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Abstract 

 

Under the compactification by the Calabi-Yau threefold, the string theory shows there is duality 

called mirror symmetry, which implies there is an isomorphism between two string theories under 

the compactifications of two topologically different internal manifolds. By twisting the topological 

string theory in two methods, the twisted theories named 𝐴-model and 𝐵 -model have an 

isomorphism to each other under the mirror symmetry.  

  



4 

Contents 

 

1  Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 

 

2  Calabi-Yau Compactification  . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

  2.1  Complex Manifolds  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 

  2.2  Complex Differential Forms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 

2.3  Kählar Manifolds  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 

2.4  Holonomy Group of Kählar Manifolds  . . . . . . . . . . . . . . . . . . . . . . . . . . .20 

2.5  𝜕̅-cohomology Groups and Hodge Numbers  . . . . . . . . . . . . . . . . . . . . . . 21 

2.6  Calabi-Yau Manifolds  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 

2.7  Moduli Spaces of Calabi-Yau Manifolds  . . . . . . . . . . . . . . . . . . . . . . . . . 26 

 

3  Topological String Theory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 

3.1  Superspaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 

  3.2  Supersymmetric Nonlinear Sigma Model  . . . . . . . . . . . . . . . . . . . . . . . . .31 

  3.3  R-Symmetries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 

  3.4  Twisting Supersymmetric Sigma Model  . . . . . . . . . . . . . . . . . . . . . . . . . .34 

  3.5  Cohomological Field Theory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 

3.6  𝐴-model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 

3.7  𝐵-model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 

3.8  Coupling to Gravity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46 



5 

   

4  Mirror Symmetry  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 

  4.1  Brief Introduction to Mirror Symmetry  . . . . . . . . . . . . . . . . . . . . . . . . . . 48 

  4.2  Mirror Symmetry in Aspects of T-duality  . . . . . . . . . . . . . . . . . . . . . . . . .50 

  4.3  Yukawa Couplings in Mirror Symmetry  . . . . . . . . . . . . . . . . . . . . . . . . . .52 

 

5  Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  

 

References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56 

  



6 

1 Introduction  

Nowadays, there are two pillars of modern physics, which are Einstein’s general theory of 

relativity and the quantum field theory with the standard model. However these two theories 

cannot be unified together properly to become “the theory of everything”. There are several 

attempts of such great grand unification, and superstring theory is one of them and it seems to be 

the most successful one [6][7]. The superstring theory is a theory in which the elementary bosonic 

particles are considered to be the vibration modes of the 1-dimensional string moving in the 

spacetime, and the fundamental fermions are the super partners of these bosons under the 

supersymmetry. The superstring theory predicts the existence of gravity and is also able to fit into 

the quantum mechanical theory we have already obtained. Apart for these, there are also some 

particular predictions it made, one of the most famous prediction is that our universe should be in 

a spacetime with 10 or 11 dimensions (we will focus on the 10-dimensional case, and the 

11-dimensional theory is called M-theory [15]). It shows that the 6 extra spatial dimensions should 

be conpactified in a very small scale, and the corresponding compact space is called a Calabi-Yau 

manifold. Calabi in 1957 first conjectured the existence of such kind of manifolds [22] and then it 

was proved by Yau in 1977 [1][21].  

 

There is a symmetry relation among the Calabi-Yau manifolds, which is called the mirror 

symmetry [11]. It implies a duality between the string theories with two topologically different 

Calabi-Yau manifolds. The mirror symmetry first came to people’s sight in 1989 with the work of 

Greene and Plesser [2] and Candelas, Lyker and Schimmrigk [3]. Mirror symmetry also gives an 

isomorphism between two superstring theories, type-IIA and type-IIB, under different internal 
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space [12], and it can be understand in aspect of T-duality [4]. Apart from that the mirror 

symmetry would also play important role in the topological string theory. In topological string 

theory, we can twist the theory in two different ways to obtain two theories, 𝐴-model and 

𝐵-model. In 1991, Witten found that the mirror symmetry can also make the duality between two 

twisted models [5], and it links the complex structure on 𝐵-model to the Kählar structure on 

𝐴-model.  

 

In this dissertation, we will discuss what the Calabi-Yau compactification is and some 

corresponding properties of such compact manifold. Then the topological string theory will be 

introduced, and also the two models obtained by twisting the topological theory and their related 

knowledge will be given. Finally, the mirror symmetry will be explained and we will look at this 

duality in a few different aspects. 
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2 Calabi-Yau Compactification  

In the superstring theory, the conformal invariance of the SCFT coupled to a worldsheet theory 

requires a 10-dimensional spacetime rather than 4-dimensional one in which we feel in the 

ordinary life, so a way of compactification on the spacetime manifold is needed. Therefore the 

whole spacetime should be a manifold which can be expressed in the form of 𝑀1,3 ×𝑀6, where 

𝑀1,3 is the 4-dimensional Minkowski spacetime manifold and 𝑀6 is the 6-dimensionl compact 

manifold for the spatial compactification. There are some requirements on 𝑀6. Firstly, the 

compact manifold should be a vacuum solution of the Einstein’s field equation, which also means 

the manifold should be Ricci-flat. On the other hand, 𝑀6 is also required to preserve some 

supersymmetries rather than break them all [18][19], so it implies that the manifold needs to be a 

Kählar manifold. All the requirements leads that manifold 𝑀6 should be a compact Ricci-flat 

6-dimensional Kählar manifold, that is to say, we need a Calabi-Yau three-fold for the extra spatial 

dimensions. 

 

In this chapter, we will introduce the complex manifolds and the Kählar manifolds, which are the 

keys to give the definition of the Calabi-Yau manifolds, and the corresponding knowledge of the 

differential manifold for each case will be introduced as well (such as complex differential forms, 

cohomology group, homology, Hodge diamond and etc.)[8][13][29][30][31]. After all the 

necessary knowledge is given, the definition of the Calabi-Yau manifolds will be illustrated, and 

some of its properties (such as topological invariant, moduli spaces [9][10] and etc.) will also be 

introduced.  
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2.1 Complex Manifolds  

Before we define a complex manifold, we need to first define a holomorphic map on ℂ𝑚. A 

complex function : ℂ𝑚  → ℂ  is holomorphic, if 𝑓 = 𝑓1 + 𝑖𝑓2  satisfies the Cauchy-Riemann 

relations for each 𝑧𝜇 = 𝑥𝜇 + 𝑖𝑦𝜇, 

 
𝜕𝑓1
𝜕𝑥𝜇

=
𝜕𝑓2
𝜕𝑦𝜇

  ,
𝜕𝑓2
𝜕𝑥𝜇

= −
𝜕𝑓1
𝜕𝑦𝜇

 (2.1.1) 

Then an m-dimensional complex manifold M is defined as the following axioms: 

(i) M is a topological space. 

(ii) M is provided with a family of pairs {(𝑈𝑖, 𝜑𝑖)}. 

(iii) {𝑈𝑖} is a family of open sets which covers M . The map 𝜑𝑖 is a homeomorphism 

from 𝑈𝑖 to an open subset 𝑈 of ℂ𝑚. [Hence, M  is even dimensional.] 

(iv) Given 𝑈𝑖 and 𝑈𝑗 such that 𝑈𝑖 ∩ 𝑈𝑗 ≠ ∅, the map 𝜓𝑗𝑖 = 𝜑𝑗 ∘ 𝜑𝑖
−1 from  𝜑𝑖(𝑈𝑖 ∩ 𝑈𝑗) 

to 𝜑𝑗(𝑈𝑖 ∩ 𝑈𝑗) is holomorphic. 

The number 𝑚 is the complex dimension of 𝑀, and is denoted as dimℂ𝑀 = 𝑚, and its real 

dimension is 2𝑚. The Axioms ensure that calculus on the complex manifold can exist without the 

dependence of the any chosen coordinates, and the manifold is differentiable. Complex manifold 

can also preserve its orientation, so they are also orientable. We can locate a point 𝑝 on 𝑀 by 

using the coordinate 𝑧𝜇 = 𝜑(𝑝) = 𝑥𝜇 + 𝑖𝑦𝜇 in a chart (𝑈, 𝜑), where 1 ≤ 𝜇 ≤ 𝑚. Then the 

tangent space 𝑇𝑝𝑀 of complex manifold 𝑀 is naturally spanned by 2𝑚 vectors 

 {
𝜕

𝜕𝑥1
, … ,

𝜕

𝜕𝑥𝑚
,
𝜕

𝜕𝑦1
, … ,

𝜕

𝜕𝑦𝑚
} (2.1.2) 

and its co-tangent space 𝑇𝑝
∗𝑀 is spanned by 
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 {𝑑𝑥1, … , 𝑑𝑥𝑚, 𝑑𝑦1, … , 𝑑𝑦𝑚 }. (2.1.3) 

Let us define another 2𝑚 basic vecoters:  

 

𝜕

𝜕𝑧𝜇
≡
1

2
(
𝜕

𝜕𝑥𝜇
− 𝑖

𝜕

𝜕𝑦𝜇
) 

𝜕

𝜕𝑧̅𝜇
≡
1

2
(
𝜕

𝜕𝑥𝜇
+ 𝑖

𝜕

𝜕𝑦𝜇
), 

(2.1.4.a) 

(2.1.4.b) 

and corresponding 2𝑚 one-forms are defined as: 

 

𝑑𝑧𝜇 ≡ 𝑑𝑥𝜇 + 𝑖𝑑𝑦𝜇 

𝑑𝑧̅𝜇 ≡ 𝑑𝑥𝜇 − 𝑖𝑑𝑦𝜇 

(2.1.5.a) 

(2.1.5.b) 

These are called the holomorphic bases (ones without bar) and anti-holomorphic bases (ones with 

bar). By using these vector and co-vector bases, we can then define a so-called almost complex 

structure which will play an essential role in the following sections.  

 

We define a real tensor field of type (1,1) on point 𝑝 of a complex manifold 𝑀,  𝐽𝑝 ∶ 𝑇𝑝𝑀 →

𝑇𝑝𝑀 such that  

 𝐽𝑝 (
𝜕

𝜕𝑥𝜇
) =

𝜕

𝜕𝑦𝜇
, 𝐽𝑝 (

𝜕

𝜕𝑦𝜇
) = −

𝜕

𝜕𝑥𝜇
. (2.1.6) 

Note that 

 𝐽𝑝
2 = −𝑖 𝑑𝑇𝑝𝑀 (2.1.7) 

𝐽𝑝 is the almost complex structure of 𝑀 at point 𝑝,and it corresponds to the multiplication of ±𝑖 

[17]. This structure is also independent of the charts chosen, which can be proven by finding its 

action of the overlapping parts of any two charts in a complex manifold [8]. The almost complex 
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structure can be only defined globally on a complex manifold. 

 

By acting the almost complex structure to the bases that we defined in (2.1.4), we can easily find 

that the bases 𝜕/𝜕𝑧  𝜇 and 𝜕/𝜕𝑧̅𝜇  are both the unit eigenvectors of 𝐽𝑝 with eigenvalues +𝑖 and 

– 𝑖 respectively.  

 𝐽𝑝 (
𝜕

𝜕𝑧  𝜇
) = 𝑖

𝜕

𝜕𝑧  𝜇
         𝐽𝑝 (

𝜕

𝜕𝑧̅  𝜇
) = −𝑖

𝜕

𝜕𝑧̅ 𝜇
 (2.1.8) 

Therefore we can diagonalise 𝐽𝑝 as a matrix in the (anti-)holomorphic bases: 

 𝐽𝑝 = 𝑖𝑑𝑧
𝜇⊗

𝜕

𝜕𝑧𝜇
− 𝑖𝑑𝑧̅𝜇⊗

𝜕

𝜕𝑧̅𝜇
= (

𝑖𝐼𝑚 0
0 −𝑖𝐼𝑚

), (2.1.9) 

where 𝐼𝑚 is the 𝑚 ×𝑚 identity matrix. 

 

For a tangent space 𝑇𝑝𝑀
ℂ of a complex manifold 𝑀, we can decompose it into two disjoint 

tangent spaces 

 𝑇𝑝𝑀
ℂ = 𝑇𝑝𝑀

+⊕  𝑇𝑝𝑀
− (2.1.10) 

where 𝑇𝑝𝑀
+  is the tangent space with holomorphic bases and  𝑇𝑝𝑀

−  is the one with 

anti-holomorphic bases. The vectors in each tangent space are the eigenvectors of 𝐽𝑝 with the 

eigenvalues ±𝑖 respectively, so we could give the definition: 

  𝑇𝑝𝑀
± = {𝑍 ∈ 𝑇𝑝𝑀

ℂ|𝐽𝑝𝑍 = ±𝑖𝑍}. (2.1.11) 

Therefore a complex tangent vector 𝑍 ∈ 𝑇𝑝𝑀
ℂ can be uniquely decomposed as 𝑍 = 𝑍+ + 𝑍−, 

where 𝑍± ∈ 𝑇𝑝𝑀
± , and 𝑍+  is defined as a holomorphic vector and 𝑍−  is defined as an 

anti-holomorphic vector. We need to note that 𝑇𝑝𝑀
± are in the same dimensions, and their 
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dimensions are both half of dimℂ 𝑇𝑝𝑀
ℂ = dimℂ𝑀. 

  

Until here, we have defined an almost complex structure in a complex manifold. It is obvious that 

every complex manifold has an almost complex structure, as 𝐽𝑝 can be directly related to the 

multiplication by ±𝑖, but an almost complex manifold, which is defined as a differential manifold 

with an almost complex structure, is not always a complex manifold [8]. It needs some 

restrictions.  

 

We then define a tensor field of rank (1, 2) on an almost complex manifold, 𝑁 ∶ 𝑇𝑝𝑀× 𝑇𝑝𝑀 →

𝑇𝑝𝑀: 

 𝑁(𝑋, 𝑌) ≡ [𝑋, 𝑌] + 𝐽[𝐽𝑋, 𝑌] + 𝐽[𝑋, 𝐽𝑌] − [𝐽𝑋, 𝐽𝑌] (2.1.12) 

which is called Nijenhuis tensor, and [𝑋, 𝑌] is the Lie bracket of two vectors. If we have a 

vanishing Nijenhuis tensor on a manifold 𝑀, the almost complex structure 𝐽 is integrable. Then 

there is another theorem, which can be proved with complicated mathematical concepts [14], 

showing that: (Newlander and Nirdnberg 1957) Let (𝑀, 𝐽) be a 2𝑚-dimensinal almost complex 

manifold. If 𝐽 is integrable, the manifold 𝑀 is a complex manifold with the almost complex 

structure 𝐽. Hence we can say a vanishing Nijenhuis tensor lead an almost complex manifold to 

be a complex manifold.  

 

2.2 Complex Differential Forms  

Same as real manifolds, complex manifolds also have differential forms. If we have a complex 
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manifold 𝑀 with dimℂ𝑀 = 𝑚, a complex 𝑞-form 𝜔 ∈ Ω𝑝
𝑞(𝑀)ℂ at point 𝑝 can be defined as 

𝜔 = 𝜂 + 𝑖𝜁 , where 𝜂  and 𝜁  are both real 𝑞 -forms 𝜂, 𝜁 ∈ Ω𝑝
𝑞(𝑀)ℝ  at 𝑝 , and its complex 

conjugate is 𝜔̅ = 𝜂 − 𝑖𝜁. Then we can easily find that the exterior derivative of the 𝑞-form 𝜔 is 

 𝑑𝜔 = 𝑑𝜂 + 𝑖𝑑𝜁. (2.2.1) 

We can also define the complex 𝑞-form in the holomorphic and anti-holomorphic bases, which 

would be more helpful for the later description. Let the 𝑞-form  𝜔 ∈ Ω𝑝
𝑞(𝑀)ℂ (𝑞 ≤ 2𝑚) and 

𝑟, 𝑠 be positive integers such that 𝑟 + 𝑠 = 𝑞. Then we take 𝑞 vectors 𝑉𝑖 ∈ 𝑇𝑝𝑀
ℂ (1 ≤ 𝑖 ≤ 𝑞 ) 

in either 𝑇𝑝𝑀
+ or 𝑇𝑝𝑀

− spaces. If 𝜔(𝑉1, … , 𝑉𝑞) = 0 unless 𝑟 of 𝑉𝑖  are in 𝑇𝑝𝑀
+ and 𝑠 of 

𝑉𝑖 are in 𝑇𝑝𝑀
−, 𝜔 is said to be an (𝑟, 𝑠)-form or a form of bidegree (𝑟, 𝑠), 𝜔 ∈ Ω𝑝

𝑟,𝑠(𝑀) =

Ω𝑝
𝑞(𝑀)ℂ . Then we can see that the bases of an (𝑟, 𝑠)-form are just 𝑟  holomorphic basic 

one-forms 𝑑𝑧 and 𝑠 anti-holomorphic basic one-forms 𝑑𝑧̅, which can be found in (2.1.5). 

Therefore the (𝑟, 𝑠)-form 𝜔 can be written as: 

 𝜔 =
1

𝑟! 𝑠!
𝜔𝜇1…𝜇𝑟𝜈̅1…𝜈̅𝑠𝑑𝑧

𝜇1 ∧ …∧ 𝑑𝑧𝜇𝑟 ∧ 𝑑𝑧̅𝜈1 ∧ …∧ 𝑑𝑧̅𝜈𝑠 . (2.2.2) 

All the components in the form are totally anti-symmetric in 𝜇 and 𝜈 respectively.  

 

A complex 𝑞-form 𝜔 can be uniquely decomposed by disjoint (𝑟, 𝑠)-forms: 

 𝜔 = ∑ 𝜔(𝑟,𝑠)

𝑟+𝑠=𝑞

 (2.2.3) 

where 𝜔(𝑟,𝑠) ∈ Ω𝑟,𝑠, and its set can also be decomposed as: 

 Ω𝑞(𝑀)ℂ =⨁Ω𝑟,𝑠(𝑀)

𝑟+𝑠=𝑞

. (2.2.4) 

Then the exterior derivative of an (𝑟, 𝑠)-form can be found by changing the coordinate system to 
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the (anti-)holomorphic one on (2.2.1): 

 

𝑑𝜔 =
1

𝑟! 𝑠!
(
𝜕

𝜕𝑧𝜆
𝜔𝜇1…𝜇𝑟𝜈̅1…𝜈̅𝑠𝑑𝑧

𝜆 +
𝜕

𝜕𝑧̅𝜆
𝜔𝜇1…𝜇𝑟𝜈̅1…𝜈̅𝑠𝑑𝑧̅

𝜆)

× (𝑑𝑧𝜇1 ∧ …∧ 𝑑𝑧𝜇𝑟 ∧ 𝑑𝑧̅𝜈1 ∧ …∧ 𝑑𝑧̅𝜈𝑠). 

(2.2.5) 

Here we can see that the new complex (𝑞 + 1)-form 𝑑𝜔 is actually a mixture of an (𝑟 +

1, 𝑠)-form and an (𝑟, 𝑠 + 1)-form. Then we can separate the exterior derivative operator into two 

parts: 

 𝑑 = 𝜕 + 𝜕̅ (2.2.6) 

where 𝜕 is the operator mapping Ω𝑟,𝑠(𝑀) into Ω𝑟+1,𝑠(𝑀), and 𝜕̅ is the one mapping Ω𝑟,𝑠(𝑀) 

into Ω𝑟,𝑠+1(𝑀), and both of operators are call the Dolbeault operators [8], and because all three 

operators in (2.2.6) are nilpotent, we can easily find the following relation: 

 𝜕𝜕𝜔 = 𝜕̅𝜕̅𝜔 = (𝜕̅𝜕 + 𝜕𝜕̅)𝜔 = 0 (2.2.7) 

The de Rham cohomology in a complex manifold is similar to the one for real manifolds, but with 

respect to each Dolbeault operator. The 𝜕̅-closed (𝑟, 𝑠)-form, i.e. 𝜔 ∈ Ω𝑟,𝑠(𝑀), 𝜕̅𝜔 = 0, is called 

the (𝑟, 𝑠)-cocycle denoted by 𝑍
𝜕̅
𝑟,𝑠(𝑀), and the 𝜕̅-exact (𝑟, 𝑠)-forms, i.e.  𝜔 ∈ Ω𝑟,𝑠(𝑀), 𝜂 ∈

Ω𝑟,𝑠−1(𝑀), 𝜕̅𝜂 = 𝜔, is called the (𝑟, 𝑠)-coboundary denoted by 𝐵
𝜕̅
𝑟,𝑠(𝑀). Then the corresponding 

cohomology group is 

 𝐻
𝜕̅
𝑟,𝑠(𝑀) ≡ 𝑍

𝜕̅
𝑟,𝑠(𝑀)/𝐵

𝜕̅
𝑟,𝑠(𝑀) (2.2.8) 

which is a complex vector space and is called the (𝑟, 𝑠)th 𝜕̅-cohomology group. The de Rham 

cohomology for 𝜕 is extended in the same way as the one for 𝜕̅ as shown above.  
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2.3 Kählar Manifolds  

For a complex manifold 𝑀 we can extend the metric 𝑔 to act on the complex tangent spaces 

 𝑔: 𝑇𝑝𝑀
ℂ × 𝑇𝑝𝑀

ℂ → ℂ. (2.3.1) 

Taking two vectors 𝑍 = 𝑋 + 𝑖𝑌 and 𝑊 = 𝑈 + 𝑖𝑉 on the same tangent space 𝑇𝑝𝑀
ℂ at point 𝑝, 

we can have 

 𝑔𝑝(𝑍,𝑊) = 𝑔𝑝(𝑋, 𝑈) − 𝑔𝑝(𝑌, 𝑉) + 𝑖[𝑔𝑝(𝑋, 𝑉) + 𝑔𝑝(𝑌, 𝑈)]. (2.3.2) 

For the (anti-)holomorphic coordinates, the components of the metric are simply 𝑔𝜇𝜈(𝑝) =

𝑔𝑝 (
𝜕

𝜕𝑧𝜇
,
𝜕

𝜕𝑧𝜈
), 𝑔𝜇𝜈̅(𝑝) = 𝑔𝑝 (

𝜕

𝜕𝑧𝜇
,
𝜕

𝜕𝑧̅𝜈
) and etc. . 

 

Before we give the definition of the Kählar manifolds, we need first to define what a Hermitian 

manifold is. If the Riemannian metric 𝑔 of a complex manifold 𝑀 satisfies the following 

restriction: 

 𝑔𝑝(𝐽𝑝𝑋, 𝐽𝑝𝑌) = 𝑔𝑝(𝑋, 𝑌). (2.3.3) 

where point 𝑝 ∈ 𝑀 , vectors 𝑋, 𝑌 ∈ 𝑇𝑝𝑀
ℂ  and 𝐽𝑝  is the almost complex structure of the 

manifold, we say the metric 𝑔 is a Hermitian metric, and the pair (𝑀, 𝑔) we called Hermitian 

manifold. It can be proven that the components of the metric with holomorphic indices will vanish 

 𝑔𝜇𝜈 = 𝑔 (
𝜕

𝜕𝑧𝜇
,
𝜕

𝜕𝑧𝜈
) = 𝑔 (𝐽𝑝

𝜕

𝜕𝑧𝜇
, 𝐽𝑝

𝜕

𝜕𝑧𝜈
) = −𝑔𝜇𝜈 = 0, (2.3.4) 

and it is same for 𝑔𝜇̅𝜈̅. Therefore the Hermitian metric only takes the form with mixed indices: 

 𝑔 = 𝑔𝜇𝜈̅𝑑𝑧
𝜇⊗𝑑𝑧̅𝜈 + 𝑔𝜇̅𝜈𝑑𝑧̅

𝜇⊗𝑑𝑧𝜈 (2.3.5) 
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Hence we can find the geometry of a Hermitian manifold through its metric 𝑔. The connection on 

the manifold can be found by its definition, for example: 

 ∇𝜇
𝜕 

𝜕𝑧𝜈
= Γ𝜆𝜇𝜈(𝑧)

𝜕

𝜕𝑧𝜆
 (2.3.6) 

where ∇𝜇 is the covariant derivative and Γ𝜆𝜇𝜈 is the connection. We can obtain the connection 

with pure anti-holomorphic indices Γ𝜆̅𝜇̅𝜈̅, in the same way. As the manifold should have the 

metric compatibility, we need relations that ∇𝜅𝑔𝜇𝜈̅ = ∇𝜅̅𝑔𝜇𝜈̅ = 0 to be true. Therefore we can 

find the connection can be written as  

 Γ𝜆𝜇𝜈 = 𝑔
𝜆𝜎̅𝜕𝜇𝑔𝜎̅𝜈        Γ

𝜆̅
𝜇̅𝜈̅ = 𝑔

𝜆̅𝜎𝜕𝜇̅𝑔𝜈̅𝜎 ,  (2.3.7) 

and the connections with mixed indices are all vanished. These connections are called the 

Hermitian connection. Because the only non-vanished connections are the two with pure indices, 

we can see that a holomorphic tangent space on a Hermitian manifold can only be parallel 

transported in holomorphic directions, and it is also true for the anti-holomorphic cases. The 

Hermitian manifolds are not necessarily torsion free, similar to the connections, the only 

non-vanishing torsion are also with pure indices, 𝑇𝜆𝜇𝜈 and 𝑇 𝜆̅𝜇̅𝜈̅. Then for the curvature of the 

manifold, we can use the definition the Riemannian curvature tensors: 

 𝑅(𝑋, 𝑌)𝑍 = ∇𝑋∇𝑌𝑍 − ∇𝑌∇𝑋𝑍 − ∇[𝑋,𝑌]𝑍 (2.3.8) 

to find that the only non-vanishing components are 𝑅𝜅𝜆𝜇̅𝜈, 𝑅𝜅𝜆𝜇𝜈̅,  𝑅𝜅̅𝜆̅𝜇̅𝜈, 𝑅𝜅̅𝜆̅𝜇𝜈̅. Due to the 

symmetry of switching the last two indices of the tensor, the only two independent components of 

the Riemannian curvature tensor are 𝑅𝜅𝜆𝜇̅𝜈, and 𝑅𝜅̅𝜆̅𝜇𝜈̅, and they are the complex conjugate of 

each other. Then we can find the tensors can be written as: 
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𝑅𝜅𝜆𝜇̅𝜈 = 𝜕𝜇̅Γ
𝜅
𝜈𝜆 = 𝜕𝜇̅𝑔

𝜉̅𝜅𝜕𝜈𝑔𝜆𝜉̅ 

𝑅𝜅̅𝜆̅𝜇𝜈̅ = 𝜕𝜇Γ
𝜅̅
𝜈̅𝜆̅ = 𝜕𝜇𝑔

𝜉𝜅̅𝜕𝜈̅𝑔𝜉𝜆̅. 

(2.3.9.a) 

(2.3.9.b) 

By contracting the first upper and the first lower indices of the Riemann tensor, we can define a 

anti-symmetric rank 2 tensor: 

 ℜ𝜇𝜈̅ ≡ 𝑅
𝜅
𝜅𝜇𝜈̅ = −𝜕𝜈̅(𝑔

𝜉̅𝜅𝜕𝜇𝑔𝜅𝜉̅) = −𝜕𝜈̅𝜕𝜇 log𝐺 (2.3.10) 

where 𝐺 ≡ det(𝑔𝜇𝜈̅) = √𝑔. We define the Ricci form by 

 ℜ ≡ 𝑖ℜ𝜇𝜈̅𝑑𝑧
𝜇 ∧ 𝑑𝑧̅𝜈 = 𝑖𝜕𝜕̅ log𝐺, (2.3.11) 

and it is a real form. We can find ℜ is also a closed form, i.e. 𝑑ℜ ∝ 𝑑𝜕𝜕̅ log𝐺 = −
1

2
𝑑2(𝜕 −

𝜕̅) log𝐺 = 0, but it does not imply it is also an exact form. ℜ also defines a the a non-trivial 

element called the first Chern class, i.e. 𝑐1(𝑀) ≡ [ℜ/2𝜋] ∈ 𝐻
2(𝑀;ℝ) [20]. It is also the reason 

why we say a Ricci flat Kählar manifold has a vanishing first Chern class, i.e. ℜ = 0 ⇒ 𝑐1(𝑀) =

0.  

 

Then we also need to give a definition of another concept, Kählar form. In a Hermitian manifold 

(𝑀, 𝑔), we define a tensor field Ω at point 𝑝 ∈ 𝑀, such that  

 Ω𝑝(𝑋, 𝑌) = 𝑔𝑝(𝐽𝑝𝑋, 𝑌)        𝑋, 𝑌 ∈ 𝑇𝑝𝑀. (2.3.12) 

We can find that it is an anti-symmetric tensor field acting on two vectors to give a number, so it is 

a 2-form field, and we call it Kählar form. We can extend the domain of the Kählar form from 

𝑇𝑝𝑀 to 𝑇𝑃𝑀
ℂ, it shows that it would be a (1,1)-form:  
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 Ω(
𝜕

𝜕𝑧𝜇
,
𝜕

𝜕𝑧̅𝜈
) = 𝑔𝑝 (𝐽𝑝

𝜕

𝜕𝑧𝜇
,
𝜕

𝜕𝑧̅𝜈
) = 𝑖𝑔𝜇𝜈̅ = −  Ω (

𝜕

𝜕𝑧̅𝜈
,
𝜕

𝜕𝑧𝜇
) (2.3.13) 

where the cases with pure indices will also vanish just like the metric, i.e. 𝑔𝜇𝜈 = 𝑔𝜇̅𝜈̅ = 0. Then 

we can write Ω  

 

or 

Ω = 𝑖𝑔𝜇𝜈̅𝑑𝑧
𝜇⊗𝑑𝑧̅𝜈 − 𝑖𝑔𝜈̅𝜇𝑑𝑧̅

𝜈⊗𝑑𝑧𝜇 = 𝑖𝑔𝜇𝜈̅𝑑𝑧
𝜇 ∧ 𝑑𝑧̅𝜈 , 

Ω = −𝐽𝜇𝜈̅𝑑𝑧
𝜇 ∧ 𝑑𝑧𝜈̅ 

(2.3.14) 

(2.3.15) 

as 𝐽𝜇𝜈̅ = 𝑔𝜇𝜆̅ 𝐽
𝜆̅
𝜈̅ = −𝑖𝑔𝜇𝜈̅, and it is easy to show that Ω is a real form by finding that its 

complex conjugate is itself.  

 

On a Hermitian manifold with complex dimension 𝑚 and the Kählar form Ω, we have a nowhere 

vanishing 2𝑚-form,  

Ω ∧ …∧ Ω⏟      
𝑚

= Ω𝑚 . 

To prove this, we can use the orthonormal basis: 

 Ω( 𝑒̂𝑖  , 𝐽𝑒̂𝑗) = 𝛿𝑖𝑗        Ω(𝑒̂𝑖  , 𝑒̂𝑗) =  Ω(𝐽𝑒̂𝑖  , 𝐽𝑒̂𝑗) = 0 (2.3.16) 

Then it follows that  

 

Ω ∧ …∧ Ω⏟      
𝑚

(𝑒̂1, 𝐽𝑒̂1, … , 𝑒̂𝑚, 𝐽𝑒̂𝑚) 

=∑Ω(𝑒̂𝑃1 , 𝐽𝑒̂𝑃1)…Ω(𝑒̂𝑃𝑚 , 𝐽𝑒̂𝑃𝑚)

𝑝

    

= 𝑚!Ω(𝑒̂1, 𝐽𝑒̂1)…Ω(𝑒̂𝑚, 𝐽𝑒̂𝑚) = 𝑚! 

(2.3.17) 

where 𝑃 is the permutation of 𝑚 objects. It shows that Ω𝑚 is a nowhere vanishing real form on 

the Hermitian manifold and it serves as the volume form. Therefore it again shows that the 
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manifold we are talking about is an orientable manifold, and it fits the fact that the compact 

internal space should be orientable. Then by using this non-vanishing top form, we can decompose 

it into two separate parts: a holomorphic volume 𝑚-form and an anti-holomorphic volume 

𝑚-form, which will be unique and non-vanishing on a Calabi-Yau manifold. 

 

After introducing Hermitian manifold and Kählar form, we can give the definition of the Kählar 

manifold: Kählar manifold is the Hermitian manifold (𝑀, 𝑔) with a closed Kählar form, which 

means 𝑑Ω = 0, and the metric satisfying above condition is called Kählar metric. Then we extend 

the condition: 

 

𝑑Ω = (𝜕 + 𝜕̅)𝑖𝑔𝜇𝜈̅ 𝑑𝑧
𝜇 ∧ 𝑑𝑧̅𝜈                                              

            = 𝑖𝜕𝜆𝑔𝜇𝜈̅𝑑𝑧
𝜆 ∧ 𝑑𝑧𝜇 ∧ 𝑑𝑧̅𝜈 + 𝑖𝜕𝜆̅𝑔𝜇𝜈̅𝑑𝑧

𝜆̅ ∧ 𝑑𝑧𝜇 ∧ 𝑑𝑧̅𝜈 

=
1

2
𝑖(𝜕𝜆𝑔𝜇𝜈̅ − 𝜕𝜇𝑔𝜆𝜈̅)𝑑𝑧

𝜆 ∧ 𝑑𝑧𝜇 ∧ 𝑑𝑧̅𝜈               

+
1

2
𝑖(𝜕𝜆̅𝑔𝜇𝜈̅ − 𝜕𝜈̅𝑔𝜆̅𝜇)𝑑𝑧̅

𝜆 ∧ 𝑑𝑧𝜇 ∧ 𝑑𝑧̅𝜈 = 0     

(2.3.18) 

where we can find the relations: 

 𝜕𝜆𝑔𝜇𝜈̅ = 𝜕𝜇𝑔𝜆𝜈̅             𝜕𝜆̅𝑔𝜇𝜈̅ = 𝜕𝜈̅𝑔𝜆̅𝜇. (2.3.19) 

Therefore for a given chart (𝑈𝑖, 𝜑𝑖) on a Kählar manifold 𝑀, one can write the components of 

the metric 𝑔 in the following form:   

 𝑔𝜇𝜈̅ = 𝜕𝜇𝜕𝜈̅𝒦𝑖   (2.3.20) 

where 𝒦𝑖 ∈ ℱ(𝑈𝑖) is called the Kählar potential of the metric. As the metric can be expressed 

differently in different chart, the Kählar potential can only be written in the form of (2.3.20) 
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locally rather than globally. The potential is also not unique, because we can change the potential 

by adding (anti-)holomorphic functions without changing its metric. Then on a compact Kählar 

manifold without boundary, the form Ω𝑚 (the wedge product over 𝑚 Kählar forms) is closed 

but not exact. 

 

2.4 Holonomy Group of Kählar Manifolds  

We can recall that the holonomy group of a Riemannian manifold 𝑀 of dimℝ𝑀 = 𝑚 is a 

subgroup of 𝑂(𝑚). Then because the Kählar manifolds that we have studied in this topic is also 

orientable which means the holonomy group should keep the orientation of the parallel transported 

vectors, the holonomy group of Kählar manifolds with 𝑚 real dimensions should be a subgroup 

of 𝑆𝑂(𝑚). Furthermore it follows from the index structure of the connection of the Kählar 

manifolds that under parallel transport elements of 𝑇𝑀+ and 𝑇𝑀− do not mix, and the lengths 

of the vectors should be preserved under the parallel transports. Hence the holonomy group of the 

Kählar manifolds should be a subgroup of 𝑈(𝑛) where 𝑛 is the complex dimension of the 

manifold. The elements of 𝑇𝑀+ and 𝑇𝑀− transform in 𝑈(𝑛) respectively. Then we may recall 

the definition of the holonomy group, which is the transformation of a vector on the manifold after 

a parallel transports around a loop and should also be a Lie group. Now we may take a parallel 

transport around an infinitesimal loop on the manifold, so we can find the infinitesimal 

transformation of the vector, which is also corresponding to the Lie algebra of the holonomy 

group, 𝔲+ (𝑛)⊕ 𝔲−(𝑛). Assuming there is a parallel transport of a holomorphic vector 𝑉 around 

an infinitesimal loop enclosed by the sides 𝛿𝑙 and 𝜖 𝑘̅, we can find the change on the vector can 

be expressed as  
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 𝛿𝑉𝑖 = 𝜖 𝑘̅𝛿𝑙𝑅  𝑗𝑘̅𝑙
𝑖 𝑉𝑗 . (2.4.1) 

Due to the index structure of the Riemann tensor, only the effects from the loops with mixed 

indices are non-vanishing in (2.4.1). The matrix 𝜖 𝑘̅𝛿𝑙𝑅  𝑗𝑘̅𝑙
𝑖  should be the element of the Lie 

algebra 𝔲(𝑛). If we take the trace of the matrix, it will become 𝜖 𝑘̅𝛿𝑙𝔑𝑘̅𝑙  which is just 

proportional to the Ricci form. Then it can generates a 𝔲(1) part decomposed from the Lie 

algebra 𝔲(𝑛), so we can have the decomposition 𝔲(𝑛) ≃ 𝔲(1)⊕ 𝔰𝔲(𝑛)[9], where 𝔰𝔲(𝑛) implies 

that the holonomy group on a Ricci-flat Kählar manifold 𝑀 with dimℂ𝑀 = 𝑛 is a subgroup of 

𝑆𝑈(𝑛) [36]. 

 

2.5 𝝏̅-cohomology Groups and Hodge Numbers 

Reminding that the (𝑟, 𝑠) th 𝜕̅ -cohomology group is defined by (2.2.8). Similarly to the 

cohomology group of the real manifolds, 𝐻
𝜕̅
𝑟,𝑠(𝑀) is a complex vector space. The element 

[𝜔] ∈ 𝐻
𝜕̅
𝑟,𝑠(𝑀) is an equivalence class of 𝜕̅-closed forms of bidegree (𝑟, 𝑠) differing the form 

𝜔 by a 𝜕̅-exact form: 

 [𝜔] = {𝜂 ∈ Ω𝑟,𝑠(𝑀)|𝜕̅𝜂 = 0,𝜔 − 𝜂 = 𝜕̅𝜓,𝜓 ∈ Ω𝑟,𝑠−1(𝑀)} . (2.5.1) 

One reason why we need to study the 𝜕̅-cohomology group is that the groups can measure some 

topological properties of the complex manifolds.  

 

On a Hermitian manifold 𝑀  with dimℂ𝑀 = 𝑚 , a complex Hodge star ⋆  is a mapping: 

Ω𝑟,𝑠(𝑀) → Ω𝑚−𝑟,𝑚−𝑠, and we define the inner product as 
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 (𝛼, 𝛽) ≡ ∫ 𝛼 ∧ ⋆̅ 𝛽
𝑀

  (2.5.2) 

where 𝛼, 𝛽 ∈ Ω𝑟,𝑠(𝑀) and ⋆̅ is the complex conjugate of ⋆ satisfying that ⋆̅ 𝛽 ≡⋆ 𝛽̅̅ ̅̅ =⋆ 𝛽̅. The 

inner product helps us to define the adjoint Dolbeault operators. Like the adjoint exterior 

derivative 𝑑† , the adjoint Dolbeault operators are defined as 𝜕†: Ω𝑟,𝑠(𝑀) → Ω𝑟−1,𝑠(𝑀) and 

𝜕̅†: Ω𝑟,𝑠(𝑀) → Ω𝑟,𝑠−1(𝑀) such that  

 (𝛼, 𝜕𝛽) = (𝜕†𝛼, 𝛽)           (𝛼, 𝜕̅𝛽) = (𝜕̅†𝛼, 𝛽).  (2.5.3) 

We can see that 𝑑† = 𝜕† + 𝜕̅†, and both of the adjoint Dolbeault operators are also nilpotent, i.e. 

(𝜕†)
2
= (𝜕̅†)

2
= 0 . Then we can define the corresponding Laplacians ∆𝜕  and ∆𝜕̅  on the 

Hermitian manifolds  

 

∆𝜕≡ (𝜕 + 𝜕
†)
2
= 𝜕𝜕† + 𝜕†𝜕 

 ∆𝜕̅≡ (𝜕̅ + 𝜕̅
†)
2
= 𝜕̅𝜕̅† + 𝜕̅†𝜕̅. 

(2.5.4.a) 

(2.5.4.b) 

An (𝑟, 𝑠)-form 𝜔 is called a 𝜕-harmonic form if ∆𝜕𝜔 = 0, and it is called the 𝜕̅-harmonic form 

if ∆𝜕̅𝜔 = 0. The 𝜕-harmonic form is also 𝜕-closed and 𝜕-co-closed, i.e. 𝜕𝜔 = 𝜕†𝜔 = 0, and it 

has the same relation for the 𝜕̅-harmonic forms. Furthermore, we can have the Hodge’s theorem 

in the complex version, and the (𝑟, 𝑠)-forms can be decomposed into three orthogonal terms: 

 Ω𝑟,𝑠(𝑀) = 𝜕̅Ω𝑟,𝑠−1(𝑀)⊕ 𝜕̅†Ω𝑟,𝑠+1(𝑀)⊕𝐻𝑎𝑟𝑚
𝜕̅
𝑟,𝑠(𝑀) (2.5.5) 

where 𝐻𝑎𝑟𝑚
𝜕̅
𝑟,𝑠(𝑀) is the set of 𝜕̅-harmonic (𝑟, 𝑠)-forms. We can express a (𝑟, 𝑠)-forms as 

 𝜔 = 𝜕̅𝛼 + 𝜕̅†𝛽 + 𝛾 (2.5.6) 

where 𝛼 ∈ Ω𝑟,𝑠−1(𝑀) , 𝛽 ∈ Ω𝑟,𝑠+1(𝑀)  and 𝛾 ∈ 𝐻𝑎𝑟𝑚
𝜕̅
𝑟,𝑠(𝑀) . Then the (𝑟, 𝑠) -forms on a 
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Hermitian manifold can also decomposed in the holomorphic way.  

 

In the Hermitian manifold, we define the Laplacians ∆𝜕 and ∆𝜕̅ separately, and they are also 

different indeed. However, if the manifold is a Kählar manifold, the Laplacians ∆𝜕 and ∆𝜕̅ are 

the same [17]. 

 ∆= 2∆𝜕= 2∆𝜕̅ (2.5.7) 

 

We define the complex dimension of 𝜕̅-cohomology group 𝐻
𝜕̅
𝑟,𝑠(𝑀) as the Hodge number ℎ𝑟,𝑠, 

and we can construct a Hodge diamond for the cohomology groups of all possible bidegrees. For a 

Kählar manifold with 2 complex dimension, we can build the Hodge diamond as 

 

ℎ2,2 

ℎ2,1                  ℎ1,2 

ℎ2,0                  ℎ1,1                  ℎ0,2 

ℎ1,0                  ℎ0,1 

ℎ0,0 

(2.5.8) 

There are 9 Hodge numbers for this manifold. If we have dimℂ𝑀 = 𝑚, there would be (𝑚 + 1)2 

of them. However, the Hodge numbers are not all independent to each other, and we have two 

relations for the numbers if the manifold is Kählar: 

 

ℎ𝑟,𝑠 = ℎ𝑠,𝑟 

ℎ𝑟,𝑠 = ℎ𝑚−𝑟,𝑚−𝑠 

(2.5.9.a) 

(2.5.9.b) 

The relation (2.5.9.a) is due to the fact that the relation in (2.5.7) make the Laplacians on the 

Kählar manifold are the same as its complex conjugates. Therefore for any harmonic (𝑟, 𝑠)-form, 
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there exists a corresponding (𝑠, 𝑟)-form and vice versa, so the Hodge numbers are the same for 

opposite bidegrees. Then the relation (2.5.9.b) is due to the Poincare duality, which shows that the 

cohomology group 𝐻
𝜕̅
𝑚−𝑟,𝑚−𝑠(𝑀) is the dual vector space to 𝐻

𝜕̅
𝑟,𝑠(𝑀), and hence they have the 

same dimensions [8]. 

 

The relations in (2.5.9) make the Hodge diamond of the Kählar manifolds symmetric in both 

vertical and horizontal directions. It allows us to use less independent numbers to parameterize the 

Hodge diamond. For example, we can just use 4 Hodge numbers in (2.5.8) instead of 9 to 

parameterize the diamond. Furthermore, the Hodge numbers in the Kählar manifolds also have a 

close relation with the Betti numbers. This relation makes the Hodge diamond be able to describe 

some topological properties of the Kählar manifolds, and it is not true for just general Hermitian 

manifold. The theorem describing this relation is: Let 𝑀 be a Kähler manifold with dimℂ𝑀 =

𝑚 and 𝜕𝑀 = ∅. Then the Betti numbers 𝑏𝑝 (1 ≤ 𝑝 ≤ 2𝑚) satisfy 

 

𝑏𝑝 = ∑ ℎ𝑠,𝑟

𝑟+𝑠=𝑝

                           

𝑏2𝑝−1 is even (1 ≤ 𝑝 ≤ 𝑚)  

𝑏2𝑝 ≥ 1      (1 ≤ 𝑝 ≤ 𝑚). 

(2.5.10.a) 

(2.5.10.b) 

(2.5.10.c) 

Then we can find the Euler characteristic of the Kähler manifold is  

 𝜒 =∑(−1)𝑝𝑏𝑝

𝑝

=∑(−1)𝑟+𝑠ℎ𝑟,𝑠

𝑟,𝑠

 (2.5.11) 
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2.6 Calabi-Yau Manifolds  

A 𝑚 dimensional Calabi-Yau manifold is defined to be a compact, complex, Kähler manifold 

which has 𝑆𝑈(𝑚) holonomy, where 𝑚 is the complex dimension of the manifold. Also, the 

previous sections showed that the 𝑆𝑈(𝑚) holonomy implies the corresponding Kähler manifold 

should be Ricci-flat, and therefore it has a vanishing first Chern class. Chern classes are 

topological invariants of a manifold. Specifically, we can get the classes through Taylor expansion 

of the Chern form 

 

𝑐(𝑀) = 1 +∑𝑐𝑗(𝑀)

𝑗

= det (1 +
𝑖ℛ

2𝜋
)                 

                    = 1 + tr
𝑖ℛ

2𝜋
+ tr(

𝑖ℛ

2𝜋
∧
𝑖ℛ

2𝜋
− 2(tr

𝑖ℛ

2𝜋
)
2

) +⋯ 

(2.6.1) 

where ℛ is the matrix valued curvature 2-form, i.e. ℛ = 𝑅  𝑙𝑖𝑗̅
𝑘 𝑑𝑧𝑖 ∧ 𝑑𝑧̅𝑗̅. Then we can find the 

first Chern class 𝑐1(𝑀) = tr 𝑖ℛ/2𝜋 is equal to [𝔑\2𝜋]. Furthermore, due to the Ricci-flat 

condition, there is a unique nowhere vanishing holomorphic (𝑚, 0)-form on the Calabi-Yau 

manifold which implies the Hodge number ℎ𝑚,0 = 1 . Also, by using this non-vanishing 

(𝑚, 0)-form, we can make a isomorphism mapping (0, 𝑝)-forms to (0,𝑚 − 𝑝)-forms, where 

1 ≤ 𝑝 ≤ 𝑚. Then the 𝑆𝑈(𝑚) holonomy group does not allow a (0, 𝑝)-form to be harmonic, 

which means the corresponding coholonomy is trivial, ℎ0,𝑝 = 0. It makes the Hodge diamond of 

a Cababi-Yau three-fold even simpler, we can see: 
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1 

0                  0 

0                  ℎ1,1                   0 

1                  ℎ2,1                 ℎ1,2                 1 

0                  ℎ2,2                  0 

0                  0 

1 

(2.6.2) 

where there is only two independent Hodge number in the diamond due to the vertical and 

horizontal symmetry relations, and we can just look at ℎ1,1  and ℎ2,1 . Then the Euler 

characteristic of the Calabi-Yau manifold is  

 𝜒 = 2(ℎ1,1 − ℎ2,1) (2.6.3) 

 

2.7 Moduli Spaces of Calabi-Yau Manifolds 

According to the Yau’s theorem, The Calabi-Yau manifold is a Ricci-flat Kähler manifold. Thus it 

seems that we are able to perturb the metric 𝑔𝜇𝜈 of the manifold to a new metric 𝑔𝜇𝜈 + 𝛿𝑔𝜇𝜈 

without changing the Ricci flat condition,  

 𝑅𝜇𝜈(𝑔) = 0   ⟹    𝑅𝜇𝜈(𝑔 + 𝛿𝑔) = 0. (2.7.1) 

Apparently we can easily achieve such a perturbation by just changing the coordinate system, but 

these are not the case we are interesting about. We can impose a coordinate condition to the 

system to fix the choice of coordinate, and we can write the condition as  

 ∇𝜇𝛿𝑔𝜇𝜈 = 0, (2.7.2) 

which is pretty similar to fixing a gauge. Then we can re-express the perturbation (2.7.1) together 
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with the coordinate condition as: 

 ∇𝜌∇𝜌𝛿𝑔𝜇𝜈 − 2𝑅𝜇  𝜈
  𝜌  𝜎

𝛿𝑔𝜌𝜎 = 0 (2.7.3) 

By using the (anti-)holomorphic coordinate system, we can see that the perturbation can be 

applied by 𝛿𝑔𝑖𝑗 in pure indices and 𝛿𝑔𝑖𝑗̅ in mixed indices, because of the index structure of the 

metric and the Riemann tensor of the Kähler manifold. Then we can look at these two ways of 

perturbation: 

 

(1) 𝛿𝑔𝑖𝑗̅: Under the metric perturbation with mixed indices, it remains the original index structure 

of 𝑔 and keeps the metric still Hermitian. The condition in (2.7.3) with 𝛿𝑔𝑖𝑗̅ is equivalent to 

(∆𝛿𝑔)𝑖𝑗̅ = 0, and we view 𝛿𝑔𝑖𝑗̅ as the components of a (1,1)-form. Such (1,1)-forms also 

correspond to the changes of the Kähler form Ω and therefore the Kähler class [Ω] of the 

manifold. Because the (1,1)-form is also harmonic, it is uniquely associated to an element of 

𝐻
𝜕̅
1,1(𝑀). Hence we can expand 𝛿𝑔𝑖𝑗̅ in the basis of real (1,1)-forms with dimension ℎ1,1: 

 𝛿𝑔𝑖𝑗̅ = ∑ 𝑡̃𝛼𝑏𝑖𝑗̅
𝛼         𝑡̃𝛼 ∈ ℝ

ℎ1,1

𝛼=1

 (2.7.4) 

According to Yau’s theorem, there is a Ricci-flat Kähler metric for any [Ω + 𝛿Ω]. Hence, the 

perturbation with mixed indices can make the new metric still be Kähler metric and also 

deform the Kähler structure (which is parameterized by the Kähler class) at the same time. 

Therefore, we say the perturbation expressed in (2.7.4) is the Kähler moduli space of the 

Calabi-Yau manifold. 
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(2) 𝛿𝑔𝑖𝑗: Under the metric perturbation with pure indices, it will not keep the Hermitian structure 

in the manifold and the Kähler metric is also not preserved. The condition (2.7.2) with 𝛿𝑔𝑖𝑗 

is equivalent to  

 ∆𝜕̅𝛿𝑔
𝑖 = (𝜕̅𝜕̅† + 𝜕̅†𝜕̅)𝛿𝑔𝑖 (2.7.5) 

where 𝛿𝑔𝑖 = 𝛿𝑔  𝑗̅
𝑖 𝑑𝑧̅𝑗̅ = 𝑔𝑖𝑘̅𝛿𝑔𝑘̅𝑗̅𝑑𝑧̅

𝑗̅. It is a harmonic (1,0)-form associated to an element 

of cohomology group 𝐻
𝜕̅
1,0(𝑀). As the transformation makes the metric not Kähler any more, 

we need to change the coordinate system so that the metric becomes Kähler again. However, 

we cannot use a holomorphic transformation to remove the pure-index perturbation, because 

such transformation does not change type of the indices. In this step, it seems that this 

coordinate transformation could violate the fixed coordinate condition (2.7.2) we have 

mentioned before, but it is not (the new metric cannot be obtained from the old one by just a 

diffeomophism). Then there is a unique non-vanishing holomorphic (3,0)-form Ω (here is 

not the Kähler form) in the Calabi-Yau manifold, and we can use it to define an isomorphism 

between 𝐻
𝜕̅
1,0(𝑀) and 𝐻2,1(𝑀) by defining the complex (2,1)-forms 

 Ω𝑖𝑗𝑘𝛿𝑔𝑙 ̅
𝑘𝑑𝑧𝑖 ∧ 𝑑𝑧𝑗 ∧ 𝑑𝑧̅𝑙 (2.7.6) 

which is still harmonic. Then we can expand the (2,1)-form in a basis with dimension ℎ2,1, 

such that 

 Ω𝑖𝑗𝑘𝛿𝑔𝑙 ̅
𝑘 =∑ 𝑡𝛼𝑏𝑖𝑗𝑙 ̅

𝛼         𝑡𝛼 ∈ ℂ

ℎ2,1

𝛼=1

 (2.7.7) 

which we called the complex structure moduli space, and it tells the complex structure 

deformation of the manifold. 



29 

3 Topological String Theory 

After discussing the Calabi-Yau compactification of the superstring theory, a branch of the string 

theory will be introduced, and it is called the topological string theory. Rough speaking, it is a 

“simplified” version of the string theory, as it only discusses how the topological properties affect 

the theory without caring the exact form of metric of the manifolds (for both worldsheet and the 

target space). As mentioned in the last chapter, mostly the Calabi-Yau manifold has both Kählar 

structure and complex structure. One reason that we introduce the topological string theory is that 

we can twist it in two different ways to obtained two models called 𝐴-model and 𝐵-model, and 

these models will depend on the Kählar structure and the complex structure of the target 

Calabi-Yau space respectively. It may link two models to the two moduli spaces separately. 

 

In this chapter, the supersymmetric 𝑁 = (1,1) non-linear sigma model and some corresponding 

symmetry generator will be introduced. Then two ways of twisting the theory, 𝐴-twist and 

𝐵-twist, will be given. Some concepts of cohomological field theory will be introduced as well 

[35], so that we could illustrate the two theories obtained by two way of twisting, 𝐴-model and 

𝐵-model [23][24] [25][26][27]. At the end, how the theories couples to the gravity to become 

string theories will be briefly talked. 

 

3.1 Superspaces 

Supersymmetry makes the symmetry between bosons and fermions, and d its generators usually 

transform as spin 1/2 fermions under Lorentz group. For an 𝑁 = 1 supersymmetric theory, it has 

one such supersymmetry generator, which is called supercharge, for each bosonic dimension. An 
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𝑁 = 𝑝 > 1 supersymmetric theory has 𝑝 supercharges for each dimension, and the number 𝑝 

here is the multiple of 2, such as 2, 4, 8, and so on (maximal number is 32). For the case 

𝑁 = (2,2), it is the 𝑁 = 2 supersymmetry theory on the complex manifold, as the Lorentz group 

for each fundamental spin-1/2 supersymmetry generators can be split up into two components 

which transform with opposite charges (holomorphic and anti-holomorphic). Its makes the two 

fundamental supercharges become two irreducible positive charges and two irreducible negative 

charges. To describe each theory in two dimensions, we need to use superspaces, four fermionic 

coordinates 𝜃±, 𝜃̅± (in Grassmann number) such that under Lorentz transformation 𝑆𝑂(2) =

𝑈(1) if original coordinate 𝑧 ↦ 𝑒𝑖𝛼𝑧 then  

 𝜃± ↦ 𝑒±
𝑖𝛼
2 𝜃±,     𝜃̅± ↦ 𝑒±

𝑖𝛼
2 𝜃̅±  (3.1.1) 

 

Therefore we can have a superfield which we can expend to have both bosonic and fermionic parts 

rather than just bosonic part. By taking the Taylor expansion on superfeild Φ with respect to the 

fermionic variables, we have 

 Φ(𝑧, 𝑧̅, 𝜃±, 𝜃̅±) = 𝜙(𝑧, 𝑧̅) + 𝜓+(𝑧, 𝑧̅)𝜃
+ + 𝜓−(𝑧, 𝑧̅)𝜃

− +⋯. (3.1.2) 

Then we can have an integral such that 

 𝑆 = ∫𝑑2𝑧𝑑4𝜃 𝒦(Φ𝑖 , Φ̅𝑖) (3.1.3) 

where 𝒦 is the Kähler potential. The potential, as mentioned before, is only locally defined and 

non-unique. By integral the potential over the all the fermionic coordinate, we can get the the 

corresponding Lagrangean density.  
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Then in the 𝑁 = (2,2) theory, the supercharges of it are 𝑄± and 𝑄̅± are all nilpotent, i.e. 

𝑄±
2 = 𝑄̅± = 0, and they have the anti-commutation relations that: 

 {𝑄±, 𝑄̅±} = 𝐻 ± 𝑃, (3.1.4) 

where 𝐻 and 𝑃 are the Hamiltonian and momentum operator respectively. Then the rest of 

anti-commutations relations are all vanishing.  

 

3.2 Supersymmetric Nonlinear Sigma Model  

We first need to know what a Supersymmetric nonlinear sigma model with 𝑁 = (2,2) in two 

dimensions is defined as [5]. It maps a Riemann surface Σ (which is also the worldsheet of the 

string) to Riemannian manifold (which is the target space) 𝑀 with the metric 𝑔 such that 

Φ:Σ → 𝑀. As the target space 𝑀 we discuss in this dissertation is a complex manifold, we need 

to use the coordinate 𝑧, 𝑧̅ on the worldsheet Σ and (anti-)holomorphic coordinate 𝜙𝑖 = 𝜙𝑖̅̅̅ ̅ on 

𝑀 (but we also denote 𝜙𝐼  as the real coordinates for convenience), where locally we can 

describe Φ in a function 𝜙𝑖(𝑧, 𝑧̅). Then Let 𝐾 and 𝐾̅ be the canonical and anti-canonical line 

bundles on the Riemann surface Σ (which are the bundle of one-forms of type (1,0) and (0,1) 

respectively), and 𝐾1/2 and 𝐾̅1/2 are the square roots of these bundles (the square roots here 

roughly means that the transformation acting on 𝐾1/2 is also the square root of the same 

transformation on 𝐾 , and it also corresponds to the nature of fermions). Let 𝑇𝑀  be the 

complexified tangent bundle of 𝑀, and it can be decomposed as 𝑇𝑀 = 𝑇𝑀+⊕𝑇𝑀−. Then the 

fermi fields of the model are 𝜓+ and 𝜓−, where 𝜓+ can be projected in 𝐾1/2⊗Φ∗(𝑇𝑀+) and 

𝐾1/2⊗Φ∗(𝑇𝑀−) denoted as 𝜓+
𝑖  and 𝜓+

𝑖̅  respectively and 𝜓− can be projected in 𝐾̅1/2⊗
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Φ∗(𝑇𝑀+)  and 𝐾̅1/2⊗Φ∗(𝑇𝑀−)  denoted as 𝜓−
𝑖  and 𝜓−

𝑖̅  respectively. Then the action is 

written as 

 

𝑆 = 2𝑡∫ 𝑑2𝑧 (
1

2
𝑔𝐼𝐽𝜕𝑧𝜙

𝐼𝜕𝑧̅𝜙
𝐽 + 𝑖𝜓−

𝑖̅ 𝐷𝑧𝜓−
𝑖 𝑔𝑖𝑖̅ + 𝑖𝜓+

𝑖̅ 𝐷𝑧̅𝜓+
𝑖 𝑔𝑖𝑖̅

Σ

+ 𝑅𝑖𝑖𝑗̅𝑗̅𝜓+
𝑖 𝜓+

𝑖̅ 𝜓−
𝑗𝜓−

𝑗̅) 

(3.2.1) 

where 𝑑𝑧2 is −𝑖𝑑𝑧 ∧ 𝑑𝑧̅, 𝑡 is the coupling constant, 𝑅𝑖𝑖𝑗̅𝑗̅ = 𝑔𝑖𝑘̅𝑅   𝑖𝑗̅𝑗̅
𝑘̅  is the Riemann tensor of 

the target space 𝑀 and 𝐷𝑧̅  is the 𝜕̅ operator on 𝐾1/2⊗Φ∗(𝑇𝑀) constructed by using the 

pullback of the Levi-Civita connection on 𝑇𝑀. It can be expressed as  

 𝐷𝑧𝜓+
𝑖 =

𝜕

𝜕𝑧̅
𝜓+
𝑖 +

𝜕𝜙𝑗

𝜕𝑧̅
Γ  𝑗𝑘
𝑖 𝜓+

𝑘  (3.2.2) 

where Γ  𝑗𝑘
𝑖

 is the affine connection of the target space 𝑀 in holomorphic indices. Then it is 

similar for 𝐷𝑧 (𝜕 operator on 𝐾̅1/2⊗Φ∗(𝑇𝑀) with Levi-Civita connection Γ  𝑗̅𝑘̅
𝑖̅  on 𝑀) 

 

Then the supersymmetries of the model can be generated by infinitesimal transformations: 

 

𝛿𝜙𝑖 = 𝑖𝛼−𝜓+
𝑖 + 𝑖𝛼+𝜓−

𝑖  

𝛿𝜙𝑖̅ = 𝑖𝛼̃−𝜓+
𝑖̅ + 𝑖𝛼̃+𝜓−

𝑖̅  

𝛿𝜓+
𝑖 = −𝛼̃−𝜕𝑧𝜙

𝑖 − 𝑖𝛼+𝜓−
𝑗Γ  𝑗𝑚
𝑖 𝜓+

𝑚 

𝛿𝜓+
𝑖̅ = −𝛼−𝜕𝑧𝜙

𝑖̅ − 𝑖𝛼̃+𝜓−
𝑗̅Γ  𝑗̅𝑚̅
𝑖̅ 𝜓+

𝑚̅ 

𝛿𝜓−
𝑖 = −𝛼̃+𝜕𝑧̅𝜙

𝑖 − 𝑖𝛼−𝜓+
𝑗
Γ  𝑗𝑚
𝑖 𝜓−

𝑚 

𝛿𝜓−
𝑖̅ = −𝛼+𝜕𝑧̅𝜙

𝑖̅ − 𝑖𝛼̃−𝜓+
𝑗̅
Γ  𝑗̅𝑚̅
𝑖̅ 𝜓−

𝑚̅ 

(3.2.3.a) 

(3.2.3.b) 

(3.2.3.c) 

(3.2.3.d) 

(3.2.3.e) 

(3.2.3.f) 

where 𝛼± and 𝛼̃± are the infinitesimal fermionic parameters (𝛼− and 𝛼̃− are in sections of 

𝐾̅1/2, then 𝛼+ and 𝛼̃+ are in sections of 𝐾1/2).  
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3.3 R-Symmetries 

In 2 dimensions, the Lorentz group is 𝑆𝑂(2) = 𝑈(1). Then as mentioned before, the group for 2 

fundamental supercharges can be spilt up into two 𝑈(1) associating to 𝜃 and 𝜃̅ with plus 

notations and minus notations, and we denote these two groups as 𝑈(1)𝑅 and 𝑈(1)𝐿 (In section 

3.1, it was said to be in positive charge and negative charge), and the corresponding symmetries 

under these group transformations are called the R-symmetries. Then we make two new 

R-symmetries groups from the 𝑈(1)𝑅/𝐿, and this modification is made by twisting the worldsheet 

Lorentz group either by vector or axial symmetries: 

 𝑈(1)𝑉 = 𝑈(1)𝐿 +𝑈(1)𝑅 ,          𝑈(1)𝐴 = 𝑈(1)𝐿 − 𝑈(1)𝑅 (3.3.1) 

The 𝐴-model, we will discuss in later sections, can be obtained by twisting with 𝑈(1)𝑉 

connection, and it can be considered on any Kähler manifold. Then the 𝐵-model is obtained by 

twisting with 𝑈(1)𝐴 connection, and it is only well defined on a Calabi-Yau manifold. Then the 

action of the vector symmetry 𝑈(1)𝑉 and axial symmetry 𝑈(1)𝐴 on the fermionic coordinate 

can be expressed as  

 

𝑅𝑉(𝛼):  (𝜃
+, 𝜃̅+) ↦ (𝑒−𝑖𝛼𝜃+, 𝑒𝑖𝛼𝜃̅+),     (𝜃−, 𝜃̅−) ↦ (𝑒−𝑖𝛼𝜃−, 𝑒𝑖𝛼𝜃̅−) 

𝑅𝐴(𝛽):  (𝜃
+, 𝜃̅+) ↦ (𝑒−𝑖𝛽𝜃+, 𝑒𝑖𝛽𝜃̅+),     (𝜃−, 𝜃̅−) ↦ (𝑒𝑖𝛽𝜃−, 𝑒−𝑖𝛽𝜃̅−) 

(3.3.2.a) 

(3.3.2.b) 

Then the transformation can be applied to the superfield Φ: 

 

𝑅𝑉 = 𝑒
𝑖𝛼𝐹𝑉 :Φ(𝑥, 𝜃±, 𝜃̅±) ↦ 𝑒𝑖𝛼𝑞𝑉Φ(𝑥, 𝑒−𝑖𝛼𝜃±, 𝑒𝑖𝛼𝜃̅±)   

𝑅𝐴 = 𝑒
𝑖𝛽𝐹𝐴: Φ(𝑥, 𝜃±, 𝜃̅±) ↦ 𝑒𝑖𝛽𝑞𝐴Φ(𝑥, 𝑒∓𝑖𝛽𝜃±, 𝑒±𝑖𝛽𝜃̅±) 

(3.3.3.a) 

(3.3.3.b) 



34 

where 𝐹𝑉 and 𝐹𝐴 are the operators which generate the transformations, and 𝑞𝑉 and 𝑞𝐴 are the 

corresponding Noether charges of the each R-symmetry. Let 𝑀  be the generator of the 

two-dimensional Lorentz transformation 𝑆𝑂(1,1), and we can then take the 𝑥0 direction to be 

−𝑖𝑥′0 and remain the 𝑥1 same as before. Then the new generator 𝑀𝐸 = 𝑖𝑀 can be obtained, 

and it generates a compact Euclidean rotation group which is isomorphic to 𝑈(1)𝐸. Then we can 

find the commutation relations between the supersymmetry algebras and the generators:  

 

[𝑀𝐸 , 𝑄∓] = ∓𝑄±,        [𝑀𝐸 , 𝑄̅±] = ∓𝑄̅±, 

[𝐹𝑉 , 𝑄±] = −𝑄±,          [𝐹𝑉, 𝑄̅±] = 𝑄̅±,     

[𝐹𝐴, 𝑄±] = ∓𝑄±,          [𝐹𝐴, 𝑄̅±] = ±𝑄̅±, 

(3.3.4.a) 

(3.3.4.b) 

(3.3.4.c) 

It shows that 𝑄± and 𝑄̅± have the opposite charges under the 𝑅-symmetries.  

 

3.4 Twisting Supersymmetric Sigma Model 

The twisting here is equivalent to changing the Euclidean rotation group 𝑈(1)𝐸 by the generators 

of the 𝑈(1) R-symmetry groups, and it defines the new generators of the Euclidean rotation 

group 𝑈(1)𝐸′ as 𝑀𝐸
′ = 𝑀𝐸 + 𝑅. This twisting can make some supercharge operator scalar with 

respect to the new Euclidean rotation group [23].  

 

Then the 𝑁 = (2.2) theory can be twisted in 2 different ways. The first case is that instead of 

taking 𝜓+
𝑖  and 𝜓+

𝑖̅  to be the sections of 𝐾1/2⊗Φ∗(𝑇𝑀+)  and 𝐾1/2⊗Φ∗(𝑇𝑀−) 

respectively, we can take them to be sections of Φ∗(𝑇𝑀+) and 𝐾⊗Φ∗(𝑇𝑀−) respectively, and 

this kind of twist is called a + twits. Then the second case is that we twist 𝜓+
𝑖  and 𝜓+

𝑖̅  in the 

way that 𝜓+
𝑖  become the sections of 𝐾⊗Φ∗(𝑇𝑀+)  and 𝜓+

𝑖̅  becomes the sections of 
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Φ∗(𝑇𝑀−), and this is called the – twist. Similarly, we can also twist 𝜓−
𝑖  and 𝜓−

𝑖̅  in such ways. 

Under the + twist, 𝜓−
𝑖  and 𝜓−

𝑖̅  will be taken to be in the sections of Φ∗(𝑇𝑀+) and 𝐾̅ ⊗

Φ∗(𝑇𝑀−) respectively. Then under the – twist, they will be twisted to be the sections of 

𝐾̅ ⊗ Φ∗(𝑇𝑀+) and Φ∗(𝑇𝑀−)  respectively. It can be found that the kinetic terms of the 

fermions of the Lagrangean, e.g. 𝜓−
𝑖̅ 𝐷𝑧𝜓−

𝑖 𝑔𝑖𝑖̅, do not change under each twist, even though we 

have twisted 𝜓±
𝑖  and 𝜓±

𝑖̅  from fermion terms to the boson-like terms. Then we can have the 

𝐴-twist and 𝐵-twist by combining ± twists in different ways. The 𝐴-twist is the kind of twist in 

which we do the − twist for 𝜓+ and do the + twist for 𝜓−, and it is denoted as (−,+). Then 

the 𝐵-twist is an orthogonal twist to the first one, and it is doing the + twist for both 𝜓+ and 

𝜓−, which is denoted as (+,+). There is also a variant that is possible, and that is to twist only 

𝜓+ or only 𝜓− and leave the other untwisted. These are called the half-twisting. 

 

The 𝐴- and the 𝐵-twists, as mentioned before, change the original Euclidean rotation group 

𝑈(1)𝐸 into two new groups such that 

 

𝐴-twist:    𝑀𝐸′ = 𝑀𝐸 + 𝐹𝑉 

𝐵-twist:    𝑀𝐸′ = 𝑀𝐸 + 𝐹𝐴 

(3.4.1.a) 

(3.4.1.b) 

We denote the generator of the Euclidean group modified by the 𝐴-twist as 𝑀𝐴 and denote the 

one modified by the 𝐵-twist as 𝑀𝐵. Then we can find the new commutation relations that 
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[𝑀𝐴, 𝑄+] = −2𝑄+          [𝑀𝐵, 𝑄+] = −2𝑄+ 

[𝑀𝐴, 𝑄−] = 0                   [𝑀𝐵, 𝑄−] = 2𝑄+    

[𝑀𝐴, 𝑄̅+] = 0                   [𝑀𝐵, 𝑄̅+] = 0         

[𝑀𝐴, 𝑄̅−] = 2𝑄+              [𝑀𝐵, 𝑄̅−] = 0         

(3.4.2.a) 

(3.4.2.b) 

(3.4.2.c) 

(3.4.2.d) 

In the relations above, one can find that some supersymmetry operators become scalar, which is 

what we expected before, and the others becomes like spin-1 spinors. Then we can define  

 

𝑄𝐴 = 𝑄− + 𝑄̅+ 

𝑄𝐵 = 𝑄̅− + 𝑄̅+ 

(3.4.3.a) 

(3.4.3.b) 

where 𝑄𝐴 and 𝑄𝐵 are scalar, nilpotent operators which can be used to define two different 

cohomological theories, which are called the 𝐴-model and the 𝐵-model respectively ( Two 

models can also be defined by (+,−) and (−,−) twists, but it will leave 𝑄̅𝐴 and 𝑄̅𝐵 scalar 

and nilpotent. ). Furthermore, we call an operator 𝜙 a chiral operator or (𝑐, 𝑐) operator if 𝜙 is 

𝑄𝐵-closed: 

 [𝑄𝐵, 𝜙] = 0 (3.4.4) 

and similarly, we call the operator 𝜙 a twisted chiral operator or (𝑎, 𝑐) operator if  

 [𝑄𝐴, 𝜙] = 0 (3.4.5) 

 

3.5 Cohomological Field Theory 

As mentioned in section 3.4, both of the 𝐴-model and 𝐵-model are Topological cohomological 

field theory, so the concepts of cohomological field theory is needed to be introduced before we 
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go to the 𝐴- and 𝐵- models parts. cohomological field theories are the field theories that possess 

a very special type of symmetry. There are serval requirements needed to define a cohomological 

theory. Firstly, the fermionic symmetry operator 𝑄 should squares to zero, i.e. 𝑄2 = 0, which is 

exactly satisfied by theory we are interested in. Then the second property is that the physical 

operators 𝑂𝑖 in the theory should be closed under the action of the operator 𝑄. 

 {𝑄, 𝑂𝑖} = 0 (3.5.1) 

This relation is also called that the operator is 𝑄-closed. Both the first and the second properties 

are corresponding to the BRST symmetry and quantization. Then third requirement is that theory 

needs the 𝑄-symmtry to be not spontaneously broken, which means the vacuum is symmetric. 

Then there will be an equivalence relation that:  

 𝑂𝑖~𝑂𝑖 + {𝑄, Λ} (3.5.2) 

where Λ is an arbitrary operator function. As the vacuum is symmetric, the vacuum quantum 

state should satisfy that  

 𝑄|0⟩ = 0. (3.5.3) 

Then by using this relation we can find that the expectation value of the 𝑄-exact operator {𝑄, Λ} 

should be zero:  

 

⟨0|𝑂𝑖1 …𝑂𝑖𝑗{𝑄, Λ}𝑂𝑖𝑗+1 …𝑂𝑖𝑛|0⟩

= ⟨0|𝑂𝑖1…𝑂𝑖𝑗(𝑄Λ − Λ𝑄)𝑂𝑖𝑗+1 …𝑂𝑖𝑛|0⟩ 

(3.5.4) 

and each term will vanishes separately 
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⟨0|𝑂𝑖1 …𝑂𝑖𝑗(𝑄Λ)𝑂𝑖𝑗+1 …𝑂𝑖𝑛|0⟩

= ±⟨0|𝑂𝑖1 …𝑄𝑂𝑖𝑗Λ𝑂𝑖𝑗+1 …𝑂𝑖𝑛|0⟩               

                                     = ±⟨0|𝑄𝑂𝑖1 …𝑂𝑖𝑗Λ𝑂𝑖𝑗+1 …𝑂𝑖𝑛|0⟩ = 0.           

(3.5.5) 

In this property, we can find that the physical operators are 𝑄-cohomology class through the 

equivalence relation. Then the final requirement is that the energy-momentum tensor 𝑇𝜇𝜈 of the 

theory should not only be 𝑄-closed but also 𝑄-exact: 

 𝑇𝜇𝜈 ≡
𝛿𝑆

𝛿ℎ𝜇𝜈
= {𝑄, 𝐺𝜇𝜈} (3.5.6) 

where 𝐺𝜇𝜈 is some operator, and ℎ𝜇𝜈 is the metric. A direct consequence of this last property is 

that the correlation functions do not depend on the metric, and the proof is that 

 

𝛿

𝛿ℎ𝜇𝜈
⟨𝑂1…𝑂𝑛⟩ =

𝛿

𝛿ℎ𝜇𝜈
(∫𝐷𝜙𝑂1…𝑂𝑛𝑒

𝑖𝑆[𝜙])                         

     = 𝑖 ∫𝐷𝜙𝑂1…𝑂𝑛
𝛿𝑆[𝜙]

𝛿ℎ𝜇𝜈
𝑒𝑖𝑆[𝜙] 

= 𝑖⟨𝑂1…𝑂𝑛{𝑄, 𝐺𝜇𝜈}⟩ = 0    

(3.5.7) 

where 𝐷𝜙 is the measure of the path integral, and the 𝑄 symmetry acting on the last line shows 

the metric independence. Then there is a practical way to ensure (3.5.6) which is to use a 𝑄-exact 

Lagrangean:  

 𝐿 = {𝑄, 𝑉} (3.5.8) 

where 𝑉 is an operator. We can find this kind of Lagrangean make the calculation easier as it 

makes correlation function independent of the Planck’ constant. It can be proven by put the 

Planck’s constant back to the quantum measure: 
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 exp
𝑖

ℏ
{𝑄,∫ 𝑉

𝑀

} . (3.5.9) 

and consequently the same method in (3.5.7) can be used to show that  

 
𝑑

𝑑ℏ
⟨𝑂1…𝑂𝑛⟩ = 0. (3.5.10) 

Therefore one can find that the independence of ℏ can make the calculation exactly in a classical 

limit.  

 

Recall the equation (3.5.6), we can find the momentum operator by integrating the 

energy-momentum tensor field over a spatial hypersurface. 

 𝑃𝜇 = {𝑄, 𝐺𝜇} (3.5.11) 

where 𝐺𝜇 is a fermionic operator. Then we may consider the operator 

 𝑂𝜇
(1) = 𝑖{𝐺𝜇, 𝑂

(0)} (3.5.12) 

where 𝑂(0) is a scalar physical 𝑄-closed operator, i.e.{𝑄, 𝑂(0)} = 0. By doing some calculations 

We can find that  

 
𝑑

𝑑𝑥𝜇
𝑂(0) = 𝑖[𝑃𝜇, 𝑂

(0)] = {𝑄, 𝑂𝜇
(1)} (3.5.13) 

where we can write momentum operator in the form in (3.5.11) and then use the Jacobi identity to 

obtain the result of (3.5.13). Then we can define the operator 𝑂𝜇
(1)

 to be a component of a 

one-form operator 𝑂(1) = 𝑂𝜇
(1)𝑑𝑥𝜇, so that we can rewrite (3.5.13) as 

 𝑑𝑂(0) = {𝑄, 𝑂(1)}. (3.5.14) 

Then we can find that the integration of this equation over a closed curve 𝛾 ⊂ 𝑀 is zero by using 
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the Stoke’s theorem. We can repeat the above method again and again so that we can obtain a 

whole tower of 𝑝-form operators:  

 

{𝑄, 𝑂(0)} = 0         

{𝑄, 𝑂(1)} = 𝑑𝑂(0) 

{𝑄, 𝑂(2)} = 𝑑𝑂(1) 

     …. 

     {𝑄, 𝑂(𝑛)} = 𝑑𝑂(𝑛−1) 

               0 = 𝑑𝑂(𝑛) 

 

 

 

 

 

(3.5.15) 

The integrals of 𝑂(𝑝), where 1 ≤ 𝑝 ≤ 𝑛, over a 𝑝-dimensional submanifold of 𝑀 give us large 

classes of non-local physical operators. As the “top-form” operator needs to be integrated over the 

whole manifold, by using the Stoke’s theorem again, we will have  

 {𝑄, ∫ 𝑂(𝑛)
𝑀

} = 0. (3.5.14) 

which implies that we are free to add terms 𝑡𝜇𝑂𝜇
(𝑛)

 for any coupling constant 𝑡𝜇  to the 

Lagrangean without breaking the fact that the theory is cohomological.  

 

3.6 𝑨-model 

In the 𝐴-model, we regard 𝜓−
𝑖  and 𝜓+

𝑖̅  as the sections of Φ∗(𝑇𝑀+) and Φ∗(𝑇𝑀−) and regard 

the 𝜓+
𝑖  and 𝜓−

𝑖̅  as the section of 𝐾⊗Φ∗(𝑇𝑀+) and 𝐾̅ ⊗ Φ∗(𝑇𝑀−), and the scalar fields 𝜙𝑖 

and 𝜙𝑖̅ are still the same as the untwisted theory. To classify the twisted fermionic fields, we 

express the field in a new way: 
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𝜓+
𝑖 ≡ 𝜓𝑧

𝑖 ∈ 𝐾⊗Φ∗(𝑇𝑀+) 

𝜓−
𝑖 ≡ 𝜒𝑖 ∈ Φ∗(𝑇𝑀+)            

𝜓+
𝑖̅ ≡ 𝜒𝑖̅ ∈ Φ∗(𝑇𝑀−)            

𝜓−
𝑖̅ ≡ 𝜓𝑧̅

𝑖̅ ∈ 𝐾̅ ⊗Φ∗(𝑇𝑀−) 

(3.6.1.a) 

(3.6.1.b) 

(3.6.1.c) 

(3.6.1.d) 

In term of these renamed variables the action is  

 

𝑆 = 2𝑡∫ 𝑑2𝑧 (
1

2
𝑔𝐼𝐽𝜕𝑧𝜙

𝐼𝜕𝑧̅𝜙
𝐽 + 𝑖𝜓𝑧̅

𝑖̅𝐷𝑧𝜒
𝑖𝑔𝑖̅𝑖 + 𝑖𝜓𝑧

𝑖𝐷𝑧̅𝜒
𝑖̅𝑔𝑖𝑖̅

Σ

+ 𝑅𝑖𝑖𝑗̅𝑗̅𝜓𝑧
𝑖𝜒𝑖̅𝜓−

𝑗𝜒𝑗𝜓𝑧̅
𝑗̅
) 

(3.6.2) 

Then we act the fermionic symmetry 𝛿 = 𝜖−̅𝑄̅+ + 𝜖+𝑄− on the fields so that we can have the 

following relations 

 

      𝛿𝜙𝑖 = 𝜖+𝜒
𝑖                                                       𝛿𝜙𝑖̅ = 𝜖−̅𝜒

𝑖̅ 

𝛿𝜓𝑧
𝑖 = 2𝑖𝜖−̅𝜕𝑧𝜙

𝑖 + 𝜖+Γ   𝑗𝑘
𝑖 𝜓𝑧

𝑗
𝜒𝑘                 𝛿𝜒𝑖 = 0 

𝛿𝜓𝑧̅
𝑖̅ = −2𝑖𝜖+̅𝜕𝑧̅𝜙

𝑖̅ + 𝜖−̅Γ   𝑗̅𝑘̅
𝑖̅ 𝜓𝑧̅

𝑗̅
𝜒𝑘̅               𝛿𝜒𝑖̅ = 0 

(3.6.3.a) 

(3.6.3.b) 

(3.6.3.c) 

 

As mentioned before, 𝐴-model is the topological cohomological theory, we can write the 

Lagrangean in the form of {𝑄𝐴, 𝑉} and we can also find that the theory is independent of 𝑡. 

However, the action of theory is actually rewritten as 

 𝑆′ = 𝑖𝑡∫𝑑2𝑧{𝑄𝐴, 𝑉}
Σ

+ 𝑡∫Φ∗(Ω)
Σ

 (3.6.4) 

where 

 𝑉 = 𝑔𝑖𝑖̅(𝜓𝑧
𝑖𝜕𝑧̅𝜙

𝑖̅ + 𝜕𝑧𝜙
𝑖𝜓𝑧̅
𝑖̅ ) (3.6.5) 



42 

and Ω is the Kähler form of the target space, i.e. Ω = −𝑖𝑔𝑖𝑗̅𝑑𝑧
𝑖 ∧ 𝑑𝑧̅𝑗.  

 𝑡 ∫Φ∗(Ω)
Σ

= 2𝑡𝑔𝑖𝑖̅(𝜕𝑧𝜙
𝑖𝜕𝑧̅𝜙

𝑖̅ − 𝜕𝑧̅𝜙
𝑖𝜕𝑧𝜙

𝑖̅) (3.6.6) 

The Lagrangean can be partly written in the 𝑄-exact form, and the other term is related to the 

Kähler structure of the target manifold. On the second term of the action, we can make the 

pullback Φ∗ on the Kähler form Ω back act on the worldsheet, and then it can be found that the 

it becomes important that Ω is a closed form so that the integral will only depend on the 

cohomology class of Φ(Σ). We denote the cohomology class as 𝛽 ∈ 𝐻2(𝑀), and the integral of 

the Kähler form over it is written as Ω ∙ 𝛽. Then it shows that 

 ∫Φ∗(Ω)
Σ

= ∫ Ω
Φ(Σ)

= Ω ∙ 𝛽 ≥ 0. (3.6.7) 

If an anti-symmetric tensor field such as the Kalb–Ramond field, i.e. the B-field, is non-vanishing, 

we can replace the original real Kähler form Ω by a complexified Kähler form Ω𝑐 = Ω+ 𝑖𝐵 =

(𝑏𝑖𝑗̅ + 𝑖𝑔𝑖𝑗̅)𝑑𝑧
𝑖 ∧ 𝑑𝑧̅𝑗. 

 

Then we can find the correlation relations of the 𝐴-model can be written as 

 ⟨𝑂1…𝑂𝑛⟩ = 𝑒
−𝑖𝑡 Ω∙𝛽∫ 𝐷𝜙𝐷𝜒𝐷𝜓𝑒−𝑖𝑡{𝑄𝐴 ,∫ 𝑉}𝑂1…𝑄𝑛

𝑀

 (3.6.8) 

where 𝐷𝜙, 𝐷𝜒 and 𝐷𝜓 are the corresponding measures of the path integral. We can find that 

the correlation function of these physical operators does not have dependence of the metric on the 

term 𝑉, but it only depends on the metric of target space 𝑀 via the Kähler form Ω from the 

term 𝑒−𝑖𝑡 Ω∙𝛽 by using the similar method in (3.5.7). That is to say, the theory does not depend on 

any structure which appears only in 𝑉, but it depend on the structure in rest term on the action 

(For this case, it is the second term in (3.6.4).). Therefore it can be found that the 𝐴-model is 



43 

independent of the choice of the complex structure, but it clearly depends on the choice of the 

Kähler class of the target space. It means that the theory is “half-topological” with respect to the 

target space, as it depends on “half ” of the moduli of the Calabi-Yau manifold. In conclusion, the 

𝐴-model theory only topologically depends on the Kähler moduli of the Calabi-Yau target space. 

Furthermore, by taking the derivative with respect to the coupling constant 𝑡 and using the 

similar method in (3.5.10), the second factor in (3.6.10) ( the 𝑄𝐴-exact part ) is also independent 

of the choice of 𝑡 so that we can calculate it exactly by taking the classical 𝑡 → ∞ limit, and 

therefore we can somehow reduce the theory to a weak coupling theory.  

 

3.7 𝑩-model 

In the 𝐵-model, we will do the same method as for the 𝐴-model. For this model, we twist 𝜓+
𝑖  

and 𝜓−
𝑖  to be the section of 𝐾̅ ⊗Φ∗(𝑇𝑀+) and 𝐾⊗Φ∗(𝑇𝑀−) respectively, and we also 

regard both 𝜓+
𝑖̅  and 𝜓−

𝑖̅  as the section of Φ∗(𝑇𝑀−). Then the field 𝜙𝑖 and 𝜙𝑖̅ remain the 

same as before.  

 

𝜓+
𝑖 ∈ 𝐾⊗Φ∗(𝑇𝑀+) 

𝜓−
𝑖 ∈ 𝐾̅ ⊗Φ∗(𝑇𝑀+) 

𝜓+
𝑖̅ ∈ Φ∗(𝑇𝑀−)            

𝜓−
𝑖̅ ∈ Φ∗(𝑇𝑀−)            

(3.7.1.a) 

(3.7.1.b) 

(3.7.1.c) 

(3.7.1.d) 

One may find that in the 𝐵-model, the new twisted scalar fields 𝜓±
𝑖̅  are both the space-time 

(1,0)-forms, which is slightly different from the case in the 𝐴-model. Therefore, the new scalar 

field can be chosen in a more convenient way, and we rename all new fields as: 
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𝜂𝑖̅ = 𝜓+
𝑖̅ + 𝜓−

𝑖̅           

𝜃𝑖 = 𝑔𝑖𝑗̅(𝜓+
𝑗̅
− 𝜓−

𝑗̅ ) 

𝜌𝑧
𝑖 = 𝜓+

𝑖                      

𝜌𝑧̅
𝑖 = 𝜓−

𝑖                      

(3.7.2.a) 

(3.7.2.b) 

(3.7.2.c) 

(3.7.2.d) 

One of the reason that we introduce 𝜃 field with lower holomorphic indices is that it may lead to 

some simpler expressions, e.g. {𝑄𝐵, 𝜃𝑖} = 0, but {𝑄𝐵 , 𝜃
𝑖̅} = −2Γ   𝑗̅𝑘̅

𝑖̅ 𝜂𝑗̅𝜃𝑘̅. Then we can also write 

the action of the 𝐵-model in the rename terms. 

 

𝑆 = 𝑡∫ 𝑑2𝑧 (
1

2
𝑔𝐼𝐽𝜕𝑧𝜙

𝐼𝜕𝑧̅𝜙
𝐽 + 𝑖𝜂𝑖̅(𝐷𝑧𝜌𝑧̅

𝑖 + 𝐷𝑧̅𝜌𝑧
𝑖)𝑔𝑖𝑖̅ + 𝑖𝜃𝑖(𝐷𝑧̅𝜌𝑧

𝑖

Σ

− 𝐷𝑧𝜌𝑧̅
𝑖) + 𝑅𝑖𝑖𝑗̅𝑗̅𝜌𝑧

𝑖𝜌𝑧̅
𝑗
𝜂𝑖̅𝜃𝑘𝑔

𝑘𝑗̅) 

(3.7.3) 

As the scalar supercharge operator in 𝐵-model is defined as 𝑄𝐵 = 𝑄̅− + 𝑄̅+, we can also find the 

supersymmetry transformation 𝛿 = 𝜖𝑄̅̅+ + 𝜖𝑄̅̅− by setting 𝜖+̅ = −𝜖−̅ = 𝜖̅ to be constant and 

𝜖± = 0 and the following relations: 

 

𝛿𝜙𝑖̅ = 𝜖𝜂̅𝑖̅                      

𝛿𝜙𝑖 = 𝛿𝜃𝑖 = 𝛿𝜂
𝑖̅ = 0 

𝛿𝜌𝜇
𝑖 = ±𝑖𝜖𝜕̅𝜇𝜙

𝑖            

(3.7.4.a) 

(3.7.4.b) 

(3.7.4.c) 

 

The action of the 𝐵-model can also be rewritten partly in the form of {𝑄𝐵, 𝑉} which is in the 

same way as what we do in the 𝐴-model section. 

 𝑆 = 𝑡∫{𝑄𝐵, 𝑉}
Σ

+ 𝑡𝑊 (3.7.5) 

where  
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 𝑉 = 𝑔𝑖𝑗̅(𝜌𝑧
𝑖𝜕𝑧̅𝜙

𝑗̅ + 𝜌𝑧̅
𝑖𝜕𝑧𝜙

𝑗̅) (3.7.6) 

and 

 𝑊 = ∫ (−𝜃𝑖𝐷𝜌
𝑖 −

𝑖

2
𝑅𝑖𝑖𝑗̅𝑗̅𝜌

𝑖 ∧ 𝜌𝑗𝜂𝑖̅𝜃𝑘𝑔
𝑘𝑗̅) .

Σ

 (3.7.7) 

𝐷 in the equation (3.7.7) is the exterior derivative on the worldsheet Σ, and ∧ is the wedge 

product. It can be found that the term 𝑊 in the action is anti-symmetric in the exchange of the 

holomorphic and anti-holomorphic 𝑧 indices, and it can be written as a differential (1,1)-form. 

Then integral of such a form over the two-dimensional worldsheet Σ is independent of the metric, 

so the only metric dependence of the action is in the term {𝑄𝐵, 𝑉}. Furthermore the variations of 

𝑊 with respect to the cohomology class of the Kähler form Ω on the target space 𝑀 are 

𝑄𝐵-exact, so the metric dependence on the Kähler structure of the Calabi-Yau target space is also 

vanishing. However, by looking through the anti-commutation relations between the 𝐵-model 

scalar supercharge operator and the untwisted original scalar field 𝜙, we can find the asymmetry 

in the relation,  

 {𝑄𝐵, 𝜙
𝑖} = 0                {𝑄𝐵, 𝜙

𝑖̅} = −𝜂𝑖̅, (3.7.8) 

so that it implies the theory depends on the choice of the complex structure of the target space [24]. 

It shows that the 𝐵-model is also “half-topological” with respect to the target space, and the 

theory only topologically depends on the complex structure moduli of the Calabi-Yau target space. 

Furthermore for the 𝑡 -dependence, we can use the same way as we did in the 𝐴-model 

introduction part to show that the 𝑄𝐵-exact term of the action is also independent of the coupling 

constant 𝑡. On the other hand, one can find that the term 𝑊 in (3.7.7) is linear in 𝜃, but the other 



46 

term, i.e. the 𝑄𝐵-exact term has not 𝜃-dependence. Therefore we can remove the 𝑡-dependence 

by redefining 𝜃 → 𝜃/𝑡 so that the term 𝑡𝑊 in the action is changed to be just 𝑊. Then the 

theory becomes independent of the coupling constant 𝑡 except for factors that come from the 

𝜃 -dependence of the observables. Due to the trivial 𝑡 -dependence of the 𝐵 -model, the 

calculations can be taken for large 𝑡 limit. 

 

3.8 Coupling to Gravity  

So far the 𝐴- and the 𝐵-model introduced are both still in topological field theory, in which the 

metric of the theory are not dynamical. To make the models be string theories, we need to couple 

them to the gravity, which means the worldsheet theory should not only involve the path integral 

over the maps Φ to the target space and their fermionic partners, but also a path integral over the 

metric ℎ𝜇𝜈 of the worldsheet. Then we call such theory the topological string theory. There are 

several things needed to achieve such coupling. Firstly, of course the Lagrangean of the theory 

should be rewritten in a covariant way by changing the flat metrics to the dynamical ones, and the 

covariant derivatives and the factor of √det ℎ should be introduced as well. Furthermore an 

Einstein-Hilbert term also needs to be introduced to act like the kinetic term of the metric field, 

and the new term should still preserve the symmetries of the original theories. Finally, the theory 

should be able to be integrated over space of all metrics. The first two steps are relatively 

straightforward to achieve, because changing the Lagrangean of theory may not lead to a large 

change of the properties of the theory. However, integrating over the space of all metric may result 

in some difficulties. Even though we have a metric independence of the theory, it is not a correct 

way to just integrate the partition function over space of all metrics and divide the results by a 
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volume of the topological “gauge group”. Therefore an alternative way of integrating is first to do 

the integration over all conformally equivalent metrics and to do the integral over the remaining 

finite-dimensional moduli space of the worldsheet [24]. It may not be explained further as the 

theories treated as the cohomological field theories could give the sufficient explanation for the 

next chapter.  
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4 Mirror Symmetry 

After discussing the two models of the topological string theory, we may talk about the mirror 

symmetry, which will make two twisted models isomorphic to each other by exchanging the two 

topological structures. Besides the mirror symmetry can also link the different types of superstring 

theories as well. This kind of duality relation will make it possible to calculate one theory by 

doing the calculation on the other, which is similar to the cases for T-duality and S-duality. For 

example some calculation on 𝐴-model will be way more difficult than the one in 𝐵-model, but 

the mirror symmetry conjecture state it would be possible to just obtain the result of 𝐴-model by 

just calculate the dual case in 𝐵-model. Such symmetry relation between two internal spaces may 

lead a new understanding of the string theory to the physicists nowadays.  

 

In this chapter, we will firstly give some brief introduction to the mirror symmetry and show how 

this type of duality relates two string theories with totally different topological properties [33][34]. 

Then we will discuss the mirror symmetry in different aspects and some applications of mirror 

symmetry will be given as well [25[28][32].  

 

4.1 Brief Introduction to Mirror Symmetry 

Generally speaking, mirror symmetry is a conjecture that there are pairs of Calabi-Yau manifolds 

with different topological properties that imply the same superconformal field theory, and we call 

such pair of Calabi-Yau manifold a mirror pair.  

 SCFT(𝑋) ≃ SCFT(𝑋̂) (4.1.1) 

where 𝑋 and 𝑋̂ are the mirror pair. In superstring theory, the mirror symmetry lead two type-II 
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theories to have mirror duality, which make an isomorphism between the type-IIA theory in 

3-dimensional Calabi-Yau manifold 𝑋 and the type-IIB theory in the mirror manifold 𝑋̂ and  

vice versa (while in the Calabi-Yau mirror pairs with even dimℂ 𝑋 the mirror symmetry will lead 

a self-duality on both type-IIA and type-IIB superstring theories). Meanwhile, there is another 

duality relation between two type-II theories, which is called the T-duality, a duality between 

different target spaces, and the simplest case of such duality is to lead a equivalence between one 

theory in a compact internal manifold with a circle of radius 𝑅 and the other with radius 1/𝑅 

( in the natural units ). Then there is a conjecture that there is connection between mirror 

symmetry and T-duality, which is called the SYZ conjecture proposed by Strominger, Yau and 

Zaslow in 1996 [4][16]. Furthermore, in the topological string theory, the mirror symmetry also 

implies that the 𝐴-model in target space 𝑋 is isomorphic to the 𝐵-model in the mirror manifold 

𝑋̂ and vice versa.  

 

In the aspect of Hodge numbers, the mirror symmetry implies an extra symmetry relation on the 

Hodge diamond for Calabi-Yau manifolds such that  

 ℎ𝑟,𝑠(𝑋) = ℎ𝑛−𝑟,𝑠(𝑋̂) (4.1.2) 

where 𝑛 is the complex dimension of the Calabi-Yau manifolds, 0 ≤ 𝑟, 𝑠 ≤ 𝑛, and 𝑋 and 𝑋̂ 

are the mirror pairs. For the 𝑛 = 3 case, we can find the mirror manifold through relation, but for 

the manifold that ℎ2,1 = 0, there is not mirror symmetry since that the Hodge number ℎ1,1 of a 

Calabi-Yau manifold must be positive integer number as shown in (2.5.10.c). By looking at the 

Hodge diamond of the Calabi-Yau threefold, we can find the symmetry switches the only two 
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independent Hodge numbers to each other, i.e. ℎ1,1(𝑋) = ℎ2,1(𝑋̂) and ℎ2,1(𝑋) = ℎ1,1(𝑋̂). As 

the mirror symmetry exchange the dimensions of two cohomology groups, it would lead the 

isomorphism that 𝐻1,1(𝑋) ≃ 𝐻2,1(𝑋̂) and 𝐻2,1(𝑋) ≃ 𝐻1,1(𝑋̂). By using the knowledge in the 

moduli space section, we can find that the Kähler moduli space and the complex structure moduli 

space are exchanged under the mirror symmetry for the Calabi-Yau manifolds. Such moduli 

exchange can be understood in a different direction. In the topological string theory, we have 

found that the 𝐴-model has the topological dependence of the only Kähler moduli on the target 

space (𝐴-model may have some other topological dependence of the worldsheet of the strings), 

and the 𝐵-model only has the topological dependence of the complex structure moduli of the 

target space. Then the mirror symmetry exchanges the two moduli to lead the equivalence between 

two models.  

 

𝐴-model on 𝑋 ⟷ Kähler moduli of 𝑋 

(4.1.3)   Mirror symmetry ↕ (𝑋, 𝑋̂) 

𝐵-model on 𝑋̂ ⟷ complex moduli of 𝑋̂ 

Consequently, the triple products of the coholomogical fields of each model will also have an 

isomorphism under the mirror symmetry, and that will lead a kind of Yukawa coupling 

equivalence relation between two theories. 

 

4.2 Mirror Symmetry in Aspects of T-duality 

Let’s consider the simplest case for T-duality (which is also the mirror symmetry), in which the 

compact manifold is just a circle of radius 𝑅, i.e. 𝑀10 = 𝑀9 × 𝑆
1, and such way of hiding extra 

dimension is called the Kaluza-Klein compactification. Then for the coordinate in the 10
th 
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dimension 𝑋9, we will have the following relation:  

 𝑋9(𝜏, 𝜎 + 2𝜋) = 𝑋9(𝜏, 𝜎) + 2𝜋𝑅𝑤 (4.2.1) 

where 𝜏 and 𝜎 are the coordinate on the worldsheet of the string, and 𝑤 is the wind number 

which is the number of times that the string winds around on 𝑆1. The number 𝑤 is a quantum 

number of the spectrum of the physical state, and there is another quantum number for the theory, 

which is corresponding to the momentum of the center of mass of the string going around 𝑆1 and 

is denoted as 𝑛. Then the contribution to the worldsheet energy of the state form these two 

quantum numbers is [6] 

 𝐸𝑛,𝑤 = (𝑤𝑅)
2 + (

𝑛

𝑅
)
2

. (4.2.2) 

We can find the value 𝐸𝑛,𝑤 here is invariant under the transformation that 𝑅 ⟷ 1/𝑅. Taking the 

inverse of the radius of the compact 𝑆1 as the new radius leads the symmetry, and consequently 

the wind number and the momentum quantum number are exchanged. This is the T-duality for the 

circle. 

 

Then we can talk about the T-duality for a rectangular 2-torus 𝑇2. Such compact manifold is the 

simplest Calabi-Yau manifold, and it is also the only case for one-dimensional Calabi-Yau 

manifold. The Hodge numbers of 𝑇2 are all just one, so the mirror manifold of a 2-torus is just 

another 2-torus. Taking the two radius of the torus as 𝑅1 and 𝑅2, we can define  

 𝐴 = 𝑖𝑅1𝑅2      𝜏 = 𝑖𝑅2/𝑅1 (4.2.3) 

which characterizing the Kähler structure and the complex structure of the manifold. The T-duality 
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applying on such manifold will lead the transformation of 𝑅1 → 1/𝑅1 to be symmetric under 

exchanging 𝐴 ↔ 𝜏, an exchange between the Kähler moduli and the complex structure moduli. 

The exchange between two moduli spaces in such mirror symmetry may naturally lead to the 

exchange of 𝐴-model and 𝐵-model. 𝑇2 is a trivial Cablabi-Yau manifold with only 1 complex 

dimension, and it has genus 1 which can lead us to still be able to look at the one-loop free energy 

𝐹1 of the theory. The 𝐵-model at one loop computes the inverse of the determinant of the 𝜕̅ 

operator acting on 𝑇2, and the determinant is the Deddkind 𝜂 function: 

 𝜂(𝑞) = 𝑞1/24∏(1− 𝑞𝑛)

∞

𝑛=1

 (4.2.4) 

where 𝑞 = 𝑒2𝜋𝑖𝜏 . As the mirror symmetry implies the 𝐵 -model in target space of 𝑇2  is 

isomorphic to the 𝐴-model in the mirror manifold, another 𝑇2, the 𝐴-model will be able to have 

the calculation with 𝜂 function but with an exchange 𝜏 ↔ 𝐴. The factor 𝑞 will be related to 

𝑒−𝐴 by the mirror symmetry, and the coefficient of 𝑒−𝑛𝐴  will counts maps which wrap the torus 

over itself 𝑛 times.[25] 

 

4.3 Yukawa Couplings in Mirror Symmetry 

As mentioned in the mirror symmetry introduction section, the cohomology class of the mirror 

pairs can be linked by the mirror symmetry, and it leads an isomorphism between 𝐻1,1 and 𝐻2,1 

for the triple products, which could determine a Yukawa coupling of the theories. The fields in the 

interaction are considered in the fundamental (248) representation of 𝐸8 which is the gauge 

group of the uncompactified heterotic string theory. Under the compactification of the Calabi-Yau 

internal space with 𝑆𝑈(3) holonomy group, the group 𝐸8 will be break into a 𝐸6 group for the 
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4-dimensional Minkowshi spacetime and a 𝑆𝑈(3) group, i.e. 𝐸8 ⊂ 𝐸6 × 𝑆𝑈(3). Therefore we 

have the decomposition 248 = (27,3)⊕ (27̅̅̅̅ , 3̅) ⊕ (1,8)⊕ (78,1), where the 4-dimensional 

matter field transform as  27 and 27̅̅̅̅  of 𝐸6 (which are also the fundamental representation of 

𝐸6 and its dual) and the zero modes transform in 3 and 3̅ of the group 𝑆𝑈(3). Then we can find 

there are two kind of Yukawa coupling for the fields, which are  ⟨273⟩ and ⟨27̅̅̅̅ 3⟩, and the first 

one is in the form that  

 𝜅𝑎𝑏𝑐
0(27)(𝑋) ≡ 𝜅𝑎𝑏𝑐

0 (𝑋) = ∫ℎ𝑎 ∧ ℎ𝑏 ∧ ℎ𝑐
X

, (4.3.1) 

where ℎ𝑎 ∈ 𝐻𝜕̅
1,1(𝑋) and the index 𝑎, 𝑏 and 𝑐 are in the range from 1 to the Hodge number 

ℎ1,1. Then the second kind of Yukawa coupling is that  

 𝜅𝛼𝛽𝛾
(27̅̅̅̅ )(𝑋) ≡ 𝜅̅𝛼𝛽𝛾(𝑋) = ∫Ω ∧ 𝑏𝛼

𝑖 ∧ 𝑏𝛽
𝑗
∧ 𝑏𝛾

𝑘  Ω𝑖𝑗𝑘
X

 (4.3.2) 

where Ω is the unique non-vanishing holomorphic (3,0)-form on the Calabi-Yau manifold, 

𝑏𝛼
𝑖 = Ω𝑖𝑗𝑘(𝑏𝛼)𝑗𝑘𝑙̅ 𝑑𝑧

𝑙 ̅ such that 𝑏𝛼 ∈ 𝐻𝜕̅
2,1(𝑋), and the index 𝛼, 𝛽 and 𝛾 are in the range from 1 

to ℎ2,1. We can find that the coupling in (4.3.1) in purely topological and the one in (4.3.2) 

depends on the complex structure through Ω. There are one-to-one correspondence relations 

between the field and the moduli: 27 ⟷ Kähler moduli and  27̅̅̅̅ ↔ complex structure moduli. 

Under the mirror symmetry, the full ⟨273⟩ couplings on the manifold 𝑋 depend on the Kähler 

moduli in such a way that the  full ⟨27̅̅̅̅ 3⟩ couplings on the mirror manifold 𝑋̂ depend on the 

complex structure moduli. [28][32] 

 

In the 𝐴-model the Yukawa three-point correlation function is computed as  
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  ⟨ℎ𝑎, ℎ𝑏 , ℎ𝑐⟩ = 𝜅𝑎𝑏𝑐
0 (𝑋) +∑𝑛𝛽

𝛽≠0

∫ℎ𝑎
𝛽

∫ℎ𝑏
𝛽

∫ℎ𝑐
𝛽

𝑒
2𝜋𝑖 ∫ Ωℂ

𝛽

1 − 𝑒
2𝜋𝑖 ∫ Ωℂ𝛽

  (4.3.3) 

where 𝑛𝛽 is the instanton number and 𝛽 ∈ 𝐻2(𝑋; ℤ) and Ωℂ is the complexified Kähler form. 

Then the corresponding dual case in 𝐵-model have the three point correlation defined as  

  ⟨𝑏𝛼 , 𝑏𝛽 , 𝑏𝛾⟩ = ∫Ω ∧ (∇𝑏𝛼∇𝑏𝛽∇𝑏𝛾Ω)
𝑋

 (4.3.4) 

where Ω is still the holomorphic 3-form on 𝑋 and ∇𝑏𝛼 is the Gauss-Manin connection taking a 

(𝑟, 𝑠) class to a (𝑟 + 1, 𝑠 − 1) class.  
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5 Conclusion  

We has discussed how the compactification of string theory required the internal space to be 

3-dimensional Calabi-Yau manifold and also discussed the holonomy group, cohomology class 

and the two moduli spaces of such manifolds. Furthermore the two twisted 𝑁 = (2,2) 

topological string theories, 𝐴-model and 𝐵-model were also introduced and we showed that they 

are totally determined by the Kähler structure and the complex structure of the target space 

respectively. Then, the mirror symmetry conjecture were illustrated and it makes the mirror pairs 

by exchanging the two topological structures and makes an isomorphism between two string 

theories, including two twisted models. Some applications of the mirror symmetry were briefly 

introduced in the end of the final chapter. 
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