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v

We promote the constants of nature to dynamical variables of which the canoni-
cal conjugates define a cosmological time. Each constant is connected to a different
time. We extensively analyse the formalism behind this proposal, from single fluid
to multi-fluid models. Specifically, we show that for the former the Hamiltonian con-
straint equation becomes an effective Schrodinger equation in the corresponding time,
solved in the connection representation by monochromatic plane waves. We further
show that for more than one fluid it is recommended to identify mini-superspace as
a dispersive medium and we examine the motion of the peak of wave packets as well
as the transition regions between dominating constants. Finally, we carry out original
work, introducing a massless scalar field as a cosmological clock and simultaneously
targeting the gravitational constant, Gy, to be the conjugate of another time variable.
The aim is to explore a toy-model where we have more than one physical time in the
same epoch. A double-time Schrodinger equation is obtained. We further analyse dif-
ferent types of possible solutions, with special focus on a fully semi-classical state in
both constants, arriving at a two-time setting uncertainty principle. We close with a
brief examination of a mixture between a scalar field and a radiation fluid in which

three different clocks are present.
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Chapter 1

Introduction

1.1 The Problem of Time

The Problem of Time is a very well known issue one has to deal with when trying to
unify General Relativity and Quantum Theory [1, 2, 3, 4]. This appears as a result
of the different interpretations of time in both theories. Einstein’s theory of gravity
is diffeomorphism invariant, i.e. one works with equations that transform covariantly
under changes of spacetime coordinates, which leads to frame independent physical
results. On the other hand in Quantum Mechanics the notion of time [5] originates
from Newtonian physics, where time is absolute and external to the system. Hence,
time cannot be seen as a physical observable as it is not represented by a quantum
operator, being solely used to mark the evolution of the system.

Further conceptual issues arise from the problem of time [1]. For instance the status
of causality and unitarity, the meaning of spacetime and the emergence of our classical
universe from some primordial quantum event in the big-bang.

Thus, how can we re-introduce the notion of time in a quantum theory of gravity?
A considerable amount of work has been done in order to answer this and many other
questions [1]. There are currently three main approaches to this conundrum: identify
time before quantisation, after quantisation or assuming time plays no fundamental
role in the theory. In the first one, the canonical constraints are solved before quan-
tisation. Time is identified as a functional of canonical variables and one looks for an

effective Schrodinger equation. The second approach works in an opposite manner as
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the constraint equations are solved after quantising the system and time is identified
only following this procedure. Also, the most important constraint is the WDW equa-
tion, whose solutions are functionals of the spatial metric. In the third scheme the
aim is to treat time in the same way as in GR which consequently leads to a purely
phenomenological way to grasp the notion of time with no fundamental conception in
quantum theory. These schemes are extensively analysed in [1]. Different perspectives
and discussions were also undertaken [6, 7, 8].

We should also note that most of the attempts to solve this issue are performed
through finite dimensional models free of UV divergences. This is because quantising
the field equations of GR in canonical quantum gravity leads to a non-renormalisable
theory.

A rather interesting way to address the problem of time in GR is to identify events
in a spacetime with the position of physical particles. For example, the value of a
scalar field defined on a manifold M of a given particle is coordinate independent and
so it is an observable. Notably, the value of the scalar field ¢ might be determined at
that event where a group of fields takes on a given set of values. These fields can be
expressed through matter distributions or they can be part of the gravitational field
itself. Most approaches to the problem of time revolve around such notions. This
underlines the important fact that a local time coordinate in spacetime is not enough
to get a physical definition of time. For instance in the real world an observer measures
time using the proper time along its worldline, which is a Lorentz scalar quantity and
acts simultaneously in spacetime points as well as in the metric. More specifically,
the proper time along the geodesic connecting the beginning and end points of the
world-line is an intrinsic property if the points are labelled using internal coordinates.
Labelling spacetime events using spatial reference frames and physical clocks is of
great importance, both in the classical and quantum theories of relativity. For quantum
theory, there is another relevant problem raised by the example of proper time described
above. The calculation of a range of proper time uses the spacetime metric, and

thus it is only meaningful when the equations of motion are solved [1]. Unlike in



1.2. The Cosmological Constant Problem 3

classical theory there are difficulties in any theory in which the geometry of spacetime
has quantum fluctuations, having no fixed value and therefore time may become a
quantum operator. This is a problematic concept that is not included in standard

quantum theory.

1.2 The Cosmological Constant Problem

Another fundamental issue in physics is the values of the constants of nature [9]. Re-
gardless of our ability to measure them, we still have no scientific method to explain
or determine these numerical values.

The cosmological constant problem [10, 11, 12, 13, 14, 15] is by far the most sig-
nificant one: the predicted value for the cosmological constant from vacuum energy
contributions in quantum field theory is at least sixty orders of magnitude bigger than
the observed value for this constant [15]. Simple QFT calculations show that this vac-
uum energy is at least pya. = (TeV)?. Furthermore, we cannot define py,. to be our zero
point energy because according to general covariance and the equivalence principle, all
sorts of energy generate curvature and therefore, gravity. By Lorentz invariance, the
energy-momentum tensor associated with this vacuum is 7),, = —pyacgu - Looking at
Einstein equations (R, — % GuwR+Ag,, = 8wGT),) this is equivalent to defining a total
vacuum energy, pr = Pyac + %, which, according to observational measurements, is
upper bounded by pr < (meV)*. In this way, A needs to be fine-tuned by at least
sixty decimal places. However, this is just the beginning of the problem [12]. The real
issue is radiative instability rather than simply fine tuning, since when one performs
perturbation theory to renormalize the vacuum energy, the amount of refinement one
has applied to A is independent of the number of loop contributions in the calculations.
This means that the bare cosmological constant needs to be retuned with extreme pre-
cision at each order in perturbation theory. Therefore, it is useless to, for example, fine

tune the first loop contribution as it will be unstable in higher order loops. Indeed, this
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illustrates the high sensitivity of the vacuum energy regarding the unknown aspects of
UV physics.
One attempt to solve the problem is to consider a gauge fixed version of GR known

as Unimodular gravity [16, 10, 15]. This theory originates from the Einstein-Hilbert

5

action subject to the constraint /—g = 1 and therefore g

—g = 0 where g =
det g, This implies a reduction of the set of diffeomorphism transformations that
are possible in GR. In infinitesimal form those can be written as dg,.(x) = V,k, +
V.,k,, where k, is a gauge vector. Hence, by imposing the unimodular condition
we get —%\/—_ggu,,(Sg”” = V,k#* = 0, which represents the reduced set of transverse

diffeomorphism transformations.

The restricted Einstein-Hilbert plus matter action, Sy, is then:

1

5= T6rG

L/&mﬁ§R+SM—/ﬁ%M@QﬁZ—1) (1.1)

where A(z) is a Lagrange multiplier. Variation with respect to this scalar gives the

constraint y/—¢g = 1. The metric field equation is given by

1
Ry, — §guuR +81GAg = 81GT,, (12)

where T, = \/’—_igg*ggﬁ. Taking the trace of (1.2) we obtain

1 R
AZ(T+§E), (1.3)

and substituting this back in (1.2) we get the traceless Einstein equations:

1 1
R, — ZgWR = 871G (Tuv - ZgWT> ) (1.4)

Taking the divergence of (1.2) and considering both energy-momentum conservation,
V, T" = 0, and the contracted Bianchi identities, VMR“”—%V”R = 0, implies 9, A = 0,

i.e. \is an integration constant. Thus, we found that the dynamics of this theory are
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equivalent to GR, with a cosmological constant given by A = 87G\. In this manner
the integration constant A, suffers from the same radiative instability as A in GR and
therefore unimodular gravity does not bring any new perspective to the cosmological
constant problem.

An important contribution to this problem is Weinberg’s no go theorem which states
that it is not possible to add extra fields to the matter action in order to correct the
large vacuum energy without fine tuning. Hence, any attempt to solve the problem
should explain how to get around it. Weinberg also described five approaches to the
cosmological constant problem [14]. Some of them are supersymmetry, supergravity
and superstrings, as well as quantum cosmology, the latter being the most promising
one. All these approaches reveal that any possible solution to the cosmological constant

problem will probably have a wide impact in multiple areas of physics and astronomy.

1.2.1 Sequestering the Vacuum Energy

A more promising way to address the problem, known as The Sequester, was recently
suggested by Padilla and Kaloper [17, 18, 19]. We consider a coupling between GR and
a quantum matter sector which contains the Standard Model. A, the usual cosmological
"constant", now plays the role of a dynamical variable which is a spacetime constant
but can be varied in the action. The aim is to have A cancelling the Standard Model

vacuum energy. The sequestring action is then

/d4x\/_[ —LR— A]+S +0<Xf>4), (1.5)

where y is a mass scale, o (ﬁ) is the sequestering function which is odd and differ-
entiable and should be determined by phenomenology and A is a dynamical variable
that balances the scales between matter and the Planck mass. The matter action is

given by

[ p—— / d* o/ =g\ L, (N 2gH ) (1.6)
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and we can write g, = A?g,,,, with the associated stress-energy tensor:

2 8S,, -2\ 68 .
T, = igges " = \T,, 1.7
VEgogr =g Mg " o

T = X'T*, (1.8)

Therefore, varying the action with respect to the metric, A and A we get the following

equations of motion:

MIGYE = — NSt + N'TY (1.9)

1 A
4 _ /
/d T/ —g = >\4M40 (A4M4) (1.10)

4N [ A .
)\4M4U (X*/ﬁ) :/d x/—gT, (1.11)

where T' = T7".

An important point that we can extract from (1.10) is that the spacetime volume
should be finite, meaning the universe will end in a Big Crunch. o is assumed to be
differentiable and if the spacetime volume was infinite then we would need A = 0,
which cannot happen since it would mean that all particles in the Standard Model
were massless.

Combining (1.10) and (1.11) we can determine A and arrive at
A =—(T), (1.12)

where (T) = m—\ﬁ\/_if. Substituting this back in to (1.9) yields

M2GH =TH — —(T)6". (1.13)
The energy-momentum tensor can be separated in two parts: Vi,. associated with the

vacuum energy from the Standard Model loops and 7% describing local excitations

about this vacuum. In equation form, T# = —V,,.0% + 7¥, and consequentially we have
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T = —4V,..+7. Thus, the vacuum energy drops out of the gravitational field equations
which take the form:

M2GH = 1+ — 365(7) (1.14)

P 14

This is exactly what we needed! The dynamics are no longer dependent on the vacuum
energy and instead are only determined by matter excitations, which means that we
have a radiatively stable effective cosmological constant, A.g = ;11<T>, no longer sensi-
tive to loop corrections at any order in perturbation theory and stable enough to be
trusted as a "yardstick for cosmology" [12]. This theory is still being developed and a
significant amount of work still needs to be done. Kaloper and Padilla later suggested
an improvement to this theory by changing to a manifestly local theory [20], the main
differences being that the effective cosmological constant will be fixed by the ratio of
two integration constants and the spacetime volume no longer needs to be finite. The

manifestly local action is given by

K (x)

S = /d‘*x\/——g[ .

1 A(x) R /{2(;[) ~ y N
+ﬂ [‘7( ,u_4 )Fwag—l-a (75 Flop| dztda”dx dz?, (1.15)

R — A(z) — L,,,(g"", \IJ)} +

where Fjap = 40,A.q5 and Fumﬁ = 4(9[#1211@5] are two 4-forms, invariant under
Ape = Appa + 30,Bq) and /Alu,,a — AWQ + 38[Méya] respectively. This guarantees
that A and x> = M?/A\* are constants on shell. The functions o and & are arbitrary
and smooth.

We can therefore compute the equations of motion for this action. Starting with

the metric equations, using the Palatini identity

OR,, = Voo, — V,6T2, (1.16)
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which leads to 6R = R, 69" — ¢"*[00g,, + V¥V"dg,, we get
K2GH = (VIV, — 6*O)K* + TH — ASH, (1.17)

where T),, is again given by

-2 0Sn,
T,, = ——2m 1.1
124 /__g 69‘“” ( 8)

The rest of the field equations are obtained through variation of the action with respect

to A, k%, Aue and /Alu,,a yielding:

/

o

F,U,Z/OL/BE = €uvap (119)

A o R

F,w/ozﬁ_ = — 5 €uwap (120)
M2 2

O_I

M

o 9

ﬁgauli = O, (122)

where €,,03 = \/—9g€uas 1s the Levi-Civita tensor and e, is the Levi-Civita symbol.
The last two equations show that A and x? are integration constants. Tracing (1.17) and
using (1.22) yields k2R = 4A — T. Then, taking the spacetime average and combining

this with (1.19) and (1.20) gives

A:5ﬂ+Am (1.23)
1, Kt [F

and by substituting back in (1.17) we arrive at:

K2GH = TH — P AN — iaf;m. (1.25)
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Considering again the same splitting of the stress-energy tensor, T = —V .0 + 74,

(1.23) takes the form
4N + AVipe = (1) + K*(R). (1.26)

From the traced gravitational field equation we get k? R = 4A+4V,,.—7 which together

with (1.26) leads to
K*(R—(R)) = —(1 — (1)). (1.27)
Using again the equation for 7),, and (1.27), (1.25) can be written as

1 1
K? <Rfj - Z(S{,‘R) =71l — 151’,‘7. (1.28)

Finally, using the equations of motion for the 4-forms and taking the respective

Hodge duals we obtain:

1 vaf3 ,u4
#F = SeuapF" " = =52 = (+F) (1.29)
. RM:?
P ==L, (1.30)
from which we get:
. . M?
*xF — (xF) = —M;(r— (). (1.31)
Consequently, (1.24) can be written as
AN = — “22(3’<*15>. (1.32)
2

We should now highlight some important aspects of this theory. From equations (1.29)

and (1.31) we see that the form sectors are radiatively stable. Hence, according to
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equation (1.32) the same holds for AA. In (1.26) the right hand side is stable, however
we know that V... is not, which means that A will absorb large radiative corrections
from the vacuum energy. Moreover, (1.27) and (1.28) are the gravitational field equa-
tions and they describe the same theory as GR except with the advantage that the
UV sensitive part of the vacuum energy is now absorbed/cancelled by AA. Also, the
residual finite cosmological constant needs to be fixed by observational data and it is
completely stable against any additional radiative corrections to V... without the need
for fine tuning. Therefore, this theory is a consistent starting point for the definition
of the Feynman path integral but there is still a broad range of topics to investigate

such as inflation and phase transitions.

1.3 Overview

It has been recently suggested that the value of the constants of nature and the problem
of time in GR could be somehow related [21]. Time is the physical way to describe
changes whereas the constants of nature are by definition fixed parameters. Thus, one
might wonder if these two completely different concepts could be in fact complementary
quantum variables just like position and linear momentum.

In this work we promote these constants to phase space variables and we adopt
their canonical conjugates as cosmological clocks. However, given the wide range of
choices available [22], one should be careful in selecting a constant that provides a
clear separation of space and time for a specific region of phase space. Thus, we end
up having times conjugate to the cosmological constant A or the gravitational constant
G, depending on the epoch in which we are living. Foremost, we need to pay special
attention to multi-time situations since we have to deal with the handover from one
clock to another during transition regions.

We will examine the problem in mini-superspace, i.e. an homogeneous and isotropic
universe, in the connection representation. This requires starting from the Einstein-

Cartan action and reduce it to MSS.
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That said, it’s important and pedagogical to start this work by introducing the
EC formalism, which is done in the beginning of Chapter 2. We then introduce the
Ashtekar variables, fundamental in the Hamiltonian formulation of GR, and the real
Chern-Simons state, the latter being the solution to the real Hamiltonian constraint
equation. To conclude this chapter we compute the real CS state for a Friedman-
Robertson-Walker universe, which will be recovered later in Chapter 3 using a different
approach.

Finally, in Chapter 3 we introduce and develop the necessary concepts to promote
the constants of nature to off-shell dynamical variables, whose canonical conjugate vari-
ables will define a physical time. We start by considering a general single perfect fluid
model. From the Einstein-Cartan action we obtain the Hamiltonian constraint, which
becomes a Schrodinger equation in the time associated with the constant dominating
the dynamics of the system. This equation can be solved in the connection repre-
sentation by outgoing monochromatic plane waves. Subsequently, we generalize for a
multi-fluid universe and so we need to deal with more than one time. In particular, we
consider a mixture of dark energy and radiation since the calculations are simpler, but
models with other elements display similar qualitative behaviour. Lastly, we consider
a universe dominated by a real scalar field coupled to gravity by a "deconstantized"
gravitational constant, the two quantities being associated with two distinct cosmolog-
ical times that occur in the same epoch. This might bring some new implications to

the table when compared to the previous multi-fluid models.
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Chapter 2

Einstein-Cartan Formalism and the

Real Chern-Simons State

In this chapter we briefly introduce the Einstein-Cartan formalism. We present the
Cartan structure equations and use them to calculate the connection 1-form and the
Riemann curvature 2-form for the FRW metric. This allows us to derive the EC
action in mini-superspace which will be the starting point for the proposals we will
develop throughout this work. We further introduce the new Ashtekar variables and
the 3 + 1 split [23] of the EC action that leads to the Hamiltonian formulation of GR
[24]. Finally, we present the solution to the real Hamiltonian constraint, known as the
Chern-Simons wave function, and compute it particularly for an homogeneous universe.

This last quantity is important for the analysis done later in this thesis.

2.1 Einstein-Cartan Action in MSS

In this section we introduce the tetrad formalism in order to obtain the reduced form
of the Einstein-Cartan action in MSS for the FRW metrics.
The transition from a general spacetime with metric g, to flat Minkowski spacetime

is done through the tetrad basis transformation [25]:

Gy = e‘;ef’,nab, (2.1)



14 Chapter 2. FEinstein-Cartan Formalism and the Real Chern-Simons State

where we are using Latin indices for the Lorentz group and Greek indices for spacetime.
We also assume det ey, # 0, which means the previous relation is invertible. Then,
e® = ej.dr" are 1-forms that define a non coordinate basis in this space from which we

can get the invariant line element in the form:

ds® = nepe® @ €. (2.2)

This description is quite practical for a diagonal metric as the tetrad components can be

easily read off. Furthermore, the torsion 2-form is defined by the 1st Cartan equation:

T% = De® = de® +I',¢, (2.3)

where I, = I'} yda# is the connection 1-form associated with the exterior covariant
derivative D and we are omitting the wedge product symbol (A) between differential-
forms. The last object we need for the EC action is the curvature 2-form defined by

the 2nd Cartan equation:

Rab — drab + Facrcb. (24)

Hence, we can now apply this formalism to the FRW metric [26], which is given by

dr?
K(r)?

ds* = —N(1)%dt* + a(1)* +7?(d6* + sin® 0do?) |, (25)

where K(r) = 1 —kr?, k = 0,—1,1 for a flat, closed or open universe respec-
tively, N(t) is the lapse function and a(t) is the scale factor. The signature of the
Minkowski metric should match the spacetime metric and for this reason we have

na = diag(—1,1,1,1).
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Thus, the tetrad basis associated with this metric is

e = Ndt (2.6)
el = %dr (2.7)
e’ = ardf (2.8)
e = arsin 0do. (2.9)

Using now the 1st Cartan equation for zero torsion, 7% = 0, and computing the exterior

derivative of the tetrad basis

de® =0 (2.10)

de' = geoe1 (2.11)

de® = 26062 + gelg (2.12)

de® = 96063 + 56163 + ﬂe%?’, (2.13)
a ar ar

we can read out the components of the connection 1-form for this spacetime to get

) b .
r,=-¢ 2.14
0 ae ( )
K
I =—e?=Kdf (2.15)
ar
3 K 4 .
e, = e K sinfd¢ (2.16)
t 6
I3, = 763 = cos fdo, (2.17)
ar
with b = a/N. These determine all the components since we have T'y, = —I'y, and so,

[iy=T%and I, = —I",

-
On the other hand, the 2nd Cartan equation tells us how to compute the curvature

2-form. With a bit of algebra and computing the exterior derivative of the connection
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1-form

dr'y = %eoel (2.18)
dl?, = ]\%6062 + %6162 (2.19)
dr3, = %6063 + %6163 + %6263 (2.20)
dr?, = —%elez (2.21)
dr?, = —%ele?’ + %6263 (2.22)
dr?, = —#6263, (2.23)

b
R, = meoel (2.24)
) B+k .
R'; = at e'e’. (2.25)

The Einstein-Cartan action is [25]

1 A
S = 527 Ce /eabcd (e“ebRCd — Ee“ebeced) , (2.26)

where G is the fixed value of the gravitational constant G, €.cq is the Levi-Civita
tensor and A is the cosmological constant.

Hence, using (2.24), (2.25) and considering the relations

EabcdeaebRCd = QEOZ‘jkGO@iRjk + QEz‘jgk@iejROk = (227)
Vi+k b -
=2 at + m] coijre’e’el et (2.28)

and

Na® , .
apcac’e’eCe? = 4lelele?ed = 4!?7’2 sin Od*z, (2.29)
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we finally arrive at

3Ve P2 2 A o
S g Go/dt [ba a( b° — k + 3a , (2.30)

where V, = [ drd@akb’"zs%e is the spatial volume of the universe. This is the EC action

in MSS.

2.2 Real Chern-Simons State

The aim of this section is to derive the real Chern-Simons state [27] which is the
solution to the real Hamiltonian constraint equation. We start by considering again

the Einstein-Cartan action:

1 A
S = 329G /eABCD (eAeBRCD — EeAeBeceD) , (2.31)

where the Lorentz group indices are now A, B, C,.... We then introduce the Ashtekar
Self-Dual SU(2) connection |27, 28, 29, 30]:

A" =T"+iK", (2.32)
where
Ki=1" (2.33)
) 1. .
I = —563,;1’{ (2.34)

and the indices 4, j, k, ... represent SU(2) components, corresponding to the spatial part
of the Lorentz group. The generators we will consider for this group are t' = —io?/2,
where o are the Pauli matrices. The generators obey the commutator [t!, /] = eFtk
and the trace identities Tr(¢'t/) = —16Y and Tr(¢'t/t*) = —1e* where ¢ is the

Levi-Civita symbol. Therefore, the connection can be written in the generator basis as
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A = Alt'dz®, where the indices a,b,c, ... denote the spatial components of spacetime.
The field strength tensor associated with A is F' = dA + AA, which in components
reads Fy = 0,A} — O, AL + €5, AJ AY.

At this point, one might wonder if having a complex SD connection makes the
theory also complex. However, this is not the case since the action is real and we
can write everything in terms of the real variables K and I'*. This construction is
useful in the sense that we can solve the real Hamiltonian constraint with a modified
Chern-Simons state built from the Ashtekar connection.

Hence, the EC action subject to a 3 + 1 split in the time gauge ¢ = 0 takes the
form [31]:

1
N 167TG()

/ dtd*z [2 Im A E® — (NH + N°H, + N,G")| , (2.35)

where H, H, and G* are the Hamiltonian, diffecomorphism and Gauss constraints,
respectively [31]. B¢ = v/he? are the densitized inverse triads, with h = det hy;. hy;
is the spatial metric and ef are the inverse triads. Furthermore, the real Hamiltonian

constraint has the following form:

g A
H =€ EE) (Re FR o+ §eabcECk> =0, (2.36)

substituting the complex one given by
i papt (e, N ck
H =€ E'E] | Fy, + geabcE =0. (2.37)

From (2.35) we find the Poisson bracket for the canonical conjugate variables Im A?

and EY

{Im A}, (), E2(y)} = 87God,8:0(x — ), (2.38)
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which after quantisation leads to the commutator

[Im Al (), EY(y)] = il26,6:6(x — y), (2.39)

p-a~j

with [, = /87Gyh. Consequently we get

)
E(x) = —ill—". 2.40
i (@) Uy 5 T AL () (2.40)
Thus, the constraint (2.36) in the Im A’ representation becomes:
A 6
Br —il2— = 2.41
(Re ZPS&ImA’g)w 0 (241)
where F', = €4.B. The solution to this equation is
3
Yes(A) = Nexp (m Im YCS) : (2.42)
P
where Yeg is the Chern-Simons functional [32] given by
2 1 ] .
Yos = | Tr | AdA+ gAAA =-3 A'dA" + geijkAZAJA . (2.43)
This last one solves the complex Hamiltonian constraint (2.37) since we have:
6YCS 1 be i
— = ——¢"F,. = —B}. 2.44
5/431 26 be i ( )

To show that (2.42) solves (2.41) we start by decomposing the Ashtekar connection
in its real and imaginary parts [33] as A® = o’ + i3". Accordingly, the imaginary part
of YCS is

1 o o] o o o o
mYes =-3 / {o/dﬁ“ B’ + Zey(a'Fal + Foal +aladft — 5575

- - / {dofﬂi ¥ Sen (W’ak - %ﬁ’ﬂjﬁ’“ﬂ (2.45)



20 Chapter 2. FEinstein-Cartan Formalism and the Real Chern-Simons State

where from the first to the second line we computed an integration by parts in first

term and discarded the boundary term. In this way, it is straightforward to check that

0 ImY, 1 , A : A

5—5“'03 = —56““[8@@2 — Oy, + e (aday — Bi5))] (2.46)
6 Im YCS

olm¥Yes __ pope 2.4

which proves our point.

2.2.1 Chern-Simons State for the FRW Metric

We now derive the Chern-Simons state and the EC action in mini-superspace. For the

FRW metric presented in the last section, the SD connection (2.32) is given by

b
Al = cos Odg + %dr (2.48)
A? = — K sin 0d¢ + ibrdf (2.49)
A? = Kdf + ibr sin 0d¢ (2.50)

and the inverse densitized triad components are:

E} = a’r’sinf (2.51)
20 a3 2

g =1 r;’(m (2.52)
2

B = a—KT (2.53)

Hence, the first term in the EC action reads:

3V. :
= ¢ dtba® + ... 2.54
87TGO/ “ + ( 5 )

The only other non zero contribution in MSS is the Hamiltonian term:

1. A
H= ﬁe”kEfEf (Re Fh + geabcEC’f) : (2.55)
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which we can obtain through F* = dA’ + 1% A7 AF and whose components are:

F' = (=1 + K? — b*r?) sin 0dfd¢ (2.56)
b’r
F? = (—K' + ?> sin fdrdg¢ (2.57)
b2
F3 = (K’ ~ %) drdo. (2.58)

Putting all these together we get:

K
H= 5 (QEI E{F} — 2E]ESFY + 2E§E{ Fy, + zAE;EgEg) — (2.59)
r?sin 6 A
= —k =+ =d® 5
YK ( " 3“) (2.60)

and so we easily check the EC action in MSS to be (2.30).
On the other hand, to reduce the Chern-Simons state we need to compute (2.45).

Starting with the first term we get:

2 2
ke ﬁ) sin drddo, (2.61)

daﬁ:_( K K

where the components do’ are given by:

dat = —sin §dfdo (2.62)
do? = —K'sin0drd¢ — K cos 0dfd¢ (2.63)
do® = K'drdf. (2.64)

The second one is obtained from

ib3r?

% >Sin Odrdfde. (2.65)

ATAZAS = (z’bK —
Thus, putting both terms together we have

Im Yog = V.(b* + 3kb) (2.66)
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and finally the CS state in MSS:

3V,

I2A

p

Yes = Nexp [ (b + Bbk)l : (2.67)

2.2.2 Chern-Simons State for a Closed FRW Universe

In this subsection we calculate the Chern-Simons state for a closed FRW universe,

using the Maurer-Cartan forms that define the spatial unit 3-sphere. These obey

dw' = €, w/w* and are given by [33]:
w! = cosdf + sin 1) sin Ode (2.68)
w? = sinydfh — cos 1 sin Od¢ (2.69)
w® = dyp + cos Odg. (2.70)

Here ¢ € (0,47), ¢ € (0,27) and 6 € (0,7) are all angular coordinates in S®. The

tetrad is

e’ = N(t)dt (2.71)
‘ t) .
e = @wz (2.72)
2
and its exterior derivative reads
i b 1 iy
de' = P + Eejke]e : (2.73)

which leads to the following connection 1-form:

. b .

[y = 5o’ (2.74)
, 1.

I, = € wh. (2.75)

72
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Consequently, the Ashtekar connection is
AP = (ib— 1) % (2.76)
and together with
i L ik
dA" = 1 (ib—1)¢€ jww (2.77)
it is easy to compute the Chern-Simons functional (2.43):

Yos = Ve (ib* + 3ib— 2) . (2.78)

As a result, taking the imaginary part of the above equation, we obtain

Yes = Nexp FZ;X (b* + 3b)} : (2.79)

p

where V, = 272 is the volume of S®. This agrees with (2.67) for k = 1, as expected.
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Chapter 3

Dynamical Constants of Nature and

Cosmological Time

We consider that cosmological time is the conjugate of the constants of nature [21,
34] which means that we have different definitions of time depending on the relevant
constant controlling the dynamics in each epoch. To do so we promote these parameters
to phase space variables that will be constants only as a result of the equations of
motion. We start by introducing the necessary principles to define our physical clocks.
We further derive in detail the cosmology of a single fluid universe and then generalize
for multi-fluid models. For instance, we look closer at a universe made of radiation
and dark energy. Finally, we present a scalar field as a cosmological clock coupled to

gravity through a "deconstantized" gravitational constant.

3.1 Single Perfect Fluid Universe

Since we want to consider the universe as a mixture of perfect fluids we must generalize

the action (2.26). We do the replacement 2 — #2802, which yields

1 e
S = 32nCie /eabcd [e“ebRCd + %EMe“ebeced , (3.1)
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where L = —p and p is the energy density given by

C
p=> pere el (3.2)

%

C; are constants, a(t) is the scale factor and w; = 0, —1, 1/3 for matter, "dark energy"
or radiation. The reduction of the action to MSS done in the previous chapter leads

to:

_ 3‘/0 27 1. 12
S = 87TGO/dt [a b Na( b +Zal+3wl>] (3.3)

with m; = % By the above we get that b and a? are canonical conjugate variables

with the Poisson bracket {b,a?} = 8790 which upon quantization leads to the com-

3V,
mutator [b, a?] = 3lv , where [p = \/87Gyh is the reduced Planck length. For practical
2
reasons and in analogy with the role of /& in quantum mechanics we define h = ;%C

Furthermore the lapse function N is a Lagrange multiplier and so we get

SnS =0 (3.4)
m;

%

Through a Legendre transformation

_ / dt (Z dipi — H) (3.6)

we obtain the Hamiltonian for gravity plus matter

3V,

H =
87TGO

Na

3V
2 _ c
—(k +b?) +§ amwl] = g NaH (3.7)

which from (3.5) gives the Hamiltonian constraint equation:
H=0. (3.8)

We shall now examine each epoch separately, i.e. we consider only one 7 in the
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above sum at a time (and no sum implied by repeated i from now on). It is more

convenient to write (3.8) in the approximate form

H — HO — ;= 07 (39)
Hy = h;(b)a? (3.10)
where
hi(b) = (b + k) TFowi (3.11)
—2
o =m; . (3.12)
The reason to do so originates from the fact that in the b representation a? = —ih0,

which leads to a solvable differential equation in this representation. As we are con-
sidering the constants of nature to be the conjugate of time, we need to promote them
to phase space variables with conjugate momenta p; to be identified as time 7;. Thus,

(3.3) gets an extra term:

3Ve :
iDi- d
S—= S5+ e /dtalpz (3.13)

o
These «; are then constants as a result of the equations of motion instead of being

parameters set in stone:

and classically they are nothing but integration constants like the well known models

in unimodular gravity we introduced in Chapter 1. We also have the commutator

from which we get an effective Schrodinger equation replacing «; — ihor, (T; = p;):

(Ho —ihor,) ¢ =0 (3.16)
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with monochromatic wave solution
= (b, Ty i) = by (b a)e 7T (3.17)
Here, 1), is the solution to the WDW equation, Hy, = 0:

(Ho — ;)5 =0 (3.18)

& (=ibhi(0)dy — ;) s = 0 (3.19)

which is easily solved by changing to a "linearizing spatial" variable

dX; = (3.20)

= U(bag) = Nev X0, (3.21)

These are not plane waves in b nor in m; and so we don’t have a linear dispersion
relation in these variables. However, we do have the "linearizing" variables X; and «;
in terms of which the solutions are plane waves moving with fixed speed (set to 1) in
mini-superspace.

Moreover, as «; is now a variable in phase space, we enlarge the space of solutions as
we are allowed to have a superposition of these monochromatic solutions. The general

solution is then given by
(b, T;) = / da; Aoy )er K0T, (3.22)

We can also note that the effective Schrodinger equation (3.16) is in fact a wave

equation

(Ox +0r) =0 (3.23)
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with retarded wave solutions:
(b, T50) = F(X = T), (3.24)

where F' can be any function and the associated conserved current is given by j° =

7' = |9¥|%. The inner product can be defined as:

wwwzfﬂmwﬂ%mﬂ (3.25)

with the unitarity condition:

Or(thrlibz) = 0. (3.26)

We can instead use the variable T' to define the inner product, i.e.

(ilvs) = [ AT Ty, T) (3.27)

which after substituting (3.22) yields
(W1 ipn) = / da A (a) As(a). (3.28)

3.1.1 Classical Equations of Motion

Regarding the classical Friedman equations, we note that the first one is nothing but

the Hamiltonian constraint H = 0:

b+ k= (3.29)

qlt3w ’

which will take the usual form if we use the equation of motion for a with N = 1:

i = {a,H} = Nb. (3.30)
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Furthermore, substituting the above equation (again with N = 1) in (3.33), we get the
second Friedman equation

143w m

> - (3.31)

a=—a

To describe the motion of the peak of the wave function, we must introduce the

group velocity associated with each physical time, defined on {b,T;} space as

Cgi = ;;Z = % (3.32)
Using the equations of motion for b
b:{@H}:—Nléﬁﬂ%E; (3.33)
and for T;
ﬁ:{aﬂ}:—wagigﬂgﬂ?i (3.34)
we obtain
Cyi = % — h(b) = 5—;’( - % (3.35)

which comparing with (3.32) shows that the classical trajectory for a single fluid is

X=T,. (3.36)

We should now highlight the following: radiation (w = 1/3) time is minus the

conformal time

(3.37)

P (3.38)
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"matter" (w = 0) time is proportional to proper cosmological time (for N = 1)

T = —— 3.39
5o (3.39)
1

& T,=—-——t 3.40
v (3.40)

and lambda (w = —1) time is proportional to Misner’s volume time [35]

. Na®A?

T, = 5 (3.41)

Thus, instead of using ¢ as a time coordinate, we consider the physical times 7}, which
are all a function of ¢, classically and on-shell, but quantum mechanically they are all
independent variables.

It is now important to pause and analyse this new connection representation picture.
Rather than using the conventional description with a = a(t) we consider b = b(T),
which is completely equivalent from a classical point of view. Thus, expanding and
contracting universes have, respectively, b > 0 and b < 0. A static universe is described
by b = 0. Also, for a given single fluid content, b can either increase for w < —1/3,
decrease for w > —1/3 or remain unchanged for w = —1/3. Hence, a bounce in b

corresponds to a universe transitioning from a decelerated to an accelerated expansion.

3.2 Multi-time

In the case where we consider the model with multiple fluids (i.e. including the sum
over 7 in (3.7)), we will have to deal with multiple times. Thus, we need to introduce the
vectors ai, representing all the constants associated with the fluids we are considering,
and T which are their conjugate times. In this way, we will no longer get a Schrodinger
equation like (3.16), but instead a PDE in all the different times obtained by doing the
replacement:

a — ibor, (3.42)
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which leads to

H[b, a®, o — ihO|Y = 0, (3.43)
with general solution:

(b, T) = / daA(a)e Ty, (b, o) (3.44)

and (b, ) solves the WDW equation with constant a as before. It’s important to
note that, in general, this 14(b, ) can be more complicated than the one in (3.21),

having the general form:
= 1/;8([); a) = N@%P(b’a), (345)

We now see that for the more realistic cases, we either no longer have a "linearizing"
variable or if we do, it will not only be a function of b, but a function of o as well.
Therefore, it is better to get back to the variables b and T and identify MSS as a

dispersive medium, with dispersion relation given by:
a-T— P a)=0. (3.46)

Assuming that A(a) is factorizable and peaked around ag we can write

which allows (3.44) to get the approximate form:

V(b T) ~ o5 [P(b:00)—ao T H / d&iA(ai)e*%(aham)(Tﬁng)7 (3.48)
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where the first factor represents a monochromatic wave centred in o and the second

describes an envelope moving according to:

oP
T=o—| .
86%
«@Q
Hence, by dotting this equation,
. 2P .
T = b,
abaOéZ
the group velocity defined on {b, T;} space:
db b
Cqgi = = —
dﬂ (s 79) 7-;

can be written as

(PPN
o = 8041819 '

3.3 Pure A Universe

(3.49)

(3.50)

(3.51)

(3.52)

We start by illustrating the above analysis for the cosmological constant A. The impli-

cations are a combination of results from unimodular gravity [10, 16] and the concept

of Chern-Simons time [36] with a reinterpretation of the latter. In this case we have

w = —1 and the Hamiltonian (3.7) takes the form:

_ 3
N 87TG()

Hence, the Hamiltonian constraint equation (3.8) gives

i2A
9V,

[—(k;+b2) -

Na [—(k: +b%) + %aQ] :

ab:| ¢s =0

(3.53)

(3.54)
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whose solution is the Chern-Simons state reduced to MSS (that we will recover next):

.9V, (g—i—bk)

Yes = Ne B (3.55)

This is a pure phase which is the product of a "frequency" proportional to 1/A and
the Chern-Simons time.
We can now apply the treatment introduced in the present chapter to (3.53) to

write it in the same form as (3.9), from which it is straightforward to obtain

A
== 3.56
=2 (356)
hi(b) = (b* + k)" (3.57)
w=S=¢ (3.58)
i= =9 .
Following the same procedure we then have the commutator [¢, Ty = % and so we

are left again with the same Schrodinger equation as (3.16), where T, = p, is the
conjugate momentum of ¢ identified as the time variable. The "spatial" part ¥, will
also obey equation (3.19) and so it is given by (3.21). Thus, the only thing left to do
is to compute X;(b), still defined by (3.20):
b3
Xi(b) = X, = / (B + ) =+ kb (3.59)
which is exactly the Chern-Simons functional in MSS and gives the Chern-Simons state
we got in (3.55).
Our interpretation of Chern-Simons time is however different from that of Smolin

and Soo [36, 37]. The full monochromatic solution is then
(b, Ty) = Nev®Xe®)=To) (3.60)

Time evolution happens in terms of a time that is the conjugate of 3/A, rather than

the Chern-Simons functional. Also, X,(b) = Im(Ycg) is a spatial variable, not a time.
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Having enlarged our phase space by promoting A to a variable, we can now write

the general solution as a superposition of these plane waves:

wbTy) = [ doA(e)ei 0T (3.61)

We now consider three interesting cases for different amplitudes A(¢). First, we
can have a completely undetermined ¢, this being done with A(¢) = 5=, which leads

to
(b, Ty) = 6(Xy — Ty). (3.62)

This is interpreted as a light "ray" in MSS with a time 7Ty fully fixed by X,. We
thus see that a total delocalization in the cosmological constant is associated with an
infinitely sharp clock. This solution was also interpreted as a conformal constraint in
the parity-even branch of quasi-topological theories, in which A is allowed to vary as a
result of adding a Gauss-Bonnet topological term [38, 39, 40].

On the other hand, if we consider a fully fixed A, A(¢) = d(¢ — ¢o), we obtain:

w(b’ T¢) — e%¢O(X¢(b)—T¢)_ (363)

This is the Chern-Simons state in the usual EC theory, where A is fully fixed: an
infinite plane wave moving at the speed of light, however completely delocalized such
that time disappears. Thus, we highlight an important fact: infinitely sharp constants
are failed clocks.

The last important case are coherent states centred around a fixed value of Lambda,

given by a normal distribution:

o (¢ZU¢§))
Ag) = ro?) A (3.64)
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Performing the integration in (3.61) we arrive at

(Xob) — T + Lou(Xp(0) ~Tp)| . (3.65)

W(b, Ty) = (870°)/*exp [~ ;

b?
from which we can read the saturated Heisenberg uncertainty principle:

O70 = g (3.66)

All the above analysis is equally valid for any single fluid universe (any «), only

X (b) will be different case by case.

3.4 Radiation Domination

For the case of a radiation dominated universe the equation of state is w = 1/3. Thus,
substituting w back in equations (3.11) and (3.12) and keeping m; = m as a constant

one gets

hi(b) = b* + k (3.67)

a; =m. (3.68)

Once again we need to solve both the effective Schrodinger and the WDW equations
and, the only object that differs from the previous section, is the function X;(b) which

is now given by

b
db arctan<7E>
X,b)=X,= | —— = —7 k>0 3.69
1
b7 ( )

arctanh(—=)
= _—\/W’ k< O0. (3.71)

VI
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This should be seen as the equivalent to the Chern-Simons functional but for a radiation
dominated universe. The general solution is again a superposition of monochromatic

plane waves

i 25em (X, (b)~Tr)

m@:/ﬁmmmﬁﬁm | (3.72)

3.5 A plus Radiation

We consider now a model with two fluids, dark energy (w = —1) and radiation (w =

1/3). Hence, the Hamiltonian (3.7) takes the form

3V. a> m
H—SWGONCL (—g—l—E—F?) =0, (3.73)
where
3
o= A (3.74)
o= (6,m) (3.75)
g=k+b (3.76)

and with the usual Hamiltonian constraint:
H=0. (3.77)

From this we can solve for a® to obtain

4
= —ga®+ % +m=0 (3.78)

I R g/; /o (3.79)
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which allows us to write the Hamiltonian constraint in the form of two constraints:

1

H = 5( ?—a2)(a®* —a2)=0 (3.80)
=  Hi=hi(b;m/¢)a* — ¢ =0, (3.81)
b (b m /) = - (3.82)

—.
gE4/g*>—3Am

As opposed to the single fluid case, Hy now depends on the constants . Having the
Hamiltonian written in this form we have everything we need as in the previous cases

to get 1, through

(—ibh+(D)0y — ¢) Psx = 0 (3.83)
= du(bim/g) = Nei®=0) (3.84)

with X4 given by
|
X (b; Am) = / b (g + /2 — 4m/¢> . (3.85)

2

Furthermore, a® must be real which means that

g* > %. (3.86)

Taking now the limit g% >> 4m/¢, we get in first order, for each branch +/—

X, ~ / dbg = X, (3.87)
m db
KXo E/ b2 + k

Substituting these in 1,1 shows that, at this order, each branch corresponds to pure

m
= 5% (3.88)

A or pure radiation domination:

Ui (b;m) @) 2 New?¥e) (3.89)

by (b;m/¢) ~ Nen™Xr®), (3.90)
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We can see that 1, is a piecewise function where each branch corresponds to each
dominating constant and the respective X;. Thus, for ¢ > 0 (expanding universe),
we have a transition from a decelerated (b < 0) to an accelerated (b > 0) expansion
manifested by a "bounce" in b space at g? ~ 4m/¢.

Let us now examine what happens when we consider the next order terms in the

expansion. Therefore, we have:

m m
X %/db( ——):X——XT 3.91
+ g 90 ¢ P (3.91)
m [db m? db m m? db
X%—/——F—/—:—Xr—i-— —. 3.92
o) g *J g 9 ®* J g° (3.92)

This yields the following branches for the wave function:

Vo (bym/)p, Ty, Ty) = Neb[#(Xs(0)=T1)=m(X:(b)+T2)] (3.93)

b (bym/6, Ty, Ty) = Neb [2(3 551 #m 0] (3.94)

We can now observe that deep in the Lambda epoch the wave function factorizes (as

long as the amplitude A(a) factorizes) and so we can write
’l/J+<b, m/(]ﬁ, Tl,TQ) = Fl(X¢ —Tl)FQ(XT—i—TQ) (395)

Thus, the two times are quantum mechanically independent and the classical trajec-
tories for each plane wave are X¢ = Tl and Xr = —Tz. This factorization does not
happen in the radiation epoch and we no longer have a plane wave in the minority
clock (A time). Nevertheless, the wave packet’s peak still follows the correct classical

trajectory, as we can see through the group velocity:

L0 (m? o fdb\ T
Cg_%%(?/?)‘? (3.96)
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that leads (using the equation of motion for 77) to

m
a3’

h= —N (3.97)

which is the second Friedman equation for a radiation universe.
We can now compute exactly the group velocities associated with each cosmological

time for a peaked distribution. The function P(b, &) defined generally before is now

PL=¢X, (3.98)
and the group speeds are:
b < 9*P >1 (3.99)
Cgl — — = .
ot Tl peak agbab
b 2P\
= — = ) 3.100
o2 T2 peak < Omob ) ( )

After computing these derivatives and using the following relations

¢
hy = pe (3.101)
a> m
a:  m
a
we arrive at
0?P 1 m 1 at/?
- 4 = 3.104
0¢0b  hy ¢ /g2 —4m/p a*/Pp—m/a? ( )
2

oP ! ! (3.105)

Omob i\/m ~ a2Jo—mjd?
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and so

& (a® m
a2 m

Indeed we see that the group velocity with respect to each T; is the same for both

branches and, using

CL3

T, ={T\,H} = NE (3.108)

. N
Ty ={Ty,H} = ——, (3.109)

a

we check that the peak moves according to the classical trajectory
. a m

b={b,H} =N|-—— 3.110
o =n(5-%). (3.110)

as we just recover the second Friedman equation for this universe.

3.6 Scalar Field as a Cosmological Clock

Let us now consider that the matter action is given by a massless scalar field [41]:

1
- / leapeae® R — 167Gy do(xdd)), (3.111)
0

where GG is the fixed gravitational constant, GGy is the gravitational coupling to matter
up to be "deconstantized" and ¢ is the scalar field. xd¢p = %ewaﬁ(?“(bdx”d:vadxﬁ is the

Hodge dual of d¢. Reducing to MSS, the action takes the form:

. 1
/ dt {baQ + Na(? + k) + 257G

5=V
23

N 87TGO

3V, w . 5 1 3 9
G /dt {ba + Ty a ( (b°+ k) N 47r¢>] (3.113)

. a3
¢2N] = (3.112)
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with

Ty = — = Gno—~, (3.114)

Gy = . (3.115)

Thus, once again we get the Hamiltonian constraint

2

H=—(*+k)+—2 =0, (3.116)
2G4GN

which can be simplified to the usual form

= h(b)a® — ajay =0 (3.117)
where
h(b) = Vi + 2 (3.118)
1
ap = —— (3.119)
2Gn
g = Ty, (3.120)

In order to have «; as a phase space variable the action (3.113) gets an extra term:

3Ve .

o

and T} is the time conjugate to ;. Also, as ¢ is the conjugate variable to 7,4, we have
the scalar field being identified as a time variable T, = —¢.

In the representation diagonalizing b, T} and T, we therefore transform the Hamil-
tonian constraint, not in a timeless WDW equation, but in a double-time Schrodinger

equation:

82
<—z’hh(b)8b + h28T18T2) Y =0. (3.122)
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The solution to this equation is then the general wave function written as a superpo-

sition of plane waves:

Y(;Th, 1) = /dald(mA(Oél,a2)€é[X(b)a1a2alTlaQTQ],

where

db b
Xb)=[| — =arctanh———, k>0
(0) /h(b) Vb2 +k
=logb, k=0
b
= arctanh—————, k£ <0
b* — |k|

is the linearizing variable for w = 1.

The equations of motion for ¢ and 74 are

o= o H) = 2™

G]\[a3

7:(¢:{7T¢>H}:07

(3.123)

(3.124)
(3.125)

(3.126)

(3.127)

(3.128)

where from the second equation we see that as is a conserved quantity, as expected

since H is not time dependent. The same is true for a;.

The group velocities with respect to each physical time are defined as

db

b
Cqi = = -

and using the equations of motion for both b and T; we obtain:

. Oé20é2
b={b,H} = —2N ;52
2
. [e5)e%
le{ThH}:_QN CL32
2
TQI{TQ,H}——QN 3

a

(3.129)

(3.130)
(3.131)

(3.132)
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which leads to

Cg1 = ﬁ (3133)
Cpr = % (3.134)

On the other hand, we can use the dispersion relation for the medium given by
P(b,ay,a2) —a-T =0, (3.135)
where for the case in (3.123), P(b, aq, az) is simply
P(b, a1, ) = X(b)ajas, (3.136)
to obtain the group speed introduced before:

o2p \

Hence, computing the derivatives and using (3.11