of the relativistic string

The easiest way to quantize the relativistic string is in light-cone gauge with spacetime coordinates
X−, X+, XI , I = 1, ...D − 2. Picking a gauge makes the theory no-longer manifestly Lorentz
invariant. The fields and conjugate momenta are promoted to operators and their Poisson brackets
into commutation relations. These then give the commutation relations of the Fourier modes in
light-cone gauge. The oscillatory modes define an infinite set of creation/annihilation operators.
The transverse Virasoro operators correspond to oscillators in the X− direction [51]. There is an
ambiguity in quantizing the Virasoro operators from the usual Normal ordering of a product of
operators, the oscillatory excitation modes. Requiring the theory to be Lorentz invariant fixes the
spacetime dimension to be 26 and shifts the mass formula from the classical one in Eq. 4.8. The
mass-shell condition for open strings is:
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M2 =
2

l2s

D−2∑
I=1

∞∑
n=−∞

(
: αI−nα

I
n : −1

)
=

2

l2s
(N − 1) (4.9)

where N is the number operator that counts the number of excitations. The ground state that
corresponds to N = 0 admits a tachyon state. The first excited state, N = 1, is a vector boson
αI−1 |0; kµ〉 which must be massless due to Lorentz invariance [35]. Higher states will describe
massive excitations. Hence, at low energies open strings admit massless photon states.

A closed string has both left and right moving modes with a constraint that matches their number
operators. The mass-shell condition for closed strings is:

α′M2 = 4(N − 1) = 4(N̄ − 1). (4.10)

The ground state of the closed string is again a Tachyon. The first excited state for N = 1 is
massless and is obtained by tensoring the right and left moving states

∑
I,J RIJα

I
−1ᾱ

J
−1 |0; 0; kµ〉

[51]. RIJ is a (D− 2)× (D− 2) matrix and can be decomposed into a symmetric traceless tensor,
the graviton, an antisymmetric part called the Kalb-Ramond field and the trace called the dilaton.
Hence closed strings naturally admit graviton states.

4.2 Superstring theory

The above brief introduction to bosonic string theory indicates that open strings can describe gauge
theories while closed strings include gravity. Both open and closed strings were shown to have
tachyonic ground states. Furthermore, the Polyakov action did not include fermions. To include
fermions, string theory is extended to supersymmetric string theory which also projects out the
tachyons [35]. One adds a Majorana field for each bosonic field. The full action is the bosonic
Polyakov action and the action describing Majorana fermions [35]:

S = − 1

2π

∫
dτdσ ∂αX

µ∂αXµ −
1

2π

∫
dτdσ ψ̄µ/∂Ψµ. (4.11)

The two worldsheet fields are the bosonic, Xµ, and fermionic, Ψµ which are related by supersym-
metry. The fermions are two component spinors Ψµ

± where the subscript ± indicates the chirality.
Both bosons and fermions transform under the vector representation [8] of the Lorentz group. The
theory has two sectors, the Neveu-Schwarz (NS) and Ramond (R) sectors [8]. A closed string state
was obtained by tensoring left and right movers as in the mode expansion Eq. 4.5 therefore, one
gets a total of four different sectors the NS-NS, the NS-R, R-NS and R-R sectors. Lorentz in-
variance constrained the bosonic string to propagate in D=26 spacetime dimensions; in supersym-
metric string theory the critical dimension becomes D=10. In [35] this is shown as a requirement
of removing unwanted ghosts states in the spectrum. The mass spectrum is obtained in the usual
way of acting with creation operators on the vacuum. To remove the tachyonic states and define a
consistent sypersymmetric theory, one projects out in a way that eliminates the tachyon and leads
to a supersymmetric theory in D=10 spacetime [35]. This is called GSO projection. It turns out
imposing the GSO projection leads to a constraint on the number of oscillators in the NS and R
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sectors. These are referred to as having positive or negative G-parity. The number of oscillators in
the NS sector must be odd. In the R sector one projects states with either odd or even excitations
depending on the chirality. These possibilities lead to two types of superstring theories, types IIA
and IIB which can be obtained depending on whether the G-parity of the left and right moving R
sectors is the same or opposite. Table 4.1 below summarises the sectors found in each theory:

IIA NS⊗NS R−⊗R+ NS⊗R+ R−⊗NS

IIB NS⊗NS R+⊗R+ NS⊗R+ R+⊗NS

Table 4.1: The two types of superstring theory indicating the chirality of the R-sector [35].

The massless spectrum of IIA and IIB string theories is obtained by decomposing the tensor
product of right and left moving string into representations of the Lorentz group [35]. The NS-NS
and R-R sectors are bosonic. The former is made up of the tensor product of two vectors and de-
composes into a symmetric traceless tensor (the graviton) the trace (dilaton) and the antisymmetric
tensor (the Kalb-Ramond field). This decomposition was encountered in the spectrum of the closed
bosonic string. The NS-R sector is the tensor product of a vector with a spinor and decomposes
into the gravitino and the dilatino and similarly for the R-NS sector. The R-R sector is the tensor
product of two spinors. The field strength tensors of the two theories are identified with spinor
bilinears:

IIA : F µ1...µd+1 = Ψ̄L
−γ

µ1...µd+1ΨR
+, IIB : F µ1...µd+1 = Ψ̄L

+γ
µ1...µd+1ΨR

+

where the superscripts L,R denote the the left and right movers and± the chiralities [35]. The field
strength tensors are (d + 1)-forms and are the exterior derivatives of the d-form R-R potentials,
Fd+1 = dCd. This is analogous to the electromagnetic field strength Fµν as the components of the
two form, F where F = dA, A = Aµdx

µ.

Using chirality arguments, the field strengths for the R-R sectors of type IIA string theory are
F2 and F4 with R-R potentials C1 and C3, respectively. Type IIB superstring theory has F1, F3

and F5 field strengths with potentials C0, C2 and C4, respectively. For the specific example of
gauge/gravity duality examined in the dissertation where the bulk space is AdS5 × S5 the C4

potential is of particular interest. This is examined in more detail in the next section on p-branes.
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5 D-branes and p-branes

5.1 Black holes

Black holes naturally arise in general relativity. They are defined by a causal boundary bey-
ond which signals cannot escape. The familiar example of a black hole in four dimensions is
the Schwarzchild solution which is a spherically symmetric solution in vacuum and has SO(1,3)
symmetry. The horizon is a coordinate singularity. By a coordinate transformation, one ex-
tends the description to the entire spacetime. On the other hand, the Kretschmann invariant,
RµνρσR

µνρσ ∼ 1/r6 diverges at the singularity r = 0, an ”honest singularity” where the clas-
sical description of gravity cannot accurately describe the physics [42].

Black holes can have mass, charge and angular momentum. Rotating black holes are outside the
scope of this thesis however, describing the physics of charged black holes plays an important role
in the original formulation of AdS/CFT by Maldacena. In four dimensions one starts with the
Einstein-Hilbert action that includes Maxwell fields [6]:

S =
1

16πG

∫
d4x
√
−g
(
R− F 2

2

)
. (5.1)

The Einstein-Maxwell equations have the spherically-symmetric Reissner-Nordström (RN) solu-
tion:

ds2 = −∆

r2
dt2 +

r2

∆
dr2 + r2dΩ2 (5.2)

where

∆ = r2 − 2Mr +Q2 = (r − r+)(r − r−), r± = M ±
√
M2 −Q2.

Evidently the RN solution has two horizons. However, solutions with M < Q lead to a ”naked
singularity” at r = 0 which is excluded according to Penrose’s cosmic censorship hypothesis
[6]. An extremal black hole is the special situation where the charge is maximal given its mass
i.e. M = Q, (r± = M) [1]. The metric in Eq.5.2 for an extremal black hole is asymptotically
Minkowski when r → ∞ and singular at r → M . To determine the asymptotic behaviour at this
limit, one defines a new coordinate r = M + V which leaves the metric in a convenient form.

ds2 = −H−2dt2 +H2(dV 2 + V 2dΩ2
2), H = 1 +

M

V
, (5.3)

Here H is a harmonic function in three dimensions. The horizon is located at V = 0. Maldacena
[17–19] investigated the geometry in the near-horizon limit V → 0 of extremal black holes (in
higher dimensions) which paves the way to the gauge/gravity duality. Taking the approximation
V ≈ 0 and after a coordinate transformation V = M2

ρ
one finds the Bertotti-Robinson metric [1]
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ds2 =
M2

ρ2

(
− dt2 + dρ2

)
︸ ︷︷ ︸

AdS2

+M2dΩ2
2︸ ︷︷ ︸

2-sphere

. (5.4)

The geometry is a two-dimensional AdS2 space with a negative cosmological constant and with
two dimensions effectively compactified i.e. AdS2 × S2 [20]. It will be shown that the geometry
near the horizon of a D3-branes is also AdS. The conclusion reached is that charged black holes
are solutions to the Einstein-Maxwell field equations. Extremal black holes arise when the horizon
bound is saturated and the mass equals the charge. In four dimensions the solution is a two-
dimensional AdS space with the other two dimensions compactified on a two-sphere defined by a
harmonic function in three dimensions.

5.2 p-branes

In the previous section on string theory, the relativistic string action was introduced as a generalisa-
tion of the point particle’s worldline; the string is one dimensional and sweeps a two-dimensional
world volume. This concept can be further generalised to a (p+1)-dimensional object that sweeps
a certain world volume. These extended objects are called p-branes. If the solutions to their equa-
tions of motion include a horizon, they represent a higher-dimensional analog of black holes.

Just as a point particle, a 0-brane, couples to an electromagnetic U(1) gauge field, a 1-brane (a
string) couples to a two-form gauge potential [35]

SB =

∫
M
dτdσBµν∂αX

µ∂βX
νεαβ,

whereM is the worldsheet mapped by the string as it propagates. The Kalb-Ramond two-form,
Bµν has an associated three form field strength, H3 = dB2.

Generalising to p-branes as extended objects in higher dimensions, Polchinski [30] showed that
a p-brane couples to a p + 1-form. In Type IIA superstring theory, Aµ couples to D0-branes and
Aµνρ couples to D2-branes. In type IIB superstring theory, Aµν couples to D1-branes and Aµνρσ
couples to D3-branes. D3-branes of type IIB theory are particularly important in the context of the
gauge/gravity duality. The world volume of D3 branes is four-dimensional spacetime; it couples to
the four-form with an associated five-form field strength, which, in ten dimensions is self-dual [20].
This is analogous to the two-form electromagnetic field strength in four dimensions that gives rise
to both electric and magnetic fields.

A low energy limit can be thought of as fixing the energy level to be much lower than the string
mass. The mass-shell spectrum for strings was given as:

M2 ∼ (N − 1)

α′
,

hence one takes the limit α → 0. At low energies the massive modes decouple and only the
massless modes remain. For a closed string, these modes are the graviton, the Kalb-Ramond field
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and the dilaton. In this low energy regime, Einstein’s field equations with matter are described by
ten-dimensional supergravity actions. These theories include the familiar Einstein-Hilbert action
coupled to some matter fields that make the theory supersymmetric.

As extended massive objects which move through spacetime, p-branes provide sources of curvature.
Beginning with the low energy effective action of a type IIB SUGRA action relevant for the pur-
poses of this thesis, [20]

S =
1

(2π)7l8p

∫
d10x
√
g
(
R− F 2

5

)
, F5 = ?F5. (5.5)

where the string length is ls = g
(−1/4)
s lp. The field strength five-form F5 is self-dual. The self du-

ality of the five-form gives rise to both electric and magnetic fields. The solutions to the equations
of motions are expressed by Harmonic functions as was the case for charged black hole solutions
in four dimensions. In a spacetime with ten dimensions, the D3-brane of type IIB SUGRA theory
is the solution to [35]:

ds2 = H(r)−1/2
(
− dt2 + ...+ d2x3

)
+H(r)1/2

(
dx2

4 + ...+ d2x9

)
e2φ = 1, φ = 0

A0,1,3,4 = H−1 − 1

H(r) = 1 +
R4

r4
, R4 = 4πgsN(α′)2, Q = gsN

(5.6)

where H is the harmonic function with R the radius of the D3-brane, Φ is the dilaton scalar field
related to the string coupling by gs = e(−φ), which is a constant in this case.

It is important to note that solutions to SUGRA can be extremal p-branes that preserve the maximal
supersymmetry and are known as BPS states. In 1995, Witten [44] connected the various types of
ten-dimensional string theories via a series of dualities. Underlying these was an 11-dimensional
supergravity theory, called M-theory [35]. An important argument in Witten’s theory concerned a
class of BPS states. From supersymmetry arguments the solutions to the equations of motion had
a horizon. They correspond to charged, extremal black holes that are stable. As was the case in
the charged Reissner-Nordström black hole, the extremal solution was at Q = M . This equality
saturates the physical bound of the horizon Q ≤ M . In supersymmetry, the BPS bound implies
the solution preserves the maximal supersymmetry, which is 1/2 [25].

5.3 D-branes

Closed strings have no boundary condition (expect the condition relating the left and right movers)
and are free to propagate in spacetime. For open strings however, one needs to specify bound-
ary conditions. As mentioned these are either Neumann or Dirichlet. In the case of Neumann
conditions, the string endpoints move at the speed of light. Open strings with Dirichlet boundary
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conditions have string endpoints that are fixed in space i.e. they end on hypersurfaces called Dp-
branes where p denotes the the spatial dimensions of the branes. A string can have p+ 1 Neumann
boundary conditions and d − p − 1 Dirichlet boundary conditions. The mode expansion for the
coordinates with Neumann boundary conditions Xµ, µ = 0, 1, ...p is given by [35]

Xµ = xµ + τ l2sp
µ + ils

∑
n6=0

1

n
αµne

(−inτ) cos(nσ). (5.7)

The fields with Dirichlet boundary conditions are XI , I = p+ 1, ...D. Considering a configura-
tion where there are N number of D-branes the mode expansion will is:

XI = xIi +
σ

π
(xIj − xIi ) + ls

∑
n 6=0

1

n
αIne

(−inτ) sin(nσ). (5.8)

Here i,j are the Chan-Patton factors that label the different Dp-branes a string’s endpoints can be
fixed on. The states are also labeled appropriately [1]. The figure below gives a schematic of
a configuration of two parallel Dp branes. The strings can begin and end on the same D-brane
or they can stretch between the two. The orientation of the stretched strings must be specified.
The orientation plays an important role when D-branes are seen as carriers of electric charge of
Ramond-Ramond fields [51].

Figure 5.1: A two D-brane configuration where string endpoints are fixed. Strings can have their
endpoints fixed on the same brane or stretch between the two [51].

The schematic in fig. 5.1 also shows another important feature of D-branes in string theory. If one
considers a spacetime with many D-branes present then one must ”count” the number of different
configurations of strings stretched and fixed on them. The presence of different states in such
a system contributes to a statistical mechanics interpretation of black hole entropy within string
theory. The mass squared of states is:

M2 =
N − 1

α′
+ T 2(xIi − xIj )2.

The bracketed term is then thought as the tension of the string stretched between then ith and jth
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brane. The massless states are obtained following [1]. In a system with only one D-brane, the
massless state admits only a single oscillation. There are excitations,

αI−1 |0, k〉 , (5.9)

which correspond to D − p− 1 massless scalar particles and states

αµ−1 |0, k〉 , (5.10)

which corresponds to a p + 1-dimensional vector, Aµ, the gauge field. In this system with one
D-brane there exists a U(1) Maxwell gauge field as well as a massless scalar field along each
normal direction. Witten [45] showed that in a system of N coincident branes the gauge symmetry
is U(N); N coincident D-branes carry a U(N) Yang-Mills theory. It can be shown that in the low
energy limit the non-abelian gauge group is SU(N). A theory with N D3-branes will also have
N = 4 supersymmetry and will carry a N = 4 SU(N) supersymmetric Yang-Mills theory, a
conformal field theory.

5.3.1 Open/closed string duality

Since p-branes are massive and carry a charge, in a closed-string background they interact via
the exchange of closed strings (lhs of figure 5.2) [34]. In 1995, Polchinski [30] showed that the
one-loop amplitude for the interaction of open strings stretched between two parallel D-branes is
equivalent to a closed string at tree level. Hence it is possible to reinterpret the p-brane interaction
to include open strings. On the rhs of figure 5.2, an in-falling closed string forms an excited
unstable state by splitting to form an open string with endpoints attached to the brane. The state
decays by emitting a closed string [34].

Figure 5.2: Different interpretations of a p-brane interaction in closed string theory [34].

Polchinski’s set up consisted of two branes in a ten-dimensional background separated by some
distance ∆y. Branes are dynamical extended objects; they are massive and carry Ramond-Ramond
charges hence they will interact with each other. In quantum field theories, interactions are me-
diated by gauge bosons; string theory includes an infinite series of vibrational modes. In a low
energy regime however, the physics simplifies. Closed string theory includes the graviton while
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open string theory contains Yang-Mills gauge fields. A tree level exchange is shown in figure 5.3
below. The diagram can be interpreter in two different but equivalent ways. On the lhs. a closed
string is exchanged between the two D-branes while the lhs. is interpreted as a one-loop open
string.

Figure 5.3: Lhs: A closed string exchanged between two branes. Rhs.one-loop open string [34].

The equivalence between open and closed string theories (presented schematically) reveals import-
ant aspects that are relevant for the conjecture. Namely, closed string theory encodes information
of a gauge theory but at different loop-expansions [34]. Further, the degrees of freedom of the two
theories are bound to different dimensional backgrounds and is thus holographic in the manner of
t’ Hooft [40] and Susskind [38]. One also notes that the decoupling limit, one for closed strings
and the other in terms of open strings, is non-trivial. If the distance between the two branes is
large - the distance the closed string propagates - the closed string massive modes are neglected
and the low-energy effective action of string theory is SUGRA. If on the other hand the distance
∆y is small in relation to the string length, a low energy effective action is not appropriate and one
must consider the full string theory spectrum. The reverse is the case from the equivalent view of
open string theory. A small separation means that pair creation is restricted to a low loop order; for
∆y ∼ ls only massless modes are considered [34].

One concludes that string theory requires the existence of D-branes, the hyperplanes where open
strings end and that these correspond to p-branes, solutions to supergravity, the low energy limit
of string theory. Extremal p-branes have a non-zero horizon hence they have entropy. Dp-branes
then carry the Ramond-Ramond charges and different configurations arise from strings stretching
between the D-branes [51]. At first glance, it seems improbable that the abstract description of the
open closed string duality described would lead to a duality between gauge theories and gravity.
The duality between N = 4 SYM and type IIB string theory follows from the the decoupling
argument.
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6 AdS/CFT Correspondence

6.1 Symmetry arguments

A necessary but not sufficient argument for the correspondence is based on the symmetry group
present in the gauge theory on the boundary and bulk gravity theory. For the specific example ori-
ginally proposed by Maldacena, the gauge theory is maximally supersymmetric with four spinor
supercharges. It has the conformal group SO(2,4) as well as a global R-symmetry SU(4) ∼ SO(6).
The five-dimensional AdS5 space was shown to also have a local SO(2,4) symmetry. Since strings
propagate in ten dimensions, the extra five dimensions are compactified [20] on the five dimen-
sional sphere S5. Therefore, from symmetry arguments alone the N = 4 SU(N) SYM the-
ory is the appropriate candidate gauge theory dual to the ten-dimensional superstring theory on
AdS5 × S5 [27].

6.2 The decoupling limit

In field theory one adds the amplitudes of all Feynman diagrams in a perturbative expansion for a
particular interaction. Alternatively, one considers an effective action with a background field and
an effective potential. In a similar manner the decoupling limit involves examining a string theory
with D-branes in two different ways.

Maldacena’s argument arises by considering N coincident D3-branes in ten-dimensional spacetime
and type IIB closed strings propagating in the spacetime. One point of view is to considered the
scattering of closed strings and D-branes perturbatively. In this regime, a closed string can split into
many closed strings or it can split to form open strings whose endpoints are on the D-branes. Open
strings on the branes can further split into more open strings. They can also form closed strings
by joining their endpoints. These then are not bound to the branes and are emitted as Hawking
radiation [25]. This system is depicted in fig. 6.1

Figure 6.1: Scattering of closed strings with
N D-branes [2].

In the low energy limit the dynamics of the open
strings on the D-branes are described by N = 4
SYM theory. The closed strings in the bulk space-
time are described by a ten-dimensional type IIB su-
pergravity. The gravitational interactions between
the two - resulting in Hawking radiation - can be
switched off since the ten-dimensional Newton con-
stant G(10) ∝ g2

s(α
′)4 goes to zero when the energy

is bounded while α′ → 0. From this point of view,
the system describes a decoupled type IIB super-
gravity in ten dimensions and a N = 4 SYM living
on the four-dimensional brane.
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An alternative description of the system is to replace the D3-branes with their SUGRA solution; the
D-branes act as sources for closed strings [25]. The space-time metric of N coincident D3-branes
is

ds2 = H(r)−1/2(−dt2 + d~x2) +H(r)1/2(dr2 + r2dΩ2
5)

H(r) = 1 +
L4

r4
, L4 = gsN4π(α′)2,

(6.1)

where L is the radius of the D3-brane and ~x is a three dimensional vector along which the branes
stretch; they appear as a point along the transverse six dimensions. Comparing with Eq. 5.3 this
is an extremal black hole. For r >> L, the metric approaches ten-dimensional flat spacetime. A
near-horizon geometry appears in the limit r << L. By a similar redefinition as the RN black
hole, w = L2/r, one finds the asymptotic form of the metric to be:

ds2 =
L2

w2

(
ηijdx

idxj + dw2
)

+ L2dΩ2
5. (6.2)

This is the AdS5 × S5 metric where the radius of the five-sphere is L.

Figure 6.2: The boundary is flat spacetime
and is infinitely far away from the horizon.
The horizon geometry is AdS5 × S5 [22].

The conformal boundary is far away from the branes
at r → ∞, w → 0. The spacetime at the bound-
ary is ten-dimensional Minkowski. Near the horizon
a highly symmetrical throat geometry survives [8],
shown in fig. 6.2. The origin where the branes live
is an infinite distance down the throat. Asymptot-
ically, the throat becomes an infinite cylinder. The
horizon at the end of the throat is an infinite distance
away from any point on the plane.

The energy measured by an observer at the boundary, E, and proper energy, Ep is given by E =√
g00Ep. Hence, excitations of finite energy near the horizon w →∞ appear infinitely red-shifted

to an observer at the boundary. In addition, all excitations far from the boundary are of large
wavelength in the low energy limit. As a result, this configuration is again decoupled into a system
of ten-dimensional supergravity at the boundary and type IIB superstring theory in the near-horizon
in AdS5 × S5.

In this low energy limit, the two configurations match one of the decoupled systems. The candid-
ates for the second decoupled system are, as aforementioned, supersymmetric Yang-Mills in four
dimensions and type IIB superstrings in AdS5 × S5. Therefore, Maldacena [20] argued that the
two are in fact the same.
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6.2.1 Parameters in AdS/CFT

The AdS/CFT dictionary relates the two sets of parameters for the two dual theories. The gauge
theory on one side of the duality has two dimensionless parameters. The coupling constant in the
SYM action Eq. 2.16 was given by g2

YM . In addition, the gauge theory depends on the number of
coincident D-branes, N. The ’t Hooft limit N →∞ gives planar diagrams and is controlled by the
effective coupling λ = g2

YMN , which is fixed. The gravity theory also contains two parameters,
the radius of the brane in units of string length L√

α′ and the string coupling constant gs which
determines the strength of interactions between strings. The two sets are related as follows:

λ ≡ g2
YMN =

(L
ls

)4
, g2

YM =
λ

N
= 4πgs. (6.3)

The strong version of the duality states that this equivalence of parameters holds true for all values
of the coupling constant gs and for any N. In 1973 ’t Hooft [39] showed that field theories simplify
when the number of ”colours” is large i.e. in the limit N → ∞ while the ’t Hooft parameter λ
remains fixed. In this limit, ’t Hooft showed that only planar diagrams contribute since non-planar
diagrams have a perturbative expansion in powers of 1/N. Following Aharony et al. [27] one takes
the ’t Hooft limit and varies the ’t Hooft parameter, λ, from weak to strong by dialing the string
coupling gs from small to large. From Eq. 6.3 what changes is the AdS radius in units of string
length which determines the magnitude of gravitational effects.

Perturbative computations on the gauge theory side are possible at small values of the t’Hooft
coupling and these are mapped to a regime where the radius of AdS is of the order of the string
length i.e. supergravity is not a good approximation to superstring theory. On the other hand, if
the radius is large in units of string length then the curvature is small and supergravity is a good
approximation to superstring theory but gauge theory computations are not tractable [20]. That the
regimes in which calculations are more easily computed do not match makes the AdS/CFT duality
powerful and useful in physics; Yang-Mills theories with large coupling can be matched to the
other side of the duality which is computationally easier and vice versa.

6.3 The holographic dictionary

The exact gauge/gravity duality described above means that the symmetries, degrees of freedom
and dynamics of the theories are in one-to-one correspondence; one must be able to define a map
between the two sides of the duality. When dealing with gauge theories, one is interested in gauge
invariant operators such as the trace of the field strength tensor Tr[FµνF µν ], the stress-energy
tensor etc. According to the AdS/CFT dictionary [15, 46], each gauge-invariant operator on the
field theory side corresponds to a bulk field defined on the interior space i.e. to closed string
modes moving in the AdSd+1 space. The bulk fields with boundary conditions are then related to
the generating function of correlation functions for the corresponding operator in the field theory
where the field evaluated at the boundary acts as the source:

ZO[Φ0]CFT =< e
∫
ddxΦ0O(x) >= ZΦ[Φ0]grav = e−Sgrav [Φ], (6.4)
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where Φ0 is the bulk field at the boundary andO is the relevant gauge invariant operator. From Eq.
2.10, correlation functions of operators are then given by [20]

< O(x1)...O(xn).. >=
δ

δΦ0(x1)
...

δ

δΦ0(xn)
Zgrav[Φ0]

∣∣∣∣
Φ0=0

. (6.5)

The bulk fields and operators must have the same structure (Lorentz indices and quantum num-
bers). For example, a bulk scalar field is associated with a scalar operator at the boundary. Further,
Gubser et al. [15] showed it is possible to determine anomalous dimensions from string theory.
The relevant quantity is the mass of the associated string modes; massless string states have van-
ishing anomalous dimensions. It is then natural, for example, to match the rank-two stress-energy
tensor, with vanishing anomalous dimension, to the graviton mode of the closed string. The rela-
tions between the masses of bulk fields and the conformal dimension of the dual operators [8] are
summarised in table 6.1

Fields Relations

Scalars or massive spin 2 fields m2L2 = ∆(∆− d)

Massless spin 2 fields m2L2 = 0,∆ = d

Spin 1/2, 3/2 |m|L = ∆− d
2

p-form m2L2 = (∆− p)(∆ + p− d)

Table 6.1: The relations between the mass of bulk fields and conformal dimension of the dual
operators [8].

6.3.1 Bulk scalar field

In order to explain how these relations arise, the simplest but physical example of a bulk scalar
is considered. The important step is solving the equations of motion in AdSd+1. The metric in
Poincaré coordinates was given in Eq. 3.12. The scalar action in AdS space is:

SΦ = −1

2

∫
AdS

dzddx
√
−g
(
gMN∂MΦ∂NΦ +m2Φ2

)
. (6.6)

The bulk scalar obeys the Klein-Gordon equation,

(−� +m2)Φ =
1√
−g

∂M
(√
−ggMN∂NΦ

)
−m2Φ = 0. (6.7)

The field is decomposed into a superposition of Fourier modes:

Φ(x, z) =

∫
ddk

(2π)d
eik.xΦ̃(z, k), |k| =

√
ηµνkµkν (6.8)
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where ηµν is the Minkowski metric is d-dimensions. The equations of motion in terms of the
Fourier modes follow [32],

zd+1∂z(z
1−d∂zΦ)− k2z2Φ−m2L2Φ = 0. (6.9)

Near the conformal boundary at z → 0 the second term drops out and there are two independent
solutions

Φ(z, k) ∝ A(k)zd−∆ +B(k)z∆, ∆(∆− d) = m2L2. (6.10)

and

∆ =
d

2
+

√
d2

4
+ (mL)2, (6.11)

with ∆ being the larger of the two roots. For ∆ to be real (and taking ∆ > d/2 for simplicity)
requires the mass of the field to be bound from below by the Breitenlohner–Freedman bound [4],
L2m2

BF ≥ −d2
4

. In principle m2 could be negative i.e. tachyonic. It is an instability in the system
for large wavelengths but it’s allowed as long as it is not too tachyonic [20].

Near the asymptotic boundary the leading behaviour of the bulk field is given by A(k). Motivated
by the holographic dictionary that the source of the boundary operator (O) is the bulk field at the
boundary, one is prompted to set a boundary condition. Further, one imposes a condition at the
interior so that there is no energy flux through the past Cauchy horizon at z → ∞ [43]. After
taking the inverse Fourier transform, the general solution in real space which vanishes as z → ∞
behaves at the boundary condition as [23]:

Φ(z, x) ≡ lim
z→0

zd−∆Φ0(x). (6.12)

It is worth noting that the isometry z → λz in Eq. 3.12, which generates scale transformations
at the conformal boundary, induces a transformation to the bulk scalar field in Eq. 6.12 which is
dependent on the z-coordinate. The transformation is as follows Φ0(x)→ λd−∆Φ0(λx).

One proceeds to compute the on–shell action which will connect to the discussion on matching
observables in the dual theories. After integrating by parts, introducing a cut-off surface at z = ε
i.e. in the limit ε→ 0 the surface is the AdS boundary, and evaluating on the equations of motion,
one obtains a boundary term [43]

Son−shell = −1

2

∫
∂M

ddx

(
L

z

)d−1

Φ∂zΦ
∣∣∣
ε
. (6.13)

Given a boundary condition, the bulk field can be constructed using the bulk–to–boundary propag-
ator [13, 46]. The propagator, K∆(z, x, y), is defined such that it satisfies

(−� +m2)K∆(z, x, y) = 0, lim
z→0

K∆(z, x, y)→ δd(x− y)zd−∆. (6.14)
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For a field that obeys the equations of motion and with specified boundary condition, Eq. 6.12 can
be written in terms of the field at the boundary and the propagator:

Φ(x, z) =

∫
ddyK∆(z, x, y)Φ0(y). (6.15)

The correct expression for the propagator is the form: [13]

K∆(z, x, y) = B∆
z∆

(z2 + (x− y)2)∆
, B∆ ≡ π−d/2

Γ(∆)

Γ(∆− d/2)
(6.16)

which can be shown to obey the equations of motion and have the appropriate asymptotic beha-
viour. The bulk field Φ(z, x) is expressed in terms of the source on the boundary Φ0(x) in Eq. 6.15
which can be inserted into the on-shell action:

Son−shell = −1

2

∫
∂M

ddx

(
L

z

)d−1

Φ∂zΦ
∣∣∣
ε

(6.17)

= lim
z→0
−1

2

(
L

z

)d−1 ∫
ddxddyddw K∆(z, x, y)Φ0(y)∂z

(
K∆(z, x, w)Φ0(w)

)
. (6.18)

The derivative of the propagator is

∂z
(
K∆(z, x, w)

)
= ∂z

B∆z
∆

(z2 + (x− y)2)∆
(6.19)

= ∆B∆

(
z

(z2 + (x− y)2

)∆−1[
1

z2 + (x− y)2
− 2z2

]
. (6.20)

Taking the limit z → 0, the resulting expression for the on-shell action simplifies considerably as
all the terms in z cancel:

lim
z→0

Son−shell ∝ −
1

2
z1−d

∫
ddxddyddw zd−∆δd(x− y)

z∆−1

(z2 + (x− w)2)∆)
Φ0(y)Φ0(w) (6.21)

= −1

2
∆B∆L

d−1

∫
ddyddw

Φ0(y)Φ0(w)

|y − w|2∆
. (6.22)

The observables in the theory correspond to correlation functions of boundary operators. These
can be calculated via appropriate Witten diagrams in the bulk [46]; akin to summing over Feynman
diagrams in quantum field theory. In Witten diagrams, the boundary of AdS is represented by a
circle where the sources Φ0 live. The bulk space is the interior of the circle. There exist boundary-
to-boundary propagators that connect two points on the boundary. The more important objects are
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the bulk-to-boundary propagators, already discussed, which connect points on the boundary of the
circle with an interaction vertex in the bulk.

Using Eq. 6.4, the two-point function is given by:

< O(x1)O(x2) > = − δ2Sgrav[Φ0]

δΦ0(x1)δΦ0(x2)

∣∣∣∣
Φ0=0

(6.23)

= B∆L
d−1 1

|x1 − x2|2∆
. (6.24)

The two-point function gives the correct behavior for a scalar field of conformal dimension ∆ as
was shown in Eq. 2.12. This is the simplest but a valid check of the AdS/CFT correspondence. The
two-point function was fixed by conformal invariance and the numerical constant was determined
from normalisation.

Dynamics are encoded in three and higher-point functions. The form of the three-point function is
also fixed by conformal invariance but the overall coefficient is not [25]. The three-point functions
were calculated in [23, 24, 33]. For the three-point function, a cubic vertex interaction is added to
the action [24],

SintΦ =
1

2

∫
M

dd+1x
√
−g
(
(∇Φ)2 +m2Φ2 + λ− 3Φ3

)
. (6.25)

A tree-level Witten diagram for the three-point function is depicted in fig. 6.3,

Figure 6.3: A tree-level Witten diagram for the three-point function. Bulk-to-boundary propagat-
ors intersect at a cubic vertex [25].

The three-point correlator is obtained by integrating over all possible positions of the bulk vertex
[24]:

36



< O(x1)O(x2)O(x3) > =
δ3SintΦ[Φ0]

δΦ0,1(x1)δΦ0,2(x2)Φ0,3(x2)

∣∣∣∣
Φ0=0

(6.26)

= −λ3

∫
ddxdz

√
−gK∆1(z, x;x1)K∆2(z, x;x2)K∆3(z, x;x3) (6.27)

=
λ3α1(

r12

)∆1+∆2−∆3
(
r13

)∆1+∆3−∆2
(
r23

)∆2+∆3−∆1
, (6.28)

where α1 is a constant. The agreement of the form with Eq. 2.13 is apparent.
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7 AdS/CFT at finite temperature

Quantum chromodynamics is fundamentally different from the supersymmetric Yang-Mills theory
which appears as the dual gauge theory in the original formulation of the AdS/CFT correspond-
ence. As aforementioned, in SYM all quarks and fields transform in the adjoint representation of
the gauge group whilst for QCD the quarks transform in the fundamental representation. Further,
the conformal invariance of SYM theories implies that their β-function vanishes; the coupling is
scale independent. However, QCD is asymptotically free and thus non-perturbative which makes
calculations very difficult.

In order to make use of the AdS/CFT correspondence for real-world physics it must be extended
to non-conformal and non-supersymmetric quantum field theories. The correspondence is then
more generally known as gauge/gravity duality. One way to arrive at a theory closer to QCD is
to consider systems with a finite temperature. A non-zero temperature introduces an energy scale
which breaks conformal invariance. It will be shown that supersymmetry is also broken. It will
then be possible to describe heavy ion collisions in QCD at finite temperature [25] using the duality
formalism.

7.1 Finite temperature in field theory

A finite temperature can be introduced in field theory by switching to the Euclidean action follow-
ing the transformation t = iτ . The Euclidean functional integral is z =

∫
DΦe−SE [Φ], where SE is

the Euclidean action. The functional integral can then be associated with the partition function for
a canonical ensemble given by Z = Tr[e−βH ]. Euclidean time is therefore periodic with period
β = (kBT )−1 and kB is the Boltzman constant. It follows that bosonic fields in the functional
integral are periodic while fermionic fields are anti-periodic [42].

7.2 Thermodynamics of Black Holes

Black holes play an important role in string theory and a key motivation for the AdS/CFT corres-
pondence. Indeed, the bulk theory of AdS/CFT is a gravity theory which can give rise to black
holes. The Euclidean Schwarzschild metric is obtained by Wick-rotating the time coordinate:

ds2
E = A(r)dτ 2 + A(r)−1dr2 + r2dΩ2, A(r) = 1− 2GM

r
. (7.1)

At r →∞ the metric topology isR3×S1, from the periodicity of the Euclidean time. The topology
at the singularity, r = 2GM , is R2 × S2. The singularity is a smooth coordinate singularity only
if the Euclidean time is identified as periodic τ ∼ 2π

κ
, where κ is the surface gravity (1/4GM for

Schwarzschild). One then identifies the Hawking temperature of a black hole:

TH =
κ

2π
. (7.2)
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The fact that fermions are anti-periodic around the circle S1 at infinity implies they acquire a mass
while bosons, which are periodic, do not [25]. Since the masses of bosons and fermions are not
the same means that, in the presence of a black hole, supersymmetry is broken. It can be shown
that finite temperature always breaks supersymmetry. However, a Schwarzschild black hole has a
negative specific heat, C = ∂M

∂T
and is therefore thermodynamically unstable. This means that the

QFT for this system does not have a finite temperature.

The thermodynamics of black holes in AdS space were studied before the Ads/CFT correspond-
ence by Hawking and Page [10], subsequently re-examined by Witten [47] and Gubser et al. [14].
Witten showed that a finite temperature QFT is achieved by adding a black hole in AdS space
where the system is thermodynamically stable if the black hole has high enough mass M. The
metric for a five-dimensional Schwarzschild black hole in AdS5 is:

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2
3, f(r) =

r2

L2
+ 1− r0

r2
, (7.3)

where L is the radius of curvature of the AdS space, dΩ2
3 is the round metric of the three-sphere

and r0 is a constant

r0 = ω4M, ω4 ≡
16πGN,5

3V ol(S3)
. (7.4)

The black hole horizon is at r = r+ where r+ is the larger, positive real root of the polynomial f(r).
One obtains the surface gravity using the formula [6]

κ2 = lim
r→r+

gµν∇µV∇νV, V 2 = −gµνKµKν , (7.5)

where K = ∂t is a Killing vector at the Killing horizon at r = r+. The surface gravity of this black
hole in AdS5 is:

κ =
2r2

+ + L2

L2r+

. (7.6)

The Hawking temperature from Eq. 7.2 is T (M) = κ/2π. Unlike the Schwarzschild black hole,
there is a region where the specific heat is positive. However, the topology at r → ∞, where
the N = 4 SYM gauge theory lives is S3 × S1 since the Euclidean time is periodic with radius
∝ 1/T [25]. Requiring the topology to be flat Minkowski in four dimensions, Witten obtained
a finite temperature AdS/CFT in the limit the mass of the black hole M → ∞ [25]. Following
re-scaling and redefinition of coordinates, one obtains the AdS5 × S5 metric at finite temperature
in Poncaré coordinates:

ds =
L2

z2

(
− f(z)dt2 + d~y2 +

dz2

f(z)

)
+ L2dΩ2

5 (7.7)

f(z) = 1− z4

z4
0

, (7.8)
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with Hawking temperature:

T =
1

πz0

. (7.9)

The entropy of the five-dimensional black hole is given by the Bekenstein–Hawking formula,

S =
A

4GN,5

, (7.10)

where A is the area of the horizon. This is infinite therefore, one defines an entropy density given
by:

S =
L3

4GN,5z3
0

. (7.11)

The five-dimensional Newton constant GN,5 is found from string theory by dimensional reduction
from ten dimensions. Using the relations of parameters from the AdS/CFT correspondence in Eq.
6.3, the constant is written explicitly in terms of the parameters of the dual field theory [25]:

GN,5 =
πL3

2N2
. (7.12)

With z0 given in terms of the Hawking temperature, the entropy density of the AdS black hole at
infinite coupling, written in terms of the entropy of the N = 4 SYM parameters is,

SBH =
π2

2
N2T 3, (7.13)

which has the expected form S ∼ T 3 for blackbody radiation. The AdS/CFT correspondence
connects the entropy of a black hole with the entropy of a gauge field theory. From a conceptual
point of view, this provides a statistical mechanics interpretation for black hole entropy as per
the Strominger and Vafa entropy calculation. In addition, black holes are seen as thermal states
consistent with quantum mechanics and unitary evolution [20]. Consequently, information is not
lost inside a black hole [43]. Finally, the duality allows for the computation of thermodynamic
properties from the field theory side and compare with QCD physics.

7.3 Thermal properties of sQGP

As aforementioned, the gauge theory on the boundary and QCD are very different theories. How-
ever, at a non-zero temperature where the temperature is high enough to form a quark-gluon
plasma, many of the distinctions between the two theories disappear [32]. In particular, confine-
ment of quarks into hadrons is no longer present at high temperatures and the plasma behaviour is
similar to scale invariance. Further, the Witten prescription of having a black hole in the bulk space
breaks supersymmetry. Therefore, it is of interest to consider whether certain quantities are univer-
sally described across gauge theories at finite temperature. In particular, one compares the thermal
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properties for strongly-coupled quark-gluon plasma from the N = 4 SYM side at finite temper-
ature to results from QCD obtained from heavy ion collisions in Brookhaven’s RHIC experiment
and the LHC’s ALICE experiment [7].

The entropy in Eq. 7.13 was at infinite coupling and was calculated using the entropy of a five-
dimensional black hole. One calculates the pressure and energy density of the sQGP fluid from
s = ∂P/∂T and E = −P + TS, respectively. At infinite coupling these are [32]:

Pλ=∞ =
π2

8
N2T 4 (7.14)

Eλ=∞ =
3π2

8
N2T 4. (7.15)

The same quantities can be obtained at weak coupling, λ = 0 from the gauge theory side. The
fields in N = 4 SYM are in the adjoint, hence each has N2 − 1 components. The theory has eight
fermionic and eight bosonic degrees of freedom. In total the entropy is [32]:

sλ=0 =
(
8 + 8 × 7

8

)2π2

45
(N2 − 1)T 3 ≈ 2π2

3
N2T 3. (7.16)

Comparing the thermal quantities between strong and weak coupling, one finds:

sλ=∞

sλ=0

=
Pλ=∞

Pλ=0

=
Eλ=∞

Eλ=0

=
3

4
. (7.17)

An interesting observation about the result is Eq. 7.17 is that these thermodynamic properties
do not change much as the coupling goes from weak to strong. On the other hand, it is known
that the transport properties and physical composition of the plasma do vary dramatically with the
coupling [32]. This phenomenon was shown that is not unique to the N = 4 case; Nishioka and
Takayanagi [26] computed the ratio of the entropy of the free Yang-Mills to the entropy of the
strongly-coupled Yang-Mills for infinite many cases and found that it does not change drastically
around this value. The relative factor of 3/4 in eq.7.17 can be viewed not as a discrepancy of
the theory but as a prediction [12]; the two calculations were taken at different coupling strengths
hence, the deficit is a prediction of the gauge theory behaviour at strong coupling.

Further, in lattice calculations of QCD thermodynamics, the numerical value for the ratio of the
pressure of strongly-coupled Yang-Mills to free Yang-Mills was found to be around 80%, which is
of the same order as the calculation done via the gauge/gravity duality [9].

7.3.1 Shear viscosity

The AdS/CFT correspondence can also be used to relate the shear viscosity at finite temperature in
the strong coupling regime of the gauge theory with the low-energy background of D3-branes [36].
Treating the sQGP as a fluid, its viscosity is obtained from the stress tensor:
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Tij = δijp− η
(
∂iuj + ∂jui −

2

3
δij∂kuk

)
− ζδij∂kuk, (7.18)

where ui is the flow velocity, p is the pressure and η and ζ are the shear and bulk viscosity, respect-
ively. The shear viscocity can be expressed via the Kubo relations to the correlation functions of
the stress tensor,

η = lim
ω→0

1

2ω

∫
dtd3x eiωt < [Txy(t, ~x), Txy(0, 0)] > . (7.19)

For a D3-brane, the result at strong coupling is [36]

η =
π

8
N2T 3, (7.20)

which is equal to the entropy density, eq.7.13 up to a factor:

η

SBH
=

1

4π
. (7.21)

The constant of proportionality, 1/4π is close to results obtained from QCD [11].
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8 Conclusions

This dissertation presented the prototypical example of the AdS/CFT correspondence as conjec-
tured by Maldacena; a N = 4 supersymmetric Yang-Mills theory with gauge group SU(N) is dual
to a background spacetime with AdS5 × S5 geometry. Preliminary material was presented on the
constituent parts of the duality, namely conformal field theories and AdS spacetime.

The conformal group was shown as the extension of the Poincaré group that includes scale trans-
formations (and special conformal transformations). The Lie algebra is SO(2,d). Scale invariance
in a field theory restricts its observables. In particular, the form of the two- and three-point func-
tions for scalar fields were shown to be functions of their relative distance and their scale dimen-
sion. The candidate CFT in four dimensions is the maximally supersymmetric Yang-Mills gauge
theory.

In general relativity, a d+1-dimensional Anti-de Sitter spacetime is as a solution to Einstein’s field
equations with a negative cosmological constant. Its embedding in a Minkoswian spacetime makes
manifest the isometries of the metric; these were shown to also be SO(2,d). AdS spacetime has a
conformal boundary - for AdS5 the boundary is 4-d Minkowski where the conformal group acts on
it. From the perspective of the AdS/CFT correspondence, the boundary of the bulk space is where
the gauge theory lives. The correspondence is therefore holographic in the sense that it relates two
theories of different dimensions.

The bulk space is a solution to a specific supersting theory. Open and closed superstrings propagate
in a ten-dimensional background. The spectrum of closed strings includes gravitons while open
strings have vibrational modes that one identifies as massless vector bosons. Open strings can
be described with Dirichlet boundary conditions. The strings’ endpoints are fixed on dynamical
membranes, D-branes, that carry charges. The key idea is that interactions between D-branes
can be described either as closed strings at tree level or mediated by open strings at a one-loop
amplitude. Closed strings interacting with the D-branes can open up and turn into open strings
whose ends are free to move along the D-brane. Conversely, open strings bound on the D-brane
can join their endpoints and form closed strings. These in turn are not bound to the membrane and
can be emitted as Hawking radiation.

D-branes realise gauge theories on their world volume and preserve half of the bulk supersym-
metry. The spectrum of open strings living on a stack of N coincident D-branes will correspond
to a maximally supersymmetric SU(N), Yang-Mills gauge theory. Further, it was argued that D-
branes are massive objects that curve spacetime and have a dual description when embedded into
a background of closed strings.

Consideration of low-energy processes for the D3-branes in type IIB string theory indicates that
the solution has a near-throat geometry that is AdS5 × S5. In this low energy limit, the system
decouples from the asymptotically flat region at the boundary. Similarly, in the dual description of
the system of N coincident D3-branes, the N = 4 SU(N) gauge theory decouples from the bulk
supergravity in ten dimensions in the low energy limit. Maldacena argued that the dual description
of this configuration, which results in decoupled systems, leads to the assertion that computations
in N = 4 SYM theory and in string theory on AdS5 × S5 give the same results.

The AdS/CFT correspondence is a conjecture with no rigorous mathematical proof. However, there
is strong evidence to support it. An immediate requirement comes from symmetry arguments. The
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fact that the symmetries of the conformal group in d dimensions are equivalent to the isometries of
AdS in d+1 dimensions is a necessary condition and motivates the correspondence. In addition, the
near-throat geometry includes a compactified space of a five-sphere. The isometries of this space
form the group SU(4) ∼ SO(6) and are identical to the R-symmetry of the gauge theory.

From the duality of the two theories, the thesis presented the conjectured map between the gauge-
invariant operators in the CFT and the bulk fields in AdS5. The dimension of the operators is
determined by their mass; the simplest example of a bulk scalar was presented where the relation
was found to be ∆(∆− d) = m2L2. It was shown that correlation functions can be computed via
Witten diagrams and bulk-to-boundary propagators. The two- and three-point functions of bulk
scalars in AdS were computed and shown to match the form expected from the conformal theory
side.

The supersymmetric Yang-Mills theory differs greatly from QCD. To make use of the duality,
some of the features of the dual gauge theory must be relaxed. It was shown that it is possible to
break supersymmetry and conformal invariance by placing a black hole into the five-dimensional
geometry.

The holographic dictionary relates the set of parameters in the gauge theory to those of the bulk
spacetime. Perturbative gauge theory computations are mapped onto the stringy regime of the full
type IIB string theory. On the other hand, the power and usefulness of the gauge/gravity duality is
that it relates quantities in strongly-coupled gauge theories to quantities that can be calculated more
easily in the dual classical supergavity regime. The thesis presented an example from recent re-
search on strongly-coupled quark-gluon plasma observed at the RHIC experiment. The entropy of
the fluid was computed by exploring a five-dimensional black hole using the Bekenstein-Hawking
formula. This was compared to the weak coupling entropy from the gauge side. The numerical
factor of the ratio of the entropies yields a result which closely matches those obtained from lattice
QCD. Calculations of the fluid’s shear viscosity yield similar findings. This suggests that some
thermal properties are universal for gauge theories.

There has been a flurry of research activity in gauge/gravity dualities since Maldacena’s original
formulation of the correspondence. Despite their great theoretical value, the ultimate interest lies
in furthering an understanding of QCD. As aforementioned, QCD is non-perturbative and exhibits
asymptotic freedom, confinement and has a mass gap. There are two approaches to obtaining a
dual gravity theory to QCD: the so-called “top-down” and “bottom-up”. The former starts from a
well-defined string theory system and arrives at a duality with a well–defined gauge theory whose
properties are more akin to QCD. With no conformal invariance and less (or no) supersymmetry,
the background spacetime will differ from AdS5 and the compact space is not necessarily an n-
Sphere. These string theories are related to the 11-dimensional M-theory but are not of type IIB
string theory as the original formulation. The bottom-up method is a phenomenological approach
whereby one starts with QCD and looks for its gravity dual. It would be interesting to study these
dualities from a theoretical point of view, compare calculations with data and explore new insights
into the physical world.

As a final note, two recently-published papers are mentioned that have been developed within
the AdS/CFT duality paradign and have the potential of resolving a long standing problem in
theoretical physics - black hole information paradox. The duality of the gravity theory to the
unitarity at the boundary where the CFT lives means that information is not lost. However, there
remained the issue of showing the mechanism by which the information is encoded in the radiation
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evaporating from the black hole. In [21, 28] it was shown that the entropy of the black hole was
consistent with information conservation. It would also be interesting to extend the scope of this
dissertation to cover the information paradox history and recent resolution.
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