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We promote the constants of nature to dynamical variables of which the canoni-

cal conjugates define a cosmological time. Each constant is connected to a different

time. We extensively analyse the formalism behind this proposal, from single fluid

to multi-fluid models. Specifically, we show that for the former the Hamiltonian con-

straint equation becomes an effective Schrodinger equation in the corresponding time,

solved in the connection representation by monochromatic plane waves. We further

show that for more than one fluid it is recommended to identify mini-superspace as

a dispersive medium and we examine the motion of the peak of wave packets as well

as the transition regions between dominating constants. Finally, we carry out original

work, introducing a massless scalar field as a cosmological clock and simultaneously

targeting the gravitational constant, GN , to be the conjugate of another time variable.

The aim is to explore a toy-model where we have more than one physical time in the

same epoch. A double-time Schrodinger equation is obtained. We further analyse dif-

ferent types of possible solutions, with special focus on a fully semi-classical state in

both constants, arriving at a two-time setting uncertainty principle. We close with a

brief examination of a mixture between a scalar field and a radiation fluid in which

three different clocks are present.
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Chapter 1

Introduction

1.1 The Problem of Time

The Problem of Time is a very well known issue one has to deal with when trying to

unify General Relativity and Quantum Theory [1, 2, 3, 4]. This appears as a result

of the different interpretations of time in both theories. Einstein’s theory of gravity

is diffeomorphism invariant, i.e. one works with equations that transform covariantly

under changes of spacetime coordinates, which leads to frame independent physical

results. On the other hand in Quantum Mechanics the notion of time [5] originates

from Newtonian physics, where time is absolute and external to the system. Hence,

time cannot be seen as a physical observable as it is not represented by a quantum

operator, being solely used to mark the evolution of the system.

Further conceptual issues arise from the problem of time [1]. For instance the status

of causality and unitarity, the meaning of spacetime and the emergence of our classical

universe from some primordial quantum event in the big-bang.

Thus, how can we re-introduce the notion of time in a quantum theory of gravity?

A considerable amount of work has been done in order to answer this and many other

questions [1]. There are currently three main approaches to this conundrum: identify

time before quantisation, after quantisation or assuming time plays no fundamental

role in the theory. In the first one, the canonical constraints are solved before quan-

tisation. Time is identified as a functional of canonical variables and one looks for an

effective Schrodinger equation. The second approach works in an opposite manner as
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the constraint equations are solved after quantising the system and time is identified

only following this procedure. Also, the most important constraint is the WDW equa-

tion, whose solutions are functionals of the spatial metric. In the third scheme the

aim is to treat time in the same way as in GR which consequently leads to a purely

phenomenological way to grasp the notion of time with no fundamental conception in

quantum theory. These schemes are extensively analysed in [1]. Different perspectives

and discussions were also undertaken [6, 7, 8].

We should also note that most of the attempts to solve this issue are performed

through finite dimensional models free of UV divergences. This is because quantising

the field equations of GR in canonical quantum gravity leads to a non-renormalisable

theory.

A rather interesting way to address the problem of time in GR is to identify events

in a spacetime with the position of physical particles. For example, the value of a

scalar field defined on a manifold M of a given particle is coordinate independent and

so it is an observable. Notably, the value of the scalar field φ might be determined at

that event where a group of fields takes on a given set of values. These fields can be

expressed through matter distributions or they can be part of the gravitational field

itself. Most approaches to the problem of time revolve around such notions. This

underlines the important fact that a local time coordinate in spacetime is not enough

to get a physical definition of time. For instance in the real world an observer measures

time using the proper time along its worldline, which is a Lorentz scalar quantity and

acts simultaneously in spacetime points as well as in the metric. More specifically,

the proper time along the geodesic connecting the beginning and end points of the

world-line is an intrinsic property if the points are labelled using internal coordinates.

Labelling spacetime events using spatial reference frames and physical clocks is of

great importance, both in the classical and quantum theories of relativity. For quantum

theory, there is another relevant problem raised by the example of proper time described

above. The calculation of a range of proper time uses the spacetime metric, and

thus it is only meaningful when the equations of motion are solved [1]. Unlike in
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classical theory there are difficulties in any theory in which the geometry of spacetime

has quantum fluctuations, having no fixed value and therefore time may become a

quantum operator. This is a problematic concept that is not included in standard

quantum theory.

1.2 The Cosmological Constant Problem

Another fundamental issue in physics is the values of the constants of nature [9]. Re-

gardless of our ability to measure them, we still have no scientific method to explain

or determine these numerical values.

The cosmological constant problem [10, 11, 12, 13, 14, 15] is by far the most sig-

nificant one: the predicted value for the cosmological constant from vacuum energy

contributions in quantum field theory is at least sixty orders of magnitude bigger than

the observed value for this constant [15]. Simple QFT calculations show that this vac-

uum energy is at least ρvac & (TeV)4. Furthermore, we cannot define ρvac to be our zero

point energy because according to general covariance and the equivalence principle, all

sorts of energy generate curvature and therefore, gravity. By Lorentz invariance, the

energy-momentum tensor associated with this vacuum is Tµν = −ρvacgµν . Looking at

Einstein equations (Rµν− 1
2
gµνR+Λgµν = 8πGTµν) this is equivalent to defining a total

vacuum energy, ρT = ρvac + Λ
8πG

, which, according to observational measurements, is

upper bounded by ρT . (meV)4. In this way, Λ needs to be fine-tuned by at least

sixty decimal places. However, this is just the beginning of the problem [12]. The real

issue is radiative instability rather than simply fine tuning, since when one performs

perturbation theory to renormalize the vacuum energy, the amount of refinement one

has applied to Λ is independent of the number of loop contributions in the calculations.

This means that the bare cosmological constant needs to be retuned with extreme pre-

cision at each order in perturbation theory. Therefore, it is useless to, for example, fine

tune the first loop contribution as it will be unstable in higher order loops. Indeed, this
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illustrates the high sensitivity of the vacuum energy regarding the unknown aspects of

UV physics.

One attempt to solve the problem is to consider a gauge fixed version of GR known

as Unimodular gravity [16, 10, 15]. This theory originates from the Einstein-Hilbert

action subject to the constraint
√
−g = 1 and therefore δ

δgµν

√
−g = 0 where g =

det gµν . This implies a reduction of the set of diffeomorphism transformations that

are possible in GR. In infinitesimal form those can be written as δgµν(x) = ∇µkν +

∇νkµ, where kµ is a gauge vector. Hence, by imposing the unimodular condition

we get −1
2

√
−ggµνδgµν = ∇µk

µ = 0, which represents the reduced set of transverse

diffeomorphism transformations.

The restricted Einstein-Hilbert plus matter action, SM is then:

S =
1

16πG

∫
d4x
√
−gR + SM −

∫
d4xλ(x)(

√
−g − 1) (1.1)

where λ(x) is a Lagrange multiplier. Variation with respect to this scalar gives the

constraint
√
−g = 1. The metric field equation is given by

Rµν −
1

2
gµνR + 8πGλgµν = 8πGTµν , (1.2)

where Tµν = −2√
−g

δSM
δgµν

. Taking the trace of (1.2) we obtain

λ =
1

4

(
T +

R

8πG

)
, (1.3)

and substituting this back in (1.2) we get the traceless Einstein equations:

Rµν −
1

4
gµνR = 8πG

(
Tµν −

1

4
gµνT

)
. (1.4)

Taking the divergence of (1.2) and considering both energy-momentum conservation,

∇µT
µν = 0, and the contracted Bianchi identities, ∇µR

µν− 1
2
∇νR = 0, implies ∂µλ = 0,

i.e. λ is an integration constant. Thus, we found that the dynamics of this theory are



1.2. The Cosmological Constant Problem 5

equivalent to GR, with a cosmological constant given by Λ = 8πGλ. In this manner

the integration constant λ, suffers from the same radiative instability as Λ in GR and

therefore unimodular gravity does not bring any new perspective to the cosmological

constant problem.

An important contribution to this problem is Weinberg’s no go theorem which states

that it is not possible to add extra fields to the matter action in order to correct the

large vacuum energy without fine tuning. Hence, any attempt to solve the problem

should explain how to get around it. Weinberg also described five approaches to the

cosmological constant problem [14]. Some of them are supersymmetry, supergravity

and superstrings, as well as quantum cosmology, the latter being the most promising

one. All these approaches reveal that any possible solution to the cosmological constant

problem will probably have a wide impact in multiple areas of physics and astronomy.

1.2.1 Sequestering the Vacuum Energy

A more promising way to address the problem, known as The Sequester, was recently

suggested by Padilla and Kaloper [17, 18, 19]. We consider a coupling between GR and

a quantum matter sector which contains the Standard Model. Λ, the usual cosmological

"constant", now plays the role of a dynamical variable which is a spacetime constant

but can be varied in the action. The aim is to have Λ cancelling the Standard Model

vacuum energy. The sequestring action is then

S =

∫
d4x
√
−g
[
M2

p

2
R− Λ

]
+ Sm + σ

(
Λ

λ4µ4

)
, (1.5)

where µ is a mass scale, σ
(

Λ
λ4µ4

)
is the sequestering function which is odd and differ-

entiable and should be determined by phenomenology and λ is a dynamical variable

that balances the scales between matter and the Planck mass. The matter action is

given by

Sm = −
∫
d4x
√
−gλ4Lm(λ−2gµν ,Ψ) (1.6)
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and we can write g̃µν = λ2gµν , with the associated stress-energy tensor:

Tµν =
−2√
−g

δSm
δgµν

=
−2λ4

√
−g̃

δSm
λ2δg̃µν

= λ2T̃µν , (1.7)

T µν = λ4T̃ µν . (1.8)

Therefore, varying the action with respect to the metric, λ and Λ we get the following

equations of motion:

M2
pG

µ
ν = −Λδµν + λ4T̃ µν (1.9)∫

d4x
√
−g =

1

λ4µ4
σ′
(

Λ

λ4µ4

)
(1.10)

4Λ

λ4µ4
σ′
(

Λ

λ4µ4

)
=

∫
d4x
√
−gT, (1.11)

where T = T µµ .

An important point that we can extract from (1.10) is that the spacetime volume

should be finite, meaning the universe will end in a Big Crunch. σ is assumed to be

differentiable and if the spacetime volume was infinite then we would need λ = 0,

which cannot happen since it would mean that all particles in the Standard Model

were massless.

Combining (1.10) and (1.11) we can determine Λ and arrive at

Λ =
1

4
〈T 〉, (1.12)

where 〈T 〉 =
∫
d4x
√
−gT∫

d4x
√
−g . Substituting this back in to (1.9) yields

M2
pG

µ
ν = T µν −

1

4
〈T 〉δµν . (1.13)

The energy-momentum tensor can be separated in two parts: Vvac associated with the

vacuum energy from the Standard Model loops and τµν describing local excitations

about this vacuum. In equation form, T µν = −Vvacδµν + τµν , and consequentially we have
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T = −4Vvac+τ . Thus, the vacuum energy drops out of the gravitational field equations

which take the form:

M2
pG

µ
ν = τµν −

1

4
δµν 〈τ〉. (1.14)

This is exactly what we needed! The dynamics are no longer dependent on the vacuum

energy and instead are only determined by matter excitations, which means that we

have a radiatively stable effective cosmological constant, Λeff = 1
4
〈τ〉, no longer sensi-

tive to loop corrections at any order in perturbation theory and stable enough to be

trusted as a "yardstick for cosmology" [12]. This theory is still being developed and a

significant amount of work still needs to be done. Kaloper and Padilla later suggested

an improvement to this theory by changing to a manifestly local theory [20], the main

differences being that the effective cosmological constant will be fixed by the ratio of

two integration constants and the spacetime volume no longer needs to be finite. The

manifestly local action is given by

S =

∫
d4x
√
−g
[
κ2(x)

2
R− Λ(x)− Lm(gµν ,Ψ)

]
+

+
1

4!

∫ [
σ

(
Λ(x)

µ4

)
Fµναβ + σ̂

(
κ2(x)

M2
p

)
F̂µναβ

]
dxµdxνdxαdxβ, (1.15)

where Fµναβ = 4∂[µAναβ] and F̂µναβ = 4∂[µÂναβ] are two 4-forms, invariant under

Aµνα → Aµνα + 3∂[µBνα] and Âµνα → Âµνα + 3∂[µB̂να] respectively. This guarantees

that Λ and κ2 = M2
p/λ

2 are constants on shell. The functions σ and σ̂ are arbitrary

and smooth.

We can therefore compute the equations of motion for this action. Starting with

the metric equations, using the Palatini identity

δRµν = ∇αδΓ
α
µν −∇νδΓ

α
αµ (1.16)
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which leads to δR = Rµνδg
µν − gµν�δgµν +∇µ∇νδgµν we get

κ2Gµ
ν = (∇µ∇ν − δµν�)κ2 + T µν − Λδµν , (1.17)

where Tµν is again given by

Tµν =
−2√
−g

δSm
δgµν

. (1.18)

The rest of the field equations are obtained through variation of the action with respect

to Λ, κ2, Aµνα and Âµνα yielding:

Fµναβ
σ′

µ4
= εµναβ (1.19)

F̂µναβ
σ̂′

M2
p

= −R
2
εµναβ (1.20)

σ′

µ4
∂µΛ = 0 (1.21)

σ̂′

M2
p

∂µκ
2 = 0, (1.22)

where εµναβ =
√
−geµναβ is the Levi-Civita tensor and eµναβ is the Levi-Civita symbol.

The last two equations show that Λ and κ2 are integration constants. Tracing (1.17) and

using (1.22) yields κ2R = 4Λ− T . Then, taking the spacetime average and combining

this with (1.19) and (1.20) gives

Λ =
1

4
〈T 〉+ ∆Λ, (1.23)

∆Λ =
1

4
κ2〈R〉 = −κ

2µ4σ̂′

2M2
pσ
′

∫
F̂∫
F

(1.24)

and by substituting back in (1.17) we arrive at:

κ2Gµ
ν = T µν − δµν∆Λ− 1

4
δµν 〈T 〉. (1.25)
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Considering again the same splitting of the stress-energy tensor, T µν = −Vvacδµν + τµν ,

(1.23) takes the form

4Λ + 4Vvac = 〈τ〉+ κ2〈R〉. (1.26)

From the traced gravitational field equation we get κ2R = 4Λ+4Vvac−τ which together

with (1.26) leads to

κ2(R− 〈R〉) = −(τ − 〈τ〉). (1.27)

Using again the equation for Tµν and (1.27), (1.25) can be written as

κ2

(
Rµ
ν −

1

4
δµνR

)
= τµν −

1

4
δµν τ. (1.28)

Finally, using the equations of motion for the 4-forms and taking the respective

Hodge duals we obtain:

?F =
1

4!
εµναβF

µναβ = −µ
4

σ′
= 〈?F 〉 (1.29)

?F̂ =
R

2

M2
p

σ̂′
, (1.30)

from which we get:

?F̂ − 〈?F̂ 〉 = −
M2

p

2κ2σ̂′
(τ − 〈τ〉). (1.31)

Consequently, (1.24) can be written as

∆Λ = − κ2

2M2
p

σ̂′〈?F̂ 〉. (1.32)

We should now highlight some important aspects of this theory. From equations (1.29)

and (1.31) we see that the form sectors are radiatively stable. Hence, according to
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equation (1.32) the same holds for ∆Λ. In (1.26) the right hand side is stable, however

we know that Vvac is not, which means that Λ will absorb large radiative corrections

from the vacuum energy. Moreover, (1.27) and (1.28) are the gravitational field equa-

tions and they describe the same theory as GR except with the advantage that the

UV sensitive part of the vacuum energy is now absorbed/cancelled by ∆Λ. Also, the

residual finite cosmological constant needs to be fixed by observational data and it is

completely stable against any additional radiative corrections to Vvac without the need

for fine tuning. Therefore, this theory is a consistent starting point for the definition

of the Feynman path integral but there is still a broad range of topics to investigate

such as inflation and phase transitions.

1.3 Overview

It has been recently suggested that the value of the constants of nature and the problem

of time in GR could be somehow related [21]. Time is the physical way to describe

changes whereas the constants of nature are by definition fixed parameters. Thus, one

might wonder if these two completely different concepts could be in fact complementary

quantum variables just like position and linear momentum.

In this work we promote these constants to phase space variables and we adopt

their canonical conjugates as cosmological clocks. However, given the wide range of

choices available [22], one should be careful in selecting a constant that provides a

clear separation of space and time for a specific region of phase space. Thus, we end

up having times conjugate to the cosmological constant Λ or the gravitational constant

GN , depending on the epoch in which we are living. Foremost, we need to pay special

attention to multi-time situations since we have to deal with the handover from one

clock to another during transition regions.

We will examine the problem in mini-superspace, i.e. an homogeneous and isotropic

universe, in the connection representation. This requires starting from the Einstein-

Cartan action and reduce it to MSS.



1.3. Overview 11

That said, it’s important and pedagogical to start this work by introducing the

EC formalism, which is done in the beginning of Chapter 2. We then introduce the

Ashtekar variables, fundamental in the Hamiltonian formulation of GR, and the real

Chern-Simons state, the latter being the solution to the real Hamiltonian constraint

equation. To conclude this chapter we compute the real CS state for a Friedman-

Robertson-Walker universe, which will be recovered later in Chapter 3 using a different

approach.

Finally, in Chapter 3 we introduce and develop the necessary concepts to promote

the constants of nature to off-shell dynamical variables, whose canonical conjugate vari-

ables will define a physical time. We start by considering a general single perfect fluid

model. From the Einstein-Cartan action we obtain the Hamiltonian constraint, which

becomes a Schrodinger equation in the time associated with the constant dominating

the dynamics of the system. This equation can be solved in the connection repre-

sentation by outgoing monochromatic plane waves. Subsequently, we generalize for a

multi-fluid universe and so we need to deal with more than one time. In particular, we

consider a mixture of dark energy and radiation since the calculations are simpler, but

models with other elements display similar qualitative behaviour. Lastly, we consider

a universe dominated by a real scalar field coupled to gravity by a "deconstantized"

gravitational constant, the two quantities being associated with two distinct cosmolog-

ical times that occur in the same epoch. This might bring some new implications to

the table when compared to the previous multi-fluid models.
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Chapter 2

Einstein-Cartan Formalism and the

Real Chern-Simons State

In this chapter we briefly introduce the Einstein-Cartan formalism. We present the

Cartan structure equations and use them to calculate the connection 1-form and the

Riemann curvature 2-form for the FRW metric. This allows us to derive the EC

action in mini-superspace which will be the starting point for the proposals we will

develop throughout this work. We further introduce the new Ashtekar variables and

the 3 + 1 split [23] of the EC action that leads to the Hamiltonian formulation of GR

[24]. Finally, we present the solution to the real Hamiltonian constraint, known as the

Chern-Simons wave function, and compute it particularly for an homogeneous universe.

This last quantity is important for the analysis done later in this thesis.

2.1 Einstein-Cartan Action in MSS

In this section we introduce the tetrad formalism in order to obtain the reduced form

of the Einstein-Cartan action in MSS for the FRW metrics.

The transition from a general spacetime with metric gµν to flat Minkowski spacetime

is done through the tetrad basis transformation [25]:

gµν = eaµe
b
νηab, (2.1)
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where we are using Latin indices for the Lorentz group and Greek indices for spacetime.

We also assume det eaµ 6= 0, which means the previous relation is invertible. Then,

ea = eaµdx
µ are 1-forms that define a non coordinate basis in this space from which we

can get the invariant line element in the form:

ds2 = ηabe
a ⊗ eb. (2.2)

This description is quite practical for a diagonal metric as the tetrad components can be

easily read off. Furthermore, the torsion 2-form is defined by the 1st Cartan equation:

T a = Dea = dea + Γabe
b, (2.3)

where Γab = Γaµ bdx
µ is the connection 1-form associated with the exterior covariant

derivative D and we are omitting the wedge product symbol (∧) between differential-

forms. The last object we need for the EC action is the curvature 2-form defined by

the 2nd Cartan equation:

Ra
b = dΓab + ΓacΓ

c
b. (2.4)

Hence, we can now apply this formalism to the FRW metric [26], which is given by

ds2 = −N(t)2dt2 + a(t)2

[
dr2

K(r)2
+ r2(dθ2 + sin2 θdφ2)

]
, (2.5)

where K(r) =
√

1− kr2, k = 0,−1, 1 for a flat, closed or open universe respec-

tively, N(t) is the lapse function and a(t) is the scale factor. The signature of the

Minkowski metric should match the spacetime metric and for this reason we have

ηab = diag(−1, 1, 1, 1).
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Thus, the tetrad basis associated with this metric is

e0 = Ndt (2.6)

e1 =
a

K
dr (2.7)

e2 = ardθ (2.8)

e3 = ar sin θdφ. (2.9)

Using now the 1st Cartan equation for zero torsion, T a = 0, and computing the exterior

derivative of the tetrad basis

de0 = 0 (2.10)

de1 =
b

a
e0e1 (2.11)

de2 =
b

a
e0e2 +

K

ar
e1e2 (2.12)

de3 =
b

a
e0e3 +

K

ar
e1e3 +

cot θ

ar
e2e3, (2.13)

we can read out the components of the connection 1-form for this spacetime to get

Γi 0 =
b

a
ei (2.14)

Γ2
1 =

K

ar
e2 = Kdθ (2.15)

Γ3
1 =

K

ar
e3 = K sin θdφ (2.16)

Γ3
2 =

cot θ

ar
e3 = cos θdφ, (2.17)

with b = ȧ/N . These determine all the components since we have Γab = −Γba and so,

Γi 0 = Γ0
i and Γi j = −Γj i.

On the other hand, the 2nd Cartan equation tells us how to compute the curvature

2-form. With a bit of algebra and computing the exterior derivative of the connection
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1-form

dΓ1
0 =

ḃ

Na
e0e1 (2.18)

dΓ2
0 =

ḃ

Na
e0e2 +

bK

ra2
e1e2 (2.19)

dΓ3
0 =

ḃ

Na
e0e3 +

bK

ra2
e1e3 +

b cot θ

ra2
e2e3 (2.20)

dΓ2
1 = − k

a2
e1e2 (2.21)

dΓ3
1 = − k

a2
e1e3 +

K cot θ

r2a2
e2e3 (2.22)

dΓ3
2 = − 1

a2r2
e2e3, (2.23)

one can compute all the components Ra
b and check that these can be written as

R0
i =

ḃ

Na
e0ei (2.24)

Ri
j =

b2 + k

a2
eiej. (2.25)

The Einstein-Cartan action is [25]

S =
1

32πG0

∫
εabcd

(
eaebRcd − Λ

6
eaebeced

)
, (2.26)

where G0 is the fixed value of the gravitational constant GN , εabcd is the Levi-Civita

tensor and Λ is the cosmological constant.

Hence, using (2.24), (2.25) and considering the relations

εabcde
aebRcd = 2ε0ijke

0eiRjk + 2εij0ke
iejR0k = (2.27)

= 2

[
b2 + k

a2
+

ḃ

Na

]
ε0ijke

0eiejek (2.28)

and

εabcde
aebeced = 4!e0e1e2e3 = 4!

Na3

K
r2 sin θd4x, (2.29)
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we finally arrive at

S =
3Vc

8πG0

∫
dt

[
ḃa2 −Na

(
−b2 − k +

Λ

3
a2

)]
, (2.30)

where Vc =
∫
drdθdφ r

2 sin θ
K

is the spatial volume of the universe. This is the EC action

in MSS.

2.2 Real Chern-Simons State

The aim of this section is to derive the real Chern-Simons state [27] which is the

solution to the real Hamiltonian constraint equation. We start by considering again

the Einstein-Cartan action:

S =
1

32πG0

∫
εABCD

(
eAeBRCD − Λ

6
eAeBeCeD

)
, (2.31)

where the Lorentz group indices are now A,B,C, .... We then introduce the Ashtekar

Self-Dual SU(2) connection [27, 28, 29, 30]:

Ai = Γi + iKi, (2.32)

where

Ki = Γ0i (2.33)

Γi = −1

2
εijkΓ

jk (2.34)

and the indices i, j, k, ... represent SU(2) components, corresponding to the spatial part

of the Lorentz group. The generators we will consider for this group are ti = −iσi/2,

where σi are the Pauli matrices. The generators obey the commutator [ti, tj] = εijktk

and the trace identities Tr(titj) = −1
2
δij and Tr

(
titjtk

)
= −1

4
εijk,where εijk is the

Levi-Civita symbol. Therefore, the connection can be written in the generator basis as
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A = Aiat
idxa, where the indices a, b, c, ... denote the spatial components of spacetime.

The field strength tensor associated with A is F = dA + AA, which in components

reads F i
ab = ∂aA

i
b − ∂bAia + εijkA

j
aA

k
b .

At this point, one might wonder if having a complex SD connection makes the

theory also complex. However, this is not the case since the action is real and we

can write everything in terms of the real variables Ki and Γi. This construction is

useful in the sense that we can solve the real Hamiltonian constraint with a modified

Chern-Simons state built from the Ashtekar connection.

Hence, the EC action subject to a 3 + 1 split in the time gauge e0
a = 0 takes the

form [31]:

S =
1

16πG0

∫
dtd3x

[
2 Im ȦiaE

a
i − (NH +NaHa +NiG

i)
]
, (2.35)

where H, Ha and Gi are the Hamiltonian, diffeomorphism and Gauss constraints,

respectively [31]. Ea
i =
√
heai are the densitized inverse triads, with h = dethij. hij

is the spatial metric and eai are the inverse triads. Furthermore, the real Hamiltonian

constraint has the following form:

H = εijkE
a
i E

b
j

(
ReF k

ab +
Λ

3
εabcE

ck

)
= 0, (2.36)

substituting the complex one given by

H = εijkE
a
i E

b
j

(
F k
ab +

Λ

3
εabcE

ck

)
= 0. (2.37)

From (2.35) we find the Poisson bracket for the canonical conjugate variables ImAia

and Ea
i

{ImAia(x), Eb
j (y)} = 8πG0δ

b
aδ
i
jδ(x− y), (2.38)



2.2. Real Chern-Simons State 19

which after quantisation leads to the commutator

[ImAia(x), Eb
j (y)] = il2pδ

b
aδ
i
jδ(x− y), (2.39)

with lp =
√

8πG0~. Consequently we get

Ea
i (x) = −il2p

δ

δ ImAia(x)
. (2.40)

Thus, the constraint (2.36) in the ImAia representation becomes:

(
ReBkc − il2p

Λ

3

δ

δ ImAkc

)
ψ = 0, (2.41)

where F i
ab = εabcB

ci. The solution to this equation is

ψCS(A) = N exp

(
3i

l2pΛ
ImYCS

)
, (2.42)

where YCS is the Chern-Simons functional [32] given by

YCS =

∫
Tr

(
AdA+

2

3
AAA

)
= −1

2

∫ (
AidAi +

1

3
εijkA

iAjAk
)
. (2.43)

This last one solves the complex Hamiltonian constraint (2.37) since we have:

δYCS
δAia

= −1

2
εabcF i

bc = −Ba
i . (2.44)

To show that (2.42) solves (2.41) we start by decomposing the Ashtekar connection

in its real and imaginary parts [33] as Ai = αi + iβi. Accordingly, the imaginary part

of YCS is

ImYCS = −1

2

∫ [
αidβi + βidαi +

1

3
εijk(α

iβjαk + βiαjαk + αiαjβk − βiβjβk)
]

= −
∫ [

dαiβi +
1

2
εijk

(
βiαjαk − 1

3
βiβjβk

)]
(2.45)
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where from the first to the second line we computed an integration by parts in first

term and discarded the boundary term. In this way, it is straightforward to check that

δ ImYCS
δβic

= −1

2
εabc[∂aα

i
b − ∂bαia + εijk(α

j
aα

k
b − βjaβkb )] (2.46)

⇔ δ ImYCS
δ ImAic

= −ReBc
i , (2.47)

which proves our point.

2.2.1 Chern-Simons State for the FRW Metric

We now derive the Chern-Simons state and the EC action in mini-superspace. For the

FRW metric presented in the last section, the SD connection (2.32) is given by

A1 = cos θdφ+
ib

K
dr (2.48)

A2 = −K sin θdφ+ ibrdθ (2.49)

A3 = Kdθ + ibr sin θdφ (2.50)

and the inverse densitized triad components are:

Er
1 = a2r2 sin θ (2.51)

Eθ
2 =

a2r sin θ

K
(2.52)

Eφ
3 =

a2r

K
. (2.53)

Hence, the first term in the EC action reads:

S =
3Vc

8πG0

∫
dtḃa2 + ... (2.54)

The only other non zero contribution in MSS is the Hamiltonian term:

H =
1√
h
εijkE

a
i E

b
j

(
ReF k

ab +
Λ

3
εabcE

ck

)
, (2.55)
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which we can obtain through F i = dAi + 1
2
εijkAjAk and whose components are:

F 1 = (−1 +K2 − b2r2) sin θdθdφ (2.56)

F 2 =

(
−K ′ + b2r

K

)
sin θdrdφ (2.57)

F 3 =

(
K ′ − b2r

K

)
drdθ. (2.58)

Putting all these together we get:

H =
K

a3r2 sin θ

(
2Er

1E
θ
2F

3
rθ − 2Er

1E
φ
3F

2
rφ + 2Eθ

2E
φ
3F

1
θφ + 2ΛEr

1E
θ
2E

φ
3

)
= (2.59)

= 6a
r2 sin θ

K

(
−k − b2 +

Λ

3
a2

)
(2.60)

and so we easily check the EC action in MSS to be (2.30).

On the other hand, to reduce the Chern-Simons state we need to compute (2.45).

Starting with the first term we get:

dαiβi = −
(

2bkr2

K
+

b

K

)
sin θdrdθdφ, (2.61)

where the components dαi are given by:

dα1 = − sin θdθdφ (2.62)

dα2 = −K ′ sin θdrdφ−K cos θdθdφ (2.63)

dα3 = K ′drdθ. (2.64)

The second one is obtained from

A1A2A3 =

(
ibK − ib3r2

K

)
sin θdrdθdφ. (2.65)

Thus, putting both terms together we have

ImYCS = Vc(b
3 + 3kb) (2.66)
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and finally the CS state in MSS:

ψCS = N exp

[
3iVc
l2pΛ

(b3 + 3bk)

]
. (2.67)

2.2.2 Chern-Simons State for a Closed FRW Universe

In this subsection we calculate the Chern-Simons state for a closed FRW universe,

using the Maurer-Cartan forms that define the spatial unit 3-sphere. These obey

dωi = 1
2
εijkω

jωk and are given by [33]:

ω1 = cosψdθ + sinψ sin θdφ (2.68)

ω2 = sinψdθ − cosψ sin θdφ (2.69)

ω3 = dψ + cos θdφ. (2.70)

Here ψ ∈ (0, 4π), φ ∈ (0, 2π) and θ ∈ (0, π) are all angular coordinates in S3. The

tetrad is

e0 = N(t)dt (2.71)

ei =
a(t)

2
ωi (2.72)

and its exterior derivative reads

dei =
b

a
e0ei +

1

a
εijke

jek, (2.73)

which leads to the following connection 1-form:

Γi0 =
b

2
ωi (2.74)

Γij =
1

2
εijkω

k. (2.75)
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Consequently, the Ashtekar connection is

Ai = (ib− 1)
ωi

2
(2.76)

and together with

dAi =
1

4
(ib− 1) εi jkω

jωk (2.77)

it is easy to compute the Chern-Simons functional (2.43):

YCS = Vc
(
ib3 + 3ib− 2

)
. (2.78)

As a result, taking the imaginary part of the above equation, we obtain

ψCS = N exp

[
3iVc
l2pΛ

(
b3 + 3b

)]
, (2.79)

where Vc = 2π2 is the volume of S3. This agrees with (2.67) for k = 1, as expected.
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Chapter 3

Dynamical Constants of Nature and

Cosmological Time

We consider that cosmological time is the conjugate of the constants of nature [21,

34] which means that we have different definitions of time depending on the relevant

constant controlling the dynamics in each epoch. To do so we promote these parameters

to phase space variables that will be constants only as a result of the equations of

motion. We start by introducing the necessary principles to define our physical clocks.

We further derive in detail the cosmology of a single fluid universe and then generalize

for multi-fluid models. For instance, we look closer at a universe made of radiation

and dark energy. Finally, we present a scalar field as a cosmological clock coupled to

gravity through a "deconstantized" gravitational constant.

3.1 Single Perfect Fluid Universe

Since we want to consider the universe as a mixture of perfect fluids we must generalize

the action (2.26). We do the replacement Λ
6
→ 4πG0

3
LM which yields

S =
1

32πG0

∫
εabcd

[
eaebRcd +

4πG0

3
LMeaebeced

]
, (3.1)
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where LM = −ρ and ρ is the energy density given by

ρ =
∑
i

Ci
a3+3wi

. (3.2)

Ci are constants, a(t) is the scale factor and wi = 0,−1, 1/3 for matter, "dark energy"

or radiation. The reduction of the action to MSS done in the previous chapter leads

to:

S =
3Vc

8πG0

∫
dt

[
a2ḃ−Na

(
−k − b2 +

∑
i

mi

a1+3wi

)]
, (3.3)

with mi = 8πG0Ci
3

. By the above we get that b and a2 are canonical conjugate variables

with the Poisson bracket {b, a2} = 8πG0

3Vc
, which upon quantization leads to the com-

mutator [b, a2] =
il2P
3Vc

, where lP =
√

8πG0~ is the reduced Planck length. For practical

reasons and in analogy with the role of ~ in quantum mechanics we define h =
l2P
3Vc

.

Furthermore the lapse function N is a Lagrange multiplier and so we get

δNS = 0 (3.4)

⇒ k + b2 −
∑
i

mi

a1+3wi
= 0. (3.5)

Through a Legendre transformation

S =

∫
dt

(∑
i

q̇ipi −H

)
(3.6)

we obtain the Hamiltonian for gravity plus matter

H =
3Vc

8πG0

Na

[
−(k + b2) +

∑
i

mi

a1+3wi

]
=

3Vc
8πG0

NaH (3.7)

which from (3.5) gives the Hamiltonian constraint equation:

H = 0. (3.8)

We shall now examine each epoch separately, i.e. we consider only one i in the
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above sum at a time (and no sum implied by repeated i from now on). It is more

convenient to write (3.8) in the approximate form

H = H0 − αi = 0, (3.9)

H0 = hi(b)a
2 (3.10)

where

hi(b) = (b2 + k)
2

1+3wi (3.11)

αi = m
2

1+3wi
i . (3.12)

The reason to do so originates from the fact that in the b representation a2 = −ih∂b,

which leads to a solvable differential equation in this representation. As we are con-

sidering the constants of nature to be the conjugate of time, we need to promote them

to phase space variables with conjugate momenta pi to be identified as time Ti. Thus,

(3.3) gets an extra term:

S → S +
3Vc

8πG0

∫
dtα̇ipi. (3.13)

These αi are then constants as a result of the equations of motion instead of being

parameters set in stone:

α̇i = {αi, H} = 0 (3.14)

and classically they are nothing but integration constants like the well known models

in unimodular gravity we introduced in Chapter 1. We also have the commutator

[αi, pi] = ih, (3.15)

from which we get an effective Schrodinger equation replacing αi → ih∂Ti (Ti = pi):

(H0 − ih∂Ti)ψ = 0 (3.16)
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with monochromatic wave solution

⇒ ψ(b, Ti;αi) = ψs(b;αi)e
− i

h
αiTi . (3.17)

Here, ψs is the solution to the WDW equation, Hψs = 0:

(H0 − αi)ψs = 0 (3.18)

⇔ (−ihhi(b)∂b − αi)ψs = 0 (3.19)

which is easily solved by changing to a "linearizing spatial" variable

dXi =
db

hi(b)
, (3.20)

⇒ ψs(b;αi) = Ne
i
h
αiXi(b). (3.21)

These are not plane waves in b nor in mi and so we don’t have a linear dispersion

relation in these variables. However, we do have the "linearizing" variables Xi and αi

in terms of which the solutions are plane waves moving with fixed speed (set to 1) in

mini-superspace.

Moreover, as αi is now a variable in phase space, we enlarge the space of solutions as

we are allowed to have a superposition of these monochromatic solutions. The general

solution is then given by

ψ(b, Ti) =

∫
dαiA(αi)e

i
h
αi(Xi(b)−Ti). (3.22)

We can also note that the effective Schrodinger equation (3.16) is in fact a wave

equation

(∂X + ∂T )ψ = 0 (3.23)
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with retarded wave solutions:

ψ(b, T ;α) = F (X − T ), (3.24)

where F can be any function and the associated conserved current is given by j0 =

j1 = |ψ|2. The inner product can be defined as:

〈ψ1|ψ2〉 =

∫
dXψ∗1(b, T )ψ2(b, T ) (3.25)

with the unitarity condition:

∂T 〈ψ1|ψ2〉 = 0. (3.26)

We can instead use the variable T to define the inner product, i.e.

〈ψ1|ψ2〉 =

∫
dTψ∗1(b, T )ψ2(b, T ) (3.27)

which after substituting (3.22) yields

〈ψ1|ψ2〉 =

∫
dαA∗1(α)A2(α). (3.28)

3.1.1 Classical Equations of Motion

Regarding the classical Friedman equations, we note that the first one is nothing but

the Hamiltonian constraint H = 0:

b2 + k =
m

a1+3w
, (3.29)

which will take the usual form if we use the equation of motion for a with N = 1:

ȧ = {a,H} = Nb. (3.30)
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Furthermore, substituting the above equation (again with N = 1) in (3.33), we get the

second Friedman equation

ä = −a1 + 3w

2

m

a3(1+w)
. (3.31)

To describe the motion of the peak of the wave function, we must introduce the

group velocity associated with each physical time, defined on {b, Ti} space as

cgi =
db

dTi
=

ḃ

Ṫi
. (3.32)

Using the equations of motion for b

ḃ = {b,H} = −N 1 + 3w

2

α
1+3w

2

a2+3w
(3.33)

and for Ti

Ṫi = {Ti, H} = −Na−3wi
1 + 3wi

2
α

−1+3wi
2

i (3.34)

we obtain

cgi =
α

a2
= h(b) =

db

dX
=

ḃ

Ẋ
, (3.35)

which comparing with (3.32) shows that the classical trajectory for a single fluid is

Ẋ = Ṫi. (3.36)

We should now highlight the following: radiation (w = 1/3) time is minus the

conformal time

Ṫr = −N
a

(3.37)

⇔ dTr = −Ndt
a

; (3.38)
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"matter" (w = 0) time is proportional to proper cosmological time (for N = 1)

Ṫm = − 1

2m
(3.39)

⇔ Tm = − 1

2m
t (3.40)

and lambda (w = −1) time is proportional to Misner’s volume time [35]

Ṫφ =
Na3Λ2

9
. (3.41)

Thus, instead of using t as a time coordinate, we consider the physical times Ti, which

are all a function of t, classically and on-shell, but quantum mechanically they are all

independent variables.

It is now important to pause and analyse this new connection representation picture.

Rather than using the conventional description with a = a(t) we consider b = b(T ),

which is completely equivalent from a classical point of view. Thus, expanding and

contracting universes have, respectively, b > 0 and b < 0. A static universe is described

by b = 0. Also, for a given single fluid content, b can either increase for w < −1/3,

decrease for w > −1/3 or remain unchanged for w = −1/3. Hence, a bounce in b

corresponds to a universe transitioning from a decelerated to an accelerated expansion.

3.2 Multi-time

In the case where we consider the model with multiple fluids (i.e. including the sum

over i in (3.7)), we will have to deal with multiple times. Thus, we need to introduce the

vectors α, representing all the constants associated with the fluids we are considering,

and T which are their conjugate times. In this way, we will no longer get a Schrodinger

equation like (3.16), but instead a PDE in all the different times obtained by doing the

replacement:

α→ ih∂T , (3.42)
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which leads to

H[b, a2,α→ ih∂T ]ψ = 0, (3.43)

with general solution:

ψ(b,T ) =

∫
dαA(α)e−

i
h
α·Tψs(b,α) (3.44)

and ψs(b, α) solves the WDW equation with constant α as before. It’s important to

note that, in general, this ψs(b, α) can be more complicated than the one in (3.21),

having the general form:

⇒ ψs(b;α) = Ne
i
h
P (b,α). (3.45)

We now see that for the more realistic cases, we either no longer have a "linearizing"

variable or if we do, it will not only be a function of b, but a function of α as well.

Therefore, it is better to get back to the variables b and T and identify MSS as a

dispersive medium, with dispersion relation given by:

α · T − P (b;α) = 0. (3.46)

Assuming that A(α) is factorizable and peaked around α0 we can write

P (b;α) = P (b;α0) +
∑
i

∂P

∂αi

∣∣∣∣
α0i

(αi − αi0) + ... (3.47)

which allows (3.44) to get the approximate form:

ψ(b;T ) ≈ e
i
h

[P (b,α0)−α0·T ]
∏
i

∫
dαiA(αi)e

− i
h

(αi−α0i)(Ti− ∂P
∂αi

)
, (3.48)



3.3. Pure Λ Universe 33

where the first factor represents a monochromatic wave centred in α0 and the second

describes an envelope moving according to:

Ti =
∂P

∂αi

∣∣∣∣
α0

. (3.49)

Hence, by dotting this equation,

Ṫi =
∂2P

∂b∂αi
ḃ, (3.50)

the group velocity defined on {b, Ti} space:

cgi =
db

dTi

∣∣∣∣
α0

=
ḃ

Ṫi
(3.51)

can be written as

cgi =

(
∂2P

∂αi∂b

)−1

. (3.52)

3.3 Pure Λ Universe

We start by illustrating the above analysis for the cosmological constant Λ. The impli-

cations are a combination of results from unimodular gravity [10, 16] and the concept

of Chern-Simons time [36] with a reinterpretation of the latter. In this case we have

w = −1 and the Hamiltonian (3.7) takes the form:

H =
3Vc

8πG0

Na

[
−(k + b2) +

Λ

3
a2

]
. (3.53)

Hence, the Hamiltonian constraint equation (3.8) gives

[
−(k + b2)− il2PΛ

9Vc
∂b

]
ψs = 0 (3.54)
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whose solution is the Chern-Simons state reduced to MSS (that we will recover next):

ψCS = Ne
i 9Vc
l2
P

Λ

(
b3

3
+bk

)
. (3.55)

This is a pure phase which is the product of a "frequency" proportional to 1/Λ and

the Chern-Simons time.

We can now apply the treatment introduced in the present chapter to (3.53) to

write it in the same form as (3.9), from which it is straightforward to obtain

mi =
Λ

3
(3.56)

hi(b) = (b2 + k)−1 (3.57)

αi =
3

Λ
≡ φ. (3.58)

Following the same procedure we then have the commutator [φ, Tφ] =
il2P
3Vc

and so we

are left again with the same Schrodinger equation as (3.16), where Tφ = pφ is the

conjugate momentum of φ identified as the time variable. The "spatial" part ψs will

also obey equation (3.19) and so it is given by (3.21). Thus, the only thing left to do

is to compute Xi(b), still defined by (3.20):

Xi(b) = Xφ =

∫
db(b2 + k) =

b3

3
+ kb, (3.59)

which is exactly the Chern-Simons functional in MSS and gives the Chern-Simons state

we got in (3.55).

Our interpretation of Chern-Simons time is however different from that of Smolin

and Soo [36, 37]. The full monochromatic solution is then

ψ(b, Tφ) = Ne
i
h
φ(Xφ(b)−Tφ). (3.60)

Time evolution happens in terms of a time that is the conjugate of 3/Λ, rather than

the Chern-Simons functional. Also, Xφ(b) = Im(YCS) is a spatial variable, not a time.
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Having enlarged our phase space by promoting Λ to a variable, we can now write

the general solution as a superposition of these plane waves:

ψ(b, Tφ) =

∫
dφA(φ)e

i
h
φ(Xφ(b)−Tφ). (3.61)

We now consider three interesting cases for different amplitudes A(φ). First, we

can have a completely undetermined φ, this being done with A(φ) = 1
2π
, which leads

to

ψ(b, Tφ) = δ(Xφ − Tφ). (3.62)

This is interpreted as a light "ray" in MSS with a time Tφ fully fixed by Xφ. We

thus see that a total delocalization in the cosmological constant is associated with an

infinitely sharp clock. This solution was also interpreted as a conformal constraint in

the parity-even branch of quasi-topological theories, in which Λ is allowed to vary as a

result of adding a Gauss-Bonnet topological term [38, 39, 40].

On the other hand, if we consider a fully fixed Λ, A(φ) = δ(φ− φ0), we obtain:

ψ(b, Tφ) = e
i
h
φ0(Xφ(b)−Tφ). (3.63)

This is the Chern-Simons state in the usual EC theory, where Λ is fully fixed: an

infinite plane wave moving at the speed of light, however completely delocalized such

that time disappears. Thus, we highlight an important fact: infinitely sharp constants

are failed clocks.

The last important case are coherent states centred around a fixed value of Lambda,

given by a normal distribution:

A(φ) =
e−

(φ−φ0)2

4σ2

(2πσ2)1/4
. (3.64)
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Performing the integration in (3.61) we arrive at

ψ(b, Tφ) = (8πσ2)1/4 exp

[
−σ

2

h2
(Xφ(b)− Tφ)2 +

i

h
φ0(Xφ(b)− Tφ)

]
, (3.65)

from which we can read the saturated Heisenberg uncertainty principle:

σTσα =
h

2
. (3.66)

All the above analysis is equally valid for any single fluid universe (any α), only

X(b) will be different case by case.

3.4 Radiation Domination

For the case of a radiation dominated universe the equation of state is w = 1/3. Thus,

substituting w back in equations (3.11) and (3.12) and keeping mi = m as a constant

one gets

hi(b) = b2 + k (3.67)

αi = m. (3.68)

Once again we need to solve both the effective Schrodinger and the WDW equations

and, the only object that differs from the previous section, is the function Xi(b) which

is now given by

Xi(b) = Xr =

∫
db

b2 + k
=

arctan
(

b√
k

)
√
k

, k > 0 (3.69)

= −1

b
, k = 0 (3.70)

= −
arctanh( b√

|k|
)√

|k|
, k < 0. (3.71)
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This should be seen as the equivalent to the Chern-Simons functional but for a radiation

dominated universe. The general solution is again a superposition of monochromatic

plane waves

ψ(b) =

∫
dmA(m)e

i 3Vc
l2
P

m(Xr(b)−Tr)
. (3.72)

3.5 Λ plus Radiation

We consider now a model with two fluids, dark energy (w = −1) and radiation (w =

1/3). Hence, the Hamiltonian (3.7) takes the form

H =
3Vc

8πG0

Na

(
−g +

a2

φ
+
m

a2

)
= 0, (3.73)

where

φ =
3

Λ
(3.74)

α = (φ,m) (3.75)

g = k + b2 (3.76)

and with the usual Hamiltonian constraint:

H = 0. (3.77)

From this we can solve for a2 to obtain

⇒ −ga2 +
a4

φ
+m = 0 (3.78)

⇒ a2
± =

g ±
√
g2 − 4m/φ

2/φ
, (3.79)
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which allows us to write the Hamiltonian constraint in the form of two constraints:

H =
1

φ
(a2 − a2

+)(a2 − a2
−) = 0 (3.80)

⇒ H± = h±(b;m/φ)a2 − φ = 0, (3.81)

h±(b;m/φ) =
2

g ±
√
g2 − 4

3
Λm

. (3.82)

As opposed to the single fluid case, H0 now depends on the constants α. Having the

Hamiltonian written in this form we have everything we need as in the previous cases

to get ψs through

(−ihh±(b)∂b − φ)ψs± = 0 (3.83)

⇒ ψs±(b;m/φ) = Ne
i
h
φX±(b) (3.84)

with X± given by

X±(b; Λm) =

∫
db

1

2

(
g ±

√
g2 − 4m/φ

)
. (3.85)

Furthermore, a2 must be real which means that

g2 ≥ 4m

φ
. (3.86)

Taking now the limit g2 >> 4m/φ, we get in first order, for each branch +/−

X+ ≈
∫
dbg = Xφ (3.87)

X− ≈
m

φ

∫
db

b2 + k
=
m

φ
Xr. (3.88)

Substituting these in ψs± shows that, at this order, each branch corresponds to pure

Λ or pure radiation domination:

ψs+(b;m/φ) ≈ Ne
i
h
φXφ(b) (3.89)

ψs−(b;m/φ) ≈ Ne
i
h
mXr(b). (3.90)
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We can see that ψs is a piecewise function where each branch corresponds to each

dominating constant and the respective Xi. Thus, for g > 0 (expanding universe),

we have a transition from a decelerated (ḃ < 0) to an accelerated (ḃ > 0) expansion

manifested by a "bounce" in b space at g2 ≈ 4m/φ.

Let us now examine what happens when we consider the next order terms in the

expansion. Therefore, we have:

X+ ≈
∫
db

(
g − m

gφ

)
= Xφ −

m

φ
Xr (3.91)

X− ≈
m

φ

∫
db

g
+
m2

φ2

∫
db

g3
=
m

φ
Xr +

m2

φ2

∫
db

g3
. (3.92)

This yields the following branches for the wave function:

ψ+(b;m/φ, T1, T2) = Ne
i
h

[φ(Xφ(b)−T1)−m(Xr(b)+T2)] (3.93)

ψ−(b;m/φ, T1, T2) = Ne
i
h

[
φ
(
m2

φ2

∫
db
g3
−T1

)
+m(Xr(b)−T2)

]
. (3.94)

We can now observe that deep in the Lambda epoch the wave function factorizes (as

long as the amplitude A(α) factorizes) and so we can write

ψ+(b;m/φ, T1, T2) = F1(Xφ − T1)F2(Xr + T2). (3.95)

Thus, the two times are quantum mechanically independent and the classical trajec-

tories for each plane wave are Ẋφ = Ṫ1 and Ẋr = −Ṫ2. This factorization does not

happen in the radiation epoch and we no longer have a plane wave in the minority

clock (Λ time). Nevertheless, the wave packet’s peak still follows the correct classical

trajectory, as we can see through the group velocity:

c−1
g =

∂2

∂φ∂b

(
m2

φ

∫
db

g3

)
=
Ṫ1

ḃ
(3.96)
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that leads (using the equation of motion for T1) to

ḃ = −Nm

a3
, (3.97)

which is the second Friedman equation for a radiation universe.

We can now compute exactly the group velocities associated with each cosmological

time for a peaked distribution. The function P (b,α) defined generally before is now

P± = φX± (3.98)

and the group speeds are:

cg1 =
ḃ

Ṫ1

∣∣∣∣
peak

=

(
∂2P

∂φ∂b

)−1

(3.99)

cg2 =
ḃ

Ṫ2

∣∣∣∣
peak

=

(
∂2P

∂m∂b

)−1

. (3.100)

After computing these derivatives and using the following relations

h± =
φ

a2
(3.101)

g =
a2

φ
+
m

a2
(3.102)

±
√
g2 − 4m/φ =

a2

φ
− m

a2
, (3.103)

we arrive at

∂2P

∂φ∂b
=

1

h±
± m

φ

1√
g2 − 4m/φ

=
a4/φ2

a2/φ−m/a2
(3.104)

∂2P

∂m∂b
= ± 1√

g2 − 4m/φ
= − 1

a2/φ−m/a2
(3.105)
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and so

cg1 =
φ2

a4

(
a2

φ
− m

a2

)
(3.106)

cg2 = −a
2

φ
+
m

a2
. (3.107)

Indeed we see that the group velocity with respect to each Ti is the same for both

branches and, using

Ṫ1 = {T1, H} = N
a3

φ2
(3.108)

Ṫ2 = {T2, H} = −N
a
, (3.109)

we check that the peak moves according to the classical trajectory

ḃ = {b,H} = N

(
a

φ
− m

a3

)
, (3.110)

as we just recover the second Friedman equation for this universe.

3.6 Scalar Field as a Cosmological Clock

Let us now consider that the matter action is given by a massless scalar field [41]:

S =
1

32πG0

∫
[εabcde

aebRcd − 16πGNdφ(?dφ)], (3.111)

where G0 is the fixed gravitational constant, GN is the gravitational coupling to matter

up to be "deconstantized" and φ is the scalar field. ?dφ = 1
3!
εµναβ∂

µφdxνdxαdxβ is the

Hodge dual of dφ. Reducing to MSS, the action takes the form:

S =
3Vc

8πG0

∫
dt

[
ḃa2 +Na(b2 + k) +

1

2

8πGN

3
φ̇2a

3

N

]
= (3.112)

=
3Vc

8πG0

∫
dt

[
ḃa2 + πφφ̇−Na

(
−(b2 + k) +

1

2

3

8πGNa4
π2
φ

)]
(3.113)
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with

πφ =
∂L
∂φ̇

= G̃N φ̇
a3

N
, (3.114)

G̃N ≡
8πGN

3
. (3.115)

Thus, once again we get the Hamiltonian constraint

H = −(b2 + k) +
π2
φ

2a4G̃N

= 0, (3.116)

which can be simplified to the usual form

⇒ h(b)a2 − α1α2 = 0 (3.117)

where

h(b) =
√
k + b2 (3.118)

α1 =
1√
2G̃N

(3.119)

α2 = πφ. (3.120)

In order to have α1 as a phase space variable the action (3.113) gets an extra term:

S → S +
3Vc

8πG0

∫
dtα̇1T1 (3.121)

and T1 is the time conjugate to α1. Also, as φ is the conjugate variable to πφ, we have

the scalar field being identified as a time variable T2 = −φ.

In the representation diagonalizing b, T1 and T2 we therefore transform the Hamil-

tonian constraint, not in a timeless WDW equation, but in a double-time Schrodinger

equation:

(
−ihh(b)∂b + h2 ∂2

∂T1∂T2

)
ψ = 0. (3.122)
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The solution to this equation is then the general wave function written as a superpo-

sition of plane waves:

ψ(b;T1, T2) =

∫
dα1dα2A(α1, α2)e

i
h

[X(b)α1α2−α1T1−α2T2], (3.123)

where

X(b) =

∫
db

h(b)
= arctanh

b√
b2 + k

, k > 0 (3.124)

= log b, k = 0 (3.125)

= arctanh
b√

b2 − |k|
, k < 0 (3.126)

is the linearizing variable for w = 1.

The equations of motion for φ and πφ are

φ̇ = {φ,H} =
Nπφ

G̃Na3
(3.127)

π̇φ = {πφ, H} = 0, (3.128)

where from the second equation we see that α2 is a conserved quantity, as expected

since H is not time dependent. The same is true for α1.

The group velocities with respect to each physical time are defined as

cgi =
db

dTi
=

ḃ

Ṫi
(3.129)

and using the equations of motion for both b and Ti we obtain:

ḃ = {b,H} = −2N
α2

1α
2
2

a5
(3.130)

Ṫ1 = {T1, H} = −2N
α1α

2
2

a3
(3.131)

Ṫ2 = {T2, H} = −2N
α2

1α2

a3
, (3.132)
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which leads to

cg1 =
α1

a2
(3.133)

cg2 =
α2

a2
. (3.134)

On the other hand, we can use the dispersion relation for the medium given by

P (b, α1, α2)−α · T = 0, (3.135)

where for the case in (3.123), P (b, α1, α2) is simply

P (b, α1, α2) = X(b)α1α2, (3.136)

to obtain the group speed introduced before:

cgi =

(
∂2P

∂αi∂b

)−1

. (3.137)

Hence, computing the derivatives and using (3.117), we check the previous equations

obtained for these quantities:

cg1 =
h(b)

α2

=
α1

a2
(3.138)

cg2 =
h(b)

α1

=
α2

a2
. (3.139)

Recalling that dX = db
h(b)

, the previous equations take the form

cg1 =
ḃ

α2Ẋ
(3.140)

cg2 =
ḃ

α1Ẋ
, (3.141)
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which by comparison with (3.129) leads to

Ṫ1 = α2Ẋ (3.142)

Ṫ2 = α1Ẋ (3.143)

⇒ Ṫ1 =
α2

α1

Ṫ2 (3.144)

and so classically, T1 and T2 are not independent time variables. Nonetheless, quantum

mechanically they still describe two different times. This also shows that the motion

of the peak of either coherent packets follows the classical equations of motion.

3.6.1 Classical Equations

For a massless scalar field the stress-energy tensor is given by

Tµν = ∂µφ∂νφ−
1

2
gµν∂

αφ∂αφ (3.145)

and for a perfect fluid we have

Tµν = (P + ρ)uµuν + Pgµν , (3.146)

where P is the pressure, ρ the energy density and uµ = (1, 0, 0, 0) is the proper velocity

of the fluid in the cosmological frame. Comparing these expressions we see that both

P and ρ are the same

P = ρ =
φ̇2

2
, (3.147)

which shows that we can treat a scalar field as a perfect fluid with equation of state

w = 1.
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Thus, for the first Friedmann equation we get

(
ȧ

a

)2

+
k

a2
= G̃Nρ (3.148)

⇒ b2 + k = G̃N
φ̇2

2
a2 (3.149)

which is nothing but the Hamiltonian constraint we got in (3.116).

The second Friedmann equation is then equivalent to the equation of motion we

found for b (3.130):

ä

a
= −1

2
G̃N(ρ+ 3P ) (3.150)

⇒ ḃ = −G̃N φ̇
2a (3.151)

and confirms that the peak of the wave function follows the classical trajectory.

3.6.2 Solutions

This setting allows us to explore the quantum implications of multi-time whenever two

times can be used in the same region. The Heisenberg uncertainty principle is a purely

kinematical result involving any canonical pair, and as such we have for a two-time,

two-constant setting:

σT iσαi ≥
h

2
. (3.152)

The question, however, is how the dynamical solutions to the theory make these two

sets of uncertainties interact: Can we saturate them simultaneously? Or do multiple

clocks get in each other’s way? Rather than providing a formal analysis we present a

number of physically obvious solutions and examine how they relate to the Heisenberg

uncertainty bounds.
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For example, we can consider the extreme case of 2 failed clocks, i.e. of two infinitely

sharp constants:

A(α1, α2) = δ(α1 − α10)δ(α2 − α20). (3.153)

Unsurprisingly, this leads to the original plane waves:

ψ(b, T1, T2) = Ne
i
h

[X(b)α10α20−α10T1−α20T2]. (3.154)

We can also consider the case of perfect localization in one of the times (i.e. a

uniform distribution in the associated constant):

A(α1, α2) =
1

2π
A(α2) (3.155)

⇒ ψ(b, T1, T2) =
−il2P

6πVcX
A

(
T1

X

)
e−

i
h
T1T2
X (3.156)

where A(α2) can then be a normal distribution.

Then, we can consider the case of a semi-classical state in one clock and a failed

clock in the other:

A(α1, α2) = δ(α1 − α10)
√
N (α20, σ). (3.157)

Integrating, leads to the usual coherent state solution, i.e. the product of a plane wave

centered on α0 and a Gaussian envelope:

ψ(b, T1, T2) = Ne
−σ

2

h2 (α10X−T2)2+ i
h

[α20α10X−α10T1−α20T2] (3.158)

= ψ(b, T1, T2;α0)e
−σ

2

h2 (α10X−T2)2

. (3.159)

The only novelty is that the fixed constant α10 (i.e. the failed clock) now acts as

the inverse of the speed of propagation of the wave packet in the semi-classical time

and space. This solution saturates, with equally spread uncertainties, the standard
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uncertainty principle in the variable with the coherent amplitude:

σ2
T2 = σ2

α2 =
h

2
. (3.160)

All of this is unsurprising because having an infinitely sharp constant is the same as

not having deconstantized that constant at all, so that its conjugate is a failed, or

uniformly distributed clock. We could of course have chosen either of the two clocks

as the failed clock.

Finally we consider the fully semiclassical case of the product of two Gaussians:

A(α1, α2) =
√
N (α10, σ1)

√
N (α20, σ2). (3.161)

Using

∫
dnxe−

1
2
Aijx

ixj+Bix
i

=

√
(2π)n

det(A)
e

1
2
Bi(A−1)ijB

j

(3.162)

with

Aij =


1

2σ2
1

−iX
h

−iX
h

1
2σ2

2

 (3.163)

and

Bi =
αi0
2σ2

i

− i

h
Ti (3.164)

we arrive at:

ψ(b, T1, T2) = h

√
8πσ1σ2

h2 + 4σ2
1σ

2
2X

2
exp

[
−

2∑
i=1

α2
i0

4σ2
i

]
·

· exp

[
1

2 det(A)

(
1

2σ2
2

(
α10

2σ2
1

− iT1

h

)2

+
1

2σ2
1

(
α20

2σ2
2

− iT2

h

)2
)]
·

· exp

[
iX

h det(A)

(
α10

2σ2
1

− iT1

h

)(
α20

2σ2
2

− iT2

h

)]
, (3.165)
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with det(A) = 1
4σ2

1σ
2
2

+ X2

h2 . This can be repackaged as

ψ(b, T1, T2) =

√
8πσ1σ2h2

h2 + 4σ2
1σ

2
2X

2
exp

[
−σ

2
1(T1 − α20X)2 + σ2

2(T2 − α10X)2

h2 + 4σ2
1σ

2
2X

2

]
·

· exp

[
ih

h2 + 4σ2
1σ

2
2X

2

(
α10α20X − α10T1 − α20T2 −

4σ2
1σ

2
2

h2
T1T2X

)]
(3.166)

with the interesting result that although the wave function does not factor, the cross

terms are all in its phase (suggesting interesting entanglement effect), so that the

probabilities do factor nonetheless.

Thus, we arrive at a modified saturated Heisenberg uncertainty relation:

σ2
T iσ

2
i =

h2

4
+ σ2

1σ
2
2X

2 (3.167)

which clearly reduces to the usual (3.152) should one of the σ = 0 (i.e. one of the clocks

be a failed clock). Indeed we prove that in that situation the failed clock may still be

a coherent infinitely squeezed state, saturating the uncertainty relations. However the

situation is totally different when two clocks are at work, as we see. In fact there is

an excess-uncertainty in the uncertainty relations of both clocks/constants due to their

simultaneous use, which only vanishes when either X = 0 or we give up on one of the

clocks.

Thus, the moral of the story is that having more than one clock only makes the

uncertainty worse, the more so the more the other clock becomes a perfect clock, and

the larger the X2. The naive:

σ2
1 = σ2

2 =
h

2
(3.168)

leads to:

σ2
T i =

h

2
(1 +X2) (3.169)
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with inevitable X(b)-dependent squeezing.

3.7 Mixture of a Scalar Field and Radiation

We now focus on another multi-fluid problem considering a mixture of radiation and

a massless scalar field. In light of what we have done before, we only need to modify

the action (3.113) by adding the term

S → S − 3Vc
8πG0

∫
dtNa

m

a1+3w
, (3.170)

where m is another constant that will be promoted to a phase space variable, and for

radiation w = 1/3.

Thus, the Hamiltonian is

H = Na

(
−g +

m

a2
+
α2

1α
2
2

a4

)
= 0, (3.171)

with g = b2 + k and α1 and α2 are defined by (3.119) and (3.120), respectively.

Solving (3.171) for a2 we obtain two constraint equations:

a2 =
m

2g

(
1±

√
1 +

4gα2
1α

2
2

m2

)
(3.172)

⇒ h±(b)a2 −m = 0, (3.173)

where

h±(b) =
2g

1±
√

1 +
4gα2

1α
2
2

m2

. (3.174)

Hence, we get two general solutions for the wave function given by

ψ±(b, Tr, T1, T2) =

∫
dmdα1dα2A(m,α1, α2)e

i
h

(mX±(b)−mTr−α1T1−α2T2) (3.175)
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with

X±(b) =

∫
db

h±(b)
=

∫
1

2g

[
1±

√
1 +

4gα2
1α

2
2

m2

]
db. (3.176)

It is now easy to check that deep in the radiation epoch, i.e. m >> α1, α2, we

obtain only one solution in first order written as X+ = Xr =
∫

db
g
, which perfectly

agrees with the case of the single radiation fluid. However, considering higher order

terms in the expansion:

√
1 +

4gα2
1α

2
2

m2
≈ 1 +

2gα2
1α

2
2

m2
− 2g2α4

1α
4
2

m4
, (3.177)

which leads to

X+ ≈ Xr +
α2

1α
2
2

m2
b− α4

1α
4
2

m4
Xφ (3.178)

X− ≈ −
α2

1α
2
2

m2
b+

α4
1α

4
2

m4
Xφ (3.179)

where

Xφ =

∫
gdb, (3.180)

we start to observe in X a structure similar to the case of dark energy and radiation

domination with an extra term linear in b. The wave functions for each branch have

then the approximate form:

ψ+(b,T ;α) ≈ N+ exp

[
i

h

(
mXr +

α2
1α

2
2

m
b− α4

1α
4
2

m3
Xφ −α · T

)]
(3.181)

ψ−(b,T ;α) ≈ N− exp

[
i

h

(
−α

2
1α

2
2

m
b+

α4
1α

4
2

m3
Xφ −α · T

)]
(3.182)

which do not factorize. Here α = (m,α1, α2). We also observe that in the radiation

epoch we have a plane wave for the radiation clock since ψ+ ∝ e
i
h
m(Xr−Tr). However,

this does not happen for the minority clocks T1 and T2. As for the ψ− branch, we do
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not find plane waves for any of the three clocks.

Last but not least, we can check that for a peaked distribution the peak moves

according to the classical trajectory. Hence, considering the function P (m,α1, α2, b)

from the dispersion relation of this medium given by

P± = mX±, (3.183)

we can compute the group velocities associated with each physical time, by evaluating

the derivatives of P± in each peak α0:

∂2P±
∂m∂b

=
a4

ma2 + 2α2
1α

2
2

=
1

cgm
(3.184)

∂2P±
∂α1∂b

=
2α1α

2
2a

2

ma2 + 2α2
1α

2
2

=
1

cg1
(3.185)

∂2P±
∂α2∂b

=
2α2α

2
1a

2

ma2 + 2α2
1α

2
2

=
1

cg2
. (3.186)

To do this, we used the relations

g =
m

a2
+
α2

1α
2
2

a4
(3.187)

±
√

1 +
4gα2

1α
2
2

m2
= 1 +

2α2
1α

2
2

ma2
(3.188)

that follow from the Hamiltonian constraint equation (3.171). Computing then the

equations of motion for b

ḃ = {b,H} = −Nma2 + 2α2
1α

2
2

a5
(3.189)
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and for each one of the physical times, i.e. radiation, gravitational constant and scalar

field

Ṫr = −N
a

(3.190)

Ṫ1 = −2Nα1α
2
2

a3
(3.191)

Ṫ2 = −2Nα2α
2
1

a3
, (3.192)

it is straightforward to check the corresponding group velocities:

cgm =
ḃ

Ṫr
=
ma2 + 2α2

1α
2
2

a4
(3.193)

cg1 =
ḃ

Ṫ1

=
ma2 + 2α2

1α
2
2

2α1α2
2a

2
(3.194)

cg2 =
ḃ

Ṫ2

=
ma2 + 2α2

1α
2
2

2α2α2
1a

2
. (3.195)

Therefore, just like in the model with dark energy and radiation, this shows that the

peak of both branches, ±, moves with the same group velocity and follows the classical

trajectory.
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Conclusions and Outlook

Recapitulating, throughout this thesis we worked towards a new way to describe time

in quantum cosmology. Broadening our conceptual horizons, we promote the constants

of nature to dynamical variables. Associated with each constant one gets a space of

states built from superpositions of waves propagating in a dispersive medium where

the connection plays the role of space and time is the momentum conjugate to the

constant. For the simple model with a single fluid it is possible to find linearizing

variables that lead to plane waves moving with a fixed velocity. This provides a good

clock with a simple inner product and definition of unitarity.

We further introduced the necessary formalism for a multi-fluid universe in which

MSS is identified as a dispersive medium. For instance, resorting to a compound of Λ

and radiation, we showed that the dominant fluid always generates a good clock. How-

ever, the minority clock is usually troublesome since we cannot always find linearizing

variables and, even if we do, they will be different functions of the targeted constant

comparing to the original one, i.e. if the wave function is coherent in one variable it

will not be in another. Nonetheless, the peak of the wave function follows the classical

equations of motion.

Finally, we brought some novelties to the table. We adopted a real scalar field

as a cosmological clock together with a deconstantized gravitational constant as an

attempt to explore what happens when we have more than one physical clock "at

the same time". Consequently, the usual Hamiltonian constraint becomes a double-

time Schrodinger equation, solved by a superposition of plane waves. We examined

different kinds of solutions, the most interesting one being a fully semi-classical state in

both variables, for which we do not have a factorization of the wave function, leading



56 Chapter 3. Dynamical Constants of Nature and Cosmological Time

to quantum entanglement between the two time variables. In this case, we obtained

a modified saturated Heisenberg uncertainty relation, dependent on the uncertainty

of both constants and on the linearizing spatial variable X(b). Surprisingly, working

with two clocks at the same time does not make our lives easier, since this increases the

uncertainty associated with each clock. Hence, working with just one clock is advisable.

With all that said, it is clear that some more work should be done following this

thesis. A few important questions are still not answered. For instance, we can take a

closer look at what happens in a reflection in connection space, i.e. when the universe

transits from a contraction to an expansion period, in a multi-fluid universe. This

examination involves going beyond the semi-classical states we already considered.

Foremost, we are now shifting from matter to Lambda domination and so, it would be

interesting to employ this new approach we presented to a matter-Lambda universe.

This is however more complex since the Hamiltonian of this model cannot be simplified

to the pleasant approximate form (H = h(b)a2 − α) we used throughout the work.

Regarding the problem with a scalar field and a deconstantized GN , further analysis

is required so as to understand the origin of the excessive uncertainty in the Heisenberg

principle when two clocks are at play. Another route that should be pursued would

be the search for distributions for the constants that saturate the uncertainty principle

without exceeding it. This model can also be generalized to a perfect fluid with equation

of state p = wρ. For instance, we can characterize such fluid with a K-essence model

staying close to the scalar field description by taking a power of the kinetic term in its

action [41].
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