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Abstract

Under the compactification by the Calabi-Yau threefold, the string theory shows there is duality
called mirror symmetry, which implies there is an isomorphism between two string theories under
the compactifications of two topologically different internal manifolds. By twisting the topological
string theory in two methods, the twisted theories named A-model and B-model have an

isomorphism to each other under the mirror symmetry.
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1 Introduction

Nowadays, there are two pillars of modern physics, which are Einstein’s general theory of
relativity and the quantum field theory with the standard model. However these two theories
cannot be unified together properly to become “the theory of everything”. There are several
attempts of such great grand unification, and superstring theory is one of them and it seems to be
the most successful one [6][7]. The superstring theory is a theory in which the elementary bosonic
particles are considered to be the vibration modes of the 1-dimensional string moving in the
spacetime, and the fundamental fermions are the super partners of these bosons under the
supersymmetry. The superstring theory predicts the existence of gravity and is also able to fit into
the quantum mechanical theory we have already obtained. Apart for these, there are also some
particular predictions it made, one of the most famous prediction is that our universe should be in
a spacetime with 10 or 11 dimensions (we will focus on the 10-dimensional case, and the
11-dimensional theory is called M-theory [15]). It shows that the 6 extra spatial dimensions should
be conpactified in a very small scale, and the corresponding compact space is called a Calabi-Yau
manifold. Calabi in 1957 first conjectured the existence of such kind of manifolds [22] and then it

was proved by Yau in 1977 [1][21].

There is a symmetry relation among the Calabi-Yau manifolds, which is called the mirror
symmetry [11]. It implies a duality between the string theories with two topologically different
Calabi-Yau manifolds. The mirror symmetry first came to people’s sight in 1989 with the work of
Greene and Plesser [2] and Candelas, Lyker and Schimmrigk [3]. Mirror symmetry also gives an

isomorphism between two superstring theories, type-11A and type-11B, under different internal



space [12], and it can be understand in aspect of T-duality [4]. Apart from that the mirror

symmetry would also play important role in the topological string theory. In topological string

theory, we can twist the theory in two different ways to obtain two theories, A-model and

B-model. In 1991, Witten found that the mirror symmetry can also make the duality between two

twisted models [5], and it links the complex structure on B-model to the Kéhlar structure on

A-model.

In this dissertation, we will discuss what the Calabi-Yau compactification is and some

corresponding properties of such compact manifold. Then the topological string theory will be

introduced, and also the two models obtained by twisting the topological theory and their related

knowledge will be given. Finally, the mirror symmetry will be explained and we will look at this

duality in a few different aspects.



2 Calabi-Yau Compactification

In the superstring theory, the conformal invariance of the SCFT coupled to a worldsheet theory
requires a 10-dimensional spacetime rather than 4-dimensional one in which we feel in the
ordinary life, so a way of compactification on the spacetime manifold is needed. Therefore the
whole spacetime should be a manifold which can be expressed in the form of M; ; X M4, where
M, 5 is the 4-dimensional Minkowski spacetime manifold and M, is the 6-dimensionl compact
manifold for the spatial compactification. There are some requirements on M. Firstly, the
compact manifold should be a vacuum solution of the Einstein’s field equation, which also means
the manifold should be Ricci-flat. On the other hand, M, is also required to preserve some
supersymmetries rather than break them all [18][19], so it implies that the manifold needs to be a
Kéblar manifold. All the requirements leads that manifold M, should be a compact Ricci-flat
6-dimensional K&nlar manifold, that is to say, we need a Calabi-Yau three-fold for the extra spatial

dimensions.

In this chapter, we will introduce the complex manifolds and the Ké&bhlar manifolds, which are the
keys to give the definition of the Calabi-Yau manifolds, and the corresponding knowledge of the
differential manifold for each case will be introduced as well (such as complex differential forms,
cohomology group, homology, Hodge diamond and etc.)[8][13][29][30][31]. After all the
necessary knowledge is given, the definition of the Calabi-Yau manifolds will be illustrated, and
some of its properties (such as topological invariant, moduli spaces [9][10] and etc.) will also be

introduced.



2.1 Complex Manifolds
Before we define a complex manifold, we need to first define a holomorphic map on C™. A
complex function : C™ — C is holomorphic, if f = f; +if, satisfies the Cauchy-Riemann

relations for each z* = x# + iy*,

o9k Oh_ 0k
oxH  JyH '’ oxH oyH

(2.1.1)
Then an m-dimensional complex manifold M is defined as the following axioms:
(i) M is a topological space.
(i) M is provided with a family of pairs {(U;, ¢;)}.
(iii) {U;} is a family of open sets which covers M . The map ¢; is a homeomorphism
from U; to an open subset U of C™. [Hence, M is even dimensional.]
(iv) Given U; and U; such that U; N U; # @, the map ¥;; = ;o ;! from @;(U;n Uy)
to ¢;(U; N U;) is holomorphic.
The number m is the complex dimension of M, and is denoted as dim¢ M = m, and its real
dimension is 2m. The Axioms ensure that calculus on the complex manifold can exist without the
dependence of the any chosen coordinates, and the manifold is differentiable. Complex manifold
can also preserve its orientation, so they are also orientable. We can locate a point p on M by
using the coordinate z* = @(p) = x* +iy* in a chart (U,¢), where 1 < u <m. Then the

tangent space T,,M of complex manifold M is naturally spanned by 2m vectors

{6 0o 0 0 } 519
axly"'laxmlayll'"laym ( i )

and its co-tangent space T;M is spanned by



{dx?, .., dx™ dy?, ..., dy™ }. (2.1.3)

Let us define another 2m basic vecoters:

a 1,9 9
a 1,9 9
77 =2 (5 * 135 (2.145)

and corresponding 2m one-forms are defined as:

dz* = dx* + idy* (2.1.5.3)

dz# = dx* — idy* (2.1.5.b)

These are called the holomorphic bases (ones without bar) and anti-holomorphic bases (ones with
bar). By using these vector and co-vector bases, we can then define a so-called almost complex

structure which will play an essential role in the following sections.

We define a real tensor field of type (1,1) on point p of a complex manifold M, J,: T,M -

T,M such that

o) =z o (am) =5 216
Jp axH)  dyr’ Jp ayr)  oxK (2.16)
Note that

Ji =—tdru (2.1.7)

Jp s the almost complex structure of M at point p,and it corresponds to the multiplication of +i
[17]. This structure is also independent of the charts chosen, which can be proven by finding its
action of the overlapping parts of any two charts in a complex manifold [8]. The almost complex

10



structure can be only defined globally on a complex manifold.

By acting the almost complex structure to the bases that we defined in (2.1.4), we can easily find
that the bases d/dz* and d/dz* are both the unit eigenvectors of J, with eigenvalues +i and
-1 respectively.

Jp (%) =i, (%) =i 2.1.8)

Therefore we can diagonalise J, asa matrix in the (anti-)holomorphic bases:

. a . 0 (i, O
Jp = idzt @ = — idz ®ﬁ_( ; ) 2.1.9)

—il,,

where I, isthe m x m identity matrix.

For a tangent space T,{,M‘C of a complex manifold M, we can decompose it into two disjoint

tangent spaces
T,M®=T,M* @ T,M"~ (2.1.10)

where T,M* is the tangent space with holomorphic bases and T,M~ is the one with
anti-holomorphic bases. The vectors in each tangent space are the eigenvectors of J, with the

eigenvalues +i respectively, so we could give the definition:
T,M* ={z e T,M"|],Z = +iZ}. (2.1.11)

Therefore a complex tangent vector Z € T,M® can be uniquely decomposed as Z = Z* + Z~,
where Z* € T,M*, and Z* is defined as a holomorphic vector and Z~ is defined as an

anti-holomorphic vector. We need to note that T,M* are in the same dimensions, and their
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dimensions are both half of dim¢ T, M® = dim¢ M.

Until here, we have defined an almost complex structure in a complex manifold. It is obvious that
every complex manifold has an almost complex structure, as J,, can be directly related to the
multiplication by +i, but an almost complex manifold, which is defined as a differential manifold
with an almost complex structure, is not always a complex manifold [8]. It needs some

restrictions.

We then define a tensor field of rank (1, 2) on an almost complex manifold, N : T,M X T,M —

T, M:

NX,Y) = [X,Y]1+JUX Y] +][X,JY] - UX,]Y] (2.1.12)

which is called Nijenhuis tensor, and [X,Y] is the Lie bracket of two vectors. If we have a
vanishing Nijenhuis tensor on a manifold M, the almost complex structure J is integrable. Then
there is another theorem, which can be proved with complicated mathematical concepts [14],
showing that: (Newlander and Nirdnberg 1957) Let (M,]) be a 2m-dimensinal almost complex
manifold. If J is integrable, the manifold M is a complex manifold with the almost complex
structure J. Hence we can say a vanishing Nijenhuis tensor lead an almost complex manifold to

be a complex manifold.

2.2 Complex Differential Forms

Same as real manifolds, complex manifolds also have differential forms. If we have a complex
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manifold M with dim¢ M = m, a complex g-form w € Q;’,(M)‘C at point p can be defined as
w=n+i{, where n and ¢ are both real g-forms n,(eﬂ;f,(M)]R at p, and its complex

conjugate is @ = n — i¢. Then we can easily find that the exterior derivative of the g-form w is
dw =dn +id{. (2.2.1)

We can also define the complex g-form in the holomorphic and anti-holomorphic bases, which
would be more helpful for the later description. Let the g-form w € QZ(M)‘C (@ £2m) and
r,s be positive integers such that r + s = q. Then we take g vectors V; € TpM‘C (1<i<q)
in either T,M* or T,M~ spaces. If w(Vy,...,V;) =0 unless r of V; are in T,M* and s of
V; are in T,M~, w is said to be an (r,s)-form or a form of bidegree (r,s), w € Q,°(M) =
QZ(M)‘C. Then we can see that the bases of an (r,s)-form are just r holomorphic basic
one-forms dz and s anti-holomorphic basic one-forms dz, which can be found in (2.1.5).

Therefore the (r,s)-form « can be written as:

1

W = Oy, v, 5, A2 A A AZET A AZYA NS (2.2.2)

All the components in the form are totally anti-symmetric in u and v respectively.

A complex g-form w can be uniquely decomposed by disjoint (r, s)-forms:

w = Z w® 2.2.3)

r+s=q

where w ™) € O™, and its set can also be decomposed as:

1 ° = E) o). (2.

r+s=q

Then the exterior derivative of an (r,s)-form can be found by changing the coordinate system to
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the (anti-)holomorphic one on (2.2.1):

1,0 L8 _A
~rls! (azﬂ Oty oy 7582 ¥ 523 Outy iy 7,42 )
(2.2.5)

X (dzM A .. AdzFr AdZV1 A A dZY5).

Here we can see that the new complex (q + 1)-form dw is actually a mixture of an (r +
1,s)-form and an (r,s + 1)-form. Then we can separate the exterior derivative operator into two

parts:
d=0+0 (2.2.6)

where 9 is the operator mapping Q™S(M) into Q"*>S(M), and 0 is the one mapping Q"(M)
into Q™5*1(M), and both of operators are call the Dolbeault operators [8], and because all three

operators in (2.2.6) are nilpotent, we can easily find the following relation:
00w = 00w = (00 + 90)w = 0 (2.2.7)

The de Rham cohomology in a complex manifold is similar to the one for real manifolds, but with
respect to each Dolbeault operator. The d-closed (r,s)-form, i.e. w € Q™(M),dw = 0, is called
the (r,s)-cocycle denoted by Zz°(M), and the d-exact (r,s)-forms, ie. w € Q™*(M), ne€
QO™S~1(M),dn = w, is called the (r,s)-coboundary denoted by Bg'S(M). Then the corresponding

cohomology group is
Hy* (M) = Zz° (M) /B3* (M) (2.2.8)

which is a complex vector space and is called the (r,s)th d-cohomology group. The de Rham

cohomology for a is extended in the same way as the one for @ as shown above.
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2.3 Ké&hlar Manifolds

For a complex manifold M we can extend the metric g to act on the complex tangent spaces
9:T,M® x T,M® - C. (2.3.1)

Taking two vectors Z = X +iY and W = U + iV on the same tangent space T,[,M(C at point p,

we can have

9p(Z,W) = g,(X,U) — g,(Y, V) + i[g,(X, V) + g, (Y, D)]. (23.2)

For the (anti-)holomorphic coordinates, the components of the metric are simply g,,(p) =

9p (667'667): 9w (@) = gp (az_u’%) and etc. .

Before we give the definition of the K&lar manifolds, we need first to define what a Hermitian
manifold is. If the Riemannian metric g of a complex manifold M satisfies the following

restriction:

9o UpX.JpY) = gp(X,1). (2.3.3)

where point p € M, vectors X,YETpMC and J, is the almost complex structure of the
manifold, we say the metric g is a Hermitian metric, and the pair (M, g) we called Hermitian

manifold. It can be proven that the components of the metric with holomorphic indices will vanish

o 0 0 0
9w =9 (55577) = 9 o g 77) = =90 =0 (234)

and it is same for ggy. Therefore the Hermitian metric only takes the form with mixed indices:
9 = gwdz" @ dz¥ + gg,dz" @ dz¥ (2.3.5)
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Hence we can find the geometry of a Hermitian manifold through its metric g. The connection on

the manifold can be found by its definition, for example:

0 0
Vﬂ 927 = FA#V(Z)m (236)

where Vi is the covariant derivative and T'#,, is the connection. We can obtain the connection

uv

with pure anti-holomorphic indices I, in the same way. As the manifold should have the

v

metric compatibility, we need relations that V, g,y = Vgg,y = 0 to be true. Therefore we can

find the connection can be written as

My =9"09s Tw=9""09v (2.3.7)

and the connections with mixed indices are all vanished. These connections are called the
Hermitian connection. Because the only non-vanished connections are the two with pure indices,
we can see that a holomorphic tangent space on a Hermitian manifold can only be parallel
transported in holomorphic directions, and it is also true for the anti-holomorphic cases. The
Hermitian manifolds are not necessarily torsion free, similar to the connections, the only
non-vanishing torsion are also with pure indices, T’lw and Ti,—ﬁ. Then for the curvature of the

manifold, we can use the definition the Riemannian curvature tensors:
R(X, Y)Z = VvaZ - VYVXZ - V[X'y]Z (238)

to find that the only non-vanishing components are R*;z,, R*5, R*3z,, R*7,y. Due to the
symmetry of switching the last two indices of the tensor, the only two independent components of
the Riemannian curvature tensor are R*;z,, and R*z,;, and they are the complex conjugate of

Auvr

each other. Then we can find the tensors can be written as:

16



R*aay = 0gT" 2 = 0.9%%0, 9 (2.3.9.3)

R = 0,157 = 0,9°% 0597 (2.3.9.b)

By contracting the first upper and the first lower indices of the Riemann tensor, we can define a

anti-symmetric rank 2 tensor:
Ry = Ry = —05(9°°0,0,¢) = —050, 1og G (2.3.10)
where G = det(g,y) = \/g. We define the Ricci form by
R =iRpdzlk NdZ¥ = iddlogG, (2.3.11)

and it is a real form. We can find R is also a closed form, i.e. d® o« dddlogG = —%dz(a -
5) log G = 0, but it does not imply it is also an exact form. R also defines a the a non-trivial
element called the first Chern class, i.e. ¢;(M) = [R/2r] € H?(M; R) [20]. It is also the reason

why we say a Ricci flat K&nlar manifold has a vanishing first Chern class, i.e. R =0 = ¢;(M) =

Then we also need to give a definition of another concept, Ké&lar form. In a Hermitian manifold

(M, g), we define a tensor field Q at point p € M, such that
QX Y) =g,(,X.Y) X, Y€ET,M. (23.12)

We can find that it is an anti-symmetric tensor field acting on two vectors to give a number, so it is
a 2-form field, and we call it K&nlar form. We can extend the domain of the K&nlar form from

T,M to TpMC, it shows that it would be a (1,1)-form:

17



a 0 o 0 a 0
— )= ——)=ig~=—- Q—,— 2.3.13
Q(azu’aﬂ) I (]P azu'aZ-V) "G Q(aﬂ’azu) (2.3.13)
where the cases with pure indices will also vanish just like the metric, i.e. g,, = gz = 0. Then

we can write

QA =ig,wdz* ®dz" —igy,dz" ® dz! = ig,ydz* AdZ", (2.3.14)

or Q = —J,ydz" A dZ, (2.3.15)

as Juy = gﬂ]iv = —ig,y, and it is easy to show that Q is a real form by finding that its

complex conjugate is itself.

On a Hermitian manifold with complex dimension m and the K&nlar form €, we have a nowhere

vanishing 2m-form,

QAAQ=Q™.

m

To prove this, we can use the orthonormal basis:
.Q( éi ,]é]) = 61']' .Q(él ,é]) = .Q(]él ,]é]) =0 (2316)
Then it follows that

QA AQ(8,]84, )8, ] Em)
m

= ZQ(éP1’]éP1) "'Q(épm’]épm) (2317)
p

=m!Q(é,,/é) ... Uep, J&n) = m!

where P is the permutation of m objects. It shows that Q™ is a nowhere vanishing real form on

the Hermitian manifold and it serves as the volume form. Therefore it again shows that the

18



manifold we are talking about is an orientable manifold, and it fits the fact that the compact
internal space should be orientable. Then by using this non-vanishing top form, we can decompose
it into two separate parts: a holomorphic volume m-form and an anti-holomorphic volume

m-form, which will be unique and non-vanishing on a Calabi-Yau manifold.

After introducing Hermitian manifold and Ké&lar form, we can give the definition of the K&nlar
manifold: Ké&blar manifold is the Hermitian manifold (M, g) with a closed Kanlar form, which
means dQ = 0, and the metric satisfying above condition is called K&nlar metric. Then we extend

the condition:

dQ=(0+0)ig,y dz* Adz¥

= i0,g,wdz* Adz* A dZ¥ + i039,5d2z* A dzH A dZY

L (2.3.18)
= Ei(algl“*, — aug)j)dzl N dZ“' N dZ_v
1 . _
+El(azguv_al7gzu)dz /\dZ”AdZV = 0
where we can find the relations:
029w = 0ugav 079w = 997, (2.3.19)

Therefore for a given chart (U;, ;) on a Ké&nlar manifold M, one can write the components of

the metric g in the following form:

Iuv = 0,05%; (2.3.20)

where X; € F(U;) is called the Kéhlar potential of the metric. As the metric can be expressed

differently in different chart, the Ké&blar potential can only be written in the form of (2.3.20)
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locally rather than globally. The potential is also not unique, because we can change the potential
by adding (anti-)holomorphic functions without changing its metric. Then on a compact Ké&nlar
manifold without boundary, the form Q™ (the wedge product over m Ké&lar forms) is closed

but not exact.

2.4 Holonomy Group of Ké&hlar Manifolds

We can recall that the holonomy group of a Riemannian manifold M of dimgxM =m is a
subgroup of O(m). Then because the K&lar manifolds that we have studied in this topic is also
orientable which means the holonomy group should keep the orientation of the parallel transported
vectors, the holonomy group of Ké&nlar manifolds with m real dimensions should be a subgroup
of SO(m). Furthermore it follows from the index structure of the connection of the Kénlar
manifolds that under parallel transport elements of TM* and TM~ do not mix, and the lengths
of the vectors should be preserved under the parallel transports. Hence the holonomy group of the
Kéblar manifolds should be a subgroup of U(n) where n is the complex dimension of the
manifold. The elements of TM* and TM~ transform in U(n) respectively. Then we may recall
the definition of the holonomy group, which is the transformation of a vector on the manifold after
a parallel transports around a loop and should also be a Lie group. Now we may take a parallel
transport around an infinitesimal loop on the manifold, so we can find the infinitesimal
transformation of the vector, which is also corresponding to the Lie algebra of the holonomy
group, u, (n) @ u_(n). Assuming there is a parallel transport of a holomorphic vector V' around
an infinitesimal loop enclosed by the sides 5! and €*, we can find the change on the vector can

be expressed as

20



SVi=€e*8'R' g V. (2.4.1)

Due to the index structure of the Riemann tensor, only the effects from the loops with mixed
indices are non-vanishing in (2.4.1). The matrix eE(SZRim should be the element of the Lie
algebra u(n). If we take the trace of the matrix, it will become ekslinm which is just
proportional to the Ricci form. Then it can generates a u(1) part decomposed from the Lie
algebra u(n), so we can have the decomposition u(n) = u(1) @ su(n)[9], where su(n) implies
that the holonomy group on a Ricci-flat K&nlar manifold M with dim¢ M = n is a subgroup of

SU(n) [36].

2.5 @-cohomology Groups and Hodge Numbers

Reminding that the (r,s)th d-cohomology group is defined by (2.2.8). Similarly to the
cohomology group of the real manifolds, Hg'S(M) is a complex vector space. The element
[w] € Hg'S(M) is an equivalence class of d-closed forms of bidegree (r,s) differing the form

w bya d-exact form:
[w] = {n € Q"S(M)|on = 0,w —1n = Y, € Q5" (M)}. (2.5.1)

One reason why we need to study the d-cohomology group is that the groups can measure some

topological properties of the complex manifolds.

On a Hermitian manifold M with dim¢M =m, a complex Hodge star x is a mapping:

QS (M) - Q™™= and we define the inner product as

21



(@, ) = f ahxp (2.5.2)

M
where a, f € Q™S(M) and * is the complex conjugate of * satisfying that * 8 =% § =x . The
inner product helps us to define the adjoint Dolbeault operators. Like the adjoint exterior
derivative df, the adjoint Dolbeault operators are defined as a%:Q"S(M) - Q"2$(M) and

ot: Q™s(M) - Q™S~1(M) such that
(a,0B) = (8%a,B) (a,08) = (ata, B). (25.3)

We can see that dt = @ + a*, and both of the adjoint Dolbeault operators are also nilpotent, i.e.

(81)° = (8%)* = 0. Then we can define the corresponding Laplacians A, and Az on the

Hermitian manifolds

A= (8 + %)’ =0at +ata (25.4.)

A= (6 +01)° = 3at + ata. (25.4.b)

An (r,s)-form o iscalled a d-harmonic form if Ayw = 0, and it is called the 9-harmonic form
if Azw = 0. The d-harmonic form is also d-closed and d-co-closed, i.e. dw = dtw = 0, and it
has the same relation for the d-harmonic forms. Furthermore, we can have the Hodge’s theorem

in the complex version, and the (r,s)-forms can be decomposed into three orthogonal terms:
Qs (M) = 005" (M) @ 9T+ (M) @ Harmy* (M) (2.5.5)
where Harmg's(M) is the set of d-harmonic (r, s)-forms. We can express a (r, s)-forms as
w=0a+d+y (2.5.6)
where a € Q™71 (M), B € Q"*(M) and y € Harmz*(M). Then the (r,s)-forms on a
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Hermitian manifold can also decomposed in the holomorphic way.

In the Hermitian manifold, we define the Laplacians Ay and Az separately, and they are also
different indeed. However, if the manifold is a K&blar manifold, the Laplacians A; and Az are

the same [17].

A= 20y= 245 (2.5.7)

We define the complex dimension of d-cohomology group Hg'S(M) as the Hodge number h™*,
and we can construct a Hodge diamond for the cohomology groups of all possible bidegrees. For a

Ké&nlar manifold with 2 complex dimension, we can build the Hodge diamond as

h2,2
h2,1 h1,2
h?0 h11 h0? (2.5.8)
hl,O hO,l
h0,0

There are 9 Hodge numbers for this manifold. If we have dim¢ M = m, there would be (m + 1)2
of them. However, the Hodge numbers are not all independent to each other, and we have two

relations for the numbers if the manifold is K&blar:

hTsS = pST (2.5.9.0)

h"S = pm-r.m=s (259b)

The relation (2.5.9.a) is due to the fact that the relation in (2.5.7) make the Laplacians on the

Kéblar manifold are the same as its complex conjugates. Therefore for any harmonic (r, s)-form,
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there exists a corresponding (s, r)-form and vice versa, so the Hodge numbers are the same for
opposite bidegrees. Then the relation (2.5.9.b) is due to the Poincare duality, which shows that the
m-r,m-—s

cohomology group Hy (M) is the dual vector space to Hg'S(M), and hence they have the

same dimensions [8].

The relations in (2.5.9) make the Hodge diamond of the K&nlar manifolds symmetric in both
vertical and horizontal directions. It allows us to use less independent numbers to parameterize the
Hodge diamond. For example, we can just use 4 Hodge numbers in (2.5.8) instead of 9 to
parameterize the diamond. Furthermore, the Hodge numbers in the Ké&nlar manifolds also have a
close relation with the Betti numbers. This relation makes the Hodge diamond be able to describe
some topological properties of the K&nlar manifolds, and it is not true for just general Hermitian
manifold. The theorem describing this relation is: Let M be a K&nler manifold with dim¢ M =

m and dM = @. Then the Betti numbers b? (1 < p < 2m) satisfy

bP = Z hsT (2.5.10.3)
r+s=p

b?r~1 jseven (1<p <m) (2.5.10.b)

b? =1 (1<p<m). (2.5.10.c)

Then we can find the Euler characteristic of the Ké&nler manifold is

v = Z(_l)pbp = Z(—1)T+Shr's (2.5.11)
D .5
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2.6 Calabi-Yau Manifolds

A m dimensional Calabi-Yau manifold is defined to be a compact, complex, K&nler manifold
which has SU(m) holonomy, where m is the complex dimension of the manifold. Also, the
previous sections showed that the SU(m) holonomy implies the corresponding Ké&bler manifold
should be Ricci-flat, and therefore it has a vanishing first Chern class. Chern classes are
topological invariants of a manifold. Specifically, we can get the classes through Taylor expansion
of the Chern form

c(M) =1+ Z 6(M) = det(l +%)
J (2.6.1)

iR iR iR iR\2
=14+tr—+tr —/\——2(tr—> +
2T T T T

-dz' AdZz7. Then we can find the

where R is the matrix valued curvature 2-form, i.e. R = R¥;;

first Chern class ¢;(M) = triR/2m is equal to [J\2mr]. Furthermore, due to the Ricci-flat
condition, there is a unique nowhere vanishing holomorphic (m, 0)-form on the Calabi-Yau
manifold which implies the Hodge number h™° = 1. Also, by using this non-vanishing
(m, 0)-form, we can make a isomorphism mapping (0, p)-forms to (0,m — p)-forms, where
1 < p <m. Then the SU(m) holonomy group does not allow a (0,p)-form to be harmonic,
which means the corresponding coholonomy is trivial, h®? = 0. It makes the Hodge diamond of

a Cababi-Yau three-fold even simpler, we can see:
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0 0
0 1 0
1 h21 12 1 (2.6.2)
0 h2? 0
0 0
1

where there is only two independent Hodge number in the diamond due to the vertical and
horizontal symmetry relations, and we can just look at h! and h%'. Then the Euler

characteristic of the Calabi-Yau manifold is

x = 2(h% — h?Y) (2.6.3)

2.7 Moduli Spaces of Calabi-Yau Manifolds
According to the Yau’s theorem, The Calabi-Yau manifold is a Ricci-flat K&nler manifold. Thus it

seems that we are able to perturb the metric g,, of the manifold to a new metric g,, + 69,

without changing the Ricci flat condition,
Rw(@) =0 = Ry(g+dg)=0. (2.7.1)

Apparently we can easily achieve such a perturbation by just changing the coordinate system, but
these are not the case we are interesting about. We can impose a coordinate condition to the

system to fix the choice of coordinate, and we can write the condition as

Vg, = 0, (2.7.2)

which is pretty similar to fixing a gauge. Then we can re-express the perturbation (2.7.1) together
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with the coordinate condition as:
VPY,89u — 2R, 89 ps = 0 (2.7.3)

By using the (anti-)holomorphic coordinate system, we can see that the perturbation can be
applied by &g;; in pure indices and §g;; in mixed indices, because of the index structure of the
metric and the Riemann tensor of the Ké&nler manifold. Then we can look at these two ways of

perturbation:

(1) 8g;;5: Under the metric perturbation with mixed indices, it remains the original index structure
of g and keeps the metric still Hermitian. The condition in (2.7.3) with §g;; is equivalent to
(Adg)i; = 0, and we view &g;; as the components of a (1,1)-form. Such (1,1)-forms also
correspond to the changes of the Ké&nler form Q and therefore the K&nler class [Q1] of the
manifold. Because the (1,1)-form is also harmonic, it is uniquely associated to an element of

H3™(M). Hence we can expand 8g;; in the basis of real (1,1)-forms with dimension A%:

hl,l

8gi; = Z b f“eR (2.7.4)

a=1

According to Yau’s theorem, there is a Ricci-flat K&nler metric for any [Q + 5Q]. Hence, the
perturbation with mixed indices can make the new metric still be K&nler metric and also
deform the Ké&ler structure (which is parameterized by the Ké&ler class) at the same time.
Therefore, we say the perturbation expressed in (2.7.4) is the Ké&bler moduli space of the

Calabi-Yau manifold.
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(2) 6g;j: Under the metric perturbation with pure indices, it will not keep the Hermitian structure
in the manifold and the Ké&hler metric is also not preserved. The condition (2.7.2) with §g;;

is equivalent to
Az8g' = (ddt +a%d)sg (2.7.5)

where §g° = 5gi]-dz‘7 = giE(Sg;J—dz‘f_. It is a harmonic (1,0)-form associated to an element
of cohomology group Hg'o (M). As the transformation makes the metric not Ké&nler any more,
we need to change the coordinate system so that the metric becomes Ké&aler again. However,
we cannot use a holomorphic transformation to remove the pure-index perturbation, because
such transformation does not change type of the indices. In this step, it seems that this
coordinate transformation could violate the fixed coordinate condition (2.7.2) we have
mentioned before, but it is not (the new metric cannot be obtained from the old one by just a
diffeomophism). Then there is a unique non-vanishing holomorphic (3,0)-form Q (here is
not the K&aler form) in the Calabi-Yau manifold, and we can use it to define an isomorphism

between H%’O(M) and H**(M) by defining the complex (2,1)-forms
Qjx6grdzi Adzl AdZ (2.7.6)

which is still harmonic. Then we can expand the (2,1)-form in a basis with dimension h??1,

such that

h2,1

a=1
which we called the complex structure moduli space, and it tells the complex structure

deformation of the manifold.
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3 Topological String Theory

After discussing the Calabi-Yau compactification of the superstring theory, a branch of the string
theory will be introduced, and it is called the topological string theory. Rough speaking, it is a
“simplified” version of the string theory, as it only discusses how the topological properties affect
the theory without caring the exact form of metric of the manifolds (for both worldsheet and the
target space). As mentioned in the last chapter, mostly the Calabi-Yau manifold has both K&nlar
structure and complex structure. One reason that we introduce the topological string theory is that
we can twist it in two different ways to obtained two models called A-model and B-model, and
these models will depend on the Ké&nlar structure and the complex structure of the target

Calabi-Yau space respectively. It may link two models to the two moduli spaces separately.

In this chapter, the supersymmetric N = (1,1) non-linear sigma model and some corresponding
symmetry generator will be introduced. Then two ways of twisting the theory, A-twist and
B-twist, will be given. Some concepts of cohomological field theory will be introduced as well
[35], so that we could illustrate the two theories obtained by two way of twisting, A-model and
B-model [23][24] [25][26][27]. At the end, how the theories couples to the gravity to become

string theories will be briefly talked.

3.1 Superspaces

Supersymmetry makes the symmetry between bosons and fermions, and d its generators usually
transform as spin 1/2 fermions under Lorentz group. For an N = 1 supersymmetric theory, it has

one such supersymmetry generator, which is called supercharge, for each bosonic dimension. An
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N =p > 1 supersymmetric theory has p supercharges for each dimension, and the number p
here is the multiple of 2, such as 2, 4, 8, and so on (maximal number is 32). For the case
N = (2,2), itisthe N = 2 supersymmetry theory on the complex manifold, as the Lorentz group
for each fundamental spin-1/2 supersymmetry generators can be split up into two components
which transform with opposite charges (holomorphic and anti-holomorphic). Its makes the two
fundamental supercharges become two irreducible positive charges and two irreducible negative
charges. To describe each theory in two dimensions, we need to use superspaces, four fermionic
coordinates 6%,0% (in Grassmann number) such that under Lorentz transformation SO(2) =

U(1) if original coordinate z = e'*z then

0t > eT20% 0t > eT24% (3.1.1)

Therefore we can have a superfield which we can expend to have both bosonic and fermionic parts
rather than just bosonic part. By taking the Taylor expansion on superfeild & with respect to the

fermionic variables, we have
®(z,2,0%,01)=¢p(2,2) + Y. (2,2)0T +P_(2,2)0™ + - (3.1.2)
Then we can have an integral such that
S = fdzzd‘*e (@t oY) (3.1.3)

where X is the Kéler potential. The potential, as mentioned before, is only locally defined and
non-unique. By integral the potential over the all the fermionic coordinate, we can get the the

corresponding Lagrangean density.
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Then in the N = (2,2) theory, the supercharges of it are Q, and Q. are all nilpotent, i.e.

Q2 = Q4 = 0, and they have the anti-commutation relations that:

{01, 0:}=H+P, (3.1.9)

where H and P are the Hamiltonian and momentum operator respectively. Then the rest of

anti-commutations relations are all vanishing.

3.2 Supersymmetric Nonlinear Sigma Model

We first need to know what a Supersymmetric nonlinear sigma model with N = (2,2) in two
dimensions is defined as [5]. It maps a Riemann surface X (which is also the worldsheet of the
string) to Riemannian manifold (which is the target space) M with the metric g such that
®:¥ - M. As the target space M we discuss in this dissertation is a complex manifold, we need
to use the coordinate z,Z on the worldsheet ¥ and (anti-)holomorphic coordinate ¢! = ¢ on
M (but we also denote ¢’ as the real coordinates for convenience), where locally we can
describe @ in a function ¢i(z, z). Then Let K and K be the canonical and anti-canonical line
bundles on the Riemann surface ¥ (which are the bundle of one-forms of type (1,0) and (0,1)
respectively), and K'/? and K'/? are the square roots of these bundles (the square roots here
roughly means that the transformation acting on K'/2 is also the square root of the same
transformation on K, and it also corresponds to the nature of fermions). Let TM be the
complexified tangent bundle of M, and it can be decomposed as TM = TM™* @ TM~. Then the
fermi fields of the model are 1, and _, where 1, can be projected in K%/? @ ®*(TM™*) and

KY? @ ®*(TM~) denoted as 1% and % respectively and 1_ can be projected in K/2 ®
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®*(TM*) and KY/? @ ®*(TM~) denoted as . and i’ respectively. Then the action is

written as

1 o
5 =2t [ d2(39,0,0'0:0/ + WDl g + WD g
> (3.2.1)

+ Ry i p? )

where dz?® is —idz Adz, t is the coupling constant, R;j; =gi;REfU— is the Riemann tensor of
the target space M and D; is the 0 operator on K2 ® ®*(TM) constructed by using the

pullback of the Levi-Civita connection on TM. It can be expressed as

9, A
Dl = o= + =Tk (3.2.2)

where T* jk is the affine connection of the target space M in holomorphic indices. Then it is

similar for D, (@ operator on K*/? @ ®*(TM) with Levi-Civita connection sz_k on M)

Then the supersymmetries of the model can be generated by infinitesimal transformations:

Spl = ia i + ia Pl (3.2.3.2)
Spt = ia@_yL +ia, P (3.2.3.b)
YL = —a@_0,¢" — ia, PIT YT (3.2.3.0)
YL = —a_0,¢" — i@, PIT5 T (3.2.3.d)
SYL = —@, 0,0 — ia_PITY, Y™ (3.2.3.)
SYL = —a, 0,07 — G YL pT (3.2.3.f)

where a, and &, are the infinitesimal fermionic parameters (a_ and @&_ are in sections of

K2 then a, and &, are in sections of K1/2),
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3.3 R-Symmetries

In 2 dimensions, the Lorentz group is SO(2) = U(1). Then as mentioned before, the group for 2
fundamental supercharges can be spilt up into two U(1) associating to 8 and 8 with plus
notations and minus notations, and we denote these two groups as U(1); and U(1), (In section
3.1, it was said to be in positive charge and negative charge), and the corresponding symmetries
under these group transformations are called the R-symmetries. Then we make two new
R-symmetries groups from the U(1)g,,, and this modification is made by twisting the worldsheet

Lorentz group either by vector or axial symmetries:

Uy =UM)+UMr, UM, =U@), - Uk 33.1)

The A-model, we will discuss in later sections, can be obtained by twisting with U(1),
connection, and it can be considered on any Ké&ler manifold. Then the B-model is obtained by
twisting with U(1), connection, and it is only well defined on a Calabi-Yau manifold. Then the
action of the vector symmetry U(1), and axial symmetry U(1), on the fermionic coordinate

can be expressed as

Ry(a): (6%,0%) - (e7@9%,e00*), (67,07) » (e7@07,e*0~)  (3.3.2.a)

Ry(B): (6%,0%) » (e7o+,e0*), (67,07) ~ (e®f07,e7#9~)  (3.3.2.h)
Then the transformation can be applied to the superfield @:

Ry = e!®v:d(x,0%,0%) » ei“qVGD(x,e_i“Bi,ei“B_i) (3.3.3.3)

Ry = eFa, d(x,0%,0%) o ePiad(x, e TPt etih ) (3.3.3.b)
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where F, and F, are the operators which generate the transformations, and q, and g, are the
corresponding Noether charges of the each R-symmetry. Let M be the generator of the
two-dimensional Lorentz transformation SO(1,1), and we can then take the x° direction to be
—ix'% and remain the x® same as before. Then the new generator My = iM can be obtained,
and it generates a compact Euclidean rotation group which is isomorphic to U(1)g. Then we can

find the commutation relations between the supersymmetry algebras and the generators:

[Mg, Q3] = FQ1,  [Mg, Q4] = FQy, (3.3.4.9)
[Fy,Q+] = —Q4, [Fy,Q+] = Q4, (3.3.4.b)
[Fa,Q:] = FQy, [Fa, Q4] = Q4, (3.3.4.0)

It shows that Q4 and Q. have the opposite charges under the R-symmetries.

3.4 Twisting Supersymmetric Sigma Model

The twisting here is equivalent to changing the Euclidean rotation group U(1) by the generators
of the U(1) R-symmetry groups, and it defines the new generators of the Euclidean rotation
group U(1)gr as My = Mg + R. This twisting can make some supercharge operator scalar with

respect to the new Euclidean rotation group [23].

Then the N = (2.2) theory can be twisted in 2 different ways. The first case is that instead of
taking i and Y} to be the sections of K2 ® ®*(TM*) and K2 ® &*(TM")
respectively, we can take them to be sections of ®*(TM™*) and K @ ®*(TM~) respectively, and
this kind of twist is called a + twits. Then the second case is that we twist y% and % in the

way that 1. become the sections of K @ ®*(TM*) and % becomes the sections of
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®*(TM™), and this is called the - twist. Similarly, we can also twist ¥‘ and I in such ways.
Under the + twist, ¥. and i will be taken to be in the sections of ®*(TM*) and K ®
®*(TM™) respectively. Then under the - twist, they will be twisted to be the sections of
K ® ®*(TM*) and ®*(TM™) respectively. It can be found that the kinetic terms of the
fermions of the Lagrangean, e.g. ¥iD,yt gy, do not change under each twist, even though we
have twisted ¥’ and ¥} from fermion terms to the boson-like terms. Then we can have the
A-twist and B-twist by combining =+ twists in different ways. The A-twist is the kind of twist in
which we do the — twist for i, and do the + twist for 1_, and it is denoted as (—,+). Then
the B-twist is an orthogonal twist to the first one, and it is doing the + twist for both ¥, and
Y_, which is denoted as (+,+). There is also a variant that is possible, and that is to twist only

Y, oronly ¥_ and leave the other untwisted. These are called the half-twisting.

The A- and the B-twists, as mentioned before, change the original Euclidean rotation group

U(1)g into two new groups such that

A-twist: Mg =Mg +F, (3.4.1.9)

B-twist: Mg = Mg+ F4 (3.4.1.b)

We denote the generator of the Euclidean group modified by the A-twist as M, and denote the

one modified by the B-twistas Myg. Then we can find the new commutation relations that
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[My, Q4] = —20, (Mg, Q4] = —2Q. (3.4.2.9)

[Ma,Q-1=0 [Mp, Q-] =20+ (3.4.2.b)
[Ma, Q4] =0 [Mp, Q4] =0 (34.2.c)
[Ma, Q-1 = 2Q,4 [Mp,Q-1=0 (3.4.2.d)

In the relations above, one can find that some supersymmetry operators become scalar, which is

what we expected before, and the others becomes like spin-1 spinors. Then we can define

Qs=0Q_+0Q, (3.4.3.2)

Qg =0Q-+0Q4 (3.4.3.0)

where Q4 and Qg are scalar, nilpotent operators which can be used to define two different
cohomological theories, which are called the A-model and the B-model respectively ( Two
models can also be defined by (+,—) and (—,—) twists, but it will leave Q, and Qp scalar
and nilpotent. ). Furthermore, we call an operator ¢ a chiral operator or (c,c) operator if ¢ is

Qp-closed:

[Qz. 9] =0 (34.4)

and similarly, we call the operator ¢ a twisted chiral operator or (a,c) operator if

[Qa ] =0 (3.4.5)

3.5 Cohomological Field Theory
As mentioned in section 3.4, both of the A-model and B-model are Topological cohomological

field theory, so the concepts of cohomological field theory is needed to be introduced before we
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go to the A- and B- models parts. conomological field theories are the field theories that possess
a very special type of symmetry. There are serval requirements needed to define a cohomological
theory. Firstly, the fermionic symmetry operator Q should squares to zero, i.e. Q% = 0, which is
exactly satisfied by theory we are interested in. Then the second property is that the physical

operators O; in the theory should be closed under the action of the operator Q.

{0,0}=0 (3.5.1)

This relation is also called that the operator is Q-closed. Both the first and the second properties
are corresponding to the BRST symmetry and quantization. Then third requirement is that theory
needs the Q-symmtry to be not spontaneously broken, which means the vacuum is symmetric.

Then there will be an equivalence relation that:

where A is an arbitrary operator function. As the vacuum is symmetric, the vacuum quantum

state should satisfy that

Qo) =0. (3.5.3)

Then by using this relation we can find that the expectation value of the Q-exact operator {Q, A}

should be zero:

010y, .. 0,{Q,A}0;,,, ..0;,10)

(3.5.4)
= (00, ...0;,(QA — AQ)O; ., ... 0;, |0)

Lj+1

and each term will vanishes separately
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010y, . 0,(Q@N)0y,, -..0;,|0)

lj+1

= +(0|0;, ...Q0;,A0;,,, ...0;,10) (3.5.5)

Lj+1

= +(0/Q0,, ..0;,AO 0;.10) = 0.

l] ij+1 e

In this property, we can find that the physical operators are Q-cohomology class through the
equivalence relation. Then the final requirement is that the energy-momentum tensor T, of the
theory should not only be Q-closed but also Q-exact:

6S

Tﬂv = W = {Q, G/M/} (356)

where G, is some operator, and h*¥ is the metric. A direct consequence of this last property is

that the correlation functions do not depend on the metric, and the proof is that

5 .
(0;...0,) = S (f D¢O, ...one15[¢]>

5S[e]
= ifD(j)Ol .0y Sh[i]elsw (35.7)

Sh#v

=i(0;...0,{Q,G}) =0

where D¢ is the measure of the path integral, and the Q symmetry acting on the last line shows
the metric independence. Then there is a practical way to ensure (3.5.6) which is to use a Q-exact

Lagrangean:
L={QV} (3.5.8)

where V is an operator. We can find this kind of Lagrangean make the calculation easier as it
makes correlation function independent of the Planck’ constant. It can be proven by put the

Planck’s constant back to the quantum measure:
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i
expE{Q, fMV}. (3.5.9)

and consequently the same method in (3.5.7) can be used to show that

d
Z{01..0,) = 0. (3.5.10)

Therefore one can find that the independence of 7 can make the calculation exactly in a classical

limit.

Recall the equation (3.5.6), we can find the momentum operator by integrating the

energy-momentum tensor field over a spatial hypersurface.
B, ={Q, Gy} (3.5.11)
where G, is a fermionic operator. Then we may consider the operator
oY = i{G,, 0} (3.5.12)
where 0© js a scalar physical Q-closed operator, i.e.{Q, 0(0)} = 0. By doing some calculations

We can find that

d
m0(0) =i[p, 0] = {Q,0{"} (3.5.13)

where we can write momentum operator in the form in (3.5.11) and then use the Jacobi identity to
obtain the result of (3.5.13). Then we can define the operator 051) to be a component of a

one-form operator 0V = Oﬁl)dx”, so that we can rewrite (3.5.13) as
do© = {Q,0M}. (3.5.14)

Then we can find that the integration of this equation over a closed curve y € M is zero by using
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the Stoke’s theorem. We can repeat the above method again and again so that we can obtain a
whole tower of p-form operators:
{Q, 0(0)} =0

{Q, 0(1)} =do©®

{Q, 0(2)} =do®

{Q, O(n)} =do®m D
0=do™ (3.5.15)
The integrals of 0®), where 1 < p < n, over a p-dimensional submanifold of M give us large
classes of non-local physical operators. As the “top-form” operator needs to be integrated over the

whole manifold, by using the Stoke’s theorem again, we will have

{0.f,0™}=0. (3.5.14)

which implies that we are free to add terms t“Oﬁ") for any coupling constant t* to the

Lagrangean without breaking the fact that the theory is cohomological.

3.6 A-model

In the A-model, we regard % and % as the sections of ®*(TM*) and ®*(TM~) and regard
the ! and Yl as the section of K @ ®*(TM*) and K ® ®*(TM™), and the scalar fields ¢°
and ¢* are still the same as the untwisted theory. To classify the twisted fermionic fields, we

express the field in a new way:
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L=yleKQ d*(TM™Y) (3.6.1.8)

YL =yl € @ (TMH) (3.6.1.b)
YL =yt € ¢ (TM") (3.6.1.c)
YL=yYLeE K Q &*(TM) (3.6.1.d)

In term of these renamed variables the action is

1 o
5 =2t [ 422(390,'0,97 + WD, g + WDiDsx g
> (3.6.2)
+ Ryz; j¢§X Wl l/’zz)

Then we act the fermionic symmetry § = €_Q, + €,Q_ on the fields so that we can have the

following relations

Sl = e, 1t Sl =é_yx° (3.6.3.39)
6¢é — 2i€_az¢i + E+Fijkl)béi)(k 5){1 =0 (363b)
5L = —2i€, 0,9 + €T Iy Sy =0 (3.6.3.0)

As mentioned before, A-model is the topological cohomological theory, we can write the
Lagrangean in the form of {Q4,V} and we can also find that the theory is independent of t.

However, the action of theory is actually rewritten as
S = itfdzz{QA,V} + tf¢*(ﬂ) (3.6.4)
z X

where

V = gu(¥0;0" + 0,0"5) (3.6.5)
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and Q is the Kénler form of the target space, i.e. Q = —ig;;dz' AdZ).
¢ [ (@) = 269u(0,0'0,9" - 2:910,4" (356)
z

The Lagrangean can be partly written in the Q-exact form, and the other term is related to the
Kéhler structure of the target manifold. On the second term of the action, we can make the
pullback ®* on the K&nler form Q back act on the worldsheet, and then it can be found that the
it becomes important that Q is a closed form so that the integral will only depend on the
cohomology class of ®(Z). We denote the cohomology class as 8 € H,(M), and the integral of

the K&nler form over it is written as - . Then it shows that

Ld)*(ﬂ):f Q=0-=0. (36.7)

D(3)
If an anti-symmetric tensor field such as the Kalb—Ramond field, i.e. the B-field, is non-vanishing,
we can replace the original real K&nler form Q by a complexified Kébnler form Q, = Q +iB =

(bij + igi;)dz' ndz/.

Then we can find the correlation relations of the A-model can be written as
(0 ...0,) = e7itYB j D¢DyDye~taIV30, .. 0, (3.6.8)
M

where D¢, Dy and Dy are the corresponding measures of the path integral. We can find that
the correlation function of these physical operators does not have dependence of the metric on the
term V, but it only depends on the metric of target space M via the Kénler form Q from the
term e~“# by using the similar method in (3.5.7). That is to say, the theory does not depend on
any structure which appears only in V, but it depend on the structure in rest term on the action

(For this case, it is the second term in (3.6.4).). Therefore it can be found that the A-model is
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independent of the choice of the complex structure, but it clearly depends on the choice of the
Kéhler class of the target space. It means that the theory is “half-topological” with respect to the
target space, as it depends on “half ” of the moduli of the Calabi-Yau manifold. In conclusion, the
A-model theory only topologically depends on the K&nler moduli of the Calabi-Yau target space.
Furthermore, by taking the derivative with respect to the coupling constant ¢t and using the
similar method in (3.5.10), the second factor in (3.6.10) ( the Q4-exact part ) is also independent
of the choice of t so that we can calculate it exactly by taking the classical t — oo limit, and

therefore we can somehow reduce the theory to a weak coupling theory.

3.7 B-model

In the B-model, we will do the same method as for the A-model. For this model, we twist %
and YL to be the section of K ® ®*(TM*) and K ® ®*(TM™) respectively, and we also
regard both % and ! as the section of ®*(TM~). Then the field ¢' and ¢* remain the

same as before.

YL eKQ o (TMY) (3.7.1.3)
YLeEK Q O (TM™Y) (3.7.1.b)
YL € O (TM™) (3.7.1.0)
YL € O*(TM™) (3.7.1.d)

One may find that in the B-model, the new twisted scalar fields ¥} are both the space-time
(1,0)-forms, which is slightly different from the case in the A-model. Therefore, the new scalar

field can be chosen in a more convenient way, and we rename all new fields as:
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T=yl + L (3.7.2.3)

0; = gi; (W] — ¥I) (3.7.2.b)
Py =1k (3.7.2.0)
pL =YL (3.7.2.d)

One of the reason that we introduce 6 field with lower holomorphic indices is that it may lead to
some simpler expressions, e.g. {Qp,0;} = 0, but {Qg,6'} = —erﬁrﬂ_@k. Then we can also write
the action of the B-model in the rename terms.
2 1 I J 1 inl i i ; i
S=t|d Z(zguaz¢ 0z¢’ +1in (szz + szz)gii+ 10;(Dzp;
> (3.7.3)
— D,pf) + Ruyjspipyn'0rg"’ )
As the scalar supercharge operator in B-model is defined as Qz = Q_ + Q., we can also find the
supersymmetry transformation § = €Q, + €Q_ by setting €, = —€_ = € to be constant and

€+ = 0 and the following relations:

S¢p'=én' (3.7.4.2)
S¢pt=586,=6n"=0 (3.7.4.b)
8pl, = +i€a, ¢" (3.7.4.0)

The action of the B-model can also be rewritten partly in the form of {Qg,V} which is in the

same way as what we do in the A-model section.
S = tf{QB,V} +tW (3.7.5)
2

where
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V = gi;(p50:¢7 + p20,¢7) (3.7.6)

and

1 ; - -
W = f (—HiDpl — 5 Rujsp* /\Pjnlekg'”)- @.7.7)
hX

D in the equation (3.7.7) is the exterior derivative on the worldsheet X, and A is the wedge
product. It can be found that the term W in the action is anti-symmetric in the exchange of the
holomorphic and anti-holomorphic z indices, and it can be written as a differential (1,1)-form.
Then integral of such a form over the two-dimensional worldsheet X is independent of the metric,
so the only metric dependence of the action is in the term {Qp, V}. Furthermore the variations of
W with respect to the cohomology class of the Ké&ler form Q on the target space M are
Qg-exact, so the metric dependence on the Kéhler structure of the Calabi-Yau target space is also
vanishing. However, by looking through the anti-commutation relations between the B-model
scalar supercharge operator and the untwisted original scalar field ¢, we can find the asymmetry

in the relation,

{059} =0 {Q, ¢} = -1, (3.7.8)

so that it implies the theory depends on the choice of the complex structure of the target space [24].
It shows that the B-model is also “half-topological” with respect to the target space, and the
theory only topologically depends on the complex structure moduli of the Calabi-Yau target space.
Furthermore for the t-dependence, we can use the same way as we did in the A-model
introduction part to show that the Qg-exact term of the action is also independent of the coupling

constant t. On the other hand, one can find that the term W in (3.7.7) is linear in 6, but the other
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term, i.e. the Qp-exact term has not 6-dependence. Therefore we can remove the t-dependence
by redefining 8 — 8/t so that the term tW in the action is changed to be just W. Then the
theory becomes independent of the coupling constant ¢ except for factors that come from the
0 -dependence of the observables. Due to the trivial t-dependence of the B-model, the

calculations can be taken for large ¢ limit.

3.8 Coupling to Gravity

So far the A- and the B-model introduced are both still in topological field theory, in which the
metric of the theory are not dynamical. To make the models be string theories, we need to couple
them to the gravity, which means the worldsheet theory should not only involve the path integral
over the maps @ to the target space and their fermionic partners, but also a path integral over the
metric h,, of the worldsheet. Then we call such theory the topological string theory. There are
several things needed to achieve such coupling. Firstly, of course the Lagrangean of the theory
should be rewritten in a covariant way by changing the flat metrics to the dynamical ones, and the
covariant derivatives and the factor of vdeth should be introduced as well. Furthermore an
Einstein-Hilbert term also needs to be introduced to act like the kinetic term of the metric field,
and the new term should still preserve the symmetries of the original theories. Finally, the theory
should be able to be integrated over space of all metrics. The first two steps are relatively
straightforward to achieve, because changing the Lagrangean of theory may not lead to a large
change of the properties of the theory. However, integrating over the space of all metric may result
in some difficulties. Even though we have a metric independence of the theory, it is not a correct

way to just integrate the partition function over space of all metrics and divide the results by a
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volume of the topological “gauge group”. Therefore an alternative way of integrating is first to do

the integration over all conformally equivalent metrics and to do the integral over the remaining

finite-dimensional moduli space of the worldsheet [24]. It may not be explained further as the

theories treated as the cohomological field theories could give the sufficient explanation for the

next chapter.
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4 Mirror Symmetry

After discussing the two models of the topological string theory, we may talk about the mirror
symmetry, which will make two twisted models isomorphic to each other by exchanging the two
topological structures. Besides the mirror symmetry can also link the different types of superstring
theories as well. This kind of duality relation will make it possible to calculate one theory by
doing the calculation on the other, which is similar to the cases for T-duality and S-duality. For
example some calculation on A-model will be way more difficult than the one in B-model, but
the mirror symmetry conjecture state it would be possible to just obtain the result of A-model by
just calculate the dual case in B-model. Such symmetry relation between two internal spaces may

lead a new understanding of the string theory to the physicists nowadays.

In this chapter, we will firstly give some brief introduction to the mirror symmetry and show how
this type of duality relates two string theories with totally different topological properties [33][34].
Then we will discuss the mirror symmetry in different aspects and some applications of mirror

symmetry will be given as well [25[28][32].

4.1 Brief Introduction to Mirror Symmetry

Generally speaking, mirror symmetry is a conjecture that there are pairs of Calabi-Yau manifolds
with different topological properties that imply the same superconformal field theory, and we call

such pair of Calabi-Yau manifold a mirror pair.
SCFT(X) =~ SCFT(X) (4.1.1)

where X and X are the mirror pair. In superstring theory, the mirror symmetry lead two type-I|
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theories to have mirror duality, which make an isomorphism between the type-I1A theory in
3-dimensional Calabi-Yau manifold X and the type-1IB theory in the mirror manifold X and
vice versa (while in the Calabi-Yau mirror pairs with even dim¢ X the mirror symmetry will lead
a self-duality on both type-Il1A and type-11B superstring theories). Meanwhile, there is another
duality relation between two type-Il theories, which is called the T-duality, a duality between
different target spaces, and the simplest case of such duality is to lead a equivalence between one
theory in a compact internal manifold with a circle of radius R and the other with radius 1/R
( in the natural units ). Then there is a conjecture that there is connection between mirror
symmetry and T-duality, which is called the SYZ conjecture proposed by Strominger, Yau and
Zaslow in 1996 [4][16]. Furthermore, in the topological string theory, the mirror symmetry also
implies that the A-model in target space X is isomorphic to the B-model in the mirror manifold

X and vice versa.

In the aspect of Hodge numbers, the mirror symmetry implies an extra symmetry relation on the

Hodge diamond for Calabi-Yau manifolds such that

h™S(X) = 75 (X) (4.1.2)

where n is the complex dimension of the Calabi-Yau manifolds, 0 <r,s <n, and X and X
are the mirror pairs. For the n = 3 case, we can find the mirror manifold through relation, but for
the manifold that h%* = 0, there is not mirror symmetry since that the Hodge number h'! of a
Calabi-Yau manifold must be positive integer number as shown in (2.5.10.c). By looking at the

Hodge diamond of the Calabi-Yau threefold, we can find the symmetry switches the only two
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independent Hodge numbers to each other, i.e. h'*(X) = h?1(X) and h?*(X) = h**(X). As
the mirror symmetry exchange the dimensions of two cohomology groups, it would lead the
isomorphism that H>*(X) =~ H>*(X) and H%!(X) = H**(X). By using the knowledge in the
moduli space section, we can find that the K&bler moduli space and the complex structure moduli
space are exchanged under the mirror symmetry for the Calabi-Yau manifolds. Such moduli
exchange can be understood in a different direction. In the topological string theory, we have
found that the A-model has the topological dependence of the only Ké&ler moduli on the target
space (A-model may have some other topological dependence of the worldsheet of the strings),
and the B-model only has the topological dependence of the complex structure moduli of the
target space. Then the mirror symmetry exchanges the two moduli to lead the equivalence between

two models.

A-model on X — Ké&nler moduli of X
Mirror symmetry 1 (X,X) (4.1.3)

B-model on X o complex moduli of X

Consequently, the triple products of the coholomogical fields of each model will also have an
isomorphism under the mirror symmetry, and that will lead a kind of Yukawa coupling

equivalence relation between two theories.

4.2 Mirror Symmetry in Aspects of T-duality

Let’s consider the simplest case for T-duality (which is also the mirror symmetry), in which the
compact manifold is just a circle of radius R, i.e. M;, = My X S, and such way of hiding extra
dimension is called the Kaluza-Klein compactification. Then for the coordinate in the 10"
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dimension X°, we will have the following relation:
X°(tr,0 + 2m) = X°(7,0) + 2nRw (4.2.1)

where 7 and ¢ are the coordinate on the worldsheet of the string, and w is the wind number
which is the number of times that the string winds around on S*. The number w is a quantum
number of the spectrum of the physical state, and there is another quantum number for the theory,
which is corresponding to the momentum of the center of mass of the string going around S* and
is denoted as n. Then the contribution to the worldsheet energy of the state form these two
guantum numbers is [6]

2

Ep = (WR)? + (%) . (4.2.2)

We can find the value E,,,, here is invariant under the transformation that R «<— 1/R. Taking the
inverse of the radius of the compact S* as the new radius leads the symmetry, and consequently
the wind number and the momentum quantum number are exchanged. This is the T-duality for the

circle.

Then we can talk about the T-duality for a rectangular 2-torus T2. Such compact manifold is the
simplest Calabi-Yau manifold, and it is also the only case for one-dimensional Calabi-Yau
manifold. The Hodge numbers of T2 are all just one, so the mirror manifold of a 2-torus is just

another 2-torus. Taking the two radius of the torus as R; and R,, we can define
A=iR,R, 71=iR,/R, (4.2.3)
which characterizing the Ké&uler structure and the complex structure of the manifold. The T-duality
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applying on such manifold will lead the transformation of R, = 1/R; to be symmetric under
exchanging A < t, an exchange between the Ké&nler moduli and the complex structure moduli.
The exchange between two moduli spaces in such mirror symmetry may naturally lead to the
exchange of A-model and B-model. T2 is a trivial Cablabi-Yau manifold with only 1 complex
dimension, and it has genus 1 which can lead us to still be able to look at the one-loop free energy
F, of the theory. The B-model at one loop computes the inverse of the determinant of the o

operator acting on T2, and the determinant is the Deddkind #n function:

1@ =q] Ja-qam (42.4)
n=1

where g = e?™7*, As the mirror symmetry implies the B-model in target space of T? is
isomorphic to the A-model in the mirror manifold, another T2, the A-model will be able to have
the calculation with n function but with an exchange 7 < A. The factor g will be related to
e~ by the mirror symmetry, and the coefficient of e=™4 will counts maps which wrap the torus

over itself n times.[25]

4.3 Yukawa Couplings in Mirror Symmetry

As mentioned in the mirror symmetry introduction section, the cohomology class of the mirror
pairs can be linked by the mirror symmetry, and it leads an isomorphism between H%! and H?*!
for the triple products, which could determine a Yukawa coupling of the theories. The fields in the
interaction are considered in the fundamental (248) representation of Eg which is the gauge
group of the uncompactified heterotic string theory. Under the compactification of the Calabi-Yau

internal space with SU(3) holonomy group, the group Eg will be break into a E4 group for the
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4-dimensional Minkowshi spacetime and a SU(3) group, i.e. Eg € E¢ X SU(3). Therefore we

have the decomposition 248 = (27,3) @ (27,3) @ (1,8) @ (78,1), where the 4-dimensional
matter field transform as 27 and 27 of E, (which are also the fundamental representation of
E, and its dual) and the zero modes transform in 3 and 3 of the group SU(3). Then we can find
there are two kind of Yukawa coupling for the fields, which are (273) and (273), and the first

one is in the form that
kg (X) = Ky (X) = f ha Ahy Ahe, (4.3.1)
X

where h, € Hg'l(X) and the index a,b and c are in the range from 1 to the Hodge number

h'1. Then the second kind of Yukawa coupling is that

;cffg (X) = Kop,(X) = LQ Ab% AbJ ABE Qe (43.2)

where Q is the unique non-vanishing holomorphic (3,0)-form on the Calabi-Yau manifold,
by = QU*(by) jy; dz* suchthat b, € H3™(X), and the index «, 8 and y are in the range from 1
to h%!. We can find that the coupling in (4.3.1) in purely topological and the one in (4.3.2)
depends on the complex structure through Q. There are one-to-one correspondence relations
between the field and the moduli: 27 <« Ké&bler moduli and 27 < complex structure moduli.
Under the mirror symmetry, the full (273) couplings on the manifold X depend on the Kénler
moduli in such a way that the full (273) couplings on the mirror manifold X depend on the

complex structure moduli. [28][32]

In the A-model the Yukawa three-point correlation function is computed as
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where ng is the instanton number and 8 € H,(X;Z) and Q¢ is the complexified Kénler form.

Then the corresponding dual case in B-model have the three point correlation defined as

(babg, by) = f QA (Vb Y, V5, Q) (4.3.4)
X

where Q is still the holomorphic 3-formon X and V,_ is the Gauss-Manin connection taking a

(r,s) classtoa (r+1,s —1) class.
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5 Conclusion

We has discussed how the compactification of string theory required the internal space to be
3-dimensional Calabi-Yau manifold and also discussed the holonomy group, cohomology class
and the two moduli spaces of such manifolds. Furthermore the two twisted N = (2,2)
topological string theories, A-model and B-model were also introduced and we showed that they
are totally determined by the Kanler structure and the complex structure of the target space
respectively. Then, the mirror symmetry conjecture were illustrated and it makes the mirror pairs
by exchanging the two topological structures and makes an isomorphism between two string
theories, including two twisted models. Some applications of the mirror symmetry were briefly

introduced in the end of the final chapter.
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