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Abstract

The mystery of dark energy has pervaded the field of cosmology for decades, and a satis-

factory theoretical framework for describing its origins remains elusive. Models that aim to

describe dark energy are relatively easy to propose, and split roughly into two categories: the-

ories that introduce some field content, and theories that modify the gravitational interactions

of the Universe. Once such a theory is formulated, its validity is sometimes far harder to com-

prehend, due to the relative complexity of the resulting field equations. The dynamical systems

approach aims to alleviate this difficulty, by reformulating the field equations as a set of simpler

differential equations, which permits the classification of the entire cosmic history within a given

dark energy model. We will firstly examine models with added field content using dynamical

systems tools; this will allow us to confirm the viability of each model without too many compli-

cated calculations. We then make the natural progression towards theories of modified gravity,

again with the hope of ruling out unfeasible models. We will also briefly make contact with

observational restrictions on each theory of dark energy, which again is a task made easier in

the dynamical systems framework. We thus conclude that the methods of dynamical systems,

when applied to dark energy and cosmology more generally, are a powerful way of describing

the Universe, and can be applied effectively across the entire field of theoretical cosmology.
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Introduction

The successes of Einstein’s theory of General Relativity (GR) are almost unparalleled in the

history of physics, and the cosmological applications of GR comprise a significant portion of cos-

mological literature produced in the past century. Technological advances since the formulation

of GR have allowed for a dynamic interplay between observational and theoretical cosmology,

with GR at the heart of a large majority of theoretical developments. This interplay became

significant only shortly after the discovery of GR, as Einstein himself introduced a constant term

into his field equations to produce a static universe, which at the time was believed to be the

actual state of the Universe. Hubble’s discovery [110] that the Universe was, in fact, expanding

caused Einstein to eliminate the constant, dismissing its inclusion as his ‘greatest blunder’, or

so the legend says.

The constant once again came to the forefront in the late 1990s, when it became clear that the

rate of expansion of the universe was increasing [159, 166]. Insertion of the so-called cosmological

constant, denoted by Λ, into the field equations 1:

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν , (1)

yields such an accelerating universe. The term dark energy was then coined [111] as an all-

encompassing expression for the unknown form of energy driving the acceleration. It is, in

many ways, remarkable that GR could so readily accommodate for the observed acceleration of

the Universe in such an elegant way, and further highlights the beauty of Einstein’s theory.

The picture becomes rather less appealing when one examines the physical origin of the

cosmological constant. Quantum Field Theory, another cornerstone of modern physics besides

GR, predicts a value for the constant many times larger than the small value we observe.

Also, we will see that the constant nature of Λ raises a significant concern regarding the initial

conditions of the Universe. Naturally, we should then question whether the simple addition of

Λ into the field equations is a sufficient description of reality, or whether something more subtle

is required.

1Throughout this work, the convention c = 1 will be used.
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The first step beyond the cosmological constant stems from the quite natural question: should

the source of universal acceleration be some dynamical object, rather than the spacetime con-

stant Λ? If this is the case, what type of object should it be? Perhaps inspired by the scalar

field inflationary scenarios of the early 1980s [9, 103], the scalar field has been investigated as

the source of dark energy from the moment we observed the acceleration of the Universe. Scalar

fields are a natural candidate, since they are ubiquitous in the particle content of, for example,

string theory and the Standard Model. They are also simple to work with in cosmological con-

texts; there is a well defined canonical action describing the scalar, which we can quite easily

couple to gravity via the metric tensor gµν . A natural extension of the canonical scalar is the

non-canonical scalar, described by a non-standard action and with interesting consequences for

cosmology.

Scalar field dark energy has been successful in some respects, while unsuccessful in others.

This has understandably lead cosmologists to consider dark energy models utilising different

types of fields, such as vectors and spinors. Such fields are fundamental in particle phsyics, as

is the scalar, and are thus well worth considering as a potential candidate for dark energy.

There is an equally interesting possibility to describe dark energy, or more accurately, describe

away dark energy. We could take the view that GR is, in fact, an incorrect theory at cosmological

scales, and that dark energy is simply an artifact of our insufficient understanding of reality.

The history of modified theories of gravity can be traced almost exactly to the years following

the formulation of GR. As such, the cosmological implications of modified gravity comprise a

broad and active area of research to this day. Therefore, a review of dark energy that hopes to

be at all comprehensive should necessarily include an appraisal of modified gravity.

The aim of this thesis is to present a broad introduction to the numerous theories that can

describe the acceleration of the Universe. An important question then arises: how can we study

the viability of a cosmological model with regards to observational data? The field equations, in

most cases derived from an action, are ostensibly solvable once the metric gµν has been defined.

We should then be able to solve the resulting differential equations and predict the behaviour

of any cosmological model.

In practice, however, the situation is rarely so simple. For models with even a small amount

of complexity over (1), the field equations are highly complicated differential equations for

which even numerical solutions are hard to obtain. This is where the theory of dynamical

systems comes into play. The dynamical systems approach aims to reduce the field equations

to a set of ordinary differential equations, termed an autonomous system, such that the entire

cosmic history can be characterised. This is usually achieved by defining variables related to the

standard cosmological parameters, such as the Hubble parameter H, and taking their derivative

with respect to some timelike parameter. The variables used to define the system comprise the

phase space, and the critical points are points in the phase space that are stationary, i.e. with

vanishing derivative. If such a critical point is stable, it will act as an attractor; a point to
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which trajectories in the phase space will converge. The concepts such as phase space, critical

points, and stability will be more formally defined in the next chapter, but it should hopefully

already be clear that dynamical systems tools are a powerful method of studying dark energy

models. For example, if we define an autonomous system describing a cosmological model, and

the corresponding phase space exhibits a single attractor, we can calculate whether that point

represents an accelerated phase of expansion, and therefore whether it is a viable framework for

representing dark energy.

This thesis is structured so as to include the necessary basics of dynamical systems theory

and GR, before considering the more advanced topics of dynamical dark energy and modified

gravity. Chapter 1 is concerned with formally defining the dynamical system and the associated

concept of linear stability theory. This will allow us to categorise the critical points of the

system into those that are stable, unstable, or saddle points. We will then see that linear

stability theory is inadequate in certain circumstances, and briefly outline two other methods

of stability analysis that can be used instead. Examples are provided throughout this chapter

to help elucidate the purely mathematical concepts that we define.

In Chapter 2, the basics of GR and its applications to cosmology are reviewed. The Einstein-

Hilbert action is introduced, as this will play an important role in helping us define most of the

more complicated theories considered in this thesis. The cosmological principle is used to write

down a line element describing the Universe, and the basic quantities of differential geometry,

such as the curvature tensor, are derived for the corresponding metric. We then explore the

current canonical model of the Universe, the ΛCDM model, before discussing two of the most

pertinent issues surrounding the cosmological constant. Lastly, the ΛCDM universe is studied

using dynamical systems techniques. This provides a concrete example of the power of the

dynamical systems approach, in the context of simple ΛCDM cosmology.

Chapter 3 deals with the most commonly studied model of dynamical dark energy: the scalar

field. Firstly, we write down the action that defines the scalar field coupled minimally to gravity,

and obtain the resulting field equations. A dynamical system is then constructed and the critical

points are found, along with their stability properties. Then, there is a brief discussion on the

various forms of scalar self-interaction potential that have been studied in the literature, before

moving on to the non-canonical scalar models that are also well studied. The phenomenology of

each model is considered, with close attention paid to the late-time dynamics. Lastly, we briefly

depart from the dynamical systems path to investigate a generic class of scalar field Lagrangians

that permit so-called scaling solutions, the details of which will be explained in due course.

Chapter 4 can, in some respects, be viewed as an extension of Chapter 3. Its primary focus

is to define some of the models of dark energy that instead deal with non-scalar fields. Since

the scalar is a zero-form, we consider one, two, and three-forms in turn, again utilising the

dynamical systems tools and discussing the cosmological consequences for each model. Then,

we consider spinor and Yang-Mills fields as dark energy sources, although in far less detail than
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the preceding n-forms. Instead, a (far from comprehensive) list of references is given with a

brief description of each, should the reader be interested in the current literature on the subject.

In the final chapter, we examine some of the most prominent theories of modified gravity.

Brans-Dicke and f(R) gravity are studied in detail, again by using dynamical systems tech-

niques. We also briefly describe the different formalisms for deriving the field equations in both

cases, known as the first-order and second-order formalisms. Next, a more exotic form of of

modified gravity, known as the RS2 braneworld model, is given the dynamical systems treat-

ment. Lastly, we discuss massive gravity, teleparallel gravity, and Hořava-Lifschitz gravity, with

references to the abundant dynamical systems literature for each model.

This thesis is intended to be a review on the vast subject of dynamical systems and dark

energy. As such, the level of detail given in each section is mostly only enough to serve as an

introduction to the topic at hand. In fact, most of the sections in this thesis could be extended

to a self-contained, review-length work. For the reader interested in more detailed appraisals of

each section, it is hoped that the list of references contained within can provide a starting point

from which to build a deeper understanding of the topic.

Lastly, it should be noted that we have mostly neglected to discuss early universe cosmology,

such as the inflationary epoch. This is intentional, as inflation itself comprises an expansive and

rich area of research that, if included, could likely double the length of this work.

Conventions and Notation

• The metric signature (−,+,+,+) will be used;

• ∂µφ denotes the partial derivative of φ with respect to the corresponding spacetime coor-

dinate, i.e. ∂µφ = ∂φ
∂xµ ;

• The covariant derivative of a vector Aµ is defined by

∇µAν = ∂µA
ν + ΓνσµA

σ, (2)

and the covariant derivative of a covector Bµ

∇µBν = ∂µBν − ΓσνµBσ, (3)

where the Γσνµ are the components of the Levi-Civita connection.



Chapter 1

Dynamical Systems

We begin by defining a dynamical system as [195]

ẋ = f(x, t), (1.1)

where x is an element of the phase space: x ∈ U ⊂ Rn, the overdot on x denotes the derivative

with respect to the parameter t ∈ R, and the function f is a map: f : U → U . In general, the

above dynamical system can be viewed as a system of n differential equations, interpreting f as

a vector field on Rn. We denote a solution to (1.1) as ψ(t).

We also define the the critical points as points xc ∈ U such that

f(xc) = 0, (1.2)

and the stability of said critical points as, informally speaking, a measure of whether a given

trajectory starting close to xc tends towards xc.

Formally, we define two types of stability, as in [195]:

• Lyapunov Stability: xc is Lyapunov stable if, for a given ε > 0, there is a δ = δ(ε) > 0

such that, for any solution ψ(t) of (1.1) satisfying |xc(t0)−ψ(t0)|< δ, then |xc(t)−ψ(t)|< ε

for t > t0;

• Asymptotic Stability: xc is asymptotically stable if it is Lyapunov stable, and for any

solution ψ(t) of (1.1), there exists a constant a > 0 such that if

|xc(t0)− ψ(t0)|< a, then limt→∞|xc(t)− ψ(t)|= 0.

1.1 Linear Stability Theory

In practice, once we have found a critical point or set of critical points for a system, we would

like to understand the stability of each point and thus classify its behaviour. To this end, we

5
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linearise the system around the critical points by Taylor expanding each component of the vector

field f(x) = (f1(x), ..., fn(x))

fi(x) = fi(xc) +
n∑
j=1

∂fi
∂xj

(xc)yj +
1

2

n∑
j,k=1

∂2fi
∂x2

j

(xc)yjyk + ..., (1.3)

where y = x− xc. We then neglect derivative terms that are second order or above, and define

the Jacobian as

J =


∂f1

∂x1
. . . ∂f1

∂xn
...

. . .
...

∂fn
∂x1

. . . ∂fn
∂xn

 . (1.4)

The eigenvalues of the Jacobian, evaluated at the critical points, are precisely the values that

determine the stability of the system in the linear stability framework. This is summarised by

the following theorem [195]: if all the eigenvalues of J have negative real parts, then the critical

point xc is asymptotically stable. We shall see this very clearly when we apply the above to

some basic cosmological models, but for now it is worth giving a very simple example to fully

elucidate some of the above concepts.

Consider the system

ẋ = x, (1.5)

ẏ = −y + x2, (1.6)

which for which (xc, yc) = (0, 0) is a critical point. The Jacobian evaulated at this point is then

J =

(
1 0

0 −1

)
, (1.7)

such that the eigenvalues of J are {−1, 1}. Thus, the origin (0, 0) is neither stable nor unsta-

ble. It is instead a saddle point, which attracts trajectories in some directions while repelling

trajectories in others.

A hyperbolic point is a critical point xc such that none of the eigenvalues of J , evaluated at

xc, have zero real part. This is significant, as the process of linearisation described above is

relevant and useful only for hyperbolic fixed points. Non-hyperbolic points require a different

type of stability analysis entirely, Lyapunov theory being one such method.

1.2 Lyapunov Theory

Following the standard dynamical systems literature, we briefly discuss the Lyapunov method

employed when linear stability theory is inadequate. The starting point is a theorem, the proof

of which can be found in [195]:
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Consider the system:

ẋ = f(x), x ∈ Rn. (1.8)

Let xc be a critical point, and let V : U → R be a differentiable, continuous function defined on

a neighbourhood of xc such that:

• V (xc) = 0 and V (x) > 0 if x 6= xc

• V̇ (x) ≤ 0 in U − {xc}.

Then xc is stable. It is also asymptotically stable if

V̇ (x) < 0 ∈ U − {xc}. (1.9)

The function V is known as a Lyapunov function, and if U can be chosen to be all of Rn, then

xc is globally asymptotically stable.

Note that the central difficulty of the Lyapunov method is finding a suitable Lyapunov

function; there is no algorithmic way of finding the function and we instead rely on intuition

and luck. Also note that the absence of a Lyapunov function does not imply instability.

As a brief example, consider [195]

ẋ = y, ẏ = −x+ εx2y, (1.10)

which has a non-hyperbolic critical point at (0, 0). If we choose V (x, y) = 1
2(x2 + y2), we have

V (0, 0) = 0, V (x, y) > 0, (1.11)

for any point (x, y) in the neighbourhood of the critical point. Also

V̇ (x, y) = ∇V (x, y) · (ẋ, ẏ) (1.12)

= (x, y) · (y,−x+ εx2y) (1.13)

= εx2y2, (1.14)

where · denotes the standard inner product, and we have used the chain rule in the first line.

Thus, if ε < 0, the critical point (0, 0) is stable. It is also straightforward to see that we can

choose U = R2, and so (0, 0) is in fact globally asymptotically stable. We see that the strength

of the Lyapunov method is its simplicity, but this is counteracted by the difficulty of finding a

suitable form for V .
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1.3 Centre Manifold Theory

Consider again the system (1.8). The theory of centre manifolds can be employed when one

or more of the critical points of the system are non-hyperbolic. Once (1.8) is linearised, recall

that the Jacobian J is an n×n matrix with n eigenvalues. We can then view Rn as the disjoint

union of the subspaces Es,Eu and Ec, where each is a space of eigenvectors with the following

properties:

• Es is the space of eigenvectors of J with eigenvalues that have a negative real part,

• Eu is the space of eigenvectors of J with eigenvalues that have a positive real part,

• Ec is the space of eigenvectors of J with eigenvalues that have zero real part.

Each subspace E is an invariant subspace [195] since, informally speaking, solutions in Rn with

initial conditions entirely within one of the E spaces will remain within that space.

Consider the case when Eu for a non-hyperbolic point is empty, and recall that the linearised

version of (1.8) can be written as

ẏ = Jy. (1.15)

Then, note that there is always a coordinate transformation that allows us to write the above

as

u̇ = Acu+Rc(u, v), (1.16)

v̇ = Asv +Rs(u, v), (1.17)

where (u, v) ∈ Rc × Rs, As (Ac) is a matrix having eigenvalues with positive (zero) eigenvalue,

and Rs(u, v) and Rc(u, v) both satisfy

Rc,s(0, 0) = 0, ∇Rc,s(0, 0) = 0. (1.18)

The reader is again referred to [195] for the details of the coordinate transformation. The centre

manifold W c(0) is then defined as

W c(0) = {(u, v) ∈ Rs × Rc|v = h(u), h(0) = 0,∇h(0) = 0, |u|< δ}, (1.19)

for δ sufficiently small and h a regular function on Rc.

In order to apply the above to a concrete dynamical system, we rely on three theorems given

in [196]:

Theorem 1.1. There exists a centre manifold for (1.16)-(1.17), and the dynamics of (1.16)-

(1.17) restricted to the centre manifold is given by

ż = Acz +Rc(z, h(z)), z ∈ Rc, (1.20)
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for |z| sufficiently small.

Theorem 1.2. 1. If the zero solution of (1.20) is stable (unstable), then the zero solution

of (1.16)-(1.17) is also stable (unstable).

2. If the zero solution of (1.20) is stable and (u, v) is a solution of (1.16)-(1.17) with

(u(0), v(0)) sufficiently small, then there is a solution z(t) of (1.20) such that as t→∞

u(t) = z(t) +O(e−γt), (1.21)

v(t) = h(z(t)) +O(e−γt), (1.22)

where γ > 0 is some constant.

Then recall that the centre manifold is defined such that v = h(u). We can then differentiate

v with respect to time to obtain

v̇ = ∇h(u) · u̇, (1.23)

into which we can substitute the expressions in (1.16)-(1.17) to find

Ash(u) +Rs(u, h(u)) = ∇h(u) · (Acu+Rc(u, h(u))). (1.24)

We can rearrange this to write

∇h(u) · (Acu+Rc(u, h(u)))−Ash(u)−Rs(u, h(u)) ≡ N (h(u)) = 0. (1.25)

In theory this gives us a valid differential equation for h(u), but in practice we employ an

approximation given by the final relevant theorem:

Theorem 1.3. Let φ : Rc → Rs be a map with φ(0) = ∇φ(0) = 0 such that

N (φ(u)) = O(|u|q) as x→ 0, (1.26)

for q > 1. Then

|h(u)− φ(u)|= O(|u|q) as x→ 0. (1.27)

This implies that we do not need to find an exact solution to (1.25); the approximate solution

is sufficient as it encodes precisely the same stability properties for a given critical point.

As an example, consider the system [196]

ẋ = x2y − x5, (1.28)

ẏ = −y + x2, (1.29)
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which has a critical point at (xc, yc) = (0, 0), and a corresponding Jacobian given by

J =

(
0 0

0 −1

)
, (1.30)

from which we deduce that (0, 0) is a non-hyperbolic point. The system is in the correct form

of (1.16) and (1.17), with Ac = 0, As = −1, Rc(x, y) = x2y − x5, Rs(x, y) = x2, so we do not

need to transform the system in any way. If we assume a centre manifold of the form

h(x) = ax2 + bx3 +O(x4), (1.31)

(1.25) becomes

N (h(x)) ≡ (2ax+ 3bx2 +O(x3))(ax4 + bx5 +O(x6)) + (a− 1)x2 + bx3 +O(x4) = 0. (1.32)

The coefficients of each power of x must vanish. Thus, to third order we have a = 1, b = 0, and

the centre manifold is given by

h(x) = x2 +O(x4), (1.33)

We can then restrict the dynamics to the centre manifold by using this expression for h(x) in

(1.20), which yields

ẋ = x4 +O(x5). (1.34)

Thus, if x is sufficiently small, ẋ is positive and the origin is unstable.



Chapter 2

A Review of General Relativity and

Cosmology

We begin with the Einstein-Hilbert action in the presence of matter, without a cosmological

constant:

S = SEH + Sm =

∫
d4x
√
−g
(
R

2κ2
+ Lm

)
, (2.1)

where κ2 = 8πG, 1 R is the Ricci scalar, g is the determinant of the metric, and Lm is the

Lagrangian describing the matter content of the Unvierse. Varying (2.1) with respect to gµν

yields the sourced Einstein field equations

Rµν −
1

2
Rgµν = κ2Tµν , (2.2)

where Rµν is the Ricci tensor, and Tµν is the stress-energy tensor for the matter source, given

by

Tµν =
−2√
−g

δSm
δgµν

, (2.3)

where Sm =
∫
d4xLm.

Following the cosmological principle, we search for a metric that can describe a homogeneous

and isotropic universe, i.e a metric that exhibits maximal spatial symmetry. The prime can-

didate for such a metric is the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric, whose

line element is given by

ds2 = −dt2 + a2(t)

(
dr2

1− kr2
+ r2dθ2 + r2 sin θ2dφ2

)
, (2.4)

where a(t) is the scale factor, the coordinate t is the cosmic time, (r, θ, φ) are the standard

comoving coordinates, and k is the spatial curvature, taking the values k = 0,−1,+1. A

1It is equally as common in the literature to set κ = 8πG, or κ = 1.

11
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discussion on the derivation and maximal symmetry properties of this metric can be found in

any standard textbook on GR or cosmology, including [51].

From (2.4) we can calculate the curvature tensor, Rαβµν , from its definition in terms of the

Christoffel symbol Γαµν :

Rαβµν = ∂µΓανβ − ∂νΓαµβ + ΓαµλΓλνβ − ΓανλΓλµβ, (2.5)

where

Γαµν =
1

2
gαβ (∂µgνβ + ∂νgµβ − ∂βgµν) . (2.6)

We can then calculate Rµν via

Rµν = Rαµαν , (2.7)

and R via

R = gµνRµν . (2.8)

We thus have an explicit expression for the left hand side of (2.2), which we supplement with a

suitable expression for Tµν . A suitable choice is to model the matter content of the universe as

a perfect fluid, which is at rest in comoving coordinates. The four-velocity of the fluid is then

given by uµ = (−1, 0, 0, 0) and the energy-momentum tensor is

Tµν = (ρ+ p)uµuν + pgµν , (2.9)

where ρ is the energy density and p is the pressure exerted by the fluid. We then define an

equation of state:

p = wρ, (2.10)

where w is the equation of state (EoS) parameter. For a dust-like perfect fluid, wm = 0, while

for a relativistic fluid wr = 1
3 . We also note the constraint on w from the dominant energy

condition [104], which implies that |w|≤ 1.

Using (2.2) and (2.9) we obtain the Friedmann equations [83, 84]:

(
ȧ

a

)2

=
κ2ρ

3
− k

a2
= H2, (2.11)

ä

a
= −κ

2

6
(ρ+ 3p), (2.12)

where we have defined the Hubble parameter : H = ȧ
a . Note that the acceleration condition ä > 0

implies that the universe will accelerate only when w < −1
3 , (this will be true even once we have

introduced more complicated models involving more than one fluid and extra fields). Thus,

a universe comprised entirely of either matter, radiation, or a combination of both will never

expand at an accelerating rate. Also of note is the continuity equation, derived by imposing
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∇µTµν = 0:
ρ̇

ρ
= −3H(1 + w), (2.13)

which we can integrate to obtain

ρ ∝ a−3(1+w). (2.14)

Then note that for dust-like (wm = 0) and relativistic (wr = 1
3) matter, we have ρm ∝ a−3

and ρr ∝ a−4 respectively. This is our first example of a characteristic of any model involving

both matter and radiation; since the matter energy density decreases at a slower rate than the

radiation density, matter will necessarily be dominant at some point in the evolution of the

universe, even if its initial density is much lower than that of radiation.

2.1 Our Universe

Current observational evidence indicates that our Universe is flat or almost flat, expanding

with an accelerated rate of expansion, and dominated by dark energy and dark matter [2]. The

presence of a negative pressure dark energy component motivates the introduction of the cosmo-

logical constant, Λ, into the field equations (1), since a universe dominated by the cosmological

constant produces the desired accelerated expansion, as we shall see. The canonical model of

such a universe will hereafter be referred to as the ΛCDM universe.

The field equations with the Λ term introduced and with k = 0 yield the modified Friedmann

equations:

H2 =
κ2ρ

3
+

Λ

3
, (2.15)

2Ḣ + 3H2 = −κ2p+ Λ, (2.16)

where we note that we can view Λ as a contribution to the overall energy density via ρΛ = Λ
κ2 ,

with a corresponding equation of state pΛ = wΛρΛ. Assuming that the Λ term dominates,

which is a valid assumption at late times, we can neglect contributions to the energy density

from other sources and set ρ = 0; this is the so-called De Sitter Universe. Then, from (2.15) we

immediately obtain a ∝ et
√

Λ
3 , i.e. the scale factor increases exponentially in time. Thus, ä > 0

during any period in which Λ dominates.

A more realistic model, of course, includes some combination of matter and the cosmological

constant. We can use the expression for ρ in (2.14) in (2.15) to obtain a differential equation

for a. This yields

a ∝ (sinh(At))
2

3(w+1) , (2.17)

where A is some constant. The asymptotic behaviour of a defined by the above equation is

correct, as it yields de Sitter expansion as t→∞, and matter domination as t→ 0.
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2.1.1 Problems with the Cosmological Constant

The cosmological constant is an attractive candidate for modelling the acceleration of the uni-

verse; it is a simple addition to the Einstein field equations, and in a very quick calculation we

have seen that in the limit t → ∞, the scale factor expansion is accelerating, as required by

observation.

The first, and perhaps most significant, problem we encounter when considering the cos-

mological constant is the catastrophical disagreement between the value of ρΛ calculated from

observation, and the vacuum energy density predicted by quantum field theory.

Roughly, we have [194] ρΛ ≈ 10−47GeV4, while the sum of energies from vacuum fluctuations

of a given field is ρQFT ≈ 1071GeV4. This is a discrepancy of almost 120 orders of magnitude,

and constitutes perhaps one of the worst disagreements between theory and experiment in the

history of physics. A more thorough treatment of the problem [154] ultimately leads us to the

conclusion that the renormalised value of ΛQFT , the value we will actually measure, is highly

sensitive to the mass of other particles. Perhaps even more worrying is that the counterterm,

used to cancel divergences in our evaluation of the renormalised ΛQFT , must be extremely

finely tuned to obtain the small measured value of Λ. This could perhaps be overlooked if we

only consider the one-loop contribution, but as soon as we include loops at higher order the

extreme fine-tuning must be performed ad infinitum. This is the statement that the cosmological

constant is radiatively unstable [154]; any fine-tuning performed at a given order is unstable at

higher orders.

The second significant problem with Λ is the so-called coincidence problem. Put simply, the

problem highlights the fact that the current energy densities of dark energy and dark matter are

of the same order, i.e ρDE
ρDM

≈ O(1). In most models of the universe, this situation is indeed highly

coincidental, as a very specific set of initial conditions is required to yield the correct relative

energy densities in the present epoch. Some argue that the coincidence is a non-issue; it only

becomes problematic under the assumption that we could have existed, with equal likelihood,

during any epoch of the cosmic history. This is of course not true, since our existence relies on

structure that was not present in the early universe, as well as gravitationally bound systems

which may not exist in the future. This also leads us naturally to the anthropic argument: our

ability to observe the relative energy densities in the dark sector is entirely reliant on the fact

that ρDE
ρDM

≈ O(1). In effect, this places an upper bound on the current dark energy density, and

can be seen as a partial resolution to the coincidence problem. In this thesis we will focus on

models which resolve the coincidence problem without resorting to anthropic arguments, but

the reader is referred to [191] for an in-depth discussion on solutions to the problem.
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2.2 ΛCDM as a Dynamical System

We now utilise the dynamical systems tools introduced in 1 to study the ΛCDM universe. First

consider (2.15) and (2.16) with two contributions to ρ, from both matter and radiation, denoted

ρm and ρr respectively. Rearranging, we obtain

3H2 = κ2(ρm + ρr) + Λ, (2.18)

2Ḣ + 3H2 = −1

3
κ2ρr + Λ, (2.19)

where we have used the equation of state for both fluids. As is standard in the literature [33],

we introduce the variables

x = Ωm =
κ2ρm
3H2

, y = Ωr =
κ2ρr
3H2

, ΩΛ =
Λ

3H2
, (2.20)

and note that (2.18) reduces to a simple constraint:

x+ y + ΩΛ = 1. (2.21)

This is significant, as we can trivially replace ΩΛ with an expression involving just x and y.

Then, to write down the ΛCDM dynamical system, we take the derivative of x and y with

respect to the dimensionless variable η = ln(a) [33], denoted with a prime:

x′ =
dx

dη
= x(3x+ 4y − 3), (2.22)

y′ =
dy

dη
= y(3x+ 4y − 4), (2.23)

where we have used the constraint (2.21), rearranged (2.19) to obtain an expression for Ḣ
H2 , and

noted that dη = Hdt. These steps are mostly straightforward and hence omitted. We have

arrived at our first example of a cosmological dynamical system, and we will now apply the

methods of linear stability analysis to investigate the system’s behaviour.

Here we should make note of another important dynamical systems concept: the invariant

submanifold. Informally, any flow on the phase space which lies on an invariant submanifold

will always remain on that submanifold. For most linearised systems such as (2.22)-(2.23), the

invariant submanifolds represent sections of the phase space that cannot be crossed, and thus

divide the space into regions that are not joined by any orbit. For (2.22)-(2.23) there are two

invariant spaces: the lines x = 0 and y = 0. Physically, this implies that vacuum solutions (with

Ωm = Ωr = 0) will always remain vacuum solutions.

We now calculate the critical points of the system, given by finding simultaneous solutions

to x′ = 0, y′ = 0. These are (0, 0), (0, 1) and (1, 0), labelled O,A, and B respectively. We then
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find an expression for the Jacobian and evaluate it at the critical points:

J =

(
∂x′

∂x
∂x′

∂y
∂y′

∂x
∂y′

∂y

)
=

(
6x+ 4y − 3 4x

3y 3x+ 8y − 4

)
. (2.24)

Thus:

JO =

(
−3 0

0 −4

)
, JA =

(
1 0

3 4

)
, JB =

(
3 4

0 −1

)
, (2.25)

where the subscript on J indicates which critical point is being used to evaluate the Jacobian.

The two eigenvalues of each matrix are (−3,−4), (1, 4), and (3,−1) for O,A, and B respectively.

Thus, we see that O is a stable fixed point, A is unstable, and B is a saddle point.

In Figure 2.1, we plot numerical solutions to the system (2.22), (2.23), and can clearly see the

stability properties of the three fixed points. Note that we have included only the physical range

x > 0, y > 0, and that the constraint (2.21) is represented by the fact that all the dynamics of

the system are enclosed by the triangle joining O,A, and B. Figure 2.1 also visually encodes

the expected behaviour of the ΛCDM model, that is; a universe that is at first dominated by

radiation will transition to a matter-dominated epoch, to be followed by dark energy domination

at late times. This is also clear from Figure 2.2, where we have plotted the density parameter

for each cosmological component against η. Note that in Figure 2.2, we have set the initial

conditions such that ΩΛ(0) ≈ 0.7. This highlights the fact that fine-tuning is required in the

ΛCDM model to match the current observed energy densities, and that the coincidence problem

is an intrinsic feature of the model.
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Figure 2.1: ΛCDM system.

Figure 2.2: Energy density evolution for ΛCDM.



Chapter 3

Dynamical Dark Energy: The Scalar

Field

We have seen that the cosmological constant provides a largely satisfactory model for the ob-

served Universe, but that it also raises both theoretical and anthropic concerns regarding its

value and origin (see Section 2.1.1). Alternative models that would alleviate (either partially

or wholly) the cosmological constant problem(s) have been investigated since the problem was

discovered [194]. One such model is that of a canonical scalar field that is weakly coupled to

gravity, hereafter referred to as quintessence. The dynamical scalar field eases both the fine-

tuning and coincidence problems that plague the cosmological constant, as a large range of

initial conditions can lead to similar late-time behaviour. Also, we will see that solutions exist

whereby the energy density of dark energy scales with that of the background fluid for a period

of time, thus alleviating the coincidence problem.

We begin with the action for an interacting scalar field weakly coupled to gravity:

Sφ = −
∫
d4x
√
−g
(

1

2
gµν∂µφ∂νφ+ V (φ)

)
, (3.1)

then take the variation Sφ with respect to gµν to obtain the energy-momentum tensor for the

scalar field:

T (φ)
µν = ∂µφ∂νφ−

1

2
gµνg

αβ∂αφ∂βφ− gµνV (φ). (3.2)

Combining the Einstein-Hilbert term, the background fluid term (which could be matter, ra-

diation, or a combination of both), and the scalar field term yields the total action: S =

SEH + SB + Sφ, from which we can derive the field equations in the presence of a scalar field:

Rµν −
1

2
Rgµν = κ2

(
TBµν + T (φ)

µν

)
. (3.3)

18
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Using the FLRW metric (2.4) in a flat (k = 0) universe, we obtain the modified Friedmann

equations

3H2 = κ2

(
ρ+

1

2
φ̇2 + V (φ)

)
, (3.4)

2Ḣ + 3H2 = −κ2

(
p+

1

2
φ̇2 − V (φ)

)
, (3.5)

where ρ and p are, as before, the energy density and pressure of the barotropic fluid, respectively.

We also note that an isotropic and homogeneous scalar field has an energy density, ρφ, and a

pressure, pφ, respectively defined by

ρφ =
1

2
φ̇2 + V (φ), (3.6)

pφ =
1

2
φ̇2 − V (φ), (3.7)

from which we can deduce the form of the dynamical equation of state parameter

wφ =
pφ
ρφ

=
1
2 φ̇

2 − V (φ)
1
2 φ̇

2 + V (φ)
. (3.8)

3.1 EN Variables

We are now in a position to choose appropriate variables that will represent our dynamical

system, in a process similar to that carried out in Section 2.2. The standard choice, as in [56]

and [57], is

x =
κφ̇√
6H

, y =
κ
√
V√

3H
, λ = −

V,φ
κV

, Γ =
V V,φφ
V,2φ

, (3.9)

where V,φ = dV
dφ .

Armed with the definitions above, we can then specify a form for the potential V (φ) and gain

considerable insight into the dynamics of the scalar field model. In [56] and [156], two potentials

are explored; these are V = V0e
−ακφ and V ∝ φ−a respectively. Both models produce “Λ-like”

accelerated behaviour at late times, as well as matter and radiation-dominated epochs at early

times. We will instead pursue a more general approach, developed in [73] and [207], where

we do not specify a potential as the starting point for the model. We instead draw as many

conclusions as possible about quintessential dynamics with a generic potential, and only then

make contact with specific potentials. We will see that, as we would hope, the generic approach

includes the dynamics of models with a concrete form for V (φ), while also including results that

are hidden when we specify the potential.
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We again wish to find the derivative of the EN variables with respect to η = ln(a), which

yields the following system

x′ = −3x+

√
6

2
y2λ+

3

2
x
[
x2(1− w) + (1 + w)(1− y2)

]
, (3.10)

y′ = −
√

6

2
xyλ+

3

2
y
[
x2(1− w) + (1 + w)(1− y2)

]
, (3.11)

λ′ = −
√

6x(Γ− 1)λ2 = −
√

6xf(λ)λ2, (3.12)

where w is the equation of state parameter for the fluid. We have also used the fact that the

Friedmann constraint (3.4) can be written as 1 = Ω + x2 + y2, where Ω = κ2ρ
3H2 , and that (3.5)

can be rewritten to give

Ḣ

H2
= −3

2

[
x2(1− w) + (1 + w)(1− y2)

]
. (3.13)

The system represented by (3.10)-(3.12) is not closed, as Γ depends explicitly on φ. We note,

however, that if we assume that the function λ(φ) is invertible, we can express Γ purely as a

function of λ, and (3.10)-(3.12) becomes a closed, autonomous dynamical system.

We can briefly make contact with the discussion in [56] by noting that the exponential

potential corresponds to the case Γ = 1, λ′ = 0. Thus, our generic treatment leads to an extra

dimension in the phase space, and potentially includes solutions that are excluded when we

specify a potential.

3.2 Critical Points and Stability

The critical points of the system are again given by finding simultaneous solutions to

x′ = 0, y′ = 0, λ′ = 0. We omit the details of this calculation and simply give the critical points

in Table 3.1. We have also calculated the Jacobian matrix, and evaluated its eigenvalues at

each point, as in Section 2.2 - the results of the stability analysis are given in Table 3.2. To

further understand the cosmological implications of each critical point, we calculate wφ and the

effective equation of state, we = ptot
ρtot

for every point, noting that

wφ =
x2 − y2

x2 + y2
, (3.14)

and

we = x2 − y2 + w(1− x2 − y2). (3.15)

ptot and ρtot are the total pressure and total energy density respectively. In both Table 3.1 and

Table 3.2, we have denoted λ∗ as any value of λ for which f(λ∗) = 0, i.e a zero of the function

f . λa is an arbitrary value of λ, f ′(λ) = ∂f
∂λ , and A =

√
24(w + 1)2 − (9(w + 1)− 2)λ2

∗.
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Table 3.1: Cosmological parameters and stability of each critical point.

Label (xc, yc, λc) wφ we Existence

O (0, 0, 0) Undefined w Always

A± (±1, 0, 0) 1 1 λ2f(λ) = 0 at λ = 0

B (0, 1, 0) −1 −1 Always

C (0, 0, λa)) Undefined w Always

D (0, 0, λ∗)) Undefined w Always

E± (±1, 0, λ∗)) 1 1 λ2f(λ) = 0 at λ = 0

F ( λ∗√
6
,

√
1− λ2

∗
6 , λ∗))

λ2
∗

3 − 1 λ2
∗

3 − 1 λ2
∗ < 6

G (
√

6(w+1)
2λ∗

,

√
6(1−w2)

2λ∗
, λ∗)) w w 3(w + 1) ≤ λ2

∗

Table 3.2: Critical points and Jacobian eigenvalues for the general scalar field system

Label (xc, yc, λc) Eigenvalues of Jacobian Stability

O (0, 0, 0) {0, 3
2(w ± 1)} Saddle for w < 1, unstable otherwise

A± (±1, 0, 0) {0, 3, 3(1− w)} Unstable

B (0, 1, 0) {0,−3,−3(w + 1)} Stable if f(0) > 0

C (0, 0, λa)) {0, 3
2(w ± 1)} Saddle for w < 1, unstable otherwise

D (0, 0, λ∗)) {0, 3
2(w ± 1)} Saddle for w < 1, unstable otherwise

E± (±1, 0, λ∗)) {∓
√

6f ′(λ∗)λ
2
∗,

1
2(6∓

√
6λ∗), 3(1− w)} Saddle or unstable

F ( λ∗√
6
,

√
1− λ2

∗
6 , λ∗)) {λ2

∗ − 3(w + 1), λ
2
∗

2 − 3,−λ3
∗f
′(λ∗)} (3.16)

G (
√

6(w+1)
2λ∗

,

√
6(1−w2)

2λ∗
, λ∗)) {−3λ∗(w + 1)f ′(λ∗),

3
4(w − 1)± 3

√
1−w

4λ∗
A} (3.17)

Point F is stable if

λ2
∗ < 3(w + 1), λ∗f

′(λ∗) > 0, (3.16)

while G is stable if
24(w + 1)2

9(w + 1)− 2
> λ2

∗ > 3(w + 1). (3.17)

3.2.1 Stability of Non-Hyperbolic Points

Note the presence of the non-hyperbolic point B, whose non-vanishing eigenvalues are negative.

To fully understand the stability of this point we must employ a method beyond linear stability

analysis.

We will reproduce some of the results of [73], to provide a concrete example of the application

of centre manifold theory to a real cosmological problem. We begin by making a coordinate
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transformation ȳ = y − 1 such that the system (3.10)-(3.12) becomes

λ′ = −
√

6x(Γ− 1)λ2 = −
√

6xf(λ)λ2, (3.18)

x′ = −3x+

√
6λ

2
(ȳ + 1)2 +

3x

2

(
x2(1− w)− ȳ2(1 + w)− 2ȳ(1 + w)

)
, (3.19)

ȳ′ = −
√

6

2
λx(ȳ − 1) +

3

2

(
x2ȳ(1− w)− 2ȳ(1 + w)− ȳ3 − ȳ2(3 + w) + x2(1− w)

)
. (3.20)

The Jacobian for this system evaluated at point B is

JB =


0 0 0
√

6
2 −3 0

0 0 −3(w + 1)

 . (3.21)

If we then construct a matrix M whose columns are the eigenvectors of JB:

M =


1 0 0
√

6
6 1 0

0 0 1

 , (3.22)

the product matrix MJBM−1 will be diagonal and in the correct form to apply the centre

manifold theorem. If we consider the coordinate transformation
λ̃

x̃

˜̄y

 =M−1


λ

x

ȳ

 , (3.23)

the dynamics restricted to the centre manifold (and evaluated specifically at point B) are given

by

λ̃′ = λ′ = −λ3f(0). (3.24)

This implies that the point is stable if f(0) > 0, which concludes the stability analysis of point

B.

3.2.2 Discussion of Critical Points

Points O, C and D all exist independently of our choice of potential, and represent saddle

points in the phase space that the universe will eventually evolve away from. They essentially

represent the same point, as λa in point C will include arbitrary values of λ. Points A± and

E± represent decelerating solutions that are dominated by the scalar field, but whose stability

implies that they cannot be late-time attractors. Point B is an accelerated solution that mirrors

canonical dark energy with wφ = −1. It is either stable or a saddle point, depending on whether

f(0) > 0. This is significant, as evolution towards this point can be achieved for a wide range
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of potentials. We can also see that without specifying a potential, we have recovered some of

the behaviour required of our model universe; that is, evolution away from the fluid-dominated

point C towards the accelerated point B. Also of significant interest are the points F and G. G is

the so-called scaling solution, where the EoS parameter wφ exactly mimics that of the fluid. The

nucleosynthesis bound, derived in [24] and [57], provides an upper limit on the energy density

of the field at the time of nucleosynthesis: Ωφ < 0.2. This bound is satisfied for a wide range

of potentials and initial conditions in the scaling regime, which is our first indication that the

scalar field model can partially alleviate the fine-tuning issues of canonical ΛCDM.

If we assume that the scaling solution is relevant at the time of nucleosynthesis, we can derive

a constraint on λ∗. Firstly, we write Ωφ in terms of x and y:

Ωφ =
κ2ρφ
3H2

= x2 + y2, (3.25)

which we can evaluate at point G: Ωφ|G= 3(w+1)
λ2
∗

. Then, we assume that radiation is the

dominant fluid at nucleosynthesis, for which w = 1
3 . This yields Ωφ|G= 4

λ2
∗
, and the constraint

on λ∗ is thus λ2
∗ > 20.

The scaling regime of point G, while an important feature of the model, cannot provide

acceleration at late times for physically acceptable values of w. This naturally leads us to ask;

how might the universe transition from the decelerating scaling regime to the current epoch of

acceleration? In [207], such a mechanism of transition is proposed, whereby the field’s value

changes suddenly via spontaneous symmetry breaking and a transition to a de Sitter universe

is achieved. This will be discussed briefly in Section 3.3.

The final critical point is point F , which represents a scalar field-dominated solution similar

to B. Note that the point does not exist for every model, and that it cannot be stable while B
is stable. The universe will be accelerated at F only if λ2

∗ < 2, which is clearly at odds with the

nucleosynthesis constraint. This is the first indication that a quintessence model with a single

scalar field and simple potential may need to be extended, in order to include viable scaling and

accelerated solutions.

3.3 Specifying a Potential

We have already briefly mentioned the specific potentials V ∝ e−ακφ and V ∝ φ−a, both of

which provide interesting dynamical results.

The exponential potential [56] reduces (3.10)-(3.12) to a two-dimensional system; its five

critical points are all copies of the points in Table 3.1, while λ∗ becomes a parameter which

must be provided in the exact form of the potential. Both the scaling and scalar field-dominated

solutions are present in this model, which is partially why the exponential potential is prominent

in the literature.
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The natural extension of the simple exponential potential is a potential such as [22]

V (φ) = M4(eακφ + eβκφ), (3.26)

where M is some mass scale. This form for V (φ), despite being an almost trivial extension

of the exponential potential, remarkably provides the transition from the scaling regime to the

accelerated regime at late times. The details of this result, found in [22], also demonstrate

that this transitionary behaviour is exhibited for a large range of initial conditions, while the

parameters of the theory are quite naturally within observational bounds. We should then ask:

instead of choosing a potential as a starting point, can we ‘reverse engineer’ the model such

that we derive V (φ) by imposing the transitionary behaviour as a requirement?

This question is precisely what motivates the use of the generic approach developed through-

out this chapter, as in Table 3.1 we have found generic critical points that are independent of

the model in question. In [207], this method is used along with a choice of Γ

Γ = 1 +
1

β
+
α

λ
, (3.27)

to provide a concrete mechanism that allows the universe to transition to de Sitter expansion

at late times. This is achieved by considering a region of the phase space known as a basin of

attraction. Each attractor has such a region, and trajectories within the basin will all converge

to the point in question. When point B is stable, and either F or G are also stable, a jump from

one basin of attraction to another can occur when a field is introduced whose value changes

a sufficient amount in a short time. This is achieved via spontaneous symmetry breaking of

the field. This is perhaps a more natural and less contrived transitionary mechanism than the

double exponential potential, as symmetry breaking is of course an important phenomenon in

particle physics.

There are a whole host of other potentials that have been investigated in the literature; we

list some of the more interesting models below:

• V (φ) = V0(cosh(λφ− 1))p [173]. This model features scaling solutions, and can extended

to include a unified description of dark matter and the quintessence field, given by

V (φ, ψ) = Vφ(cosh(λφφ− 1))pφ + Vψ(cosh(λψψ − 1))pψ , (3.28)

where ψ is the field representing dark matter;

• V (φ) = V0e
1/φ [73];

• V (φ) = V0e
−cφ(1 + αφ) [54]. This potential has been used to explore thawing models,

where the quintessence field EoS parameter is “frozen” at wφ = −1 until the field’s energy

density becomes significant. Only after this point does the EoS become dynamical. The

authors of [54] use recent observational data to constrain the thawing model;
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• V (φ) = V0e
αeβκφ [142].

A common feature of almost all the quintessence models we have discussed so far is the

relative ease with which the models agree with observational data. We have seen that the

coincidence problem can readily be solved by the existence of tracking solutions, and that

late-time acceleration is an intrinsic aspect of quintessence. Perhaps most importantly, we

have shown that scalar field models are remarkably easy to study using dynamical systems

techniques. Quintessence models are thus phenomenologically significant, as their predictions

for the dynamics of the universe are relatively easy to extract, and the parameters of the theory

can be easily tested against observational data.

3.4 The Non-Quintessential Scalar Field

In the previous section, our starting point for the scalar field model was the familiar scalar field

action (3.1) where φ is weakly coupled to gravity. Before exploring non-scalar field models of

dark energy, we will first investigate some of the non-quintessential frameworks for describing

dark energy that have been proposed in the literature.

3.4.1 The Tachyon Field

Tachyonic fields appear naturally in string theory, and the cosmological consequences of the

tachyon field have been extensively studied in the literature [28, 91, 148, 178]. The tachyon

has been considered explicitly as the source of early-universe inflation [3, 29, 102, 132]. It

has also been shown that purely tachyonic inflation can be problematic [117] without a hybrid

mechanism, whereby the tachyon only becomes relevant in a later epoch, while the early inflation

is driven by some other field.

We will of course focus on tachyonic models of dark energy and late-time behaviour [21,

185]. A treatment of tachyonic dark energy using dynamical systems techniques has also been

performed in [58], [99] and [124]. Interestingly, the tachyon is coupled to dark matter in [99] and

[124]. We will instead pursue the simple approach of a tachyon coupled minimally to gravity,

and demonstrate some of the basic features of tachyonic dark energy using this simple model.

We begin with the action describing the tachyon, which is given by the usual Einstein-Hilbert

term, the background fluid term, in addition to the Born-Infield action:

S = SEH + SB −
∫
d4xV (φ)

√
−det(gµν + ∂µφ∂νφ). (3.29)

The field equations in an FLRW background are then given by

3H2 = κ2

 V (φ)√
1− φ̇2

+ ρm + ρr

 , (3.30)
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Ḣ = −κ
2

2

 φ̇2V (φ)√
1− φ̇2

+ ρm +
4

3
ρr

 , (3.31)

where we have included both a matter and radiation contribution to the background fluid. The

equation of motion for the tachyon is then

φ̈

1− φ̇2
+ 3Hφ̇+

V,φ
V (φ)

= 0. (3.32)

We introduce the following dimensionless variables

x = φ̇, y =
κ
√
V√

3H
, z =

κ
√
ρr√

3H
, λ = −

V,φ

κV
3
2

, Γ =
V V,φφ
V,2φ

, (3.33)

such that we can recast the field equations as the following dynamical system:

x′ = (x2 − 1)
(

3x−
√

3λy
)
, (3.34)

y′ =
1

2

(
−
√

3λxy2 + 3y

(
y2(x2 − 1)√

1− x2
+ 1 +

z2

3

))
, (3.35)

z′ = −2z +
3

2
z

(
y2(x2 − 1)√

1− x2
+ 1 +

z2

3

)
, (3.36)

λ′ =
√

3λ2xy

(
3

2
− Γ

)
. (3.37)

We see immediately that (3.37) implies that for Γ = 3
2 , λ is a constant. This corresponds to

a potential such that

V (φ) ∝ φ−2. (3.38)

The cases where λ′ 6= 0 are explored in [45] and [58], but we will focus on the simple case,

corresponding to the inverse power-law potential above. The critical points with Γ = 3
2 are

given in Table 3.3, along with the values of wφ and Ωφ given by

wφ = −1 + x2, (3.39)

Ωφ =
y2

√
1− x2

. (3.40)

The points with xc = ±1, despite being singular points of the system (3.34)-(3.37), still act as

effective critical points. Also, the limiting value of Ωφ as x → ±1 must be calculated in order

to fully characterise the singular points; this analysis is performed in [188].

We see that point O is the familiar matter-dominated solution, with the tachyon contribution

to the energy density vanishing, with a constant EoS parameter. The point is a saddle and thus
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Table 3.3: Critical points and stability of the system (3.34)-(3.37) with Γ = 3
2

Label (xc, yc, zc) wφ Ωφ Stability

O (0, 0, 0) −1 0 Saddle

A± (±1, 0, 0) 0 undefined Saddle

B± (±1, 0, 1) 0 undefined Unstable

C (0, 0, 1) −1 0 Saddle

D

(
λ√
3

(√
λ4+36−λ2

6

) 1
2
,
(√

λ4+36−λ2

6

) 1
2
, 0

)
−1 + λ2

3

√
λ4+36−λ2

6 1 Stable

repels trajectories along the y-axis. The points A± are also saddle points, and represent matter-

dominated solutions. Points B± are the unstable radiation-dominated solutions and represent

past attractors. Point C is also radiation dominated but with wφ = −1, and so the tachyon field

mimics a cosmological constant around this point. Finally, point D is the tachyon-dominated

solution that always represents the late-time attractor of the system. Acceleration occurs at

this point if λ2 < 2
√

3.

Figure 3.1: Projection of (3.34)-(3.37) onto the (x, y) plane with λ = 1. The solid black line
represents the Friedmann constraint (3.30) projected onto the (x, y) plane.

The numerical solutions to (3.34)-(3.37) are plotted in Figure 3.1, where we have reduced the

system to three dimensions by taking λ = 1, then projected onto the (x, y) plane. The numerical

analysis reveals much of what we have already seen from the linear stability analysis; evolution

away from radiation-dominated points and towards either the matter-dominated saddle point

or the dark energy point. So, we conclude that there is some sensitivity to initial conditions in

the tachyon model, since a matter-dominated epoch is not guaranteed if the universe begins far

enough away from the y = 0 line.
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3.4.2 k-Essence

The origin of k-essence was a scalar field model of inflation with a non-canonical action, that

allowed for a graceful exit from the inflationary epoch [19]. Naturally, the action of k-inflation

was applied to the epoch of late-time acceleration in [20] and [53], which resolved the fine-tuning

and coincidence problems similarly to quintessence.

The k-essence action is

S = SEH + SB +

∫
d4x
√
−g (p(φ,X)) , (3.41)

where X = −1
2(∇φ)2. This obviously includes quintessence models, but also allows for accel-

erated expansion and scaling solutions even in the absence of a potential term. Thus we will

consider a scalar field action with only kinetic terms, hence the ‘k’ in k-essence. Such actions

are natural in the low-energy effective string action, for which the form of p(φ,X) is

p(φ,X) = K(φ)X + L(φ)X2, (3.42)

where both K(φ) and L(φ) are given in terms of the coupling functions in the string action.

The field equations are

Rµν −
1

2
Rgµν = κ2

(
TBµν +

∂p(φ,X)

∂X
∇µφ∇νφ+ p(φ,X)gµν

)
, (3.43)

from which we can identify p(φ,X) as the pressure of the scalar field [19], while its energy

density is

ρφ = 2X
∂p

∂X
− p(φ,X). (3.44)

Following [53], we redefine the field such that

φnew =

∫ φold

dφ

√
L(φ)

|K(φ)|
, (3.45)

which allows us to write

p(φ,X) = f(φ)(−X +X2), (3.46)

where φ ≡ φnew, X ≡ Xnew = L
KXold and f(φ) ≡ K2(φold)

L(φold) . Using the redefined field, the

equation of state parameter is

wφ =
pφ
ρφ

=
X − 1

3X − 1
, (3.47)

while using the field equations we obtain

ρ̇φ = −
2(1 + wφ)

(1 + wB)(t− t0)
ρφ. (3.48)
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We should then recall that a scaling solution is such that the equation of state parameter of the

field mimics that of the background fluid and remains constant. Under this condition, (3.47)

informs us that X will also be constant, and we can then deduce from (3.48) that

f(φ) ∝ (φ− φ0)−2(1+wφ)/(1+wB) (3.49)

for any scaling solution. Note that the assumption ρB � ρφ makes the conclusion from (3.49)

invalid at late times, when the k-essence field should absolutely be dominating the energy

density. We can also state (3.49) conversely; if f(φ) ∝ φ−α, then

wφ =
(1 + wB)α

2
− 1. (3.50)

To show that the scaling solution is an attractor, we can adopt the dynamical systems

methods used to study the canonical scalar field in largely the same manner. The equation of

motion for the field during the fluid-dominated epoch (ρB � ρφ) is

φ̈(1− 3φ̇2) +
2

t(1 + wB)
(1− φ̇2)φ̇+

f ′

4f
(2− 3φ̇)φ̇2 = 0, (3.51)

where f ′ = ∂f
∂φ . If we make a change of variables [53]

τ ≡ ln t (3.52)

u ≡ φ

φs
, (3.53)

where φs is the scaling solution

φs =

√
2(1− wφ)

1− 3wφ
t ≡ εst, (3.54)

we can transform (3.51) into a system of two first-order equations in τ :

u′ = v (3.55)

(3.56)
v′ = −v +

1

1− ε2s(v + u)2

[
2

1 + wB

(
−(v + u) + ε2s(v + u)3

)
+

α

4u
(v + u)2

(
2− ε2s(v + u)2

)]
.

The fixed points of the above system in the (u, v) phase space are (0, 0), (±1, 0), which we can

use to evaluate the Jacobian to determine each point’s stability. (1, 0) is of course the scaling

solution, and evaluating the Jacobian at (1, 0) indicates that it is always a stable point. The

same is true for the trivial point (0, 0), which corresponds to X = 0.
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Thus, we have seen that a large class of Lagrangians, defined by (3.42) and motivated by

the low-energy effective string action, can provide scaling solutions without needing to provide

a potential. The numerical analysis of [53] also shows that this occurs for a range of initial

conditions, potentially alleviating the coincidence problem. We should note, however, that in

[136] the basis of attraction for the scaling solution is found to be much smaller than that of the

k-essence-dominated solution. This implies that the model in fact has some sensitivity to initial

conditions, at least more so than the quintessence models, and that quintessence is perhaps a

preferable solution to the coincidence problem.

3.5 Coupled Scalar Fields and Scaling Solutions

We have so far considered situations in which the scalar field is minimally coupled to gravity,

but not coupled to the background fluid at all. In fact, there is every reason to believe that the

field couples to matter non-trivially. The strength of this coupling is of course limited, as such

an interaction would have been detected on cosmological scales. There are two possibilities for

avoiding this problem; firstly, it is possible that the field couples to standard matter differently

than to non-standard dark matter [63]. Secondly, the coupling to standard matter could be a

small, residual coupling [16] that remains below the level of detection. The second case is the

one we will focus on.

Why is the coupled field a worthwhile avenue of investigation? Recall that when we discussed

the critical points of Section 3.2, we discovered that the scaling solution (point G in Table 3.1)

cannot provide acceleration for any physically reasonable values of w. However, we will now

see that if a non-trivial coupling is introduced, such a scaling solution can in fact produce

accelerated dynamics. We should also note that in [16], only a quintessential model with a

given potential is investigated; we will instead utilise the general approach of [189], from which

we can derive the necessary conditions for the presence of scaling solutions, while allowing for

non-canonical scalar fields such as k-essence.

To begin, we generalise (3.41) to include a field-matter coupling

S = SEH + SB[φ,Ψi, gµν ] +

∫
d4x
√
−g (p(φ,X)) , (3.57)

where X = −1
2(∇φ)2 as before, and SB is now a functional of both the scalar field and matter

fields Ψi. Variation of the above action with respect to φ yields

φ̈

(
∂p

∂X
+ φ̇2 ∂

2p

∂X2

)
+ 3H

∂p

∂X
φ̇+

∂2p

∂φ∂X
− ∂p

∂φ
= −σ, (3.58)
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where σ = − 1√
g
δSB
δφ , characterising the coupling between the field and the background fluid.

Using (3.44), we can rewrite (3.58) as

dρφ
dη

+ 3(1 + wφ)ρφ = −QρB
dφ

dη
, (3.59)

where Q = σ
ρB

. A similar equation holds for the energy density of the background fluid:

dρB
dη

+ 3(1 + wB)ρB = QρB
dφ

dη
. (3.60)

As in [189], we consider an effective Friedmann equation given by

H2 = β2
nρ

n
T , (3.61)

where ρT is the total energy density of the universe and β and n are constants. Then we recall

that a scaling solution is such that the energy density of the scalar field is proportional to that

of the background fluid, i.e
ρφ
ρB

= const. In terms of the parameter η, this implies

d log ρφ
dη

=
d log ρB
dη

, (3.62)

which we can use along with equations (3.59) and (3.60) to obtain

dφ

dη
=

3Ωφ

Q
(wB − wφ). (3.63)

Using (3.63), we can then express the scaling condition (3.62) as

d log ρφ
dη

=
d log ρB
dη

= −3(1 + we), (3.64)

where we is the effective equation of state parameter, defined by

we = wB + Ωφ(wφ − wB). (3.65)

Using the effective Friedmann equation (3.61) and the definition of X, we can write

2X = H2

(
dφ

dη

)2

∝ H2 ∝ ρnT . (3.66)

Crucially, this implies that the scaling behaviour of ρB and ρφ translates to the same scaling

behaviour for X, up to a factor of n, i.e

d logX

dη
= −3n(1 + we), (3.67)
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and since pφ = wφρφ, we also have d log p
dη = −3(1 + we). Combining these results, we obtain a

key relation that characterizes scaling solutions:

n
∂ log p

∂ logX
−

Ωφ(wB − wφ)

Q(1 + we)

∂ log p

∂φ
= 1, (3.68)

where, as in Section 3.4.2 we have identified the Lagrangian p(φ,X) as the pressure pφ of the

scalar field. If we define a parameter λ such that

λ =
Q(1 + we)

Ωφ(wB − wφ)
, (3.69)

then (3.68) can be used to constrain the form of p(φ,X):

p(φ,X) = X
1
n g(Xenλφ). (3.70)

Also of importance is the deceleration parameter q = − äa
ȧ2 , which in the scaling regime yields

q =
3n

2

(1 + wB)λ

λ+Q
− 1. (3.71)

We see that in a general background, with a general scalar field Lagrangian, there are many

possibilities for scaling solutions that are also accelerated. Contrast this with the models we

have discussed so far, where the EoS parameter for the field is tightly constrained by requiring

acceleration. For example, consider a GR background (n = 1) and a pressureless fluid with

wB = 0. In this case the acceleration condition q < 0 translates into a constraint on the

coupling given by

Q >
λ

2
. (3.72)

The relation (3.70) is the main motivation for closely following [189], as our expression for

p(φ,X) encapsulates both canonical and non-canonical scalar fields, as well as general cosmo-

logical backgrounds beyond General Relativity. It is therefore possible to study generically the

scaling behaviour of quintessence, tachyon, and k-essence dark energy in the context of the La-

grangian (3.70). In [189], the interesting non-GR case corresponding to n 6= 1 is also considered

for canonical and non-canonical fields, which highlights the strength of the generic approach

outlined throughout this section.
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Non-Scalar Fields

We have focused up to this point on the scalar field as a model of dark energy. This is because

models involving the scalar field are relatively easy to construct, while scalars themselves are

quite natural in particle physics and string theory. Further, the observational indication that

dark energy is currently dominating, but that this hasn’t always been the case, is readily achieved

by an array of scalar field models.

Of course, the scalar of Chapter 3 does not necessarily fit neatly into any models of particle

physics that we know of. We should thus have no reservations about exploring non-scalar

models, since they are equally as speculative as the scalar dark energy that is so prevalent in

the literature.

Examples of non-scalars include spinor, vector and tensor fields, along with higher-degree

differential forms such as the three-form. Of course, one (not necessarily strict) requirement of

a non-scalar model is that it has some degree of observational distinction from that of the scalar

field, which makes sense if we are looking to eventually reference the predictions of a model

against data. Where possible, we will thus pay close attention to the predictive features of each

model that make it distinct from the scalar field.

4.1 Vector Cosmology

The vector field has been extensively studied as a potential candidate for inflation [82, 92] and

dark energy [35, 115, 122, 141]. It is worthwhile to examine vector dark energy models using

the same dynamical systems methods we employed for the scalar, and search for features that

distinguish vector dark energy from scalar dark energy.

Two approaches have emerged in the study of vector dark energy. The first [18, 125] aims to

construct an isotropic cosmology using the so-called cosmic triad : a set of three equal length,

mutually orthogonal vectors. Should we wish to consider an FLRW background, the triad is

necessary due to the inherent anisotropies generated by the vector field. The second approach

[122] is to do away with FLRW cosmology, and instead focus on a Bianchi I universe with a

33
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small amount of anisotropy. The second approach is, in fact, in agreement with anomalous

CMB anisotropies [123], and is thus a meaningful area of inquiry.

For simplicity, we consider the triad model [18], for which the action is

SA = −
3∑

a=1

∫
d4x
√
−g
(

1

4
F 2 + V (Aa2)

)
, (4.1)

where Aaµ represents a member of the triad, F aµν = ∂µA
aν − ∂νAaµ, and F 2 = F aµνF aµν .

The field equations derived from the action (4.1) are then

∂µ
(√
−gF aµν

)
= 2
√
−gV,AAaν , (4.2)

and the energy-momentum tensor for the vector is

TAµν =
3∑

a=1

T aµν =
3∑

a=1

(
F aµσF

aσ
ν + 2V,AA

a
µA

a
ν − gµν

(
1

4
F aρσF

aρσ + V (Aa2)

))
, (4.3)

and V,A = dV
dAa2 . As in [125], we choose an ansatz for the spatial components of the triad that

is compatible with the FLRW symmetries:

Aai = δai A(t), (4.4)

and a simple choice of potential

V = V0e
− 3λA2

a2 , (4.5)

where now A2 = A(t)2, and a is the scale factor. Then, we include a phenomenological coupling

of the form Q = 3qρBȦ
a , where q is some positive constant, such that the continuity equations

are 1

ρ̇A + 3H(ρA + pA) = −Q, (4.6)

ρ̇B + 3H(ρB + pB) = Q, (4.7)

and the equation of motion for the field becomes

Ä+HȦ+ 2V,AA = qaρB, (4.8)

1This should remind the reader of the coupling in Section 3.5, which was shown to easily provide a solution
to the coincidence problem.
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where V,A is now defined such that V,A = dV

d
(

3A(t)2

a2

) . Lastly, we derive the Friedmann equations

from the total action S = SEH + SB[A,Ψi, gµν ] + SA, which in an FLRW background yields 2

H2 =
1

3

(
3Ȧ2

2a2
+ 3V + ρB

)
, (4.9)

Ḣ = −1

2

(
2Ȧ2

a2
+

2V,AA
2

a2
+ (1 + wB)ρB

)
. (4.10)

We now define dimensionless variables, as in [125]:

x =
Ȧ√
2Ha

, y =

√
V

H
, z =

A

a
, λ = −V,A

V
, (4.11)

such that that the Friedmann constraint (4.9) can be written as ΩA + ΩB = 1, where ΩA,B =
ρA,B
3H2 . As usual, we then take the derivative of each variable with respect to η = ln a, and the

dynamical system is 3

x′ = −2x+
√

2λy2z − 3q√
2

(1− x2 − y2)− x
(
λy2z2 − 2x2 − 3(1 + wB)

2
(1− x2 − y2)

)
, (4.12)

y′ = −3λyz(
√

2x− z)− y
(
λy2z2 − 2x2 − 3(1 + wB)

2
(1− x2 − y2)

)
, (4.13)

z′ =
√

2x− z. (4.14)

The critical points of the system (4.12)-(4.14) are given in Table 4.1. We also calculate the

EoS paramters wA and we at each point, defined by 4

wA =
pA
ρA

=
x2 − 3y2 − 2λy2z2

3(x2 + y2)
, (4.15)

we =
ptot
ρtot

= wB + x2

(
1

3
− wB

)
− y2

(
1 + wB +

2λz2

3

)
. (4.16)

As usual, we also calculate the Jacobian eigenvalues at each point; these are given in Table 4.2

We see that point A†, corresponding to vector dark energy domination, is accelerated and stable,

and we recover the desired dark energy point. Points B†± are again vector dominated. However,

the universe is decelerating in this case, and the equation of state is equal to that of radiation:

we = 1
3 . Lastly, the saddle point C† is only valid in the case wB 6= 1

3 . For a small enough

value of q, the vector energy density can be sub-dominant, with the background matter fluid

2Here and throughout the rest of this thesis, we set κ2 = 1, which aligns much more closely with the literature.
3Using the variables defined in [125], the correct form for (4.14) is the one we have given here. The corre-

sponding equation given in [125] appears to be incorrect. This only marginally affects the stability analysis.
4It appears that [125] includes a mistake when calculating wA, as the factor of y2 is missing in the term 2λy2z2.

Again this does not drastically affect the conclusions we draw from the stability analysis, though it should still
be noted.
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Table 4.1: Critical points, wA, we, and ΩA for the system (4.12)-(4.14)

Label (xc, yc, zc) wA we ΩA

A† (0, 1, 0) −1 −1 1

B†± (±1, 0,±
√

2) 1
3

1
3 1

C† ( 2
√

3q
3wB−1 , 0,

6q
3wB−1) 1

3 wB − 6q2

3wB−1
18q2

(3wB−1)2

dominating instead. The saddle nature of this point also means that the universe will naturally

evolve from matter to vector domination, as is required at late times, while the absence of a

radiation-dominated point implies that the triad model is really only viable for modelling the

late-time, asymptotic behaviour.

Table 4.2: Jacobian eigenvalues and stability for the system (4.12)-(4.14)

Label Jacobian eigenvalues Stability

A†
{
−3(wB + 1),±

√
8λ+1
2 − 3

2

}
Stable if −1

8 < λ < 1, stable spiral for λ < −1
8

B†± {−1, 2,±3
√

2q − 3wB + 1} Saddle

C†
{
−1,−3(6q2−3w2

B−2wB+1)

2(3wB−1) ,−18q2−9w2
B+6wB−1

2(3wB−1)

}
Saddle

4.1.1 Massive Vectors

Another model for vector-like dark energy involves coupling the vector(s) non-minimally to the

gravitational terms in the action, for which the action reads

S =

∫
d4x
√
−g
(
R

2

(
1− ωA2

)
− 1

4
FµνF

µν − 1

2
m2A2 − ηAµAνRµν

)
+ SB, (4.17)

where the parameters ω and η define the coupling strength between the field and the Ricci scalar

and Ricci tensor respecively, and m defines the mass of the vector. In [35], the authors derive

the late-time behaviour of the scale factor and find that it corresponds to de Sitter expansion

with a cosmological constant generated by the mass of the vector field. The authors also find

that the mass of the vector is given by

m ≈ 1.67×
√

6(4ω + η)× 10−63 g, (4.18)

with constraints on the coupling parameters derived from solar system observations.

4.2 Two-Forms

Models of inflation, driven by a two-form non-minimally coupled to the gravitational terms in

the action, have been studied in [89], [112], [121] and [149]. More recently, the authors of [25]
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have considered a dark energy scenario whereby a two-form is coupled to a canonical scalar field,

and given a full dynamical systems analysis of the model. The origin of the scalar field coupling

lies in the inflationary scenario studied in [149], where the scalar plays the role of the inflaton,

and anisotropic inflation arises due to the presence of the two-form. It is therefore worthwhile

to investigate the late-time behaviour of the model, and search for similar anisotropies in the

dark energy epoch.

To begin, we note that the field strength tensor for a two form Cµν is given by Hµνσ =

3∂[µCνσ], where square brackets indicate antisymmetrisation on the indices. The action is then

given by

S = SEH −
∫
d4x

(
1

2
∂µφ∂

µφ+ V (φ) +
1

12
f(φ)HαβγH

αβγ − PB(Z)

)
, (4.19)

where φ is the familiar canonical scalar field, V (φ) is its potential, and Z = −1
2∂µχ∂

µχ. Note,

χ is the field describing the background fluid of the model, e.g. dark matter [90]; it serves the

same purpose as the LB term that we are familiar with. PB(Z) is therefore a purely k-essence

Lagrangian. As in the Bianchi I case, we will consider an anisotropic metric given by

ds2 = −N(t)2dt2 + a(t)2
(
e−4σ(t)dx2 + e2σ(t)(dy2 + dz2)

)
, (4.20)

where N(t) is the ADM lapse function [95], a(t) is the average scale factor, and σ(t) is the shear.

Note that the (y, z) rotational symmetry originates from the assumption that

Cµνdx
µ ∧ dxν = 2v(t)dy ∧ dz, (4.21)

where v(t) is some function of the cosmic time t.

Rather than varying the action (4.19) with respect to each field and finding the field equations,

we can use the metric (4.20) to rewrite the action as

S =

∫
d4x

(
3e3α

N
(σ̇2 − α̇2) + e3α

(
φ̇2

2N
−NV (φ)

)
+
f(φ)

2N
e−α−4σv̇2 +Ne3αPB(Z)

)
, (4.22)

from which we can derive the following field equations (with N = 1)

3H2(1− Σ2) =

(
1

2
φ̇2 + V (φ) + ρC + ρB

)
, (4.23)

Ḣ + 3H2Σ2 = −
(

1

2
φ̇2 +

1

3
ρC +

1

2
(ρB + PB)

)
, (4.24)

HΣ̇ + (Ḣ + 3H2)Σ =
2ρC

3
, (4.25)

φ̈+ 3Hφ̇+ V,φ−
f,φ
f
ρC = 0, (4.26)
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ρ̇B + 3H(ρB + PB) = 0, (4.27)

where H = ȧ
a as usual, Σ = σ̇

H , and f,φ = df
dφ . The energy densities ρC and ρB are, as usual,

defined by identifying terms in the Lagrangian with components of the energy-momentum tensor

for both fields respecively, which yields

ρC =
f(φ)

2
e−4α−4σv̇2, ρB = χ̇2PB,Z −PB. (4.28)

Note that ρB includes a contribution from both matter and radiation, i.e. we can simply write

ρB = ρm + ρr, as is familiar.

The dimensionless parameters we will use to construct the dynamical system are

x1 =
φ̇√
6H

, x2 =

√
V√

3H
, ΩC =

ρC
3H2

, Ωr,m =
ρr,m
3H2

, (4.29)

which allows us to write the Friedmann constraint (4.23) as

Ωm + Ωr = 1− x2
1 − x2

2 − Σ2 − ΩC . (4.30)

We will choose the form of both V (φ) and f(φ) to be exponential, i.e.

V (φ) ∝ e−λφ, f(φ) ∝ e−µφ, (4.31)

and we can recast (4.23)-(4.27) as the following dynamical system

x′1 =

√
6

2
(λx2

2 − µΩC) +
3

2
x1(x2

1 − x2
2 − 1 + Σ2 − 1

3
ΩC +

1

3
Ωr), (4.32)

x′2 =
3

2
x2(x2

1 − x2
2 + Σ2 + 1−

√
6

3
λx1 −

1

3
ΩC +

1

3
Ωr), (4.33)

Σ′ =
3

2
Σ(x2

1 − x2
2 + Σ2 − 1− 1

3
ΩC +

1

3
Ωr)− 2ΩC , (4.34)

Ω′C = 3ΩC(x2
1 − x2

2 + Σ2 +
4

3
Σ +

1

3
+

√
6µx1

3
− 1

3
ΩC +

1

3
Ωr), (4.35)

Ω′r = 3Ωr(x
2
1 − x2

2 + Σ2 − 1

3
− 1

3
ΩC +

1

3
Ωr), (4.36)

where a prime denotes the derivative with respect to η = ln a. Note that we have eliminated

Ωm from the system by using the Friedmann constraint (4.30). We search for the critical points

of the system above by obtaining simultaneous solutions to x′1 = x′2 = Σ′ = Ω′C = Ω′r = 0.

The relevant points are given in Table 4.3, along with the EoS parameters wDE and we, and

the matter energy density at each point. We should note that in this model, the dark sector

consists of both the quintessence-like scalar field φ and the two-form Cµν , so we define a total
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dark sector energy density and pressure, denoted ρDE and pDE respectively:

ρDE =
1

2
φ̇2 + V (φ) + ρC + 3H2Σ2, (4.37)

pDE =
1

2
φ̇2 − V (φ)− ρC

3
+ 3H2Σ2. (4.38)

The dark sector equation of state is then given by

wDE =
pDE
ρDE

=
3(x2

1 − x2
2 + Σ2)− ΩC

3(x2
1 + x2

2 + Σ2 + ΩC)
, (4.39)

and its energy density parameter is

ΩDE = x2
1 + x2

2 + Σ2 + ΩC . (4.40)

The effective EoS parameter is given by

we = x2
1 − x2

2 + Σ2 − 1

3
ΩC +

1

3
Ωr. (4.41)

Table 4.3: Critical points, wDE , we, and Ωm for the system (4.32)-(4.36)

Label (x1,c, x2,c,Σc,ΩC,c,Ωr,c) wDE we Ωm

A∗ (0, 0, 0, 0, 0) undefined 0 1

B∗ (0, 0, 0, 0, 1) undefined 1
3 0

C∗ (2
√

6
3λ ,

2
√

3
3λ , 0, 0, 1−

4
λ2 ) 1

3
1
3 0

D∗ (
√

6
2λ ,

√
6

2λ , 0, 0, 0) 0 0 1− 3
λ2

E∗ ( λ√
6
,
√

1− λ2

6 , 0, 0, 0) −1 + λ2

3 −1 + λ2

3 0

F∗ (−
√

6µ
3µ2+8

, 0,− 4
3µ2+8

, 2
3µ2+8

, 3µ2+4
3µ2+8

) 1
3

1
3 0

G∗ (−
√

6µ
2(3µ2+8)

, 0,− 2
3µ2+8

, 3
2(3µ2+8)

, 0) 0 0 3µ2+6
3µ2+8

H∗ ((4.42), (4.42), (4.42), (4.42), 0) (4.42) (4.42) 0
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The equations defining the point H∗ are as follows:

x1,c =
(2λ+ µ)

√
6

λ2 + 5λµ+ 3µ2 + 8
,

x2,c =

√
3(λµ+ µ2 + 4)(3µ2 + 4λµ+ 8)

2λ2 + 5λµ+ 3µ2 + 8
,

Σc = − 2(λ2 + λµ− 2)

2λ2 + 5λµ+ 3µ2 + 8
,

ΩC,c =
3(3µ2 + λµ+ 8)(λ2 + λµ− 2)

(2λ2 + 5λµ+ 3µ2 + 8)2
,

wDE = we = −1 +
2λ(λ+ µ)

2λ2 + 5λµ+ 3µ2 + 8
.

(4.42)

4.2.1 Stability of Critical Points

As with the pure quintessence model of Chapter 3, we can calculate the Jacobian matrix and

evaluate its eigenvalues at each critical point to determine the point’s stability. The results of

this are given in Table 4.4

Table 4.4: Jacobian eigenvalues and stability for the system (4.32)-(4.36)

Label Jacobian eigenvalues Stability

A∗ {−3
2 ,−

3
2 ,−1, 1, 3

2} Saddle

B∗ {−1,−1, 1, 2, 2} Saddle

C∗ {−1,− 1
2λ(λ+

√
64− 15λ2),− 1

2λ(λ−
√

64− 15λ2), 2(λ+2µ)
λ , 1} Saddle

D∗ {−3
2 ,−1, λ+3µ

λ ,− 3
4λ(λ−

√
−7λ2 + 24),− 3

4λ(λ+
√
−7λ2 + 24)} Saddle for BBN constraint

E∗ {λ2

2 − 3, λ
2

2 − 3, λ2 + λµ− 2, λ2 − 4, λ2 − 3} Stable if λ2 < 2 and λ2 + λµ− 2 < 0

F∗ {−1
2 ±

√
−3(7µ2+8)

3µ2+8
,−1, 6µ2+3λµ+16

3µ2+8
, 1} Saddle

G∗ {−3
4 ±

√
−(5µ2+8)

3µ2+8
,−3

2 ,−1, 3(3µ2+λµ+8)
2(3µ2+8)

} Saddle

H∗ (4.43)
Stable if λ2 + λµ− 2 < 0 and

4λ2 − 3µ2 − 2λµ− 8 < 0

The Jacobian eigenvalues for point H∗ are

{
− 3(3µ2 + 4λµ+ 8)

2λ2 + 5λµ+ 3µ2 + 8
,

3(2λ2 − 3µ2 − 3λµ− 8)

2λ2 + 3µ2 + 5λµ+ 8
,

2(2λ2 − 6µ2 − 7λµ− 16)

2λ2 + 3µ2 + 5λµ+ 8
, − 3(3µ2 ±A+ 8)

2(2λ2 + 3µ2 + 5λµ+ 8)

}
,

(4.43)

where

A =
√
−44λ3µ3 − 12λµ5 − (40λ2 − 33)µ4 − 16µ2(λ4 + 8λ2 − 13)− 128λ2 − 32µ(3λ3 − 4λ) + 320.

(4.44)
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We can divide all of the critical points into two categories: anisotropic and isotropic. The

isotropic points are those for which the shear term Σ vanishes; these are the points A∗ through

E∗, while F∗ through H∗ are the anisotropic points.

The point A∗ is a matter-dominated saddle point. B∗ is the corresponding radiation dom-

inated saddle point and likely to only be relevant in the early stages of the universe. Point

C∗ is a familiar scaling solution; in this case the dark sector equation of state mimics that of

radiation. Note that ΩDE in the radiation scaling regime is constrained, as in the case of the

standard quintessence model, by the nucleosynthesis constraint [24, 57]. The authors of [24] give

the tighter constraint of ΩDE < 0.045, from which we can derive a lower limit on λ: λ > 9.4.

This signifies a rather steep potential for the field, and is an issue which plagues almost all

quintessential models with an exponential potential, as we saw in Chapter 3. Crucially, the

two-form dynamical system allows for a separate radiation scaling solution with a less strict

lower bound on the coupling parameter µ, as we shall see. The matter scaling solution, point

D∗, is also a saddle point if we assume the BBN constraint λ > 9.4. The dark energy-dominated

point E∗ is accelerated if λ2 < 2, in which case the point is stable if λ2 + λµ− 2 < 0. The two

anisotropic points F∗ and G∗, corresponding to radiation and matter eras respectively, are also

saddle points. If we apply the BBN constraint to point F∗, we obtain µ > 5.2, independently

of the value of λ; a weaker constraint than that imposed on λ. Lastly, we have the condition

ΩC > 0, which for point H∗ implies that λ2 +λµ− 2 > 0. This directly contradicts the stability

condition of the other dark energy solution, point E∗, and implies that if the anisotropic dark

energy point H∗ exists, E∗ is a saddle rather than stable.

The natural question to then ask is: what is the likely evolutionary track of the universe

given the phase space structure outlined above? This question is analysed in detail in [25], and

it is worth outlining the key evolutionary features obtained from the numerical calculations. It

is shown that the likely evolution of the coupled two-form model is (B∗ → F∗ → G∗ → H∗), with

some dependence on initial conditions. Importantly, it is also demonstrated that wDE oscillates

around the value −1 before settling; this is a key feature that distinguishes the two-form model

from both ΛCDM and quintessence. Further, the shear term σ is shown to have interesting

effects on the CMB quadrupole, well within the current CMB observational bounds.

Thus, the two-form model of dark energy can readily produce the desired evolutionary epochs

of the universe. The intrinsic anisotropy of two-form cosmology can also be used to distinguish

the model from others using observational data.

4.3 Three-Forms

We conclude our discussion on n-forms by considering the highest degree form that can still

be dynamical in (1 + 3) dimensions; the three-form. Interestingly, three-form cosmology can

easily be applied in a standard FLRW background, since the components of the form, which
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we will denote Aαβγ , can be chosen to respect the spatial symmetry of the FLRW metric. As

with the lower-degree forms we have discussed, the minimally coupled three-form can be used

as a model of both inflation and dark energy, as shown by the authors of [118], [119], and [121].

More recently, a coupling term between the three-form and dark matter has been considered in

[120], [143], and [201]. We will perform a dynamical systems analysis of the simplest three-form

model, where the form is minimally coupled, before briefly investigating the cosmology of the

coupled three-form model.

As usual, we consider a universe comprised of some combination of matter and radiation

perfect fluids, as well as the three-form field. The action is then

S = SEH + SB −
∫
d4x

(
1

48
F 2 + V (A2)

)
, (4.45)

where the components of the field strength are given by Fαβµν = 4∂[αAβµν]. The field equations

are then given by

Rµν −
1

2
gµνR = TAµν + TBµν , (4.46)

where TBµν is the usual energy-momentum tensor for the background fluid, and

TAµν =
1

6
FµαβσF

αβσ
ν + 6V,AAµαβA

αβ
ν − gµν

(
1

48
F 2 + V (A2)

)
, (4.47)

where V,A = dV
d(A2)

. The three-form can be chosen such that A0µν = 0, with isotropic spatial

components which allow the spatial symmetry of the FLRW metric to be respected. This

corresponds to choosing A = a(t)3X(t)dx ∧ dy ∧ dz, where X(t) is a comoving field such that

A2 = 6X2. Thus, the Friedmann equations are

H2 =
1

3

(
1

2
(Ẋ + 3HX)2 + V (X) + ρm + ρr

)
, (4.48)

Ḣ = −1

2

(
dV

dX
X + ρm +

4

3
ρr

)
, (4.49)

where ρr and ρm correspond to the energy densities of radiation and baryonic matter respec-

tively.

We can also derive the equation of motion for the form:

∇µFµναβ − 12V,AA
ναβ = 0, (4.50)

which we can rewrite in terms of the comoving field X:

Ẍ + 3(HẊ + ḢX) +
dV

dX
= 0. (4.51)
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The energy density and pressure of the field are given by

ρX =
1

2

(
Ẋ + 3HX

)2
+ V (X), (4.52)

pX = −1

2

(
Ẋ + 3HX

)2
− V (X) +

dV

dX
X, (4.53)

such that the equation of state parameter is

wX =
pX
ρX

=
dV

dX

X

ρX
− 1. (4.54)

We now define our dimensionless variables as in [120] and [143]:

x = X, y =
1√
6

(X ′ + 3X), z =

√
V√

3H
, Ωr,m =

ρr,m
3H2

, λ = −V,X
V

, (4.55)

where a prime denotes the derivative with respect to η = ln a and V,X = dV
dX . Using these

variables, the Friedmann constraint (4.48) becomes

1 = y2 + z2 + Ωr + Ωm. (4.56)

We can then write the dynamical system as

x′ =
√

6y − 3x, (4.57)

y′ =
3

2

(
λz2

(√
2

3
− xy

)
+ y

(
1− y2 − z2 +

1

3
Ωr

))
(4.58)

z′ = −1

2
z

(
λ(
√

6y − 3x) + 3(λz2x+ y2 + z2 − 1− 1

3
Ωr)

)
, (4.59)

Ω′r = 3Ωr(
1

3
Ωr − λz2x− y2 − z2 − 1

3
), (4.60)

λ′ = (3x−
√

6y)λ2(Γ− 1), (4.61)

where we have eliminated Ωm using (4.56), and defined the familiar Γ such that

Γ =
V V,XX
V,2X

. (4.62)

We then apply the standard procedure for finding the critical points of the system; these

points are given in Table 4.5, along with the corresponding value of Ωm, and the effective EoS

parameter defined by

we =
1

3
Ωr − y2 − z2 − λz2x. (4.63)
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Table 4.5: Critical points, we, and existence of critical points for the system (4.57)-(4.61)

Label (xc, yc, zc,Ωr,c, λc) we Ωm

A (0, 0, 0, 0, λ∗) 0 1

B (0, 0, 0, 1, λ∗)
1
3 0

C (0, 0, 1, 0, 0) −2
3 0

D± (±
√

2
3 ,±1, 0, 0, λ∗) −1 0

E± (x∗,
√

6x∗
2 ,±

√
1− 3x2

∗
2 , 0, 0) −1 0

Note that x∗ and λ∗ denote arbitrary values of x and λ. Interestingly, three of the fixed

points, C and E±, do not exist in the case where λ 6= 0. The familiar exponential potential,

V (X) = V0e
−αX , is one such case.

The points corresponding to accelerated expansion are C, D±, and E±, while A and B

are the matter and radiation-dominated points respectively. However, the absence of scaling

solutions is worrying; the simple three-form model has no mechanism by which the field can

track the EoS of the background fluid, and the coincidence problem is not alleviated.

4.3.1 Stability of Critical Points

The eigenvalues of the stability matrix for the system (4.57)-(4.61) are given in Table 4.6

Table 4.6: Jacobian eigenvalues and stability properties for the system (4.57)-(4.61)

Label Jacobian eigenvalues Stability

A {−3,−1, 0, 3
2 ,

3
2} Saddle

B {−3, 0, 1, 2, 2} Saddle

C {−4,−3,−3, 0, 0} Non-hyperbolic

D± {−4,−3,−3, 0, 0} Non-hyperbolic

E± {−4,−3,−3, 0, 0} Non-hyperbolic

We see that many of the fixed points for the three-form system are non-hyperbolic, with

their non-zero eigenvalues being negative. The use of centre manifold techniques to analyse the

stability of these points does not seem to have been performed in the literature; this should be

performed in future work so that the stability of the three-form system can be fully characterised.

If we assume that the three-form dominated points D± are stable, we recover the correct de

Sitter expansion at late times, following the early-time matter and radiation-dominated epochs.

The simple three-form model is therefore a partially viable model of dark energy. However, it

does not solve the coincidence problem, and must be ruled out in favour of the more attractive

coupled model which we will briefly consider in Section 4.3.3.
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4.3.2 The Little Sibling Big Rip

It is well known that phantom dark energy can lead to the so-called Big Rip scenario [46], in

which the phantom energy density becomes infinite in a finite time, and all structure in the

Universe is catastrophically torn apart. The Little Sibling Big Rip (LSBR) [38] is a slightly less

severe scenario; at an infinite time in the future, the Hubble rate approaches infinity while its

derivative does not. In fact, while the singularity occurs in the infinite future, bound structures

will still be torn apart at some finite time, hence its designation as the little sibling of the Big

Rip.

The LSBR is relevant to our discussion on three-forms, since the authors of [139] have shown

that an LSBR scenario is a likely feature of the minimally coupled three-form model. We

reproduce some of the results of [139] and briefly discuss their implications.

Consider a late-time epoch in which the energy densities of radiation and matter are negli-

gible. We can use the second Friedmann equation (4.49) to rewrite the equation of motion for

X (4.51) as

Ẍ + 3HẊ +

(
1− 3x2

2

)
V,X = 0. (4.64)

Importantly, one static solution of this equation is given by X∗ =
√

2
3 . This allows us to rewrite

the first Friedmann equation (4.48) as

H =
1

3

1

X2
∗ −X2

(
XẊ ± |XẊ|

√
1 + (X2

∗ −X2)
Ẋ2 + 2V

(XẊ)2

)
, (4.65)

where we recall that ρm = ρr = 0. In the limit X → X∗, (4.65) yeilds

H
(X→X∗)

=
1

6

Ẋ2 + 2V

|X∗Ẋ|
. (4.66)

If V is positive, we see that the Hubble parameter diverges as X → X∗. This is our first

indication of an LSBR scenario, and the only constraint we have imposed so far is that V > 0.

The second Friedmann equation (4.49) yields

Ḣ
(X→X∗)

= ∓1

2
X∗V,X |±X∗= −

2

3
X∗V,XX |±X∗ . (4.67)

If we assume that the Hubble parameter diverges at X∗, its derivative must therefore be positive

at that point. Using the above version of the second Friedmann equation, this implies that an

LSBR scenario is possible if X∗V,XX |±X∗< 0.

The authors of [139] show that the LSBR event occurs at an infinite cosmic time for any

potentials satisfying X∗V,XX |±X∗< 0, and that an attractive way of avoiding the LSBR is to

introduce a dark sector coupling. We will consider such a coupling in the next section.
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4.3.3 Coupling to Dark Matter

To conclude the discussion on n-forms, we will consider a basic model whereby the three-form

is coupled to dark matter, as in [143]. We have already seen some coupled models, such as the

quintessence-matter coupling of Section 3.5. We saw that coupled quintessence models could

readily alleviate the coincidence problem, since they provide scaling solutions for a wide class

of Lagrangians. Naturally, we should look to couple the three-form in a similar manner to dark

matter. The coupling essentially allows for a decay from dark energy into dark matter and

vice-versa, so we can quite intuitively understand how the relative energy densities could be

similar in the present epoch.

The coupling can be implemented as a term in the action, as we have already seen, or we

can simply modify the continuity equation (2.13) for both the comoving field X and the dark

matter fluid such that

ρ̇d = −3Hρd −Q, ρ̇X = −3HρX(1 + wX) +Q, (4.68)

where ρd is the energy density of dark matter, and Q denotes the flow of energy between the

two dark sector components. For simplicity, we consider dark matter to be the only background

contribution to the total energy denisty, neglecting both baryonic matter and radiation. The

system (4.57)-(4.61) then reduces to

x′ =
√

6y − 3x, (4.69)

y′ = q +
3

2

(
λz2

(√
2

3
− xy

)
+ y

(
1− y2 − z2

))
, (4.70)

z′ = −1

2
z
(
λ(
√

6y − 3x) + 3(λz2x+ y2 + z2 − 1)
)
, (4.71)

λ′ = (3x−
√

6)λ2(Γ− 1), (4.72)

where Ωd = ρd
3H2 , and

q =
Q√

6(Ẋ + 3HX)H2
. (4.73)

Where we have eliminated the equation for Ωd using the Friedmann constraint

1 = y2 + z2 + Ωd. (4.74)

The task of choosing a form for the coupling Q is complicated. We can begin by noting

that in the context of quintessence, the most commonly studied form for Q is Q ∝ ρφ̇, with ρ

sometimes being replaced by the Hubble rate H. This coupling model is conformally equivalent

to a class of Brans-Dicke Lagrangians [16] and thus quite well motivated, so it is worth exploring

whether a similar coupling can be useful for the three-form.
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For the three-form, we consider a covariant coupling of the form [143]

Qµ =

√
2

3

βTd
24a3

(ε ◦ F )uµ, (4.75)

where the circle ◦ denotes contracting over all four indices in order, Td is the trace of the dark

matter energy-momentum tensor, β is a constant, and uµ is the four-velocity of the dark matter

fluid. Note that the zero component of the coupling four-vector is precisely the scalar coupling:

Q = Q0. This yields

Q =

√
2

3
βρd(Ẋ + 3HX), (4.76)

which implies that

q = βΩd. (4.77)

If we consider an exponential potential such that V (X) = V0e
−αX and λ = α, 5 with the

coupling q = βΩd the system (4.69)-(4.72) becomes

x′ =
√

6y − 3x, (4.78)

y′ = β(1− y2 − z2) +
3

2

(
λz2

(√
2

3
− xy

)
+ y

(
1− y2 − z2

))
, (4.79)

z′ = −1

2
z
(
λ(
√

6y − 3x) + 3(λz2x+ y2 + z2 − 1)
)
. (4.80)

The critical points of the above system are listed in Table 4.7, along with the EoS parameter

we and the stability properties of each point.

Table 4.7: Critical points, we, and stability for the coupled three-form system

Label (xc, yc, zc) we Ωd Stability

A∗± (±
√

2
3 ,±1, 0) −1 0 Non-hyperbolic if |β|> 3

2

B∗ (−2β
3

√
2
3 ,−

2β
3 , 0) −4β2

9 1− 4β2

9 Stable if |β|> 3
2

C∗

(
− 1
β

√
3
2 ,−

3
2β ,

√
9
2
−2β2

√
6λβ−2β2

)
−1 −

√
3
2

λ(4β2−9)

2β2(2β−
√

6λ)
Figure 4.1

We see that points A∗± correspond to dark energy domination. In the case where |β|> 3
2 , the

stability of these points cannot be determined by linear stability analysis, and centre manifold

theory must be employed. Such an investigation is carried out in [34], although with different

variables defining the phase space. Point B∗ is potentially a scaling solution, since the dark

energy and dark matter energy densities are of the same order. However, if we impose Ωd < 1,

we obtain the constraint |β|< 3
2 , which directly contradicts the stability condition. So, if |β|< 3

2

5Gaussian and power-law potentials are discussed in [143].
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and point B∗ becomes a saddle, we have a partial solution to the coincidence problem, since

the saddle will still attract trajectories along a single axis of the phase space. Lastly, C∗ also

represents an accelerated scaling solution. The Jacobian eigenvalues are highly complicated, and

a numerical approach is likely to be more fruitful in finding the stability of C∗. In Figure 4.1,

we see the strong spiral stability of point C∗ when β = −1.95. The more detailed analysis of

[143] reveals that C∗ is a scaling solution only for |β|>
√

45
15 , which represents a rather strong

coupling in the dark sector. The numerical analysis reveals that under this condition, there is

no matter-dominated epoch, which is a troubling conclusion that rules out our simple model.

Figure 4.1: Phase space of the coupled three-form system (4.78)-(4.80), where we have pro-
jected onto the (y, z) plane and set β = −1.95, λ = 1.

Thus, we see that with the coupling (4.75), the three-form has some attractive features

such as an accelerated scaling regime. However, the numerical computations of [143] highlight

irreconcilable problems that should motivate us to extend the model by, for example, considering

different forms of coupling.

4.3.4 Other Coupling Models

We have seen that the coupling (4.75) can yield critical points corresponding to late-time ac-

celeration, but that the scaling critical points are unstable. Our first step in finding a scaling

solution could be to try a different potential, as we did for quintessence, or to try different

forms for the covariant coupling. The latter option is explored in [143], and the coupling

Qµ = −
√

6γ 1
24a3 (ε ◦ F )uµ introduces stable solutions where wX = wd.

Also of note is the recent work of [201], in which the authors consider a generalised La-

grangian, allowing for both a non-canonical three-form and a general coupling function. The

action reads

S = SEH +

∫
d4x

(
− 1

48
F 2N(A2)− I(A2)ρd + α1(gµνu

µuν + 1) + α2∇µ(ρdu
µ)

)
, (4.81)
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where N(A2) is the function that allows for a non-canonical three-form, I(A2) is the coupling

function, and α1,2 are constant parameters. The model allows for separate scaling and acceler-

ated solutions, and the authors successfully constrain the model parameters using recent CMB

and supernova data. Significantly, using the constrained parameters to calculate the equation

of state parameter for X, wX , results in wX crossing the phantom boundary at a redshift of

z ≈ 0.2.

The authors of [34] introduce new parameters that compactify the phase space (4.69)-(4.72),

and use centre manifold techniques to find the stability of the non-hyperbolic critical points. A

simple coupling Q = αρdH is employed.

Lastly, recall that we briefly discussed the LSBR scenario in the previous section, and noted

that in [139], such a catastrophe can be avoided by introducing a dark sector coupling. The

authors perform a thorough dynamical systems analysis of the coupled model, using a Gaussian

potential and including different coupling forms defined by

Q = 3H(ρd + ρX)
∑
i,j=0

λij

(
ρd

ρd + ρX

)i( ρX
ρd + ρX

)j
, (4.82)

where λij are the coupling parameters. It is shown that if the coupling has no dependence on

the dark matter energy density, ρd, the LSBR event can be avoided. When the critical points

corresponding to the LSBR are removed, the remaining late-time attractors are the de Sitter

attractors that we are familiar with. Further, it is shown that two interesting coupling models,

Q ∝ ρX and Q ∝ ρ2
X , can produce very distinct observational signatures. The statefinder

diagnostic [8, 172] is used to concisely parametrise the disparities between the two models, with

the models becoming increasingly divergent at low redshifts.

4.4 Other Non-Scalar Models

4.4.1 Spinor Dark Energy

We have considered in some detail the natural extension to scalar dark energy; n-form cosmolo-

gies with n > 1. Another equally natural model is that of a spinor field driving the expansion of

the Universe. It is likely that spinor dark energy has received far less attention than quintessence

or vector models due to the relative difficulty of dealing with spinors in the context of cosmology.

This difficulty is partially alleviated by utilising the dynamical systems methods we are now

familiar with, and the usual process of stability analysis can, in theory, determine the viability

of spinor dark energy models.

A basic spinor cosmology has been investigated in [165]; the authors show that a spinor

source is able to drive both the inflationary and dark energy epochs. Spinorial dark matter is

considered in [97] and [98], and it is shown that such a matter source can exhibit an equation

of state with w ≈ −1, providing a natural description of cosmic acceleration.
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The spinors considered in [97], [98] and [165] are the familiar Dirac spinors. Another class of

fermionic field with applications to cosmology is the so-called ELKO spinor. First formulated in

[4] and expanded upon in [5], [6], [7], and [62] the ELKO (Eigenspinoren des Ladungskonjuga-

tionsoperators) spinor is an eigenspinor of the charge conjugation operator, and can be written

as

λ =

(
±σ2φ

∗
L

φ∗L

)
, (4.83)

where φL is the left-handed part of a Dirac spinor in the Weyl representation, σ2 is the second

Pauli matrix, and φ∗L is the complex conjugate of φL. ELKO spinors also satisfy (CPT )2 = −I.
6

ELKO fields have been studied as dark matter candidates [1, 4], as models of inflation [31,

36, 157], and as a dark energy field [32, 37]. There is also an abundance of dynamical systems

literature concerned with ELKO cosmology, the earliest example of which appears to be [192].

The author of [192] places emphasis on the existence of scaling solutions, and finds that simple

ELKO models with a coupling between the spinor and background matter do not present a

solution to the coincidence problem. A similar conclusion is reached by the author of [171] by

considering a general self-interaction potential for the ELKO field. In [23], the authors redefine

the variables used to describe the ELKO dynamical system, and viable late-time accelerated

solutions are found. An inconsistency in [23], regarding a missing factor of 2 in the dynamical

system equations, is highlighted by the authors of [158]. They also introduce a promising method

of parameterising the potential, finding both scaling solutions and a late-time accelerated phase

when the ELKO field is coupled to the background. This analysis is significantly extended in

[175]; the authors consider various coupling forms and find that the coincidence problem can

indeed be solved within the ELKO framework.

4.4.2 Yang-Mills and Higgs Fields

The final model we will consider is Yang-Mills (YM) dark energy. Of all the possible forms of

dark energy we have considered, the YM field is the most closely related to the Standard Model,

and thus perhaps the most well-motivated from a particle physics perspective. YM cosmology

consists of a YM field, the gauge field of some non-Abelian gauge group, coupled minimally to

gravity and in some cases coupled to the background matter.

The coupled model is considered in [202]. The authors show that an SU(2) YM condensate,

described by a one-loop effective action, can drive the late-time acceleration of the universe.

The coupling also naturally solves the coincidence problem for a wide range of initial conditions,

although some fine-tuning is required regarding the energy scale in the effective action. This

analysis is extended in [205] and [206], with particular focus on the existence of scaling solutions

and the crossing of the phantom barrier w = −1. The full dynamical systems treatment of the

6Compare this with the usual relation for Dirac spinors: (CPT )2 = I.
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coupled YM model is given in [204], where it is also shown that the scaling attractor corresponds

to an effective EoS parameter of we = −1.

Somewhat related to the pure YM dark energy of [202] is the so-called Einstein Yang-Mills

Higgs (EYMH) model of [168]. The Higgs field, an SU(2) doublet, along with the correpsonding

SU(2) YM field, is considered as a unified model of inflation and dark energy. The acceleration

originates from the SU(2) symmetry of the Higgs, which carries an associated charge, which in

turn appears in the Friedmann equations to yield acceleration. The stability of the critical points

is analysed numerically, with the accelerated critical point being a stable late-time attractor.

A very similar analysis is carried out in [167] for the gauge group SO(3), with the numerical

solutions again confirming the existence of a late-time accelerated phase, following periods of

radiation and matter domination. More recently, the authors of [14] have taken issue with the

conclusions of [168]. The complication lies in the interaction term between the Higgs and the

gauge field, namely the following section of the EYMH action:

SEYMH ⊂ −
∫
d4x
√
−g(DµΦ)†(DµΦ), (4.84)

where Dµ is the gauge covariant derivative and Φ is the Higgs doublet. Such an interaction

leads to off-diagonal stress terms in the energy-momentum tensor, and, should we wish to im-

pose isotropy, greatly restricts the form of the Higgs doublet. Despite this, the authors use

dynamical systems methods and numerical computations to show that the model is cosmo-

logically viable. Once the Higgs field is gauge fixed, it is shown that radiation, matter, and

dark energy-dominated epochs exist, along with an early-time epoch dominated by the Higgs

kinetic energy. 7 The authors of [14] then considered the SO(3) gauge group in an anisotropic

Bianchi I background in [15]. The critical point corresponding to dark energy is shown to be

isotropic, although an observably small amount of shear, well within observational bounds, is

still possible.

7This should remind the reader of the well-studied purely Higgs inflationary scenarios [170].



Chapter 5

Modified Gravity

We have, up to this point, considered Einstein’s General Relativity as the correct theory of

gravity on cosmological scales. In Einstein gravity, we have almost exclusively explained the

acceleration of the Universe by introducing some content, such as the scalar field, into the Ein-

stein field equations (2.2). GR is, of course, well tested at Solar System scales [147, 163], but at

cosmological scales a natural question arises: is the presence of dark energy a symptom of the

breakdown of GR? This certainly seems plausible; Newtonian gravity was ousted as the pre-

vailing theory once observation proved GR to be correct, and the same fate could conceivably

await GR. Further, we could interpret the numerous pitfalls of the ΛCDM-GR cosmological

model, such as the flatness problem, coincidence and fine-tuning problems, and the unexplained

dark sector, as an indication that a more capable theory is needed. GR is also famously non-

renormalisable. It is therefore insufficient as a quantum theory of gravity, and, much like the

cosmological arguments above, signifies the breakdown of GR at both very large and very small

scales.

Modified theories of gravity have existed for almost as long as GR itself. Kaluza [113] and

Klein [116] developed a five-dimensional theory that unified electromagnetism with the familiar

four-dimensional GR. Brans and Dicke [41] developed a theory of gravity in four dimensions

whereby the gravitational constant G is replaced by a dynamical scalar field. A whole host

of other theories have since been developed, most commonly utilising higher dimensions, extra

field content in the gravitational action, non-locality, or terms involving higher-order powers of

geometric quantities such as R. We give a (non-comprehensive) list of modifications to GR in

Table 5.1.

We will investigate a small number of modified gravity (MG) theories using the dynamical

systems toolbox, and demonstrate some of the features that distinguish them from the case of

standard GR. In all cases, the simplest formulation of each model is considered for the sake

of brevity; this will allow us to cover multiple MG models in sufficient depth. For a detailed

consideration of the numerous MG theories in the literature, see [43, 55, 144].

52
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Table 5.1: Theories of modified gravity

Theory References Type

Scalar-tensor and Brans-Dicke [40, 85]

Added field content

TeVeS [181]

Massive Gravity [164]

Chern-Simons [12]

Fab Four [59]

f(R) [66, 184]

Higher-orderHořava-Lifschitz [153, 183]

Gauss-Bonnet [145, 146]

Kaluza-Klein [151]
Higher-dimensional

Randall-Sundrum [152, 160, 161]

5.1 Brans-Dicke Theory

Brans-Dicke (BD) gravity [41] was originally formulated as a gravitational theory more closely

in line with Mach’s Principle than GR. Mach’s Principle, roughly speaking, postulates that the

metric tensor is fully determined by the matter distribution of the Universe. To this end, the

Brans-Dicke action includes a scalar field φ that replaces the gravitational constant:

SBD =

∫
d4x
√
−g
(
φR

2
− ω

2φ
∂µφ∂µφ+ LB

)
, (5.1)

where ω is the Brans-Dicke parameter. Note that we can view the Brans-Dicke action as a

generalisation of GR, and that the gravitational sector is now described by a combination of

geometry (R) and a scalar interaction.

We can also include a self-interaction potential for the scalar such that

SBD =

∫
d4x
√
−g
(
φR

2
− ω

2φ
∂µφ∂µφ− V (φ) + Lm

)
. (5.2)

Importantly, we have stated the action of BD gravity in the so-called Jordan frame, in which

the resulting field equations cannot be written in the same form as (2.2). Correspondingly, we

could state the BD action in the Einstein frame, which is related to the Jordan frame via a

conformal transformation: [77]

gµν → ḡµν = φgµν , (5.3)

and a redefinition of the field:

φ→ φ̄ =

∫
(2ω + 3)

1
2

φ
dφ. (5.4)

We are technically free to choose the frame in which we formulate the theory [81], but it should

be noted that the physical equivalence of the two frames is contested [27, 77]. It is worthwhile
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to continue in the Jordan frame, since it is possible that the phase space of the Einstein frame

dynamical system constitutes only a subspace of that of the Jordan frame [13].

The field equations derived from the action (5.2) are

Rµν −
1

2
gµνR =

Tµν
φ

+
ω

φ2

(
∂µφ∂νφ−

1

2
gµν(∂φ)2

)
+

1

φ
(∇µ∇νφ− gµνV (φ)− gµν�φ) , (5.5)

and

�φ =
1

3 + 2ω
(2φV,φ 2T ), (5.6)

where (∂φ)2 = ∂µφ∂µφ, �φ = ∇σ∇σφ, and T = Tµµ . Note that (5.6) is derived by taking the

trace of (5.5) to obtain the following expression for R:

R = − 1

φ

(
T − ω

φ
(∂φ)2 − 4V (φ)− 3�φ

)
, (5.7)

and thus eliminating R from the equation of motion for the field.

Using the FLRW metric (2.4), the field equations become

3H2φ+ 3Hφ̇ = ρ+
ω

2

φ̇2

φ
+ V, (5.8)

2Ḣφ−Hφ̇+ φ̈+ ω
φ̇2

φ
= −(1 + w)ρ, (5.9)

φ̈+ 3Hφ̇ =
1

3 + 2ω
(4V − 2φV,φ +ρ(1− 3w)), (5.10)

where w is the usual EoS parameter for the background fluid. The continuity equation (2.13) is

unchanged in BD gravity, since it is derived from imposing covariant conservation of the fluid

energy-momentum tensor.

The dimensionless variables used to construct the BD dynamical system are [107]

x =
φ̇

Hφ
, y =

1

H

√
V

3φ
, λ = −φ

V,φ
V
, Γ =

V V,φφ
V,2φ

, (5.11)

such that the Friedmann constraint (5.8) becomes

Ω = 1 + x− ω

6
x2 − y2, (5.12)

and the second Friedmann equation is

Ḣ

H2
= −3y2(2 + λ)

3 + 2ω
+ 2x− ωx2

2
− 3(1 + x− ωx2

6
− y2)

(
2 + ω(1 + w)

3 + 2ω

)
, (5.13)

where Ω = ρ
3H2φ

. Significantly, the constraint (5.12) implies that the positivity of the BD

parameter ω fully determines whether the phase space is compact. For ω < 0, the phase space
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is unbounded and an asymptotic analysis of the system is required [107]. We will consider only

the case ω > 0 for the sake of simplicity.

The BD system is given by

x′ = −3x+
6y2(2 + λ)

3 + 2ω
− x2 + 3(1 + x− ωx2

6
− y2)

(
1− 3w

3 + 2ω

)
− x

(
−3y2(2 + λ)

3 + 2ω
+ 2x− ωx2

2
− 3(1 + x− ωx2

6
− y2)

(
2 + ω(1 + w)

3 + 2ω

))
,

(5.14)

y′ = −y
(x

2
(1 + λ)

)
− y

(
−3y2(2 + λ)

3 + 2ω
+ 2x− ωx2

2
− 3(1 + x− ωx2

6
− y2)

(
2 + ω(1 + w)

3 + 2ω

)) (5.15)

λ′ = xλ (1− λ(Γ− 1)) . (5.16)

Since we are interested in a simple formulation of BD gravity, we will consider the case where

w = 0 and λ = −2, such that V (φ) = V0φ
2 [107]. For a full consideration of the BD system

with different scalar field potentials, the reader is referred to [106], as well as [169] for a similar

discussion in the context of generalised BD gravity.

With V (φ) = V0φ
2, the system (5.14)-(5.16) reduces to

x′ = −3x

(
1 + x− ωx2

6
−
(

1 + x− ωx2

6
− y2

)
2 + ω

3 + 2ω

)
+ 3(1 + x− ωx2

6
− y2)

1

3 + 2ω
,

(5.17)

y′ = 3y

(
−x

2
+
ωx2

6
+

(
1 + x− ωx2

6
− y2

)
2 + ω

3 + 2ω

)
. (5.18)

The critical points of the simple λ = −2 BD system are given in Table 5.2, along with the

effective EoS parameter we, defined by

we = −1− 2

3

Ḣ

H2
. (5.19)

Table 5.2: Critical points and Jacobian eigenvalues of the system (5.17)-(5.18)

Label (xc, yc) we Ω Jacobian Eigenvalues

H (0, 1) −1 0 {−3,−3}

I
(
−3

2 ,
√

3ω+5
8

)
−1

2 −3
4(ω + 3

2) {−3
8

(
1±
√

24ω + 41
)
}

J
(

1
ω+1 , 0

)
1

3(1+ω)
(2ω+3)(3ω+4)

6(ω+1)2 {− 3ω+4
2(ω+1) ,

3ω+5
2(ω+1)}

K±
(
±
√

6ω+9+3
ω , 0

)
1 + 2

3ω (±
√

6ω + 9 + 3) 0 { 1
ω (3ω + 3 +

√
6ω + 9), 3 + 1

2ω (3 +
√

6ω + 9)}
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As we may have expected, the value and stability of the critical points are heavily dependent

on the BD parameter ω. A detailed analysis of the phase space and critical points can be found

in [107], we will instead briefly summarize the properties of each point.

Firstly, we should note that points K+ and J are unable to provide accelerated expansion in

the case ω > 0. In principle, all the other points can represent accelerated expansion, with H
being a good candidate for the late-time accelerated attractor due to its stability. Also of note is

the saddle behaviour of the point J for ω > 0. Since J represents a point with a non-vanishing

matter energy density, any trajectory near this point can be used to model a transition between

matter domination and a period of late-time acceleration.

Thus, our formulation of BD gravity with a simple power-law potential can be a viable model

of cosmic acceleration. Of course, the investigation into more general potentials is worthwhile

[106], as is the possibility of ω < 0, which generates a non-compact phase space and requires a

more comprehensive analysis.

5.1.1 Scalar-Tensor Theories

Brans-Dicke gravity is in fact a subclass of a wider range of MG theories known as scalar-tensor

theories. The scalar-tensor action is a straightforward generalisation of the BD action, given by

SST =

∫
d4x
√
−g
(
F (φ)R

2
− ω(φ)

2
∂µφ∂µφ− V (φ) + LB

)
, (5.20)

where F and ω are arbitrary functions of φ.

We will not perform a detailed dynamical analysis of scalar-tensor gravity, but instead list

some of the scalar-tensor models that have been studied using dynamical systems techniques.

In [50], the authors consider F (φ) ∝ φ2, V (φ) ∝ φn, and show that certain forms for V (φ) allow

for late-time solutions that are equivalent to GR. In [69], the entire cosmic history is considered

in the context of scalar-tensor gravity; close attention is paid to the canonical evolutionary track

of the universe (inflation → radiation → matter → dark energy), in order to derive conditions

on the scalar potential and coupling function F (φ). In [75], it is shown that the dynamics of

scalar-tensor cosmology are non-chaotic in both the Einstein and Jordan frame. Lastly, in [52],

the scalar is coupled to dark matter and the parameters of the theory are constrained using

observational data. For a more general review on the intricacies of scalar-tensor gravity, the

reader is referred to [85].

5.2 f(R) Theory

f(R) gravity is another modification of GR that allows for higher-order terms in the Ricci scalar

R. Such theories have been extensively studied in the literature, partly due to their simplicity.

The introduction of higher-order curvature terms is also well motivated by the low energy string



57

action, as well as the discovery [190] that higher-order terms permit a renormalisable theory of

gravity. For a comprehensive review on the subject of f(R) gravity, the reader is referred to

[66] and [184].

As usual, we define the theory via the action:

S =

∫
d4x
√
−g (f(R) + LB) . (5.21)

There is one subtle difference between the f(R) action and the Einstein-Hilbert action. When

deriving the field equations from SEH , there is a freedom to choose between the first order

formalism and second order formalism. The latter is the familiar method, where the metric

is treated as the important dynamical field while the connection is completely determined by

the metric. The first order formalism treats the two as independent variables, and the field

equations are derived by varying the action with respect to both. In the case of GR, the two

methods are equivalent since there is only a linear term in R; this is clearly not the case for

f(R).

Due to the inequivalence of the two approaches in f(R) gravity, it is worth carefully deriving

the field equations in both cases. We will hereafter refer to the first order formalism as the

metric approach, and the second order formalism as the Palatini approach.

5.2.1 Metric Approach

In order to take the variation of (5.21) with respect to the metric, we should first bring to

light a subtle point that has implicitly been ignored until now. Consider the term
√
−gR =

√
−ggµνRµν . When varying this with respect to gµν , we obtain three individual terms such that

δ(
√
−gR) = δ(

√
−g)R+

√
−gδgµνRµν +

√
−ggµνδRµν . (5.22)

The first two terms yield the familiar Einstein tensor in the equation of motion, Gµν = Rµν −
1
2gµνR, while the third term may be unfamiliar. We have implicitly ignored the third term in

the case of GR, since it can be rewritten as a total derivative in the action and will therefore

vanish.

In BD gravity, we cannot ignore the δRµν term due to the presence of the scalar field; this

explains the relative complexity of (5.5) compared to (2.2). The same applies to f(R) gravity

due to the non-linearity of terms involving R.

With this in mind, we can vary (5.21) with respect to gµν , which yields

f,RRµν −
1

2
fgµν − (∇µ∇ν − gµν�)f = Tµν , (5.23)
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where f,R = df
dR . This can be rewritten as

Gµν =
1

f,R

(
Tµν +

1

2
gµν (f −Rf,R ) + (∇µ∇ν − gµν�)f

)
, (5.24)

which is reminiscent of the GR field equations (2.2). In an FLRW background (2.4), the field

equations are then [184]

H2 =
1

f,R

(
ρ+

Rf,R−f
2

− 3HṘf,RR

)
, (5.25)

2Ḣ + 3H2 = − 1

f,R

(
p+ Ṙ2f,RRR +2HṘf,RR +R̈f,RR +

1

2
(f −Rf,R )

)
, (5.26)

while the continuity equation (2.13) of the fluid energy density is the same as for GR.

5.2.2 Palatini Approach

The connection is now treated independently from the metric; as such, we should vary (5.21)

with respect to both the connection and the metric. To distinguish this case from the metric

approach, we denote Rµν as the Ricci tensor constructed using the independent connection, and

R as the corresponding Ricci scalar.

We have the identity [184]

δRµν = ∇̄σδΓσµν − ∇̄νδΓσµσ, (5.27)

where ∇̄σ denotes the covariant derivative with respect to the independent connection. We can

use this when varying (5.21) to obtain

f ′(R)R(µν) −
1

2
f(R)gµν = Tµν , (5.28)

− ∇̄σ
(√
−gf ′(R)gµν

)
+ ∇̄ρ

(√
−gf ′(R)gρ(µ

)
δν)
σ . (5.29)

Taking the trace of (5.29) yields

∇̄ρ
(√
−gf ′(R)gρµ

)
= 0, (5.30)

which is the second field equation in the Palatini approach, and in the case of f(R) = R reduces

to the definition of the usual Levi-Civita connection.

5.2.3 Dynamical Analysis

Most work on f(R) gravity in the context of dynamical systems utilises the metric approach,

but we should note that the Palatini approach can be equally as insightful when studying the
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dynamical evolution of the universe, such as in [78] and [150].

An important choice to make in f(R) gravity is of course the form of f(R) itself. A detailed

dynamical analysis has been performed for both f(R) = Rn [49] and f(R) = R+ αR2 [137]. If

instead the form of f(R) is assumed to be more general, as in [17], [128], [177], and [180], it is

possible to derive conditions on f(R) that permit a viable cosmological model. For example, a

matter-dominated epoch is only present in f(R) theories if the condition

Rf,RR
f,R

≈ 0 at
Rf,R

f
≈ 1, (5.31)

is satisfied [17]. There are also observational constraints on the form of f(R), largely obtained

from local gravity tests [76, 108, 186].

Equally important is the choice of dynamical system variables. It is shown in [47] that using

the variables introduced in [17] for f(R) = RpeqR yields problematic singularities in the flow of

the phase space. Thus, it is worthwhile to investigate whether it is possible to choose variables

that allow a generic treatment of f(R) theories, regardless of the exact form of f(R). To this

end, the variables used in [47] are 1

R =
R

6H2
, Ω =

ρ

3H2f,R
, J =

j

3
, Q =

3

2
q, A = R0H

2, (5.32)

where

j =
H ′′

H
, q =

H ′

H
, (5.33)

and R0 is a dimensionful parameter such that RR0 is dimensionless.

The dynamical system is then

R′ = 2R(2− R)− 4

Y
(X − R− Ω + 1), (5.34)

Ω′ = Ω(2− 3w +X − 3R− Ω), (5.35)

A′ = −2A(2− R), (5.36)

where

X =
f

6H2f,R
, Y =

24H2f,RR
f,R

, (5.37)

and w is the usual EoS parameter for the background fluid.

Without specifying the function f(R), there is some insight to be gained from the quite

general system (5.34)-(5.36). Firstly, note that it possesses the invariant submanifolds Ω = 0

and A = 0, signifying that vacuum states will remain vacuum states, and that any point in the

phase space for which R0 = 0 will remain that way. R0 = 0 implies that the gravitational part

of the action vanishes. There is also the possibility that Y (A,R) ∝ Ry(A,R), for some function

1We also use the naming conventions of [47] for the variables.
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y(A,R). In this case, R = 0 is also an invariant submanifold that is potentially singular, and so

flows in the phase space with R = 0 will stay on the R = 0 plane.

It is now worth considering a concrete form for f(R); this will elucidate some of the ad-

vantages of choosing the variables in (5.32). The simple toy model defined by f(R) = aRn is

a good candidate, as it contains some of the familiar cosmological epochs as solutions. With

f(R) = aRn, the quantities X and Y are

Y =
R
n
, Y =

4(n− 1)

R
, (5.38)

and the system (5.34)-(5.36) is

R′ = R
(

2(2− R)− 1

n− 1

(
R
(

1

n
− 1

)
− Ω + 1

))
, (5.39)

Ω′ = Ω

(
2− 3w − Ω + R

(
1

n
− 3

))
. (5.40)

Note that (5.36) is decoupled in this case, and can therefore be ignored. The critical points of

the system are given in Table 5.3, and the stability analysis is performed for w = 0 for simplicity.

Table 5.3: Critical points and stability of the system (5.39)-(5.40)

Label (Rc,Ωc) Jacobian Eigenvalues Stability

O (0, 0) {4n−5
n−1 ,+2} Saddle for 1 < n < 5

4 , unstable otherwise

A (0, 2− 3w) {4n−3
n−1 ,−2} Stable for 3

4 < n < 1

B
(

n(5−4n)
2n2−3n+1

, 0
)

{−8n2−13n+3
2n2−3n+1

,−4n−5
n−1 } (5.41)

C
(
−4n+3w+3

2n , 8n2+3w(2n2−3n+1)−13n+3
2n2

)
{ 9

2n ,
12n2−17n+3

n2−n } (5.42)

Point B is stable for

n >
5

4
, 8n2 − 13n+ 3 > 0 or n <

1

2
, 8n2 − 13n+ 3 > 0

or n >
1

2
, −8n2 + 13n− 3 > 0,

(5.41)

while C is stable for

n < 0, −12n2 + 17n− 3 > 0. (5.42)

The question of whether each critical point corresponds to an accelerated solution is explored

in [47]. The numerical solutions for the scale factor are calculated for each point, and it is found

that both B and C are possible accelerated attractors.

We thus see that the dynamics of Rn gravity are highly sensitive to the exact value of n,

as one would expect. There are stable critical points which can be relevant for the late-time

behaviour of the universe, as well as curvature-dominated solutions with a strong dependence

on n. We have considered a simple f(R) model to illustrate the use of variables (5.32). In fact,
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this choice of variables is preferable over those in [49], since the analysis of more complex forms

of f(R) is relatively simple using (5.32).

5.3 Braneworld Cosmology

We have already mentioned some cosmological models with foundations in string theory, such

as the tachyonic dark energy of Section 3.4.1. Braneworld cosmology is a class of MG theories

that confines the particles of the Standard Model to a (3+1) dimensional brane embedded in

a higher-dimensional bulk with compactified dimensions. Significantly, gravity is not confined

to the brane and can propagate through the extra dimensions. The breadth of research into

braneworld cosmology is such we can only cover a small subsection of it in detail, thus the

reader is referred to [42], [133], and [152] for a more comprehensive account of the many facets

of braneworld theories.

The DGP(Dvali-Gabadadze-Porrati) braneworld model [67, 70] considers a bulk consisting

of infinite and flat extra dimensions, and recovers Newtonian gravity at short distances. The

model is such that at cosmological scales, the modification to gravity negates the need for

a cosmological constant, and is thus an attractive and well-studied MG theory. The model

has been challenged by CMB and supernovae data [74], but is still a worthwhile avenue of

investigation from a theoretical standpoint.

Another important class of braneworld cosmologies are the Randall-Sundrum (RS) type I and

II models. The RS type I model (RS1) is largely an attempt to solve the Hierarchy Problem

[161]. This is achieved via the embedding of two 3-branes in a five-dimensional bulk, with one

of the branes containing the Standard Model particles. The RS2 model [160] removes one of the

3-branes, and recovers Newtonian gravity as well as GR as limiting behaviour of the universe.

Since the DGP model can produce effects on the late-time evolution of the universe, it is worth

investigating whether RS2 models can similarly provide an alternative to dark energy. We will

use dynamical systems techniques to study the entire history of the universe with RS2 gravity.

In [94] and [131] such an analysis is performed with the inclusion of a scalar field confined to

the brane. It is shown that the canonical scalar only affects the early-time behaviour of the

universe, and that inflationary critical points exist for a constant scalar potential. In [72], centre

manifold theory is used with a wide variety of potentials to study the asymptotic behaviour of

RS2 models. We will introduce a scalar described by a general action, as in [68] and [162]; this

will allows us to describe phantom and quintessence fields in a unified manner.

The total action of the RS2 model (including a background fluid term and the scalar) is

S = SRS + Sφ + SB

=

∫
d5x

√
−g(5)

(
2R(5) + Λ(5)

)
+

∫
d4x
√
−g
(
λ− 1

2
µ(φ)(∇φ)2 − V (φ) + LB

)
,

(5.43)
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where R(5), g
(5)
µν and Λ(5) are the bulk Ricci scalar, metric, and cosmological constant respec-

tively. λ is the tension on the 3-brane, gµν is the 3-brane metric, and µ(φ) is the scalar coupling

function. Note also the absence of the κ term, this is because the bulk gravitational constant

has been chosen such that (κ(5))2 = 1. We assume that the brane metric is the usual FLRW

metric (2.4), which yields the Friedmann equation [133]:

3H2 = ρT

(
1 +

ρT
2λ

)
, (5.44)

where ρT = ρφ + ρB, and the bulk cosmological constant has been set to zero for simplicity.

The second Friedmann equation is

2Ḣ = −
(

1 +
ρT
λ

)
(µ(φ)φ̇2 + ρB), (5.45)

and the equation of motion for the scalar is

µ(φ)φ̈+
1

2
µ,φ φ̇

2 + 3Hµ(φ)φ̇+ V,φ = 0. (5.46)

We utilise the following variables, introduced in [94]:

x =
φ̇√
6H

, y =

√
V√

3H
, z =

ρT
3H2

, (5.47)

which yields
ρT
λ

=
2(1− z)

z
, (5.48)

and thus the following constraint on z: 0 ≤ z ≤ 1. Note that the low-energy limit, where

λ → ∞, corresponds to z = 1. Brane effects are important in the inverse limit, λ → 0, where

z → 0.

The Friedmann constraint, written using the variables (5.47), yields

ΩB = z − x2 − y2. (5.49)

If we choose the background fluid to be dark matter, such that wB = 0, the dynamical system

is

x′ = −
√

3

2µ
(lnV ),φ y

2 − 3x+
3

2
x
(
z + x2 − y2

)(2− z
z

)
, (5.50)

y′ =

√
3

2µ
(lnV ),φ xy +

3

2
y
(
z + x2 − y2

)(2− z
z

)
, (5.51)

z′ = 3(1− z)(z + x2 − y2). (5.52)

Since we are looking for a simple dark energy model in RS2 gravity, we can choose a potential

and coupling function such that
√

3
2µ(lnV ),φ = β, where β is a constant. The critical points
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of the system (5.50)-(5.52) with
√

3
2µ(lnV ),φ = β are given in Table 5.4. We also calculate the

scalar field EoS parameter at each point, given by

ωφ =
x2 − y2

x2 + y2
, (5.53)

and the scalar field energy density parameter, Ωφ = x2 + y2. The deceleration parameter is

given by

q = −1− Ḣ

H2
= −1 +

3

2

(
2− z
z

)
(z + x2 − y2). (5.54)

Table 5.4: Critical points, ωφ, Ωφ, q, and stability of the system (5.50)-(5.52)

Label (xc, yc, zc) ωφ Ωφ Stability q

Ō (0, 0, 0) undefined 0 Unstable 2

Ā± (±1, 0, 1) 1 1 Saddle 2

B̄ (0, 0, 1) undefined 0 Saddle 1
2

C̄ (−β
3 ,
√

1− β2

9 , 1) 2β2

9 − 1 1 Stable for β2 < 9
2

β2

3 − 1

D̄ (− 3
2β ,

3
2β , 1) 0 9

2β2 Stable for

√
36−7β2

β < 1 1
2

The results of the critical point analysis are significant. We see that point Ō, the only point for

which the brane is important, is decelerated and unstable. The saddle points Ā± are dominated

by the scalar field, and again correspond to decelerated expansion. Point B̄ corresponds to

dark matter domination, and is also decelerated. Point D̄ is the matter scaling solution, since

the field’s EoS parameter mimics that of the background dust (ωφ = 0). Since it is stable,

we have an elegant solution to the coincidence problem, as the universe will naturally evolve

towards a state where the dark energy density is comparable to that of dark matter. The only

relevant point for the late-time accelerated phase is therefore point C̄. Since zc|C̄= 1, the brane

effects are lost and we recover four-dimensional dark energy. Thus, our simple RS2 model, while

theoretically interesting, does not appear to present any distinguishing late-time characteristics

over the GR-scalar model. The existence of stable scaling and accelerated solutions is, however,

an attractive feature that should be investigated further.

The above is a demonstration of the power of dynamical systems techniques; we have seen,

with some simple calculations, that the RS2-scalar model cannot be distinguished from GR at

late times. Of course, we have considered only a simple formulation of RS2 gravity, and it is

possible that some other combination of scalar potentials could yield dynamics that are depen-

dent on the brane. Such an analysis, with exponential and power-law forms of the potential,

is performed in [68]. It should also be noted that RS2 can be a viable model for the early

inflationary era [162], with the brane having a significant effect at early times.
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5.4 Other MG Models

We now briefly discuss a small number of MG theories with applications to dark energy, and

give a summary of the dynamical systems literature that exists for each theory.

5.4.1 Massive Gravity

Perhaps less exotic than braneworld cosmology, Massive Gravity (MaG) is a theory of gravity

whereby the graviton gains a non-zero mass. The intuitive leap towards MaG thus seems

almost trivial; there are massive force carriers in the Standard Model, why should gravity be

any different? Of course, the process of giving mass to the graviton is rather more involved, and

has been investigated in great detail since Fierz and Pauli derived a theory of massive spin-2

particles in 1939 [80]. The massive graviton is an attractive prospect in cosmological contexts,

since the decaying strength of gravity at large distances may negate the need for dark energy.

A major difficulty encountered with MaG is the presence of the Boulware–Deser ghost [39],

which until recently was thought to be present in any theory of massive gravity. An explicitly

ghost-free MaG theory, the dRGT model, was formulated in [164], and has lead to an increased

interest in massive gravity in recent years. The cosmological repercussions of massive gravity

have been investigated in [60], [61], [65], [93], [100], and [126]. A dynamical systems analysis of

a variety of MaG theories has been performed in [86], [101], [129], [155], [174], and [197].

A significant result, derived in [65], is that isotropic and homogeneous solutions in the dRGT

model exhibit instabilities. There are two solutions to this difficulty that have been considered in

the literature. The first is to study inhomogeneous and/or anisotropic cosmologies that can be

closed, open, or flat [96, 101, 100]. This is not necessarily at odds with observation: in the limit

of the graviton mass going to zero, it is possible to find solutions corresponding to an FLRW

universe, as well as solutions that become increasingly homogeneous and isotropic. The second

method of avoiding the FLRW instabilities is to consider the extended dRGT model, outlined

in [109], where the graviton mass is determined by a dynamical scalar field. The dynamical

analysis [129, 198] reveals a rich phenomenology and a potentially valuable area of investigation.

In [129], it is shown that mass-varying MaG exhibits the desired accelerated late-time behaviour,

and that the effective dark energy EoS parameter can be either quintessence or phantom-like.

The authors also demonstrate that the graviton mass approaches zero asymptotically in the

extended dRGT model, and that the model possesses critical points that can be used to solve

the coincidence problem.

5.4.2 Teleparallel Gravity

Einstein himself formulated teleparallel gravity as a means of unifying gravity and electromag-

netism [71], while modern teleparallelism is considered solely as a theory of gravity. More

specifically, gravitation is treated as a gauge theory of the translation group [10, 64].
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The crucial difference between GR and teleparallelism is the introduction of torsion via the

tetrad field eaµ, where

gµν = ηabe
a
µe
b
ν . (5.55)

Here the latin indices a, b... relate to the Minkowski tangent space at each point in spacetime,

and ηab is the associated Minkowski metric. We then define the Weitzenböck connection [64]

Γσµν = eσa∂νe
a
µ, (5.56)

as well as the torsion by

T σµν = eσa
(
∂µe

a
ν − ∂νeaµ

)
, (5.57)

and the contorsion by

Kµν
σ = −1

2
(Tµνσ − T νµσ − Tσµν) . (5.58)

The torsion scalar T is then defined by

T = Sσ
µνT σµν

=
1

2
(Kµν

σ + δµσT
ρν
ρ − δνσT ρµρ)T σµν .

(5.59)

The scalar T is the important object when constructing teleparallel theories; we can use T

itself, functions of T , or couple T to a scalar field as in Section 5.1 in order to write down a

teleparallel action. It should be noted that simply replacing the Ricci scalar in the Einstein-

Hilbert action with T produces no discernable difference between GR and teleparallelism. Thus,

models with f(T ) = T are entirely equivalent to GR. Furthermore, it can be shown that

adding the quintessence field to an action involving T yields a dark energy model equivalent

to the GR quintessence model. We should therefore be cautious in searching for teleparallel

models, since there is a possibility of reproducing the well-known results of GR without any

new phenomenology.

With this in mind, the worthwhile action to investigate is that of teleparallel dark energy

[88], given by

STDE =

∫
d4x|e|

(
−1

2
F (φ)T − 1

2
∂µφ∂µφ− V (φ) + LB

)
, (5.60)

where |e|= det(eaµ) =
√
−g. The dynamical systems analysis for the above action, with F (φ) =

1 + ξφ2, has been performed in [193] and [200]. In [193], it is shown that there are no scaling

solutions for this choice of F (φ). In [200], it is shown that teleparallel dark energy exhibits

an extra late-time attractor over the standard GR quintessence. This attractor corresponds to

behaviour similar to the cosmological constant and is independent of the model parameters.

Further, the authors find that the EoS parameter for dark energy can dynamically cross the

phantom barrier before settling at a constant value of −1. Lastly, the authors of [182] present
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a framework for studying more general forms of F (φ), and consider in detail the important

differences between the late-time behaviour of GR quintessence and teleparallel dark energy.

As in Section 5.2, where we considered higher order terms of the curvature in the action, we

can consider teleparallel actions of the form [26, 79]

S =

∫
d4x|e|(f(T ) + LB) , (5.61)

Such an action has been shown to be useful in describing both the inflationary and dark energy

scenarios, and has received much attention in the context of dynamical systems analysis. In

[199], the authors find the critical points for the general f(T ) model, as well as the power law

form f(T ) ∝ (−T )n. A late-time period of acceleration is found in both cases. In [203], the

model f(T ) ∝ T ln
(
T
T0

)
is considered, and it is shown that the fluid-dominated critical points

do not exist. The authors of [30] consider a coupling within the dark sector. The stability

analysis reveals relevant dynamics for both early and late times, and includes the familiar epoch

of dark energy domination. In [138] and [179], the form of f(T ) is constrained using dynamical

systems methods, and a number of conditions on f(T ) are derived. These conditions are then

compared with specific forms of f(T ). For a more general treatment of f(T ) theory and its

application to cosmology, the reader is referred to [11] and [44].

5.4.3 Hořava-Lifschitz Gravity

The nonrenormalisability of GR is perhaps the most significant pitfall that burdens Einstein’s

theory. It signifies that GR breaks down at some scale, and thus that GR is an effective theory

with only the lowest order terms in the curvature scalar. An attempt at renormalisation can then

be made by introducing higher order curvature terms, and in [187] it is shown that introducing

terms quadratic in the curvature results in a renormalisable theory. This comes at the cost

of introducing ghosts and thus violating unitarity, as higher-order curvature terms necessarily

introduce higher-order time derivatives.

Hořava’s proposition [105] was to introduce an anisotropic scaling between space and time at

high energies, and thus treat space and time on unequal footing. The theory (hereafter referred

to as HL gravity) is power-counting renormalisable, unitary, and most importantly in violation

of Lorentz invariance, although this characteristic Lorentz violation may only be relevant at

high energies and thus below the current level of detection.

The dynamical variables of HL gravity are the ADM lapse and shift functions [95], labelled

N and Ni respectively. The metric is then written using these fields:

ds2 = −N2dt2 + gij
(
dxi +N idt

) (
dxj +N jdt

)
, (5.62)
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where gij is the spatial metric defined on the leaves of the foliation. The HL action is written

as

SHL =

∫
dtd3xN

√
g (Lk − Lp + LB) , (5.63)

where LB is the familiar background fluid Lagrangian. Lk is the kinetic Lagrangian, given by

Lk = α
(
KijK

ij − λK2
)
, (5.64)

where α and λ are coupling constants, and Kij is the extrinsic curvature: 2

Kij =
1

2N
(−ġij +∇iNj +∇jNi) . (5.65)

There is some subtlety in dealing with the potential Lagrangian Lp, as noted by Hořava [105].

The detailed balance condition restricts the form of the potential, and greatly reduces the number

of independent coupling constants of the theory. Under the detailed balance condition, the

potential Lagrangian can be written as

Lp = βCijCij + γεijkRil∇jRlk + ζRijR
ij + ηR2 + δR+ σ, (5.66)

where Cij is the Cotton tensor defined by

Cij =
εijk
√
g
∇k
(
Rji −

1

4
Rδji

)
, (5.67)

and Rij and R are the three-dimensional Ricci tensor and Ricci scalar respectively. β, γ, ζ, η,

and σ are the coupling constants, and εijk is the three-dimensional Levi-Civita tensor.

We can then carry out the familiar process of deriving the field equations from the action

(5.63), and construct a dynamical system using appropriate variables. A generic treatment of

Hořava-Lifschitz Gravity can be found in [153] and [183], while the cosmological implications

of the theory are investigated in [114] and [140]. In [176], a dark energy model is constructed

using Hořava-Lifschitz gravity and two scalar fields.

In [48], dynamical systems methods are employed in the detailed balance case, and it is

shown that the dark energy epoch is difficult to obtain in this context. Also of note is that one

of the attractors of the system corresponds to oscillatory behaviour. The non-detailed balance

case is also considered; it is shown that a dark energy phase can exist, and that HL gravity

can produce a viable cosmological model. A similar analysis is performed in [130] with similar

conclusions. A highly detailed study of the phase space in HL gravity in a Bianchi IX universe

is performed in [134] and [135], with particular focus on the oscillatory nature of the dynamics.

A dark energy epoch is found without the need for a cosmological constant, and the model

2Note that the covariant derivative ∇i is defined with respect to the three-dimensional connection.
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parameters are constrained using observational data. The reader is also referred to [87] and

[127] for lengthy appraisals of the dynamical systems behaviour of HL gravity.



Chapter 6

Conclusion

In this thesis, we have attempted to provide a partial account of the numerous theoretical

descriptions of dark energy. We began by outlining the dynamical systems method, which was

utilised throughout this work as the main tool for studying dark energy models. Our first foray

into cosmology was an elucidation of the canonical cosmological model, the ΛCDM universe. We

saw that using dynamical systems techniques, the dynamics of such a universe were incredibly

easy to describe, and that an accelerated phase of expansion is intrinsic to the model. We also

outlined some issues with ΛCDM, mainly with regards to the cosmological constant Λ.

The next step was to remove Λ entirely, and consider a simple dynamical object, the scalar

field. We examined the canonical scalar (quintessence), the tachyon, and the k-essence field, be-

fore generalising the Lagrangian further in search of the desirable scaling solutions. The power

of the dynamical systems method became evident when discussing these models, as we were able

to recast the complicated field equations into a more manageable set of differential equations,

before finding the critical points and stability properties of the system. With such an approach,

we saw that the entire cosmic history could be studied rather easily and matched against ob-

servational data, with close attention paid to the desired evolutionary track of (radiation →
matter → dark energy).

We continued, dynamical systems toolbox in hand, to consider n-form dark energy - a natural

extension to the scalar model. We again considered the viability of the n-form as a dark energy

candidate, and pitched the predictions of the model against observational constraints. We

found that, just like the scalar, a host of n-form models were viable, and pointed out some of

the features that distinguish such models from the scalar. We then briefly discussed the other

popular forms of non-scalar dark energy, such as the spinor and Yang-Mills fields. Although

we considered these in less detail, we summarised some of the key results of the literature, and

gave relevant references where necessary.

The final chapter, and perhaps most interesting from a theoretical standpoint, was concerned

solely with theories that altered the description of gravity. We saw that modified theories of

gravity can, unsurprisingly, also be studied with dynamical systems methods. We performed

69
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such an analysis for some of the more prevalent MG theories, including Brans-Dicke, f(R),

braneworld and massive gravity. In most cases, we considered the simplest formulation of each

theory, opting for a basic evaluation of the theories in the dynamical systems context. In

accordance with this aim, we gave a detailed account of the recent literature on the subject, in

which the interested reader can find comprehensive studies of dynamical systems applications

to modified gravity.

The quest to understand the nature of dark energy is still very much in its infancy, and

cosmologists will likely need every tool at their disposal to formulate a satisfactory theoretical

description of the acceleration of the Universe. The hope is that this thesis has provided a good

argument for dynamical systems techniques to be included in that toolbox, for two reasons.

Firstly, we have seen that the cosmological implications of new theories of dark energy can

easily be tested using the methods outlined in this work. Secondly, we have demonstrated

that constraints on model parameters are relatively easy to obtain using the dynamical systems

procedure. We therefore hope that the application of dynamical systems to cosmology continues

as a flourishing area of research, in tandem with technological advances and the ever-increasing

accuracy of observational constraints.
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[29] N. Bilić et al. “Tachyon inflation in the holographic braneworld”. In: Journal of Cos-

mology and Astroparticle Physics 2019.08 (2019), pp. 034–034. issn: 1475-7516. url:

http://dx.doi.org/10.1088/1475-7516/2019/08/034.

[30] S. K. Biswas and S. Chakraborty. “Interacting dark energy in f(T) cosmology: A dy-

namical system analysis”. In: International Journal of Modern Physics D 24.07 (2015),

p. 1550046. issn: 1793-6594. url: http://dx.doi.org/10.1142/S0218271815500467.
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[35] C. G. Böhmer and T. Harko. “Dark energy as a massive vector field”. In: The European

Physical Journal C 50.2 (2007), pp. 423–429. issn: 1434-6052. url: http://dx.doi.

org/10.1140/epjc/s10052-007-0210-1.
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[83] A. Friedmann. “Über die Krümmung des Raumes”. In: Zeitschrift fur Physik 10 (1922),

pp. 377–386.
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