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Abstract

In recent years, evidence from a variety of experiments at CERN has indicated that the uni-

versality of leptons, as predicted by the standard model of particle of physics, might be violated.

If true, these results would point to the first false experimental predictions made by the standard

model- an exciting invitation to explore physics beyond the standard model. In this thesis, I ex-

plore in detail a Grand Unified Theory known as the Pati-Salam model, in which violation of lepton

universality arises naturally through new interactions of the fermions with ’leptoquarks’- the gauge

bosons associated to the SU(4) subgroup of Pati-Salam. Moreover, although the explorations are

of Pati-Salam in particular, a universal approach to understand the theory is emphasised. Thus,

the analysis carries through to Grand Unified Theories more generally.
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1 Introduction

1.1 Unification Theories

The most ambitious goal of theoretical physics is, for many people, to discover a theory of everything.

Unpacking that phrase, a theory of everything means a single, unified physical theory from which one

is able to explain (at least in principle) all observed phenomena. In fact, physicists have been on the

lookout for unifying theories for some centuries. Although it is now taken for granted, phenomena

that we casually relate to one another were likely observed by humans to be completely sporadic

and unrelated until recently. The motion of the stars and planets seemed completely distinct to the

behaviour of massive objects on earth. The idea that the immense force of electricity in thunderstorms

and the peculiar attraction between magnetite rocks were two consequences of the same underlying

theory would have surely seemed ridiculous until only a few centuries ago.

It is by no means obvious that phenomena may be unified in such a way, and there is no guarantee

that we will be able to continue this process ad infinitum. However, the appeal (both philosophical,

and practical) is too great. Therefore, theorists have continued chasing unification to this day.

Perhaps the greatest unification theory to date is unenthusiastically dubbed the standard model of

particle physics. In the standard model, 3 out of 4 of the fundamental forces are described. All of

the particles we can currently observe, as well as their interactions with one another can all be seen

to arise from a single physical theory. Thus, excluding the effects of gravity, the standard model [1]

has been able to explain every single phenomenon, whether it involves the strong and weak forces of

nuclear physics, or the interactions between light and matter. A more intuitive view of the process of

unification can be obtained by considering Maxwell and Faraday’s work in the 19th century, in which

the electric and magnetic forces were revealed to be different facets of the unified, electromagnetic

theory [2]. In fact, the standard model predicts that the electromagnetic force unifies with the weak

nuclear force above certain energies, thereby forming the single electroweak force. In a similar manner

to the unification of electricity and magnetism, GUT’s aim to present all of nature’s most fundamental

forces as the various parts of a single whole, unifying phenomena which appear to be different and

independent of one another. Grand Unified Theories have the ambition to further unify the electroweak
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force with the strong nuclear force, meaning that above certain energies, all three forces are in fact

described by a single one, with a single coupling constant. The exact details of the standard model,

including precise predictions of this unification theory will be discussed in more detail later on. It is

unfortunate that the theory which constitutes our most successful realisation as of yet of the beautiful

idea that is the unification of physical phenomena should be called a standard model, and this has no

doubt meant that the theory has been broadly underappreciated by the general public.

1.2 Symmetries, Lagrangians and The Principle of Least Action

The most successful and readily generalised principle of modern theoretical physics arguably has

to be the principle of least action via the Lagrangian formalism. Having successfully reproduced

the equations of motion for Newtonian Mechanics, General Relativity and Quantum Mechanics, the

Lagrangian formalism and the use of this principle also proved to be extremely useful in Quantum Field

Theories. Given the stunning precision of certain measurements in QED [3], it appears unarguable

that the principle of least action permeates physical laws at all scales of reality. It just so happens

that there is inherent mathematical beauty to the formulation of physical theories using a Lagrangian

(density). For example, it makes manifest the existence of symmetries in physical laws, which in turn,

give rise to conserved currents and charges [4] which may be tested for in experiments. Conversely,

prior knowledge of a conserved quantity (and thus a continuous symmetry) can guide us in our search

for the Lagrangian which more correctly describes our physical universe. One finds that (internal)

symmetries of the Lagrangian come in the form of compact Lie groups, and may act on fields in

different representations. The classical equations of motion arise very naturally in this formalism, as

well as the existence of conserved Noether currents and charges. Thus, this principle also invokes the

use of sophisticated mathematics, namely the representation theory of lie groups and algebras.

1.3 Gauge Groups and Gauge Bosons

The main distinctive factor between theories that use the Lagrangian formalism (including GUT’s) is

the choice of gauge group- the internal symmetry transformations that keep the Lagrangian invariant.

In this section, I would like to emphasise the unique part gauge groups and consequently gauge bosons
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play in the formation of a potential Unified Theory, like the standard model. Many different fields

may be added to or subtracted from a physical theory, often with the foresight endowed by knowing

which particles you want your theory to predict. However, given a gauge group there is an inherent

set of fields that are always intrinsic to a physical theory which rely on that particular gauge group,

assuming local symmetry is enforced. To any simple Lie group one is able to find the Lie algebra

by considering elements infinitesimally close to the identity. It turns out that the gauge fields are

elements of the Lie algebra associated to the gauge group, and thus the gauge boson particle spectrum

is intimately connected to the choice of gauge group. Unlike the existence of Higgs particle(s) [5] and

additional fermions, gauging a Lagrangian with a given symmetry group comes hand in hand with

the associated gauge bosons. This then offers us a convenient route for discovering GUT’s, via some

additional impressive mathematics, namely Goldstone’s theorem [6] and the Higgs mechanism.

1.4 Goldstone Theorem and The Higgs Mechanism- The Standard Model

Given a Lagrangian with some gauge fields (associated to a gauge group), a scalar field and possibly

some fermion matter fields, what might one be able to say about the particle spectrum of the theory?

Moreover, how might physicists use this information when looking for extensions to the standard

model gauge group? The answers lie in Goldstone’s theorem and the Higgs mechanism.

Let us use this opportunity to discuss the standard model Lagrangian. Therefore, suppose our theory

has the symmetry group SU(3)strong × SU(2)weak × U(1)Y , and is described by the Lagrangian

L = −1

4
(Tr[F3µνF

µν
3 + F2µνF

µν
2 ]+FµνF

µν)+(Dµφ)†Dµφ−m2φ†φ− λ
2

(φ†φ)2+Lfkinetic+L
f
Y ukawa, (1)

with Dµ = (∂µ+ ig2A
µ+ ig1Y B

µ) and m2 some real parameter. The field strength tensors are defined

here in the usual way from the gauge fields Aµ, Aµ2 and Aµ3 belonging to U(1), SU(2) and SU(3)

respectively, namely

Fµν = ∂µAν − ∂νAµ, (2)
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,

Fµν2 = ∂µAν2 − ∂νA
µ
2 + ig2[Aµ2 , A

ν
2 ], (3)

and

Fµν3 = ∂µAν3 − ∂νA
µ
3 + ig3[Aµ3 , A

ν
3 ]. (4)

The Higgs field φ consists of two complex components and is in the fundamental representation of

SU(2) and in the trivial representation of SU(3), so that it transforms as φi 7→ Mijφj , for some

element M of SU(2).

We delay the discussion of the kinetic and Yukawa sector associated to the fermions to the next

chapter. The reason is that the notion of lepton universality will arise from careful examination of

these terms. Since our aim later on will be to explore the possible violation of lepton universality

within the Pati-Salam model, we prefer to discuss these terms in more detail by themselves,

We would like to be able to say something about the particle spectrum of the above theory. As we will

see, the spectrum will depend on whether the parameter m2 is positive or negative. Supposing that

m2 is positive, our Lagrangian (1) can be expanded to second order to find the particle spectrum (we

do this in more detail for Pati-Salam later on, so here it will suffice to summarise what we would find).

Doing so, one would find that our current particle spectrum consists of 12 massless gauge bosons and

4 massive scalar bosons. Considering that massless gauge bosons may oscillate in two perpendicular

directions, and that a complex 2 component Higgs field contains four real degrees of freedom, our total

number of degrees of freedom is 28.

Now let us suppose that m2 is negative. We would then find a continuous vacuum manifold of

physically identical, non-zero vevs, out of which we pick

φ0 =
1√
2

0

v

 . (5)

It is a simple calculation (which we will do in detail for Pati-Salam) to see that due to this vev

degeneracy, our potential term in the Lagrangian would read off an entirely different particle spectrum:

9 massless and 3 massive gauge bosons, whilst retaining only a single massive Higgs particle [7].
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If we were to again consider symmetry transformations which keep our potential invariant, we would

find that it is only invariant under the residual symmetry group SU(3)×U(1)Q. The reason that our

residual symmetry group is smaller is because the 3 missing generators are broken, in that they do not

leave the vev invariant. Counting the degrees of freedom again (recalling that massive gauge bosons,

being spin one particles, have three) we indeed find that we still have 28 degrees of freedom overall. The

standard model Lagrangian (for our typical energy scales) supposes that m2 is indeed negative- thus

we have summarised that our gauge and scalar particle spectrum in the standard model corresponds

to a massive Higgs particle, 9 massless gauge bosons (the gluons, the photon) and 3 massive gauge

bosons (W+,W− and Z).

These results are a consequence of Goldstone’s theorem alongside the Higgs mechanism [8], and may

be stated as follows: When gauging a symmetry for a Lagrangian with a scalar field φ and

a non zero vev, the particle spectrum D massless gauge bosons and K massive Higgs

particles turns into the spectrum D−N massless gauge bosons, N massive gauge bosons

and K-N massive Higgs bosons, where N is the number of broken generators of our lie

algebra. We shall use this statement repeatedly when demonstrating the particle content associated

to a scalar potential, before and after symmetry breaking. We recall that the fermion particle spectrum

will be discussed later on, but let us mention that the Higgs mechanism is also responsible for the

fermion masses.

So, as a theoretician aspiring to find an appropriate GUT, one must make sure that whatever gauge

group is chosen, the number of massive and massless gauge bosons (as well as their relative masses

to one another) reduces to that of the standard model, at least for the energies probed at our current

particle accelerators. Having seen the structure of the standard model, let us now discuss Grand

Unified Theories and lepton universality.
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2 Grand Unified Theories and Lepton Universality

2.1 Background and Motivation

A GUT usually refers to a model in which all known forces (except gravity) may be unified so that

they all arise from a single force, originating from a simple Lie group, called the gauge group of the

theory. If the Lie group is semisimple, like Pati-Salam, we will still sometimes refer to it as a GUT

(Pati-Salam may be embedded in a simple Lie group). A gauge group, in turn, refers to the group of

transformations on the fields of a given Lagrangian that leave it invariant.

GUT’s differ primarily in the choice of gauge group, and these in turn heavily constrain the particle

spectra predicted by the theory, as well as the various interactions made possible. Thus, one may use

GUT’s to predict the existence of particles and interactions, and conversely one may use experimental

data as evidence for or against a given GUT.

Broadly speak, two main motivating reasons may be given to the search for a GUT. The first and more

practical one is that the standard model appears incomplete. Examples include the issue of neutrino

masses and the inability to incorporate gravity into the theory [2]. The second reason is regarding the

elegance or simplicity of the theory- it appears like many of the ’coincidences’ in the standard model

should have a more comprehensible origin. For example, the similar structure of (left handed) quarks

and leptons under SU(2) appears as a strange coincidence in the standard model, but as we shall see,

can be neatly explained by Pati-Salam. It also seems strange that there exist 3 copies of fermions

(different only by mass), dubbed the 3 fermion families, with no apparent explanation to the origin of

these additional families [2].

It is for these reasons that various GUT’s have been suggested over the last 40 years to replace the

standard model, with varying degrees of success at reproducing and correctly extending the standard

model [2]. As a motivating reason for this project, recent data from CERN has suggested that lepton

universality might be violated in experiments [9]. In brief, lepton universality states that the three

generations of leptons should have identical interactions with the other particles in the standard

model, and thus no process should favor the production of one lepton over another [10]. More details

on lepton universality will be given later on in this chapter. If the data suggesting violation of lepton
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universality is correct, this would be exciting news, since the standard model cannot account for this

violation. This would then suggest that the standard model gauge group isn’t the complete theory,

and that another GUT might be the source of this violation. As it turns out, the Pati-Salam model

might offer an explanation for the origin of this violation [11]. Let us briefly note that the Pati-Salam

gauge group by itself is a ’partial unification model’, but since it may be embedded in SO(10) it can

be viewed as a GUT. From now on we shall ignore this difference.

2.2 Suggested GUT Models

In 1974, Georgi and Glashow came up with the first GUT extension of the standard model [12] based

on the gauge group SU(5). Shortly after in the same year, Pati and Salam came up with a model based

on the gauge group SU(4) × SU(2)L × SU(2)R [13]. Both of these models unify quarks and leptons

into a single irreducible representation, though this occurs differently in both models. In SU(5),

combining leptons and quarks in such a way leads to interactions which may violate conservation of

baryon number- this means that there exist processes which can cause proton decay. Earlier SU(5)

models have therefore been rejected since they predict proton decay rates that have been found in

experiments not to be true. Extensions of SU(5) that avoid that issue of proton decay have since

been suggested (e.g. flipped SU(5), given by SU(5) × U(1)). Most Pati-Salam models, on the other

hand, although also unifying quarks and lepton, appear to be free of the issue of proton decay since

the gauge sector leads to conservation of both baryon and lepton numbers.

In 1975, Georgi [14] and (independently) Fritzsch and Minkowski [15] suggested a GUT model based

on the gauge group SO(10) which includes both SU(5) and SU(4)× SU(2)L× SU(2)R as subgroups,

and in fact there have been models suggesting the symmetry breaking pattern through one or the

other as intermediate steps, as well as directly into the standard model gauge group. Another model

which has been suggested as a GUT is based on the exceptional Lie algebra E6 [16]. Much more

information regarding the specific predictions of each model, as well as the specific manifestations of

the standard model subgroup is given in Ref. [17]. Our main interest will be the Pati-Salam model,

since recent experimental data suggests that lepton universality might be violated, and Pati-Salam is

able to explain this. For this reason, let us discuss the origin of lepton universality in more detail.
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2.3 Lepton Universality in the Standard Model

To be able to discuss lepton universality in the standard model, we first have to understand the fermion

sector a little better. However, our purpose here is not to extensively discuss the fermion sector of the

standard model- we will do this for Pati-Salam. We will also not be very careful with definitions at this

stage- this will be done in detail for the real model we are considering in this paper. Therefore, some

prior knowledge of standard notation and symbols used to describe the standard model are assumed

in this chapter.

Our reason for introducing the fermion sector in this context is not as much to give an idea of how

quarks and leptons appear in the standard model Lagrangian, but rather to discuss why leptons appear

to be ’universal’ whilst quarks do not. This will be very important later on, since recent experimental

data from CERN suggests lepton universality might be violated. Having the prerequisite background

to explain why lepton universality arises in the first place in the standard model, will help us explain

how it might be violated in a model like Pati-Salam.

To that end, let us consider some of the terms that were suppressed as Lfkinetic and LfY ukawa in

Lagrangian (1) from before, that capture the essence of what we motivated above.

In the standard model, left handed leptons and quarks appear in the fundamental representation of

SU(2), whereas right handed leptons and quarks transform trivially under SU(2). There are three

’copies’ of each pair (singlet) of left (right) handed leptons and quarks. Let us denote

l1L =

νeL
eL

 , (6)

l2L =

νµL
µL

 , (7)

and

l3L =

ντL
τL

 . (8)
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Similarly, the three left handed quark families as

q1
L =

uL
dL

 , (9)

q2
L =

cL
sL

 , (10)

and finally

q3
L =

tL
bL

 . (11)

The right handed copy of all of (the components of) the fields above appear as SU(2) singlets, except

for right handed neutrinos, which do not appear in the standard model. Given the above, quarks and

leptons seem to be very similar. So why would leptons be ’universal’ while quarks are not? It turns

out that it is to do with the Yukawa terms responsible for the mass of the fermions (through the Higgs

mechanism). Specifically, the difference between a quark doublet versus a lepton doublet is that the

neutrino counterpart to the charged lepton in the standard model is massless. For example, via the

Higgs mechanism, the Yukawa term for l1L evaluated on the Higgs vev is given by

LY ukawa = ...+ Y (l̄1Lφ0l
1
R + l̄1Rφ

†
0l

1
L). (12)

Substituting in our definitions for l1 above, and our Higgs vev from before, we find

LY ukawa = ...+
Y v√

2
(ēLeR + ēReL). (13)

Note that we therefore do not have a mass term for the corresponding neutrino in this l1L doublet-

only the ”electron-like” term obtains mass.

A similar treatment to the electron mass above is given for the other quarks and leptons in basic

treatments of the standard model, and we therefore won’t be carefully deriving it here. Instead, let us

state the end result for the left handed up quark and down quark (where we acknowledge that similar
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terms arise for up-like and down-like quarks):

Y
′
v√
2

(d̄LdR + d̄RdL) (14)

and

Y
′′
v√
2

(ūLuR + ūRuL). (15)

The reason for writing the above, was so as to draw the distinction between the lepton doublet and

the quark doublet. As mentioned, the neutrino counterparts do not obtain mass in this way. However,

both ”up-like” and ”down-like” quarks obtain mass in precisely the same way as the electron did

above. Although it is not yet clear why, it is this reason that gives rise to quark non universality.

Also, it is the fact that the neutrino masses are zero via the mechanism given above, that give rise to

lepton universality.

To see why, let us note that the most general Yukawa terms are given by a 3 × 3 complex Yukawa

matrix, and can in fact mix generations of quarks and fermions. Let us denote ”up-like”, ”down-like”

and ”electron-like” particles as ũ, d̃ and ẽ (i.e. by specifying a family index superscript, we denote

which particle we actual refer to, so for example ẽ3 = τ). Then, writing the most general second order

Yukawa term evaluated on our Higgs vev, we obtain mass terms of the form

LY ukawa = ...+
v√
2

(Y fg
l

¯̃efLẽ
g
R + (Y fg

l )∗ ¯̃egRẽ
f
L)

+
v√
2

(Y fg

d̃

¯̃
dfLd̃

g
R + (Y fg

d̃
)∗

¯̃
dgRd̃

f
L)

+
v√
2

(Y fg
ũ

¯̃ufLũ
g
R + (Y fg

d̃
)∗ ¯̃ugRũ

f
L),

(16)

where the sum over family indices f, g is implied. The subscripts on the matrices Y simply denote

which type of particle they are related to.

Looking at the above, it seems strange that we obtain mixing Yukawa mass terms between different

generations of particles, given that we know they all have different masses. In fact, this issue may be

resolved by redefining the quark and lepton fields above in such a way that Yl, Yd̃ and Yũ all become

3 × 3 diagonal, real matrices. Recalling that our ”particle-like” fields are in fact three component
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vectors for the three families, one finds that each of the fields must be multiplied by a unitary matrix

to diagonalise the Yukawa matrices, so that our new fields are given by

VlL · ẽL, VlR · ẽR, Vd̃R · d̃R, Vd̃L · d̃L, VũR · ũR, VũL · ũL. (17)

We also redefine the left handed neutrinos, using the same unitary matrix VlL we used to redefine

their ”electron-like” counterparts, as we shall see this will be useful very soon.

We are at the verge of being to explain (non) universality in (quarks) leptons. The only missing terms

are found in the kinetic part, Lkinetic. Within those, we find the coupling between gauge fields and

fermions, for example

Lkinetic = ...+ ig2 l̄
f
Lγ

µA2µl
f
L + ig2q̄

f
Lγ

µA2µq
f
L, (18)

again summing over f , and recalling our definitions for lf and qf above as well that A2µ is the gauge

field associated to SU(2). Consider the W+, W− gauge fields associated to Aµ2 above, which occupy

the off diagonal terms of Aµ2 . Then, multiplying out the expression above we find (again summing

over f)

Lkinetic = ...+ ig2
¯̃efLγ

µW+
µ ν

f
L + ig2

¯̃ufLγ
µW+

µ d̃
f
L + h.c.. (19)

Upon the rotations described above, we see that because ẽf and νf are rotated via the same unitary

matrix VlL , the first term of Lkinetic in fact remains invariant after this redefinition (as it involves a

neutrino and anti electron, and VlL is unitary). However, in the second term, different unitary matrices

are used for ũf and d̃f , namely VũL and Vd̃L. Therefore, the second term involving the quarks gives us

interactions between ”up-like” and ”down-like” quarks of different generations of families, unlike

the case for leptons.

The analysis above shows two things- firstly, that quarks have interactions which may change flavour.

These effects are described by the Cabbibo-Koboyashi-Maskawa matrix (CKM) [18], given by V †ũLVd̃L

Secondly, even considering same family interaction terms, the redefinition of our fields means that the

gauge couplings to the W gauge field differ for quarks of different families. For example, ūL and dL

do not couple to W the same way c̄L and sL do.
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Unlike the above, leptons have neither flavour violation, nor different gauge couplings to the W gauge

boson. Therefore, we say that they are universal, while quarks are not.

In the final chapter of this thesis, we shall say in more detail what are the implications of such results.

In particular, we will discuss experiments that have tested out lepton universality, describing what

they expected to find, and what discrepancies seem to be arising recently. We will also show that the

Pati-Salam model has the capability of explaining this violation of lepton universality.

Therefore, without further ado, let us introduce the Pati-Salam model.

3 The Pati-Salam Model

3.1 The Complete Lagrangian

There are two main Pati-Salam models which we will consider. However, both models start off the

same way: Consider the Pati-Salam gauge group SU(4)× SU(2)L × SU(2)R. The first thing we wish

to discuss is the symmetry breaking pattern of the above gauge group into the standard model. In

fact, there are two stages to this:

SU(4)× SU(2)L × SU(2)R 7→ SU(3)× SU(2)L × U(1)Y , (20)

due to a Higgs field φ, followed by

SU(3)× SU(2)L × U(1)Y 7→ SU(3)× U(1)Q, (21)

due to a Higgs field ψ or χ for models 1 or 2 respectively. Let us mention that Model 1 and model 2

differ in the choice of Higgs representation for the second symmetry breaking pattern,

SU(3)× SU(2)L × U(1)Y 7→ SU(3)× U(1)Q, (22)

and we shall discuss their differences later on. Therefore, all of the analysis relating to the first

symmetry breaking pattern is in fact true for both models 1 and 2.
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Since our main purpose currently is to highlight the fundamental properties of a GUT, in the following

sections and chapters we will be adding complexity only as it is needed to understand the fundamental

structure of our theory. However, to make it clear where we are heading, let us first state the result

we are trying to build up to. Let us therefore denote φ as our first Higgs field responsible for the

Pati-Salam symmetry breaking pattern (the same in both models), and ψ or χ our second Higgs fields

responsible for electroweak symmetry breaking in model one or two. Also take ψL and ψR as the

fermion fields, and let Gµν , FLµν and FRµν correspond to the field strength tensors of SU(4), SU(2)L

and SU(2)R respectively. Then, the full Lagrangian for the first Pati-Salam model we will be looking

at is given by

L = −1

2
Tr
[
GµνG

µν + FLµνF
µν
L + FRµνF

µν
R

]
+DµφiαD

µφiα +DµψiαD
µψiα

+ iψ̄Lγ
µDµψL + iψ̄Rγ

µDµψR + LY ukawa − [−2α2
Rφiαφ

iα + βR1(φiαφ
iα)2

+ βR2φiαφ
jαφjβφ

iβ − 2α2
Lψiαψ

iα + βL1(ψiαψ
iα)2 + βL2ψiαψ

jαψjβψ
iβ

+ αLR1ψiαψ
iαφjβφ

jβ + αLR2ψiαφ
jαψiβφjβ + αLR3(ψiαφ

jαψiβφ
β
j + h.c.)],

(23)

where we delay the explicit treatment of the fermion masses and the Yukawa sector to our discussion

of model 2, to a later chapter. Let us comment that the potential terms above arise by considering

the most general invariant potential given the Higgs fields representations used above (which we will

define later on), as is demonstrated in Ref. [19].

Precise definitions of the fields and operators in the Lagrangian (23) will be given in due course. In

the coming sections, we will break apart the above Lagrangian and consider its different sectors. For

completeness purposes, let us also present the Lagrangian for model 2, although our scalar potential

analysis will be done in detail only for the Lagrangian (23) above. In any case, the Lagrangian for
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model 2 is given by

L =− 1

2
Tr
[
GµνG

µν + FLµνF
µν
L + FRµνF

µν
R

]
+Dµχ

I
iD

µχiI +DµφiαD
µφiα

+ iψ̄Lγ
µDµψL + iψ̄Rγ

µDµψR + λ1(ψLIαχ
I
iψ

iα
R + ψIαL χiIψRiα)

+ λ2(ψLIαχ̃
I
iψ

iα
R + ψIαL χ̃iIψRiα)− [−2α2

Rφiαφ
iα + βR1(φiαφ

iα)2

+ βR2φiαφ
jαφjβφ

iβ + V (φ, χ)],

(24)

where we again delegate the job of carefully defining the objects above to the sections where we discuss

model 2 in more detail.

Let us just clarify the square bracketed term above involving V (φ, χ) - we chose to write the scalar

potential of model 2 in a way that emphasises that the non mixing terms for φ are indeed the same for

both models. In other words, V (φ, χ) above contains only the mixing terms for φ and χ, whereas the

terms involving φ are the same for both models, and are responsible for the first symmetry breaking

pattern. As such, let us demonstrate this symmetry breaking in more detail.

3.2 The First Symmetry Breaking Pattern

We wish to begin by demonstrating the symmetry breaking pattern SU(4) × SU(2)L × SU(2)R 7→

SU(3)×SU(2)L×U(1)Y . As we shall see, this need only involve the Higgs field φ and the gauge fields

(and thus applies to both models 1 and 2). Then, let us suppose our theory currently consists only of

those fields. Looking at the Lagrangian (23) or equivalently (24), we therefore choose to ignore the

fermion fields, the Yukawa terms, the Higgs field ψ (χ) and the terms that couple the Higgs field φ

to ψ (χ). Therefore, this leaves us with a Lagrangian only consisting of

L = −1

2
Tr
[
GµνG

µν + FLµνF
µν
L + FRµνF

µν
R

]
+DµφiαD

µφiα

− 2α2
Rφiαφ

iα + βR1(φiαφ
iα)2 + βR2φiαφ

jαφjβφ
iβ.

(25)

Now, let us define the various objects more carefully. Firstly, let us let us view φ as an 8-tuplet,

φiα, with i = 1, 2 and α = 1, 2, 3, 4 indices for SU(2)R and SU(4) respectively. The first line above

concerns the gauge boson sector, and the gauge boson-Higgs boson coupling. The second line contains
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the potential terms associated to the first Higgs field only.

One may write φ as

φ =



φ11

φ12

φ13

φ14

φ21

φ22

φ23

φ24



. (26)

We suppose that φ transforms in the fundamental representation of SU(4) and SU(2)R but trivially

under SU(2)L (i.e. it is in the representation (4,1,2)). By this we mean that

φiα 7→MijNαβφ
jβ, (27)

where M , N are the elements of SU(2)R and SU(4) respectively. Similarly, let us take φiα to be the

transpose conjugate of φiα. We will adopt this notation of a field and its transpose conjugate for

the rest of this paper. Note, we choose to view φ as a vector rather than as a 2 × 4 matrix since

this form will be easier to work with when constructing the symmetry breaking matrices later on.

Secondly, given gauge fields Gµ and AµR associated to SU(4) and SU(2)R respectively, we define

Ĝaµ =

 Gaµ for a = 1, 2, ..., 15

Aa−15
Rµ for a = 16, 17, 18.

(28)

The precise form of the corresponding Lie algebra generators T a will be discussed in more detail next

subsection. Our covariant derivative is defined as

Dµ = (∂µ + ig4Ĝ
µ), (29)
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Moreover, the field strength tensors are defined as

Gµν = ∂µGν − ∂νGµ + ig4[Gµ, Gν ], (30)

FµνL = ∂µAνL − ∂νA
µ
L + igL

[
AµL, A

ν
L

]
, (31)

and

FµνR = ∂µAνR − ∂νA
µ
R + igR

[
AµR, A

ν
R

]
. (32)

Having defined the objects used in our current Lagrangian (25), let us discuss the particle spectrum

before and after symmetry breaking. Starting with the former, let us suppose that our vev φ0 is zero.

Then, considering only the second order terms in our fields we find that

L ≈ −1

4
[(∂µGνk − ∂νGµk)(∂µGkν − ∂νGkµ) + (∂µAνaL − ∂νA

µa
L )(∂µA

a
Lν − ∂νAaLµ)

+ (∂µAνaR − ∂νA
µa
R )(∂µA

a
Rν − ∂νAaRµ)] + ∂µφiα∂

µφiα − 2α2
Rφiαφ

iα.

(33)

From this, we may deduce that before spontaneous symmetry breaking, our theory describes 21 mass-

less gauge bosons, fifteen for the components k associated to the gauge field Gµ, and the remaining six

associated to the two fields AµL and AµR. There are two degrees of freedom associated to each massless

gauge boson above, altogether giving 42 degrees of freedom. Moreover, since our Higgs field contains

8 free (complex) parameters, we expect 16 massive Higgs particles. Overall, we have 58 degrees of

freedom.

A natural next step would now be to consider the above Lagrangian for a non zero vev. Recall that

our potential for the simplified Lagrangians (25), (24) is given by

V (φ) = −2α2
Rφiαφ

iα + βR1(φiαφ
iα)2 + βR2φiαφ

jαφjβφ
iβ. (34)

Detailed analysis of the potential above is given in Ref. [19]. The author demonstrates that the
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absolute minimum for our potential is given by a vev φ0 of the form

φ0iα =

(
0 0 0 vR√

2
0 0 0 0

)
. (35)

Let us see what conditions are imposed on this vev by requiring that it is a minimum of the potential.

We find that

∂V (φ)

∂φkγ
= −2α2

Rφ
kγ + 2βR1φ

kγφiαφ
iα + βR2(φjγφjβφ

kβ + φiαφ
kαφiγ). (36)

Evaluating this at φ = φ0, and equating to zero, we note that we only have one non trivial component.

Indeed, for k = 1, γ = 4 we obtain the vev condition

φiα0 φ0iα =
vR

2

2
=

α2
R

βR1 + βR2
, (37)

used in Ref. [19].

We are now ready to demonstrate the symmetry breaking pattern. One expects that the initial sym-

metry breaking, from the unbroken gauge group SU(4)×SU(2)L×SU(2)R to the unbroken standard

model gauge group, SU(3)× SU(2)× U(1)Y , would result in 9 massive gauge bosons (corresponding

to 9 broken generators). This means that those new degrees of freedom (from Goldstone’s Theorem

alongside the Higgs Mechanism) had to come from the 16 massive Higgs particles of the unbroken

theory.

Thus, upon expansion of our potential (34) around our non zero vev (35), we should find that the

particle spectrum of our Higgs field has changed appropriately, to reflect the fact that only 7 mas-

sive Higgs particles should now be present. Indeed, as the explicit calculation in equation (114) of

Appendix A shows in detail, we find that

V (φ) = V (ϕ+ φ0) ≈ 2α2
R((

βR1

βR1 + βR2
− 1)(|ϕ21|2 + |ϕ22|2 + |ϕ23|2) + 2Re(ϕ14)2)), (38)

which shows us that only 7 massive Higgs bosons (7 degrees of freedom) remain. Using Goldstone’s

theorem, we conclude that there must now be 9 massive (27 degrees of freedom) and 12 massless (24
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degrees of freedom) gauge bosons. This is none other than the spontaneous symmetry breaking of

Pati-Salam into the unbroken standard model gauge group, but we have not explicitly shown that yet.

The reason being that although the number of unbroken generators implied by the potential above

agrees the number of unbroken generators in SU(4)× SU(2)L × SU(2)R 7→ SU(3)× SU(2)× U(1)Y ,

we have not shown explicitly that the remaining generators give rise to the residual symmetry group

SU(3)×SU(2)×U(1)Y , rather than some other subgroup. We therefore introduce a different method

to demonstrate symmetry breaking patterns, which can explicitly produce the residual symmetry

group.

3.3 The First Symmetry Breaking Matrix

Recall that a broken generator T of a Lie algebra associated to a gauge group is one such that Tφ0

6= 0. We are interested in finding the largest set of unbroken generators for a given gauge group,

as those will form the residual symmetry group and contain the information regarding our gauge

boson particle spectrum. To that end, let us build the following matrix: given the gauge group

SU(4)× SU(2)L × SU(2)R, we construct the symmetry breaking matrix

Sab = φ†0

{
T a, T b

}
φ0. (39)

We will then use this in the following way to find the largest set of unbroken generators: Suppose

that there exists some linear combination of generators λaT a = T̄ a such that T̄ aφ0 = 0. Then, it is a

very simple calculation to verify that the vector λa is an eigenvector of Sab with eigenvalue 0. Thus,

an easy way to find the largest set of unbroken generators is simply to construct the matrix Sab and

diagonlise it to find the number of zero eigenvalues- each such eigenvalue corresponds to an unbroken

generator and conversely every non zero eigenvalue is a broken generator. We can then read off the

symmetry breaking pattern and find our residual symmetry group simply by noting which are the

broken and unbroken generators. Not only that, but the gauge bosons particle spectrum is almost

equal to the eigenvalues of our matrix Sab, more specifically the mass of each gauge boson equals the

square root of the eigenvalue of Sab multiplied by the coupling constant (g4 in our case).
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To construct this matrix, we first have to correctly embed the generators of SU(4) and SU(2)R into

an 8 × 8 matrix representation, which we will do shortly. We note that using this method to derive

the particle spectrum, whilst one still needs to ’guess’ the form of our non zero vev φ0, does not

require us to have a pre-established potential term. This means that one may try out gauge groups as

potential candidates for a Grand Unified Theory without having to go through the process of finding

a potential term in the Lagrangian which correctly reproduces a given vev. In other words, starting

only with a gauge group and a possible vev φ0, one may already discover whether their symmetry

breaking pattern has the possibility of reproducing the standard model, which allows us to dispose of

hopeless candidates without having to explicitly write down any potentials.

Let us construct the symmetry breaking matrix Sab described above. Recall that Sab = φ†0
{
T a, T b

}
φ0

and that φ0 is an 8-tuplet. Then, let us embded SU(4) and SU(2)R into 8 by 8 matrices. We proceed

in the following manner: Suppose that Mij in SU(2)R equals exp
{
iθataij

}
and Nαβ in SU(4) equals

exp
{
iηAT

′A
αβ

}
(we use the SU(4) generators given in Appendix A of [19], which we will explicitly

write out soon, and the Pauli matrices for SU(2)). Then, since φ transforms in the fundamental

representation of both, we may observe that to first order,

φiα 7→ φiα + iθataijδαβφ
iβ + iδijη

AT
′A
αβφ

jβ, (40)

which suggests that our generators could be defined in the following way:

For

a=1,2,3...,15, T a =

δ11T
a δ12T

a

δ21T
a δ22T

a

 =

T a 0

0 T a

 (41)

and for

a=16,17,18, T a =
gR
g4

ta−15
11 14×4 ta−15

12 14×4

ta−15
21 14×4 ta−15

22 14×4

 (42)

.

Writing these generators explicitly would take up a lot of space since there are 18 of them and each

matrix is 8 by 8, however for the sake of clarity (and due to their simple form) I will write down T 15
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and T 18.

Starting with

T
′15 =

1√
6



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −3


(43)

and

t3 =

1 0

0 −1

 , (44)

we end up with

T 15 = Diag(
1√
6
,

1√
6
,

1√
6
,−
√

3

2
,

1√
6
,

1√
6
,

1√
6
,−
√

3

2
) (45)

and

T 18 =
gR
g4

Diag(1, 1, 1, 1,−1,−1,−1,−1). (46)

Now we have our generators correctly embedded, we may easily compute Sab. Let us start by only

stating the diagonlised matrix, given by (letting
vR√

2
= v for simplicity)

Diag(0, 0, 0, 0, 0, 0, 0, 0, 0, v2, v2, v2, v2, v2, v2,
g2
Rv

2

g2
4

,
g2
Rv

2

g2
4

,
v2
(
3g2

4 + 2g2
R

)
2g2

4

), (47)

since it is this object that tells us our particle spectrum, and the masses of our gauge bosons. Note that

we have now essentially showed the same result as our potential (38) shows- namely that we have 9

broken generators (since there are 9 non zero eigenvalues in the diagonlised matrix above). However,
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we had hoped to show more than this, in particular we wanted to explicitly demonstrate that the

residual symmetry group is SU(3) × SU(2) × U(1)Y . To do this, we need to look more carefully at

the generators of SU(4) used in the construction above and the full symmetry breaking matrix. In

particular, the SU(4) generators are given by

T
′1 =



0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0


, T

′2 =



0 −i 0

i 0 0

0 0 0

0 0 0


, T

′3 =



1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0


, T

′4 =



0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0


,

T
′5 =



0 0 −i 0

0 0 0 0

i 0 0 0

0 0 0 0


, T

′6 =



0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0


, T

′7 =



0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0


, T

′8 =
1√
3



1 0 0 0

0 1 0 0

0 0 −2 0

0 0 0 0


,

T
′9 =



0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0


, T

′10 =



0 0 0 −i

0 0 0 0

0 0 0 0

i 0 0 0


, T

′11 =



0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0


, T

′12 =



0 0 0 0

0 0 0 −i

0 0 0 0

0 i 0 0


,

T
′13 =



0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0


, T

′14 =



0 0 0 0

0 0 0 0

0 0 0 −i

0 0 i 0


, T

′15 =
1√
6



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −3


.

(48)

The reason that we go through the effort of explicitly writing these is that one may notice that the

first 8 generators are precisely the Gell-Mann matrices, i.e. the generators of SU(3), embedded in a
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4× 4 matrix representation. Therefore, upon construction of the matrix Sab,

S =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 v2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 v2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 v2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 v2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 v2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 v2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 3v2

2 0 0 −
√

3
2

gRv
2

g4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
g2Rv

2

g24
0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
g2Rv

2

g24
0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −
√

3
2

gRv
2

g4
0 0

g2Rv
2

g24



,

(49)

we see that the 9 unbroken SU(4) generators are the 8 Gell-Mann matrices, and a linear combina-

tion of the diagonal elements of SU(4) and SU(2)R (T 15 and T 18, which we explicitly wrote above

in (45), (46)). Therefore, as claimed, the residual symmetry group generated by these is precisely

SU(3)× SU(2)× U(1)Y .

We can now conclusively read off that, due to our Higgs field φ having a non-zero vev, the Pati-Salam

gauge group spontaneously broke to the unbroken standard model gauge group, and that in addition
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to the 12 massless gauge bosons (9 from the symmetry breaking and 3 from SU(2)L), we expect to

find, at some higher energies, 9 additional massive gauge bosons (for our current theory- as we shall see

later on, electroweak symmetry breaking gives a further 3 broken generators). Moreover, the masses

of our gauge bosons are given by

(0, 0, 0, 0, 0, 0, 0, 0, 0, g4v, g4v, g4v, g4v, g4v, g4v, gRv, gRv,
v√
2

√
3g2

4 + 2g2
R). (50)

Finally, as shown in the previous section, we also expect to have 7 massive Higgs particles. To conclude

this chapter and end our discussion regarding the first symmetry breaking pattern of Pati-Salam, let

us make some comparisons between the Pati-Salam generators and the ones of the unbroken standard

model. We note from (49) that the U(1)Y subgroup, belonging to the unbroken standard model gauge

group, is generated by a linear combination of the diagonal element T 18 of SU(2)R and the diagonal

element T 15 of SU(4). Let us relate these generators to hypercharge Y directly: Given a U(1) gauge

group, the hypercharge Y appears in the covariant derivative as follows: Dµ = ∂µ + ... + igyY Bµ.

On the other hand, diagonalising (49) we find that our new U(1)Y generator is given by T̄ 15 =

gR
g4

(

√
2

3
T 15+

g4

gR
T 18). Then, writing out the part of the covariant derivative belonging to this generator

(in some new field Ḡ15), we find Dµ = ∂µ + ...+ ig4T̄
15Ḡ15 = ∂µ + ...+ ig4

gR
g4

(

√
2

3
T 15 +

g4

gR
T 18)Ḡ15.

Comparing the two expressions, we conclude that gR = gY and that Y =

√
2

3
T 15 +

g4

gR
T 18 is the

U(1)Y generator (in agreement with the literature [19]). Having concluded the demonstration of the

first symmetry breaking pattern, let us finish this chapter by discussing the relation between the vev

structure and the symmetry breaking patterns.

3.4 Vev Dependence of Symmetry Breaking Matrices

We have demonstrated above the symmetry breaking pattern of Pati-Salam into the unbroken standard

model. Doing so, we have seen that by choosing an appropriate form for the vev (35), correctly

embedding our generators and constructing the symmetry breaking matrix, one obtains a rather neat,

nearly diagonal matrix for Pati-Salam, which gives residual symmetry groups precisely matching the

standard model gauge group. However, this is by no means the ’typical’ case. In other words, by
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choosing different forms for our vevs, we may end up with a completely different residual symmetry

group in each case, with the symmetry breaking matrix being anything but ’neat’, and certainly

incapable of reproducing the standard model gauge group. Suffices to say, if one chooses a random

form for the vev φ0 for example, the number of broken generators does not match the ones we obtained

earlier in this paper, and consequently cannot reproduce the correct symmetry braking pattern. Not

only that, but it would be an understatement to say that the symmetry breaking matrix and eigenvalues

are extremely complicated. Possibly the neatest symmetry breaking pattern that deviates from our

required result (looking at the initial symmetry breaking pattern), is given by the vev

φ0 =

(
0 0 0 u u 0 0 0

)
. (51)

From this, we obtain the diagonal matrix

Diag(0, 0, 0, 0, 0, 0, u2, u2, u2, u2, u2, u2, u2, u2, u2,
2u2

(
g2

4 + g2
R

)
g2

4

,
2u2

(
g2

4 + g2
R

)
g2

4

,
2u2

(
g2

4 + g2
R

)
g2

4

), (52)

and although we do not recommend letting u 7→ v in the 5th component of φ0, this will certainly

demonstrate how horrific the system of eigenvalues can become.

Considering the symmetry breaking pattern above, and noting that it does not give the standard

model as a residual symmetry group, one might then like to answer the question what is the most

general form of the vevs which reproduces the correct symmetry breaking pattern into

the unbroken standard model gauge group?

It turns out that choosing a vev of the form

φ0 =

(
v1 v2 v3 v4 v1 v2 v3 v4

)
, (53)

one still obtains the symmetry breaking pattern required. Not only that, one even precisely the same

structure of eigenvalues as for the true Pati-Salam vev. In particular, having had

(
0, 0, 0, 0, 0, 0, 0, 0, 0, v2, v2, v2, v2, v2, v2,

g2
Rv

2

g2
4

,
g2
Rv

2

g2
4

,
v2
(
3g2

4 + 2g2
R

)
2g2

4

)
(54)
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as the set of eigenvalues for our original vev, we now find

Diag(0, 0, 0, 0, 0, 0, 0, 0, 0, 2
(
v2

1 + v2
2 + v2

3 + v2
4

)
, 2
(
v2

1 + v2
2 + v2

3 + v2
4

)
, 2
(
v2

1 + v2
2 + v2

3 + v2
4

)
, 2
(
v2

1 + v2
2 + v2

3 + v2
4

)
, 2
(
v2

1 + v2
2 + v2

3 + v2
4

)
,

2
(
v2

1 + v2
2 + v2

3 + v2
4

)
,
2g2
R(v2

1 + v2
2 + v2

3 + v2
4)

g2
4

,
2g2
R(v2

1 + v2
2 + v2

3 + v2
4)

g2
4

,(
3g2

4 + 2g2
R

) (
v2

1 + v2
2 + v2

3 + v2
4

)
g2

4

).

(55)

From the above, we see that both sets of eigenvalues are proportional to one another, and the difference

only arises due to the norm of the vevs in each case.

This analysis of the vev structure was done in detail above for the symmetry breaking pattern of the

first Higgs field into what should be the unbroken standard model gauge group. It was demonstrated

in detail that even small changes to the vev above may produce extremely messy symmetry breaking

patterns, unable to reproduce the standard model. It is interesting however to note that an expression

as general as (53) above still reproduces the symmetry breaking pattern required, with effectively

identical eigenvalues (and thus gauge boson masses). Finally, it is noted that the same analysis may

be done for the other symmetry breaking patterns investigated in this paper, and similar results arise.

3.5 The Second Symmetry Breaking Pattern (Model 1)

Having successfully demonstrated the symmetry breaking pattern SU(4) × SU(2)L × SU(2)R 7→

SU(3) × SU(2)L × U(1)Y using the simplified Lagrangian (25), let us discuss the second sponta-

neous symmetry breaking which occurs in the Pati-Salam model 1, SU(3) × SU(2)L × U(1)Y 7→

SU(3) × U(1)Q. To demonstrate this, we will need to use more terms in our complete Lagrangian

(23). In particular, we now consider that Lagrangian, ignoring only the fermions and Yukawa terms.

Also, the parameter αLR3 does not play a part in the vev condition, and so to simplify our calculations
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we shall ignore it. Therefore, our current Lagrangian is given by

L = −1

2
Tr
[
GµνG

µν + FLµνF
µν
L + FRµνF

µν
R

]
+DµφiαD

µφiα +DµψiαD
µψiα

− 2α2
Rφiαφ

iα + βR1(φiαφ
iα)2 + βR2φiαφ

jαφjβφ
iβ − 2α2

Lψiαψ
iα + βL1(ψiαψ

iα)2

+ βL2ψiαψ
jαψjβψ

iβ + αLR1ψiαψ
iαφjβφ

jβ + αLR2ψiαφ
jαψiβφjβ.

(56)

The only new object above that needs to be defined is the second Higgs field ψ. Similarly to φ, let

us let us view ψ as an 8-tuplet, ψiα, with i = 1, 2 and α = 1, 2, 3, 4 indices for SU(2)L and SU(4)

respectively.

One may therefore write ψ as

ψ =



ψ11

ψ12

ψ13

ψ14

ψ21

ψ22

ψ23

ψ24



, (57)

where ψ transforms in the fundamental representation of SU(4) and SU(2)L but trivially under

SU(2)L. Again, ψiα is the transpose conjugate of ψiα.

We would like to analyze this Lagrangian before and symmetry symmetry breaking, using the scalar

potential and the symmetry breaking matrix. From the above, we see that our current potential is

defined as

V (φ, ψ) = −2α2
Rφiαφ

iα + βR1(φiαφ
iα)2 + βR2φiαφ

jαφjβφ
iβ

− 2α2
Lψiαψ

iα + βL1(ψiαψ
iα)2 + βL2ψiαψ

jαψjβψ
iβ

+ αLR1ψiαψ
iαφjβφ

jβ + αLR2ψiαφ
jαψiβφjβ.

(58)
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Note that the first line we associate to the initial symmetry breaking pattern SU(4) × SU(2)L ×

SU(2)R 7→ SU(3)×SU(2)×U(1)Y . The second and third line give us the second symmetry breaking

pattern. The unbroken theory with vevs φ0 and ψ0 both equal to zero is nearly identical to the theory

we looked at before (25) (with the exception of new massive Higgs particles associated with ψ) and

therefore we ignore this case. Let us now consider the case where both Higgs fields have non zero vevs.

Again, in Ref [19] the author shows that the form of the vevs which give an absolute minimum to the

potential above is given by

φ0 =

(
0 0 0

vR√
2

0 0 0 0

)
, (59)

and

ψ0 =

(
0 0 0

vL√
2

0 0 0 0

)
. (60)

Let us consider the potential (58) and see what vev conditions we obtain. We find that

∂V (φ, ψ)

∂φkγ
= −2α2

Rφ
kγ + 2βR1φ

kγφiαφ
iα + βR2(φjγφjβφ

kβ + φiαφ
kαφiγ)

− αLR1ψiαψ
iαφkγ + αLR2ψiαφ

kαψiγ ,

(61)

and

∂V (φ, ψ)

∂ψkγ
= −2α2

Lψ
kγ + 2βL1ψ

kγψiαψ
iα + βL2(ψjγψjβψ

kβ + ψiαψ
kαψiγ)

− αLR1φiαφ
iαψkγ + αLR2φiαψ

kαφiγ .

(62)

Substituting in our vevs φ0 and ψ0, we indeed find the vev conditions (for the case k = 1, γ = 4)

− 2α2
L + (βL1 + βL2)v2

L +
1

2
(αLR1 + αLR2)v2

R = 0 (63)

and

− 2α2
R + (βR1 + βR2)v2

R +
1

2
(αLR1 + αLR2)v2

L = 0 (64)

presented in Ref. [19]. We are now ready to demonstrate the symmetry breaking pattern, by consid-

ering our potential (58) centred around its non zero vevs (59) and (60).
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Let us note that the vev condition −2α2
L + (βL1 + βL2)v2

L +
1

2
(αLR1 + αLR2)v2

R = 0 can be reduced

to our vev condition φiα0 φ0iα =
vR

2

2
=

α2
R

βR1 + βR2
on φ0 for the first symmetry breaking pattern, by

letting αLR1 7→ −αLR2. This therefore seems like an appealing simplification to make, as it decouples

the two symmetry breaking patterns- note that the norm of each vev φ0, ψ0 does not depend on

the Higgs mixing parameters αLR1 and αLR2 when this simplification is made. Before making this

assumption, we show in Appendix B in full detail that the potential centred around the non zero vevs

is given by

V (ϕ+ φ0,Ψ + ψ0) ≈ (−2α2
R + v2

RβR1)(|ϕ21|2 + |ϕ22|2 + |ϕ23|2) + (−2α2
R + 3βR1v

2
R + 3βR2v

2
R)Re(ϕ14)2

+ (−2α2
R + v2

RβR1 + v2
RβR2)(|ϕ11|2 + |ϕ12|2 + |ϕ13|2 + Im(ϕ14)2) + |ϕ24|2)

+ (−2α2
L + v2

LβL1)(|Ψ21|2 + |Ψ22|2 + |Ψ23|2) + (−2α2
L + 3βL1v

2
L + 3βL2v

2
L)Re(Ψ14)2

+ (−2α2
L + v2

LβL1 + v2
LβL2)(|Ψ11|2 + |Ψ12|2 + |Ψ13|2 + Im(Ψ14)2) + |Ψ24|2)

+ αLR1((|Ψ11|2 + |Ψ12|2 + |Ψ13|2 + |Ψ14|2 + |Ψ21|2 + |Ψ22|2 + |Ψ23|2 + |Ψ24|2)
v2
R

2

+ (Re(ϕ14)2 + |ϕ21|2 + |ϕ22|2 + |ϕ23|2)
v2
L

2
+ 2vLvRRe(ϕ14)Re(Ψ14))

+ αLR2(
v2
L

2
(Re(ϕ14)2) +

v2
R

2
(|Ψ14|2 + |Ψ24|2) + 2vLvRRe(ϕ14)Re(Ψ14)).

(65)

Then, using our simplifying condition αLR1 7→ αLR2, which also implies φiα0 φ0iα =
vR

2

2
=

α2
R

βR1 + βR2

and ψiα0 ψ0iα =
vL

2

2
=

α2
L

βL1 + βL2
, we find that

V (ϕ+ φ0,Ψ + ψ0) ≈ 2α2
R((

βR1

βR1 + βR2
− 1

2α2
R

α2
L

βL1 + βL2
− 1)(|ϕ21|2 + |ϕ22|2 + |ϕ23|2) + 2Re(ϕ14)2))

+ 2α2
L((

βL1

βL1 + βL2
− 1)(|Ψ21|2 + |Ψ22|2 + |Ψ23|2) + 2Re(Ψ14)2))

+ αLR1((|Ψ11|2 + |Ψ12|2 + |Ψ13|2 + |Ψ21|2 + |Ψ22|2 + |Ψ23|2)
α2
R

βR1 + βR2
,

(66)
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which shows that as expected, we have 7 non zero components for ϕ and 13 non zero components for Ψ,

implying 9 unbroken generators (as would be required for SU(3)×SU(2)L×U(1)Y 7→ SU(3)×U(1)Q).

Let us now consider the case where αLR1 and αLR2 are free parameters. So as not to have to write out

our potential in full again, let us note that the only off diagonal terms in (65) are the ones involving

Re(ϕ14)Re(Ψ14), therefore it is only these terms (as well as Re(ϕ14)2, Re(Ψ14)2 ) that need to be

diagonalised in the mass matrix. Hence, keeping only such terms, we find

V (ϕ+ φ0,Ψ + ψ0) ≈ ...+ (−2αR + 3v2
R(βR1 + βR2) +

v2
L

2
(αLR1 + αLR2))Re(ϕ14)2

+ (−2αL + 3v2
L(βL1 + βL2) +

v2
R

2
(αLR1 + αLR2))Re(Ψ14)2+

+ 2vLvR(αLR1 + αLR2)Re(ϕ14)Re(Ψ14)

+ ....

(67)

Again, seeing as we can already read off the spectrum for all of the other components, our remaining

mass matrix is−2αR + 3v2
R(βR1 + βR2) +

v2
L

2
(αLR1 + αLR2) vLvR(αLR1 + αLR2)

vLvR(αLR1 + αLR2) −2αL + 3v2
L(βL1 + βL2) +

v2
R

2
(αLR1 + αLR2)

 .

(68)

Upon diagonalisation, the eigenvalues of this matrix are pretty horrendous. However, using

− 2α2
L + (βL1 + βL2)v2

L +
1

2
(αLR1 + αLR2)v2

R = 0 (69)

and

− 2α2
R + (βR1 + βR2)v2

R +
1

2
(αLR1 + αLR2)v2

L = 0, (70)

we may then simplify the mass matrix to the form

 2v2
R(βR1 + βR2) vLvR(αLR1 + αLR2)

vLvR(αLR1 + αLR2) 2v2
L(βL1 + βL2)

 . (71)
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Solving for the eigenvalues of this system, we find something interesting. The masses of the fields

Re(ϕ14) and Re(Ψ14) are given by

m2
Re(ϕ14) = 2v2

R(βR1 + βR2) + 2v2
L(βL1 + βL2)− F (α, β, v) (72)

and

m2
Re(Ψ14) = 2v2

R(βR1 + βR2) + 2v2
L(βL1 + βL2) + F (α, β, v), (73)

with

F (α, β, v) = 4[(2v2
L(βL1 + βL2)− 2v2

R(βR1 + βR2))2 + 4v2
Lv

2
R(α2

LR1 + 2αLR1αLR2 + α2
LR2)]

1
2 (74)

a rather messy looking function of the coefficients in the potential and the vevs. Note that apart

from the term involving F (α, β, v), the masses of each of the fields are the same. More importantly,

the masses of each of the fields depend on the vevs and coefficients of the other field. Now, allowing

αLR1 7→ −αLR2, we find that F (α, β, v) 7→ 2v2
L(βL1 + βL2) − 2v2

R(βR1 + βR2). Indeed, when αLR1 =

−αLR2 the masses of the fields reduce to

m2
Re(ϕ14) = 4v2

R(βR1 + βR2) = 8α2
R (75)

and

m2
Re(Ψ14) = 4v2

L(βL1 + βL2) = 8α2
L (76)

(Note that this can be seen more readily before solving the eigensystem - simply plugging in αLR1 =

−αLR2 into the mass matrix (68) one immediately obtains the diagonalised matrix).

It is interesting to note that in this case, the masses of one field no longer depend on the vev and

coefficients of another. Moreover, given that in the limit αLR1 7→ −αLR2 the vevs φ0 and ψ0 are

’decoupled’, we will later find that the associated gauge boson masses are then also decoupled for the

two symmetry breaking patterns, giving them a possible mass hierarchy. That is why we consider this

case as a decoupling limit.
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In any case, we have now demonstrated that given the Lagrangian (56) and Higgs fields φ and ψ with

non zero vevs of the form (59) and (60), one may read off 7 massive Higgs particles associated to φ and a

further 13 associated to ψ. Counting degrees of freedom, we see that this implies 12 broken generators.

The first 9, we associate to the initial symmetry breaking pattern SU(4) × SU(2)L × SU(2)R 7→

SU(3) × SU(2)L × U(1)Y , as we haved showed earlier in this chapter. The final 3, we would like to

associate with SU(3)× SU(2)L × U(1)Y 7→ SU(3)× U(1)Q, though we have not yet explicitly shown

this.

3.6 The Second Symmetry Breaking Matrix (Model 1)

Let us conclusively show the second symmetry breaking pattern discussed above, by constructing a

symmetry breaking matrix. Note that we can do this with no prior knowledge of a potential term.

Firstly, let us realise that our starting point is now the residual symmetry group from the previous

symmetry breaking pattern. Therefore, besides the 3 generators belonging to SU(2)L, we need only

include the 9 unbroken generators from the previous case, namely the first 8 generators of SU(4)

(which turn out to precisely be the SU(3) generators as embedded in SU(4)), and the weak hyper-

charge, namely the linear combination of the diagonal generators of SU(2)R and SU(4). However,

since this second Higgs transforms trivially under SU(2)R, the diagonal generator of SU(2)R will not

play a role here. Then, the generators we are after are the following:

For

a=1,2,3...,8, T̂ a = T a (77)

and for

a=9, T̂ 9 =
gR
g4

√
2

3
T 15 (78)

(T 18 does not appear in the linear combination of T̂ 9 since this Higgs field is in the trivial represen-

tation of SU(2)R)
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and for

a=10,11,12, T̂ a =
gL
g4

ta−9
11 14×4 ta−9

12 14×4

ta−9
21 14×4 ta−9

22 14×4

 (79)

.

So, constructing the symmetry breaking matrix S
′ab = ψ†0

{
T̂ a, T̂ b

}
ψ0 using the generators T̂ a defined

in above (letting
vL√

2
= u for simplicity), we find that

S
′

=



0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
g2Ru

2

g24
0 0 −gLgRu

2

g24

0 0 0 0 0 0 0 0 0
g2Lu

2

g24
0 0

0 0 0 0 0 0 0 0 0 0
g2Lu

2

g24
0

0 0 0 0 0 0 0 0 −gLgRu
2

g24
0 0

g2Lu
2

g24



(80)

which, when diagonalised, gives us the matrix

Diag(0, 0, 0, 0, 0, 0, 0, 0, 0,
g2
Lu

2

g2
4

,
g2
Lu

2

g2
4

,
u2(g2

L + g2
R)

g2
4

). (81)

Again, we may note from these that the final zero eigenvalue comes from a linear combination of the

diagonal generator of the previously unbroken U(1)Y group and the diagonal generator of SU(2)L.

This linear combination is indeed the charge generator Q which finally gives the unbroken U(1)Q
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subgroup of the standard model. We find that the electric charge generator is

Q =

√
2

3
T 15 +

g4

gR
T 18 +

g4

gL
T̂ 12 (82)

and noting that T 18 and T̂ 12 are defined with a factor of the inverse form of the couplings appearing

here, we see that conserved electromagnetic charge Q takes a rather simple form in Pati-Salam (in

agreement with [19]). Finally, we may read off of this matrix the correct particle spectrum: starting

with all massless gauge bosons, coming from 8 unbroken SU(3) generators, one unbroken U(1)Y

generator and 3 unbroken SU(2)L generators, we now have 9 massless gauge bosons, coming from

SU(3) × U(1)Q, and 3 massive gauge bosons from the broken SU(2)L × U(1)Y subgroup. Moreover,

we note that the gauge boson masses (closely related to the eigenvalues above) even predict that two of

them have equal mass and the third one is heavier, as required from electroweak symmetry breaking.

Thus, we now conclude our demonstration of the second symmetry breaking pattern, having shown

explicitly that the remaining unbroken generators are precisely those that would give rise to the

residual symmetry group SU(3)× U(1)Q.

3.7 The Fermion Sector (Model 1)

In this section we would have included the final missing terms for our ’complete Lagrangian’ for model

1 (23) that we were building up to throughout this chapter. However, we postpone the discussion of

the fermion sector of Pati-Salam to a model 2. The reason is that the model we are considering at

the moment isn’t the exact one that we shall use to understand fermions. In particular, it appears

that in the model where electroweak symmetry breaking occurs due to a left handed Higgs in the

representation used above, fermions do not attain mass from tree level diagrams, but from radiative

loop corrections [19]. The simpler and more phenomenologically sound version of Pati-Salam undergoes

electroweak breaking via a Higgs bidoublet. This theory does have tree level masses for fermions [19],

and we shall use that framework to understand them.
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3.8 Fermion Sector and The Second Symmetry Breaking Matrix (Model 2)

The only parts of our Lagrangian for model 1 (23) that we missed out in the previous chapter were

the terms involving fermions. In this section, we will look at another model of Pati-Salam and we will

consider the fermion sector. Let us start again by taking the gauge group SU(4)×SU(2)L×SU(2)R,

and supposing we have two Higgs fields. The first one, φ, transforms in the representation (4, 1, 2)

(exactly as before) and is responsible for the symmetry breaking into the unbroken standard model.

The second one, χ, transforms trivially under SU(4) and in the fundamental representation of both

SU(2)L and SU(2)R and is responsible for electroweak symmetry breaking. The gauge sector is

identical to model 1 (as should be expected), besides the obvious change in coupling between Higgs

and gauge fields.

The difference between the models then begins to arise when one considers the potential term and

the fermion sector. It turns out that the most general potential term for this model takes a rather

complicated form [19], and it will not aid our subsequent explorations to write this potential explicitly.

Since we have already made a detailed and explicit calculation demonstrating the symmetry breaking

pattern directly from a potential in model 1, we will not repeat that process for the even more

complicated potential given in model 2. Let us again begin by recalling the Lagrangian for model 2,

L =− 1

2
Tr
[
GµνG

µν + FLµνF
µν
L + FRµνF

µν
R

]
+Dµχ

I
iD

µχiI +DµφiαD
µφiα

+ iψ̄Lγ
µDµψL + iψ̄Rγ

µDµψR + λ1(ψLIαχ
I
iψ

iα
R + ψIαL χiIψRiα)

+ λ2(ψLIαχ̃
I
iψ

iα
R + ψIαL χ̃iIψRiα)− [−2α2

Rφiαφ
iα + βR1(φiαφ

iα)2

+ βR2φiαφ
jαφjβφ

iβ + V (φ, χ)],

(83)

with λ1 and λ2 real. Some definitions are now in order for this Lagrangian. Firstly, as mentioned the

Higgs field χ is in the representation (1,2,2) (with complex components) and is given by

χ=

(
χ1

1 χ1
2 χ2

1 χ2
2

)
. (84)
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Note that (following notation used in [19]) χIi has indices i and I above, corresponding to SU(2)R

and SU(2)L respectively. Again, we use the notation where superscript and subcscript indices are

transpose conjugates of one another, meaning here for example that χIi is the transpose conjugate

of χiI . We also need to form another bidoublet χ̃Ii with the same transformation law, namely

χ̃ =

(
(χ2

2)∗ −(χ2
1)∗ −(χ1

2)∗ (χ1
1)∗

)
. (85)

We also define the covariant derivative for χ above as Dµ = (∂µ + igLA
µat

′a), for a = 1, 2, 3, 4, 5, 6,

where the first three components correspond to SU(2)L and the final three to SU(2)R (with the usual

order for the Pauli matrices). This implies that our gauge fields are defined as

Aaµ =

 AaµL for a = 1,2,3,

A
(a−3)µ
R for a = 4,5,6 .

(86)

Also, we then define our generators as

a=1,2,3, t
′a =

δ11t
a δ12t

a

δ21t
a δ22t

a

 =

ta 0

0 ta

 (87)

and for

a=4,5,6, t
′a =

gR
gL

ta 0

0 ta

 . (88)

Finally, the covariant derivative associated to φ is the same as in model 1. Let us now define the fields

that constitute the fermion sector. These are denoted above as ψR and ψL, and we suppose that they

transform in the representations (4, 1, 2) and (4, 2, 1) of our gauge group. Using the gamma matrices

we also define above ψ̄R ≡ ψ†Rγ
0 and ψ̄L ≡ ψ†Lγ

0. These objects may seem more complicated than

standard model fermions, but in fact they are simpler. As SU(4) vectors, the four components consist
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of the three colors of the quarks, and the lepton (in that order). For example, the up quark (green,

blue, then red) and the electron neutrino. Then, as an SU(2) vector, they are the usual up-down

or charged lepton-neutrino pair we are used to from the standard model. The left and right handed

fermion representations indeed represent the two chiralities of fermions that exist in the standard

model. Thus, as advertised, Pati-Salam unifies quarks and leptons into a single representation, and

treats left and right handed fermions equally, thereby simplifying the theory.

We already know what kind of objects these fermions are, since they appear in precisely the same

representations as our Higgs fields from model 1. We will view them as 8-tuplets with the components

mentioned above in the same order we had for φ earlier in equation (26). To avoid any ambiguity, the

first family of left handed fermions, for example, is given by

ψL =



ugL

ubL

urL

νeL

dgL

dbL

drL

eL



=



ψL11

ψL12

ψL13

ψL14

ψL21

ψL22

ψL23

ψL24



. (89)

Let us note that we ignored 2 families of fermions in the expression above for simplicity- of course, all

of the terms involving fermions in the Lagrangian above should be repeated for every generation of

fermions.

Finally, then, we wish to verify the symmetry breaking pattern and therefore the particle spectrum.

It is easy to verify that given the vev

χ0 =

(
u1 0 0 u2

)
(90)

with real parameters u1 and u2, one obtains the correct symmetry breaking pattern from SU(3) ×
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SU(2)L × U(1)Y into the broken standard model gauge group SU(3) × U(1)Q upon construction of

the symmetry breaking matrix as usual. Let us explicitly demonstrate that.

We recall that the first symmetry breaking occurs in the same way for both models - that is, a right

handed Higgs field φ in the representation (4, 1, 2) of SU(4) × SU(2)L × SU(2)R. This gave us the

symmetry breaking matrix S, with 9 broken generators, leaving the unbroken standard model gauge

group as our residual symmetry group. Then, we need to choose which generators to include for this

new symmetry breaking matrix, which takes us to the broken standard model gauge group. Since our

new Higgs field, χ, is in the representation (1, 2, 2), we would normally expect to have 6 generators

altogether, belonging to the two SU(2) groups involved.

However, the group SU(2)R has already been broken. In fact, only the diagonal element of SU(2)R,

when taken together with the diagonal element of SU(4), forms the new unbroken U(1)Y subgroup.

Therefore, it is this generator that will play a part in the symmetry breaking matrix, where we shall

ignore the SU(4) generator since χ transforms trivially under it.

Then, we take the remaining four unbroken generators from our definitions above, i.e.

for

a=1,2,3, t
′a =

ta 0

0 ta

 (91)

and for

a=4, t
′a =

gR
gL

ta 0

0 ta

 . (92)

.
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Then, with the vev defined earlier,

χ0 =

(
u1 0 0 u2

)
, (93)

,

we construct S
′′ab = χ†0

{
t
′a, t

′b
}
χ0,

from which, we find the symmetry breaking matrix

S
′′

=



u2
1 + u2

2 0 0 0

0 u2
1 + u2

2 0 0

0 0 u2
1 + u2

2
gRu2

1
gL

+
gRu2

2
gL

0 0
gRu2

1
gL

+
gRu2

2
gL

g2Ru2
1

g2L
+

g2Ru2
2

g2L


, (94)

which, when diagonalised, gives us the matrix

Diag(0, u2
1 + u2

2, u
2
1 + u2

2,
(
g2
L + g2

R

)(u2
1

g2
L

+
u2

2

g2
L

)
). (95)

Indeed, as is expected, 3 further generators are broken (3 non zero eigenvalues), leaving only a single

unbroken generator which corresponds to a linear combination of U(1)Y and SU(2)L, also known as

electric charge generator Q. Moreover, we find three massive gauge bosons, two of equal mass and

one slightly heavier, as is required for the weak force. Thus, we have now shown that electroweak

symmetry breaking in Pati-Salam has two valid routes- one via a (4, 2, 1) Higgs, and another via the

(1, 2, 2) Higgs bidoublet. Given the representations stated above for our Higgs fields, we now know

that (alongside the gauge boson spectrum which is the same as model 1) we obtain 7 massive Higgs

particles from φ and 5 massive Higgs particle from χ. Having defined our objects in the Lagrangian

(24) and derived our symmetry breaking pattern, let us talk about fermions in more detail.
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3.9 The Fermion Masses (Model 2)

We could have chosen to introduce the fermion sector in model 1, and there is a perfectly valid sector

to discuss in that framework [19]. However, since our goal has been to explore the simplest formulation

of Pati-Salam which reproduces the correct symmetry breaking pattern and is able to qualitatively

discuss fermions, we are better off diverting our attention to the Higgs bidoublet model. This is due

to the fact that it is impossible (unlike the second model) to write down invariant Yukawa terms that

couple a left handed fermion field⇐⇒ left / right handed Higgs fields⇐⇒ right handed fermion field,

if the Higgs fields are in the representations used in the first model. In particular, all of the above 3

fields would be in either the fundamental or conjugate representations of SU(4), ie the representation

4 or 4̄. But this means that the only possible representations of the combined object (as is shown in

page 11 of Ref. [19]) are

4⊗ 4⊗ 4 = 20⊕ 20⊕ 20⊕ 4̄,

4̄⊗ 4⊗ 4 = 36⊕ 4⊕ 20⊕ 4,

4̄⊗ 4̄⊗ 4̄ = 3̄6⊕ 4̄⊕ 20⊕ 4,

(96)

none of which allow for singlets (as would be needed for any object in the Lagrangian). This means

that the fermion mass terms do not arise in the usual simple way from the Yukawa terms, but rather

due to radiative loop corrections [20] that also require the addition of a sterile neutrino into the theory.

This added complication does not contribute to our understanding of the fermion sector, nor does it

help us to demonstrate where violation of lepton universality might arise from- therefore we choose to

set it aside and focus on the second model instead. More information on the fermion sector related to

the first model can be found in Ref. [20]. Let us now return to our new Lagrangian (24) and explicitly

read off the masses from the Yukawa terms (for one generation, as the rest will be similar). To do

this, we recall that the relevant terms are

λ1(ψLIαχ
I
iψ

iα
R + ψIαL χiIψRiα) + λ2(ψLIαχ̃

I
iψ

iα
R + ψIαL χ̃iIψRiα). (97)
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We also recall the form of our fermions

ψL =



ugL

ubL

urL

νeL

dgL

dbL

drL

eL



. (98)

Finally, we recall our fields

χ=

(
χ1

1 χ1
2 χ2

1 χ2
2

)
(99)

and

χ̃ =

(
(χ2

2)∗ −(χ2
1)∗ −(χ1

2)∗ (χ1
1)∗

)
, (100)

and our vev

χ0 =

(
u1 0 0 u2

)
. (101)

Using the above, we substitute the appropriate fields into (97) and evaluate on our Higgs vev χ0 to

find that

L = λ1(ψLIαχ
I
iψ

iα
R + ψIαL χiIψRiα) + λ2(ψLIαχ̃

I
iψ

iα
R + ψIαL χ̃iIψRiα)

= λ1(u1ψL1αψ
1α
R + u2ψL2αψ

2α
R ) + λ2(u2ψL1αψ

1α
R + u1ψL2αψ

2α
R )

= u1(λ1ψL1αψ
1α
R + λ2ψL2αψ

2α
R ) + u2(λ1ψL2αψ

2α
R + λ2ψLaαψ

1α
R )

= u1(λ1(ūcLu
c
R + ν̄eLνeR) + λ2(d̄cLd

c
R + ēLeR)) + u2(λ2(ūcLu

c
R + ν̄eLνeR) + λ1(d̄cLd

c
R + ēLeR))

= (u1λ1 + u2λ2)(ūcLu
c
R + ν̄eLνeR) + (u1λ2 + u2λ1)(d̄cLd

c
R + ēLeR)),

(102)

where double superscripts c denote a sum over the three colors. We find that the neutrinos have the

same mass as the up quarks, and the electrons (or analogous charged leptons for the other two families)

have the same mass as the down quarks. We therefore see that our theory now additionally predicts
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massive fermions, albeit with masses that do not currently match the standard model. In both models,

radiative corrections to the masses are required to obtain mass hierarchies for the particle spectra [19].

Nevertheless, for our purposes this is sufficient and now that we understand the fundamental structure

of Pati-Salam, we may finally move on to discuss violation of lepton universality and why Pati-Salam

might predict this.
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4 Lepton Universality and Pati-Salam

4.1 Source of Violation in Pati-Salam

In this final Chapter, we would like to give an idea of how Pati-Salam might predict violation of lepton

universality, as well as to mention the results of various experiments over the years which seem to be

for or against it. Let us recall the notion of lepton universality.

As shown in chapter 2, in the standard model all charged leptons interact in the same way with the

electroweak gauge bosons (the only difference, which can be accounted for, being their masses) [21].

This means that when one calculates the frequency with which standard model processes should

produce these leptons as decay products, all three types of charged leptons should be produced at

exactly the same rate [21]. In other words, given some standard model processes which produce charged

leptons, the ratio of the production of (for example) muons to electrons should converge to one, as the

processes are measured many times. However, if there were other interaction terms in the Lagrangian,

perhaps mediated via some as of yet undiscovered bosons, which did couple differently to different

charged leptons, one would expect these ratios to converge to some other number, different than one.

For example, a process currently being investigated experimentally is the decay of B-mesons into a

D-mesons, where a new contribution coming from a mediating exotic particle is being considered [11]

(much more detail and references will be given in the next subsection). This mediating boson, which

decays into a charged lepton and its corresponding neutrino, might couple to these charged leptons

differently, and thus the ratio of lepton production for different generations would be distinct in such

a process [22].

Indeed, various recent experiments [9], which we will soon discuss, have suggested that these ratios are

not quite equal to the predictions made by the standard model, assuming lepton universality. Given

the experimental error, these statistical deviations are not individually significant enough to conclude

with certainty that lepton universality is truly violated [22]. However when one considers the various

experiments for a variety of processes, all of which have noted a slight deviation, there is at the very

least cause to inspect other GUT’s which may be able to predict such deviations.

With the above in mind, let us see whether our Lagrangians (23), (24) can indeed predict violation
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of lepton universality, at least in principle. As mentioned above, this would mean that in some way,

we should be able to find interaction terms in the above Lagrangian for which the charged leptons

differ from one another, so that there will be some kind of deviation in the rate at which each one is

produced from certain standard processes.

Looking more closely then at the kinetic terms associated with our left and right handed fermions

(recalling that we should have a copy for each generation of fermions), we consider the terms

iψ̄Lγ
µDµψL + iψ̄Rγ

µDµψR. (103)

Let us ignore the partial derivative term. Then, ignoring also the generators associated to SU(2)L

and SU(2)R (since it is our new gauge group SU(4) that we hope can introduce new interaction terms

to differentiate the charged leptons), we consider only the SU(4) gauge field interaction terms, with

generators as defined in Chapter 3, giving

iψ̄Lγ
µGAµT

AψL + iψ̄Rγ
µGAµT

AψR. (104)

Moreover, ignoring the generators associated to SU(3) (again, these aren’t the ones we expect to give

us new interaction terms as they already appear in the standard model), let us for now consider the 6

leptoquarks (see the definition of Ĝµ on page 2 of Ref. [23] to find the leptoquarks X−µ , X
+
µ ), i.e. the

generators for A= 9,10,...,14. Then, the remaining terms are

iψ̄Lγ
µXA

µ T
AψL + iψ̄Rγ

µXA
µ T

AψR. (105)

Finally, expanding these terms and including the 3 generations of fermion families we find

interaction terms of the form

iν̄eγ
µX−µ u+ iēγµX−µ d+ iν̄µγ

µX−µ c+ iµ̄γµX−µ s+ iν̄τγ
µX−µ t+ iτ̄γµX−µ b+ h.c., (106)

from which we may finally note that the charged leptons are each coupled to a leptoquark ( X−, with

hermitean conjugate X+) and more importantly a different quark to one another. Therefore, since
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quarks are non universal in the standard model (see Chapter 2), this would indeed indicate that lepton

universality should be broken, when such processes are taken into account.

Finally, let us mention that the above exploration gives the ’basic’ foundation for lepton universality

violation in Pati-Salam, via the existence of a mediating vector leptoquark X. In practice, more

complicated variants of Pati-Salam have been used to explain this violation. However, the majority

of them do still rely on these leptoquarks which, being gauge fields and thus intrinsic to the choice

of gauge group SU(4) × SU(2)L × SU(2)R, appear in almost all of these variants. Therefore, our

efforts above are still relevant in that they demonstrate the origin of the vector leptoquarks, which

often constitute the fundamental cause for the violation of lepton universality in these models. It is

worth mentioning, however, that other Pati-Salam variants involving scalar leptoquarks (for example

in Ref. [11]) have also been suggested as an explanation for lepton universality violation.

Having motivated the origin of the violation of lepton universality in Pati-Salam, let us mention some

of the experiments over the years that produced evidence for or against it.

4.2 Tests of Lepton Universality

Our aim in this section is not to give a detailed phenomenological breakdown of the experiments that

have been performed over the years, testing lepton universality. Indeed, this section is aimed also at

theorists and therefore does not presuppose much knowledge of experimental particle physics.

Lepton universality in the standard model was motivated in Chapter 2, with an emphasis on the

gauge coupling of leptons from different generations to the W bosons. However, the universality refers

also to the couplings of leptons to the photon γ and Z boson. In fact, measurements as far back

as 2005 [24] have produced data in support of lepton universality of the charged leptons in the so-

called ’Neutral Current’ interactions, mediated via the Z bosons. These experiments found that, to

within a precision of the order of 0.1 percent, the ratio of branching fractions measured experimentally

agrees with predictions based on lepton universality. Let us be more explicit about what we mean

by branching fraction. For the Neutral Current interactions, the electron branching fraction for the

Z boson would be the number of Z particles which decay into electrons, divided the total number of

Z particle decays. In other words, if the Z boson decays into electrons 10 percent of the time, the
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branching fraction would be 0.1.

Then, the 2005 paper [24] shows that the ratios of branching fractions B for different charged leptons

are given by

B(Z → µµ)

B(Z → ee)
= 1.0009± 0.0028, (107)

and

B(Z → ττ)

B(Z → ee)
= 1.0019± 0.0032. (108)

Another set of observables, the ’leptonic asymmetry paramters’ Al (which we will not define here,

detailed discussion may be found in Ref. [24] ) also yielded results which agree with lepton universality,

however to a lower precision of the order of 1 percent. A more in depth summary of the above results

is discussed in detail in Ref [25].

Moving on to lepton universality tests via the charged W bosons, in 2013 experiments measured the

ratios of the different lepton branching fractions of the W bosons [26]. These results have produced

a mix of evidence, some in support of lepton universality and some that hint at its violation. More

concretely, the ratio

B(W → µν)

B(W → eν)
= 0.993± 0.019, (109)

agrees with lepton universality to a precision of about 2 percent, while

B(W → τν)

B(W → lν)
= 1.066± 0.025, (110)

deviates from the predicted value by 2.6 standard deviations, when lepton universality is assumed.

The denominator above represents the average branching fraction of the electron and muon.

Other experiments measuring partial widths (observables which are closely related to branching frac-

tions) seem to also be in support of the universality of electrons and muons, as is discussed in Ref. [25]

and shown in detail in the 2018 review [27]. As is mentioned in [9], the larger mass of the τ may

make B hadron decays into this heavier charged lepton more sensitive to ’new physics’ effects (and

thus more readily manifest violation of lepton universality) than its lighter counterparts.

Indeed, the most significant hints of the violation of lepton universality recently come from these
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’semitauonic B decays’ described above. These experiments [28–37] yielded the results

R(D) =
B(B̄0 → τ−ν̄τD

+)

B(B̄0 → l−ν̄lD+)
= 0.340± 0.027± 0.013, (111)

and

R(D∗) =
B(B̄0 → τ−ν̄τD

∗+)

B(B̄0 → l−ν̄lD∗+)
= 0.295± 0.011± 0.008, (112)

deviating from standard model predictions by 1.4σ and 2.5σ respectively (see [25] for more detail),

the combined deviation [38] corresponding to 3.1σ.

As we can see, there is an accumulation of data over the years hinting more and more at the violation

of lepton universality. Motivated by such results, Pati-Salam variants of the basic model analysed in

this paper have been suggested in recent years [11, 39, 40]. In particular, in Ref. [11] the Pati-Salam

variant capable of producing an explanation for the observed values of R(D∗) above requires extending

the basic Pati-Salam model to include the existence of a light right-handed neutrino.
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5 Conclusions and Caveats

Some natural questions (and from these subtleties) arise from the developments we’ve made in the

previous chapter, regarding violation of lepton universality.

Firstly, one may worry: do these new interactions (106) mediated by the leptoquarks imply the

violation of baryon number? If so, how is this reconciled with the standard model? Indeed, at first

glance it seems that baryon and lepton numbers could be violated by such interactions. In fact,

these leptoquarks themselves carry the lepton and baryon numbers needed to exactly cancel out any

discrepancy [41], thus maintaining the conservation of these numbers. However, the conservation of

baryon number (at the classical level) is an ‘accidental symmetry’ [42] of the standard model, so it

is unclear what results in baryon number conservation for GUT extensions. Moreover, if this isn’t a

general requirement on GUT’s, why do we still find that Pati-Salam seems to conserve baryon number?

It turns out that much like the conservation of B is an accidental symmetry of the standard model, so

too is the conservation of B+L an accidental symmetry of the (broken) Pati-Salam group [41], [40].

Combined with the exact B-L symmetry (associated to the diagonal element of SU(4), T
′15 ) inherent

to Pati-Salam, one indeed finds conservation of baryon number. This, for example, is why the proton

is stable in Pati-Salam models [40], unlike certain other GUT’s, and thus is still a viable alternative

to the standard model.

Secondly, it is interesting to note that the appearance of massive neutrinos in Pati-Salam models mean

that the ’usual’ reason for lepton flavor universality, shown in chapter 2, is no longer apparent. In

fact, it seems like there could now be inter generational mixing associated to the kinetic terms for

leptons, i.e. interactions which can even violate lepton flavor universality.

We conclude by reiterating that the main purpose of this paper has been to 1) explore the different

paths one should take when trying to understand a GUT and 2) demonstrate where violation of

lepton universality might arise in Pati-Salam, which is useful to understand both because current data

suggests this might be the case (and if so, would mean the standard model is incorrect) and because

it gives us a concrete idea of how different GUT’s may predict different phenomenon. Indeed, we

explored how one may quickly check whether the symmetry breaking pattern of a GUT can reduce

to the standard model via computation of the symmetry breaking matrix, as well as how to obtain
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the particle spectrum of the theory, before and after symmetry breaking. We demonstrated where

new interaction vertices might arise, and how these can give predictions that differ from the standard

model. We have not addressed the issue of fermion mass hierarchies, nor have we discussed the running

of the Pati-Salam coupling or the phenomenological aspects of our theory, beyond the discussion of

leptoquarks and the results of experiments for or against lepton universality. A lot of work has been

done on Pati-Salam which addresses some of the more subtle and complex issues mentioned above, and

may be found in Ref. [19], and [23]. The goal we had hoped to achieve with this paper is to create some

sort of bridge for theoreticians who wish to gain conceptual access to the theoretical investigations

of the Pati-Salam Grand Unified Theory. It was written in such a way so as to make the study of

Grand Unified Theories seem like a less mysterious and opaque pursuit, for those currently unfamiliar

with it beyond knowledge of the standard model of particle physics. In particular, this paper aims to

deliver an explicit account (for the first time, to the best of our knowledge) of the fundamentals of

the Pati-Salam model.

Given the difficulties theoretical physics has faced over the recent decades, and motivated by the

accumulation of experimental data from CERN hinting at new physics, it seems that now is a good

time to explore typical GUT’s with predictions for beyond the LHC energies to their full extent.
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A Symmetry Breaking of Pati-Salam Into Unbroken Standard Model

The following calculation is an explicit verification of the fact that after the first symmetry breaking

pattern, SU(4) × SU(2)L × SU(2)R 7→ SU(3) × SU(2) × U(1)Y , the 16 massive Higgs particles

(associated to φ) in Lagrangian 25 should reduce to only 7 massive Higgs particles, reflecting the

9 broken generators after symmetry breaking has occured. Let φiα be the complex 8-tuplet (with

transpose conjugate φiα), and write φiα = ϕiα + φiα0 . As mentioned earlier, the vev φ0 is of the form

φ0iα =

(
0 0 0 vR√

2
0 0 0 0

)
, (113)

where φiα0 φ0iα =
vR

2

2
=

α2
R

βR1 + βR2
. Note, in the following calculation I will only select out the second

order terms in the fields ( and the equals sign should be understood in this sense) since these reflect

the particle spectrum.

Then, expanding our potential around φ0, we have
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V (φ) = −2α2
Rφiαφ

iα + βR1(φiαφ
iα)2 + βR2φiαφ

jαφjβφ
iβ

≈ −2α2
Rϕiαϕ

iα + βR1(ϕiαφ
iα
0 + ϕiαφ0iα)(ϕjβφ

jβ
0 + ϕjβφ0jβ) + 2βR1ϕiαϕ

iαφ0jβφ
jβ
0

+ βR2(ϕiα + φ0iα)(ϕjα + φjα0 )(ϕjβ + φ0jβ)(ϕiβ + φiβ0 )

≈ −2α2
R(ϕ2

11 + ϕ2
12 + ϕ2

13 + ϕ2
14 + ϕ2

21 + ϕ2
22 + ϕ2

23 + ϕ2
24)

+ 2βR1Re(ϕ14)2v2
R + vR

2βR1(ϕ2
11 + ϕ2

12 + ϕ2
13 + ϕ2

14 + ϕ2
21 + ϕ2

22 + ϕ2
23 + ϕ2

24)

+ βR2(ϕiαϕ
jαφ0jβφ

iβ
0 + ϕiαϕjβφ

jα
0 φiβ0 + ϕiαϕ

iβφjα0 φ0jβ

+ ϕjαϕjβφ0iαφ
iβ
0 + ϕjαϕiβφ0iαφ0jβ + ϕjβϕ

iβφ0iαφ
jα
0 )

≈ −2α2
R(ϕ2

11 + ϕ2
12 + ϕ2

13 + ϕ2
14 + ϕ2

21 + ϕ2
22 + ϕ2

23 + ϕ2
24)

+ 4βR1
α2
R

βR1 + βR2
Re(ϕ14)2 + 2βR1

α2
R

βR1 + βR2
(ϕ2

11 + ϕ2
12 + ϕ2

13 + ϕ2
14 + ϕ2

21 + ϕ2
22 + ϕ2

23 + ϕ2
24)

+ βR2
vR

2

2
(ϕ1αϕ

1α + ϕ14ϕ14 + ϕi4ϕ
i4 + ϕi4ϕi4 + ϕ14ϕ14 + ϕ1αϕ

1α)

≈ −2α2
R(ϕ2

11 + ϕ2
12 + ϕ2

13 + ϕ2
14 + ϕ2

21 + ϕ2
22 + ϕ2

23 + ϕ2
24)

+ 4βR1
α2
R

βR1 + βR2
Re(ϕ14)2 + 2βR1

α2
R

βR1 + βR2
(ϕ2

11 + ϕ2
12 + ϕ2

13 + ϕ2
14 + ϕ2

21 + ϕ2
22 + ϕ2

23 + ϕ2
24)

+ βR2
α2
R

βR1 + βR2
(2(ϕ2

11 + ϕ2
12 + ϕ2

13 + ϕ2
14) + 2(ϕ2

14 + ϕ2
24) + 2(Re(ϕ14)2 − Im(ϕ14)2))

≈ −2α2
R(ϕ2

11 + ϕ2
12 + ϕ2

13 + ϕ2
14 + ϕ2

21 + ϕ2
22 + ϕ2

23 + ϕ2
24)

+ 2βR1
α2
R

βR1 + βR2
(ϕ2

11 + ϕ2
12 + ϕ2

13 + ϕ2
14 + ϕ2

21 + ϕ2
22 + ϕ2

23 + ϕ2
24)

+ 2βR2
α2
R

βR1 + βR2
(ϕ2

11 + ϕ2
12 + ϕ2

13 + ϕ2
14 + ϕ2

24 + 2Re(ϕ14)2) + 4βR1
α2
R

βR1 + βR2
Re(ϕ14)2)

≈ 2α2
R((

βR1

βR1 + βR2
− 1)(|ϕ21|2 + |ϕ22|2 + |ϕ23|2) + 2Re(ϕ14)2)).

(114)

The above calculation demonstrates that we have 7 remaining massive Higgs bosons, with the 9

Goldstone bosons no longer present in our Lagrangian (as expected). Indeed, the number of degrees of

freedom agrees with our prediction: 7 massive Higgs bosons , 9 massive gauge bosons and 12 massless
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gauge bosons equals 58 degrees of freedom, in agreement with the number of degrees of freedom before

symmetry breaking.

For completeness purposes, let us write down the above potential without assuming the vev condition

φiα0 φ0iα =
vR

2

2
=

α2
R

βR1 + βR2
, since as showed at an earlier chapter, considering the full Lagrangian

(23) we would find a different condition on our vevs. Repeating the above calculation therefore, we

find that

V (φ) = (−2α2
R + v2

RβR1)(|ϕ21|2 + |ϕ22|2 + |ϕ23|2) + (−2α2
R + 3βR1v

2
R + 3βR2v

2
R)Re(ϕ14)2

+ (−2α2
R + v2

RβR1 + v2
RβR2)(|ϕ11|2 + |ϕ12|2 + |ϕ13|2 + Im(ϕ14)2) + |ϕ24|2),

(115)

and we note that indeed assuming the vev condition written above, we retrieve our result in (114).
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B Model 1 Electroweak Symmetry Breaking Pattern

Adapting the potential given in [19] for model 1, and ignoring only the final term ( since we are

interested in the simplest possible potential that reproduces the correct symmetry breaking pattern)

we have that

V (φ, ψ) = −2α2
Rφiαφ

iα + βR1(φiαφ
iα)2 + βR2φiαφ

jαφjβφ
iβ

− 2α2
Lψiαψ

iα + βL1(ψiαψ
iα)2 + βL2ψiαψ

jαψjβψ
iβ

+ αLR1ψiαψ
iαφjβφ

jβ + αLR2ψiαφ
jαψiβφjβ,

(116)

with vevs φ0 and ψ0 in the forms given by (59) and (60).

Before going into the rather involved calculation, let us note some simplifying ’facts’:

1. The underlined terms are the ones used in the potential (34) are wholly responsible for the

initial symmetry breaking pattern. Thus, we shall enforce that the terms involving φ in the final

potential predict the same particle spectrum for φ as the potential in (34) does.

2. To ensure the above, we will use our gauge freedom and work in the unitary gauge, which

eliminates 9 components from φ, namely the ones corresponding to the Goldstone bosons.

3. Since the second line is in fact identical to the first, with the exception of φ 7→ ψ and R 7→ L,

and since both vevs φ0 and ψ0 have the same form, we may skip the calculation for the second

line and simply use the final answers from (114) when the condition αLR1 = −αLR2 is assumed,

and (115) otherwise, augmented appropriately.

4. We will denote by T1 the term involving αLR1 and T2 the term involving αLR2.

5. The following is true for any complex numbers w, z:

zw + z̄w̄ = 2(Re(z)Re(w)− Im(w)Im(z))

zw̄ + z̄w = 2(Re(z)Re(w) + Im(w)Im(z))

6. Finally, as we’ve done before, we are only interested in the second order terms of our Higgs

fields. Thus, the equal sign should be understood to only take into account those terms.
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Then, letting ψ = Ψ + ψ0 and φ = ϕ+ φ0, we have that

T1 = αLR1ψiαψ
iαφjβφ

jβ

= αLR1(Ψiα + ψ0iα)(Ψiα + ψ0iα)(ϕjβ + φ0jβ)(ϕjβ + φ0jβ)

≈ αLR1((|Ψ11|2 + |Ψ12|2 + |Ψ13|2 + |Ψ14|2 + |Ψ21|2 + |Ψ22|2 + |Ψ23|2 + |Ψ24|2)
v2
R

2

+ (|ϕ11|2 + |ϕ12|2 + |ϕ13|2 + |ϕ14|2 + |ϕ21|2 + |ϕ22|2 + |ϕ23|2 + |ϕ24|2)
v2
L

2

+ ϕ14
vL√

2
(Ψ14

vR√
2

+
vR√

2
Ψ14) +

vL√
2
ϕ14(Ψ14

vR√
2

+ Ψ14 vR√
2

))

= αLR1((|Ψ11|2 + |Ψ12|2 + |Ψ13|2 + |Ψ14|2 + |Ψ21|2 + |Ψ22|2 + |Ψ23|2 + |Ψ24|2)
v2
R

2

+ (|ϕ11|2 + |ϕ12|2 + |ϕ13|2 + |ϕ14|2 + |ϕ21|2 + |ϕ22|2 + |ϕ23|2 + |ϕ24|2)
v2
L

2

+ ϕ14vLvRRe(Ψ14) + ϕ14vLvRRe(Ψ14))

= αLR1(|ϕ|2 + |Ψ|2 + 2vLvRRe(ϕ14)Re(Ψ14)).

(117)

Let us now move on to T2. We find that

T2 = αLR2ψiαφ
jαψiβφjβ

= αLR2(Ψiα + ψ0iα)(ϕjα + φjα0 )(Ψiβ + ψiβ0 )(ϕjβ + φ0jβ)

≈ αLR2(
v2
L

2
(|ϕ14|2 + |ϕ24|2) +

v2
R

2
(|Ψ14|2 + |Ψ24|2)

+ ϕ1αΨ1α vLvR
2

+ ϕ14
vLvR

2
Ψ14 +

vLvR
2

ϕ1αΨ1α +
vLvR

2
Ψ14ϕ14)

= αLR2(
v2
L

2
(|ϕ14|2 + |ϕ24|2) +

v2
R

2
(|Ψ14|2 + |Ψ24|2) + vLvR(2Re(ϕ14)Re(Ψ14))

+ Re(ϕ11)Re(Ψ11) + Im(ϕ11)Im(Ψ11) + Re(ϕ12)Re(Ψ12)

+ Im(ϕ12)Im(Ψ12) + Re(ϕ13)Re(Ψ13)

+ Im(ϕ13)Im(Ψ13)),

(118)

where we have used condition number five about complex numbers to simplify the last 3 lines in T2.

Recalling that we know the non mixing terms for the Ψ field from condition number three, we now

have all of the relevant terms to write down the full potential term (116), as centred around our new
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non-zero vevs φ0 and ψ0.

We find that

V (ϕ+ φ0,Ψ + ψ0) ≈ (−2α2
R + v2

RβR1)(|ϕ21|2 + |ϕ22|2 + |ϕ23|2) + (−2α2
R + 3βR1v

2
R + 3βR2v

2
R)Re(ϕ14)2

+ (−2α2
R + v2

RβR1 + v2
RβR2)(|ϕ11|2 + |ϕ12|2 + |ϕ13|2 + Im(ϕ14)2) + |ϕ24|2)

+ (−2α2
L + v2

LβL1)(|Ψ21|2 + |Ψ22|2 + |Ψ23|2) + (−2α2
L + 3βL1v

2
L + 3βL2v

2
L)Re(Ψ14)2

+ (−2α2
L + v2

LβL1 + v2
LβL2)(|Ψ11|2 + |Ψ12|2 + |Ψ13|2 + Im(Ψ14)2) + |Ψ24|2)

+ αLR1((|Ψ11|2 + |Ψ12|2 + |Ψ13|2 + |Ψ14|2 + |Ψ21|2 + |Ψ22|2 + |Ψ23|2 + |Ψ24|2)
v2
R

2

+ (Re(ϕ14)2 + |ϕ21|2 + |ϕ22|2 + |ϕ23|2)
v2
L

2
+ 2vLvRRe(ϕ14)Re(Ψ14))

+ αLR2(
v2
L

2
(Re(ϕ14)2) +

v2
R

2
(|Ψ14|2 + |Ψ24|2) + 2vLvRRe(ϕ14)Re(Ψ14)

+ Re(ϕ11)Re(Ψ11) + Im(ϕ11)Im(Ψ11) + Re(ϕ12)Re(Ψ12)

+ Im(ϕ12)Im(Ψ12) + Re(ϕ13)Re(Ψ13) + Im(ϕ13)Im(Ψ13)).

(119)

Now let us use condition number two and implement our unitary gauge, whereby the components

Im(ϕ14),Re(ϕ11), Im(ϕ11),

Re(ϕ12), Im(ϕ12),Re(ϕ13), Im(ϕ13),Re(ϕ24), Im(ϕ24) all equal 0. Then, our potential simplifies to

V (ϕ+ φ0,Ψ + ψ0) ≈ (−2α2
R + v2

RβR1)(|ϕ21|2 + |ϕ22|2 + |ϕ23|2) + (−2α2
R + 3βR1v

2
R + 3βR2v

2
R)Re(ϕ14)2

+ (−2α2
R + v2

RβR1 + v2
RβR2)(|ϕ11|2 + |ϕ12|2 + |ϕ13|2 + Im(ϕ14)2) + |ϕ24|2)

+ (−2α2
L + v2

LβL1)(|Ψ21|2 + |Ψ22|2 + |Ψ23|2) + (−2α2
L + 3βL1v

2
L + 3βL2v

2
L)Re(Ψ14)2

+ (−2α2
L + v2

LβL1 + v2
LβL2)(|Ψ11|2 + |Ψ12|2 + |Ψ13|2 + Im(Ψ14)2) + |Ψ24|2)

+ αLR1((|Ψ11|2 + |Ψ12|2 + |Ψ13|2 + |Ψ14|2 + |Ψ21|2 + |Ψ22|2 + |Ψ23|2 + |Ψ24|2)
v2
R

2

+ (Re(ϕ14)2 + |ϕ21|2 + |ϕ22|2 + |ϕ23|2)
v2
L

2
+ 2vLvRRe(ϕ14)Re(Ψ14))

+ αLR2(
v2
L

2
(Re(ϕ14)2) +

v2
R

2
(|Ψ14|2 + |Ψ24|2) + 2vLvRRe(ϕ14)Re(Ψ14)).

(120)
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Finally, choosing to further simplify by allowing αLR1 = −αLR2 (which gives us vev norms of the form

(59) and (60)), then by collecting like terms, we find that our potential is given by

V (ϕ+ φ0,Ψ + ψ0) ≈ 2α2
R((

βR1

βR1 + βR2
− 1

2α2
R

α2
L

βL1 + βL2
− 1)(|ϕ21|2 + |ϕ22|2 + |ϕ23|2) + 2Re(ϕ14)2))

+ 2α2
L((

βL1

βL1 + βL2
− 1)(|Ψ21|2 + |Ψ22|2 + |Ψ23|2) + 2Re(Ψ14)2))

+ αLR1((|Ψ11|2 + |Ψ12|2 + |Ψ13|2 + |Ψ21|2 + |Ψ22|2 + |Ψ23|2)
α2
R

βR1 + βR2
,

(121)

from which we may read off the correct number of non zero Higgs fields components that would be

required to reproduce the broken standard model gauge group.
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