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Abstract

With the construction of LIGO and VERGO, there has been a plethora of new research

in to what gravitational waves may tell us about the universe. At the moment, the only

information we have about the primordial gravitational waves comes from observing the

CMB. Although unlikely to be seen by the first generation of observatories, it is important

to make predictions of the primordial gravitational wave spectrum now before it has

been measured. We look at the possible primordial gravitational waves produced by a

non-specific theory of inflation. We start with a review of some of the theory for linearised

General Relativity, first with a massless graviton and then also for the massive case. The

linearised action is derived in each case for Minkowski and FRW spacetimes. We also

delve a little into bimetric gravity’s prediction for the primordial spectrum in a low energy

limit using the dRGT Lagrangian.

2



Acknowledgements

My most important thanks has to go out to my parents who not only made this year possible,

but my whole schooling up to this point. They have given me the chance to follow my desires

at university and to do so without many of the stresses commonplace in students, whether

that be from material or moral support.

It was a strange experience to write a dissertation while not being able to talk face-to-face

with my supervisor and with a blackboard at hand. For her help in making this easier, for her

rapid email responses, and the zoom conversations we had which helped my comprehension

of the topic, my supervisor, Professor Claudia de Rham, also has my gratitude.

Lastly, a quick shout out to my course mates for making the year’s load a little lighter.

3



CONTENTS
Contents

1 Introduction 7

2 Gravitational waves in Minkowski 12

2.1 Deriving the action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Diffeomorphism invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Transverse traceless gauge in Minkowski . . . . . . . . . . . . . . . . . . . . . 14

2.4 Transverse traceless (TT) with a general background . . . . . . . . . . . . . . 16

2.5 Helicity Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Gravitational waves from Massive Gravity . . . . . . . . . . . . . . . . . . . . 21

2.7 Stress-energy tensor of the gravitational waves . . . . . . . . . . . . . . . . . 25

3 FRW 27

3.1 Single-fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Comoving coordinates and the horizon scale . . . . . . . . . . . . . . . . . . . 28

3.3 Multi-component fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Gravitational Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Stress-energy tensor (SET) in curved space . . . . . . . . . . . . . . . . . . . . 33

4 Inflation 35

4.1 The inflaton and slow-roll conditions . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Solution to the horizon problem . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Solution to the flatness problem . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Small field and large field inflation . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5 Tensor perturbations during inflation . . . . . . . . . . . . . . . . . . . . . . . 45

4.6 Massive tensor perturbations during inflation . . . . . . . . . . . . . . . . . . 52

4.7 Scalar perturbations during inflation . . . . . . . . . . . . . . . . . . . . . . . 54

5 Bimetric gravity and its effect on the power spectrum 59

5.1 Short introduction to dRGT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 ADM formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 FRW background with two metrics . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4 The tensor perturbations’ action . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4



CONTENTS
6 Conclusion 68

A Linearising the EH action in Minkowski spacetime 74

B Linearising the EH action in FRW spacetime 75

C Linearising dRGT Lagrangian 76

D Diagonalising the linearised dRGT Lagrangian 78

E Showing the Bunch-Davies vacuum agrees with Minkowski at sub-horizon levels 80

5



CONTENTS
Conventions

ηµν = diag(−1,1,1,1)

Spatial indices are raised and lowered using the delta function.

δijA
j = Ai δijBj = Bi

Therefore, we also define ∇2 = δij∂i∂j .

Differentiation with respect to conformal time η is denoted with a prime (a’(η)), while dif-

ferention with respect to physical time t is given by a dot above the function (ȧ(t)).

We use units with ~ = c = 1.

We use the reduced Planck mass defined as M2
P L = 1

8πG .
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1 INTRODUCTION
1 Introduction

And in the beginning, God said “let there be metric perturbations”, and there were gravita-

tional waves. They rippled and they rushed, filling the cosmos with the echoes of creation.

Almighty beings may work in mysterious ways, but humanity has a knack at deciphering

the Universe’s puzzles by speculation and observation. And now, a new era of astronomy is

being ushered in, that of gravitational waves. First theorized more than 100 years ago by

Einstein, it was not until 2015 that they were empirically confirmed. The coalescing of two

black holes radiated the equivalent of three solar masses worth of energy [1]. While just this

month, a paper was published detailing a merger that emitted the energy of seven and a half

solar masses [2], the biggest explosion observed since the Big Bang. It is highly suspected

that these mergers do not emit light of any form, so these events would have otherwise gone

unnoticed. Luckily, we have new high precision instruments that allow us to observe the in-

visible and will continue to do so. Humanity is like an old man having just found his glasses,

and his two lenses are named LIGO and VERGO.

An exciting prospect emerges when considering the very early stages of the Universe. It

is well known that the earliest light visible today, the CMB, was not emitted until some

300,000 years after the Big Bang. Direct observation of the universe prior to this moment of

recombination would be highly beneficial. There is a possibility that a CNB (cosmic neutrino

background) may be observed, but here we focus on those very first gravitational waves

(GWs) and what they may be able to tell us about our origin. More precisely, we will be

interested in those remnants predicted by a theory of inflation. Unfortunately, current de-

tectors do not have the capability to detect this background radiation, because they are too

weak in the frequency band at which LIGO and VERGO operate. Although it is stronger

at larger frequencies, ground based detectors would still have trouble detecting them since

they then experience interference from other gravitational phenomenon such as the Coriolis

effect. The lowest frequency GWs can be detected using the CMB since they generate E and B

mode polarisations (E mode being parallel or perpendicular to the plane wave’s oscillation,

and B mode being at a 45 degree angle to it) as the photons in the CMB travel from the

surface of last scattering to us. Scalar perturbations can be detected from the CMB too as

they cause temperature anisotropies in the CMB and E mode polarisations. Thus, B mode is a

phenomenon unique to gravitational waves and any detected would be due to them alone. It

is the power spectrum of the perturbations which is what gives us a physical prediction from
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the theory, as well as the tilt and tensor-to-scalar ratio. The power spectrum is a function of

the momentum, and essentially gives the amplitude of the signal at a given frequency. It is

given by the 2-point correlation function of the field, whether it be scalar, vector or tensor

perturbations. In practice, this is done by quantising the field and finding the vev, and it is

only the scalar and tensor that give a measurable contribution.

Inflation was first conceptualised in the late 70s, and it is now well-known as a possible

solution to numerous problems in the current ΛCDM model of cosmology. The scale factor

dictating the size of the universe was not only increasing during inflation, but the expansion

was accelerating, pushed on by the negative pressure of a scalar field, called the inflaton.

The increase was so fast in fact that what were small quantum fluctuations grew in to the

seeds of structure that eventually became galaxies. We can use what is known about the

cosmological constant to work out what properties the inflaton field must have in order to

cause an approximately exponential expansion, namely ρ = −p. The inflaton is given a po-

tential, which can be chosen to satisfy the condition needed for a negative pressure. Inflation

was first devised to solve the magnetic monopole problem, which arose from Grand Unified

Theories. It was predicted that in the time when the four fundamental forces coalesced in

to one, stable yet heavy magnetic monopoles must have been made in abundance. If this

occurred before inflation, then the density of these monopoles would have rapidly decreased

and today be undetectable. Since then, it has also been shown to solve both the horizon and

flatness problem which will be detailed later on in our discussion.

In spite of its enticing promises to solve so many problems, and some experimental evidence

to back it, many still remain skeptical, as a good scientist always must. In part, this is

because “inflation” as a theory is so malleable and hundreds of different variants exist, so

finding one that fits to experiment is perhaps not so difficult. Nevertheless, we will explore

the predictions of inflation without narrowing ourselves too much to one specific branch, as

well as how these primordial gravitational waves were produced.

One can never have too many experimental predictions to test a theory with. To confirm

inflation would have an astounding impact, not only in the world of physics. If inflation is

true, then most likely so is eternal inflation – our early universe was just but a small part of

the wider whole and outside our horizon, inflation is still occurring, creating more universes

but all of them causally disconnected from us. An infinite number of universes will no doubt

make waves in the fields of philosophy and theology. It even offers a relatively nice solution

to the Fermi paradox.
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1 INTRODUCTION
The very first predictions were made by just perturbing the flat space metric, demanding the

metric to be of the form gµν = ηµν+hµν , with hµν kept small. In this model, it can be useful to

think of hµν as a spin-2 field living in a flat, static and unrelated background. The expansion

of Einstein’s field equations to first order in the perturbations then reveal a wave equation for

hµν . However, to get there one must take advantage of General Relativity’s diffeomorphism

invariance, which at the linearised level takes the form of a gauge invariance, somewhat

analogous to that found in electromagnetism. The symmetric tensor hµν has ten degrees of

freedom (d.o.f), using this gauge invariance we will show that in fact there is only two. These

are the two polarisations of gravity and are most apparent in what is called the transverse

traceless gauge. Concepts such as polarization, mass and energy are harder to define if not

working in a maximally symmetric spacetime such as Minkowski, but luckily since we are

focusing on cosmology and more importantly inflation (which is approximately a de Sitter

metric), we need not worry about this.

Another convenient way to break down the perturbations is using a helicity decomposi-

tion whereby we write the components of the tensor as irreducible representations of the

SO(2) group. This includes scalars, transverse vectors and transverse traceless rank-2 ten-

sors, which are all invariant under rotations around a fixed axis. The momentum of the

gravitational wave is taken to be in the direction of this axis, which follows naturally from

the wave equation obeyed by hµν . A similar decomposition can be performed for the stress

energy tensor which simplifies the final equations of motion for our gravitational waves. The

vector perturbations are not discussed much in literature because they decay quickly and

have little effect on the physics.

Since they are transverse and traceless, they only couple to the transverse and traceless

tensor component of the stress-energy tensor, which is called the anisotropic stress. During

inflation, the inflaton stress-energy has no anisotropic stress, meaning that there is no source

for the GWs if we ignore the metric’s self-interaction. At second order, the scalar metric

perturbations can give rise to GWs, although the primordial GWs even at linear order are

thought to be weaker than other sources, that the second order corrections are practically

irrelevant for now.

Although LIGO gave the first direct observations of GW, in the eighties two neutron stars

orbiting each other were observed to be slowing down due to the energy they were emitting

as GWs [37]. With this we see the first flaw of the flat space toy model (apart from the

obvious missing matter). With GWs themselves carrying energy, then they should bend the
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spacetime they travel through. To define the stress-energy tensor of gravity is rather ambigu-

ous for somewhat similar reasons to electromagnetic radiation, although extra complications

exist. An average must be taken over several wavelengths – no local energy density can be

given since the curvature is changing rapidly. Perhaps a bigger problem, there is no curvature

if we change to a local inertial frame at that point. It is evident that gravity is self-coupling

then, and this is one of the reasons why it has proven so hard to quantise.

Although first predicted by GR, GWs may lead us to a new theory beyond. At the very least,

they will rule out many of the competing theories which agree with GR in many other areas.

Despite GR’s undoubted success, we know it is not the final answer. However, at low energies

at least, with each new theory rebuked, it seems ever more likely it is the correct theory. It

may then seem somewhat pointless to try and correct it in the low energy regime, but it is

an essential aspect of the scientific process. Without it, we would not be able to say with

such conviction that it is the theory of gravity. Nevertheless, there are areas we would like

to explore that are definitively not in the low energy regime, such as black hole singularities,

and for these a new theory, likely quantum, is definitely needed.

An alternative that has gained a renewed lease of life recently is massive gravity and through

it bi or even multi metric gravity. The mass of the graviton provides a Yukawa potential and

so a decrease in strength over long distances, somewhat alluring in the world of cosmology

where the source of “dark energy” is still badly understood. A massive graviton, with a

minute mass, would have much the same properties of GR at short distance where the mass

is unnoticeable. It is only at large cosmological lengthscales its effect will be seen. Knowing

how to add a mass term to the linearised theory of GR has been known about for a long time

now, as well as some of its main consequences: gauge invariance is broken much like in Proca

theory; the d.o.f increase to 5 with a new vector mode and one new scalar mode. Beyond

this, all attempts to add terms at any higher order were plagued with ghost instabilities

(these are d.of that appear and have a negative kinetic energy).

A carefully constructed Lagrangian given by de Rham, Gabadadze, and Tolley [14][15], was

able to work around these ghosts by introducing a second metric, usually dubbed fµν , to a

theory now known as dRGT gravity. In the original publications, the reference metric was

just taken to be that of flat Minkowski space. However, if we choose to make it dynamical,

even just introducing perturbations to the flat space metric, we are forced to add a kinetic

term for it too. We already know what this needs to be, the Einstein-Hilbert action has been

shown to be the unique non-linear kinetic term for a spin-2 field. In fact, in FRW spacetime,
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1 INTRODUCTION
it is likely that the reference metric cannot be the Minkowski one, as it has been shown to

lead to instabilities. The dRGT Lagrangian can also lead naturally to a cosmological constant

term. Both metrics have their own “Planck mass”, MP L for our original gµν and Mf for the

reference metric. These dictate the strength with which the respective metric couples to

matter and how the theory is interpreted. If MP L >> Mf then what we have is essentially

the usual theory of GR, with a new as yet undiscovered spin-2 field. If we have the reverse,

MP L << Mf , then we find something very similar to massive gravity models with a single

metric. When talking about bi-gravity theories, the two constants are usually taken to be

roughly the same, MP L ≈Mf .

We will begin with an introduction to gravitational waves, both massive and massless, in flat

Minkowski. This is meant to outline some basic concepts, some of which are covered near

the end of many introductory GR courses. FRW is then briefly looked over, since inflation

does occur in an FRW spacetime. A large part is dedicated to inflation: the background and

main ideas mentioned in the introduction are expanded upon, before concentrating on the

scalar and tensor perturbations’ power spectrum. The limiting behaviours of the massive

gravity Power Spectrum are then also derived. Lastly, we use the ADM formalism in FRW

and linearise and then diagonalise the action for dRGT, resulting in a massive and massless

mode. The power spectra derived in the previous section then allow us to quickly find the

power spectra for the linear dRGT theory.
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2 Gravitational waves in Minkowski

2.1 Deriving the action

The first work on gravitational waves was done by taking dynamic perturbions on flat

Minkowski space. I will give a quick overview of them here, as well as introducing some

concepts that will be useful for gravitational waves in a general spacetime. Our first assump-

tion is that the metric can be written as

gµν = ηµν + hµν (1)

Where hµν are the perturbation. Since we will be using the action to derive the equation of

motion, which we desire to be of first order, we need the action to be of second order. With

this in mind, we also give the inverse metric, to first order.

gµν = ηµν − hµν (2)

Where we define hµν = ηµαηνβhαβ and h = ηµνhµν . This may seem like an unrealistic toy

model at first, but once we are sufficiently far away from the source (say colliding black

holes) then spacetime will be very close to flat, especially when considering the the curvature

with respect to the size of existing measuring devices, such as LIGO. We begin with linearising

the well-known and loved Einstein-Hilbert action.

S =
M2
P L

2

∫
d4x
√−gR (3)

Where MP L is the Planck mass. Appendix A contains the explicit working out for linearising

the action in Minkowski spacetime, below we outline the steps and give the final answer in

(5). We begin by finding the Christoffel symbols and from this the Riemann tensor. To help

keep the workload tidier and so easier to follow, we first find the first order contributions

to the Riemann tensor (and then curvature), before finding the second order contributions.

The volume element must also be linearised, but only to first order, since we have no zeroth
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2 GRAVITATIONAL WAVES IN MINKOWSKI
order contribution from the Riemann curvature. The resulting action is of the form

S =
M2
P L

2

∫
d4x(R(1) +

1
2
hR(1) +R(2)) (4)

R(1) is actually a total derivative, so it goes to zero. We would also like to add a matter part

to this action, which is done simply enough by adding a coupling term.

S =
M2
P L

8

∫
d4x[∂µhαβ∂µhαβ −∂µh∂µh+ 2∂µh

µν∂νh− 2∂µh
µν∂ρhρν] +

1
2

∫
d4xhµνT

µν (5)

2.2 Diffeomorphism invariance

Now that we have the action, it is simple enough to vary it and get the equation of motion.

This action (after a rescaling of the field) is also known as the Fierz-Pauli action [24] and was

shown to be the unique linear action for a massless, spin-2 field. It is important to note what

happens with the diffeomorphism invariance of general relativity. We take an infinitesimal

coordinate transformation, of the same order as the perturbation and use the transformation

law for a tensor.

x′µ = xµ + ξµ with O(ξ) ≈ O(h)

g ′µν(x′) =
∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ (x)

For now we will work with a general background metric so that gµν = g̃µν + hµν , and switch

to Minkowski at the end. We absorb any changes in the metric due to the coordinate trans-

formation in to the perturbation. In the context of perturbation theory, it is common to call

this infinitesimal diffeomorphism the gauge symmetry of the theory because of the clear sim-

ilarities to the gauge transformation of electromagnetism. We linearise the diffeomorphism

first, and then right it in the form of a gauge transformation (i.e. all terms in the equation

are functions of the same coordinates).

g ′µν(x′) =
(
δ
ρ
µ −

∂ξρ

∂x′µ

)(
δσν −

∂ξσ

∂x′ν

)
g̃ρσ (x) +

(
δ
ρ
µ −

∂ξρ

∂x′µ

)(
δσν −

∂ξσ

∂x′ν

)
hρσ +O(h2)

= gµν(x′)− ξα∂αgµν(x′)− gρν(x′)∂µξ
ρ − gµσ (x′)∂νξ

σ + hµν +O(h2)

= gµν(x′) + hµν − ∇̃µξν − ∇̃µξµ +O(h2)

(6)
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2.3 Transverse traceless gauge in Minkowski
Where the tilde on the covariant derivative signifies it is with respect to the background

metric. Therefore, at linear order the perturbation transforms as

hµν(x) −→ h′µν(x′) = hµν(x)− ∇̃µξν − ∇̃νξµ (7)

In Minkowski space, the covariant derivatives simply change to partial. It is simple enough

to see that this is in fact a symmetry that leaves the action unchanged. By looking at the

effect of a general Lorentz transformation, we see that we can treat the perturbation as a

rank-2 Lorentz tensor living in flat Minkowski space (since the flat metric is obviously left

unchanged while the perturbation changes). This can be useful when trying to define the

energy momentum tensor of gravitational waves since it allows us to use field theoretical

tools such as Noether’s theorem. The treatment of gravitational waves can in many ways be

done analogously to electromagnetic radiation. For instance, we can split it in to multipole

radiation, since any source will be very far away from our detectors here on earth. We

do not get any dipole radiation like we do for electromagnetism, there is only quadrupole

and above. This can be seen to come from the graviton being a spin-2 particle, as we will

motivate later on, and the photon spin-1.

2.3 Transverse traceless gauge in Minkowski

Now we turn to finding the equation of motion, we vary the action to find

−�hµν + ηµν�h−∂µ∂νh− ηµν∂α∂βhαβ + 2∂µ∂αh
α
ν =

1

M2
P L

Tµν (8)

This equation is somewhat complicated, so it would be useful to simplify. Luckily we have

the gauge freedom to do so, and by doing so we can also find how many degrees of freedom

the perturbations contain. We go down the standard route and go to the de Donder gauge,

which is the equivalent of the Lorentz gauge.

∂µh̄
µ
ν −

1
2
∂νh = 0 (9)

Which can also be written using a redefined field

h̄µν = hµν −
1
2
ηµνh (10)
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2 GRAVITATIONAL WAVES IN MINKOWSKI
as ∂µh̄µν = 0. The redefined field transforms as h̄′µν = h̄µν−∂µξν−∂νξµ+ηµν∂ρξρ. So if before

the transformation we had ∂µh̄µν = fν(x) then we need the ξµ to satisfy �ξµ = fµ(x). The

D’Alembertian is of course an invertible operator and so we know that it is always possible

to choose the de Donder gauge. The equation of motion now reads

�h̄µν =
1

M2
P L

Tµν (11)

From this we can finally see why we refer to these perturbartions as gravitational waves.

When in a vacuum, (11) just becomes a wave equation. Whatsmore, the propagation speed

is the same as that of light, so we conclude that the graviton is massless, at least in Einstein’s

general relativity. There is a residual gauge symmetry left over that we have not utilised

yet. We just need to choose ξµ so that our de Donder condition is not affected. If we would

like the de Donder condition to be kept, then the ξµ functions need to satisfy �ξµ = 0. This

is most useful outside the source since we can set to zero some of the components of the

perturbation, as well as it’s trace (thus setting h̄µν = hµν). To do this, we need to solve 4

coupled differential equations.

h̄+ 2∂µξµ = 0 (12)

h̄0i −∂0ξi −∂iξ0 = 0 (13)

(13) =⇒ ξi =
∫
dt(h̄0i −∂iξ0)

Substitute this in to (12)

=⇒ h̄+ 2∂0ξ
0 + 2

∫
dt(∂i h̄0i −∂i∂iξ0) = 0

We can then use the de Donder gauge to make the substitutions ∂i∂iξ0 = ∂0∂
0ξ0 and ∂i h̄0i =

−∂0h̄00.

h̄− 2h̄00 + 4∂0ξ
0 = 0

=⇒ ξ0 = −1
4

∫
dt(h̄− 2h̄00)

Showing that it is always possible to make this gauge choice as long as we are outside the

source. Lastly, using the de Donder condtion we show that the h00 is not time-dependent.

∂µhµ0 = −∂0h00 +∂ihi0 = ∂0h00 = 0

Gravitational waves are by definition taken to be time-dependent, so we ignore the (00)

component of the tensor. What we are left with is called the tranverse traceless gauge,

15



2.4 Transverse traceless (TT) with a general background
(hT Tij ). We have a free wave-equation that is non-trivial only in the spatial components. The

solution of which is

hT Tij = Aije
ik.x (14)

Where Aij are polarisation tensors, and kµ is the momentum of the gravitational wave. From

the transverse condition we know that the polarisation tensors are non-zero only in the

directions perpendicular to the momentum. We must also only take the real part of (14) just

as we would in electromagnetism. Without loss of generality, we can take the propagation

direction to be ẑ so that

hµν =


0 0 0 0

0 A11 A12 0

0 A12 −A11 0

0 0 0 0

cos(k.x) (15)

We see that there are two physical polarisations and we define their polarisation tensors as

e+
ij =


1 0 0

0 −1 0

0 0 0

 e×ij =


0 1 0

1 0 0

0 0 0

 (16)

Which we can give a more general definition (i.e for gravitational waves travelling in any

direction), using the unit vectors û and v̂ which are perpendicular to each other and to the

direction of propagation.

e+
ij = ûi ûj − v̂i v̂j e×ij = ûi v̂j + v̂i ûj (17)

These have been chosen so that they have the normalisation eAije
A′ ,ij = 2δAA

′
.

2.4 Transverse traceless (TT) with a general background

We show how to find the equivalent of the TT guage in a general spacetime. The full metric

is written as gµν = g̃µν +hµν . The tilde represent the background metric, this will be FRW for

us. We start from the linearised action of gravity in a general spacetime with all covariant

derivatives being with respect to the background metric alone.

S =
M2
P L

2

∫
d4x

√
−g̃[∇µhαβ∇µhαβ −∇µh∇µh+ 2∇µhµν∇νh− 2∇ρhµν∇νhρµ] (18)
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2 GRAVITATIONAL WAVES IN MINKOWSKI
Changing once again to h̄µν = hµν − 1

2 g̃µνh, where g̃µν is the background metric, we get

S =
M2
P L

2

∫
d4x

√
−g̃[∇µh̄αβ∇µh̄αβh̄−

1
2
∇µh̄∇µh̄− 2∇µh̄µν∇ν h̄− 2∇µh̄µν∇ρh̄ρν] (19)

Since

∇µh∇µh = ∇µh̄∇µh̄ ∇µhαβ∇µhαβ = ∇µh̄αβ∇µh̄αβ

∇ρhµν∇νhρµ = ∇ρh̄µν∇ν h̄ρµ +
1
4
∇ρh∇ρh ∇µhµν∇νh = −∇µh̄µν∇ν h̄+

1
2
∇µh̄∇µh̄

(20)

Next, we switch to the de Donder gauge, ∇µh̄µν = 0.

h̄′µν = h̄µν − 2∇(µξν) + g̃µν∇µξµ

∇µh̄′µν = 0 =⇒ 0 = ∇µh̄µν −∇µ∇µξν −∇µ∇νξµ +∇ν∇µξµ
(21)

Which must be solved for ξµ. We apply this condition to the action and find the equations of

motion.

∇µ∇µh̄αβ − 2∇µ∇(αh̄β)γ −
1
2
g̃αβ∇µ∇µh̄ = 0 (22)

If we take take the trace, we find that

∇µ∇µh̄ = 0 (23)

So if we impose h̄ = 0 on some hypersurface, then it remains traceless on all other hyper-

surfaces if the spacetime is globally hyperbolic [10]. Lastly, the transverse and traceless

conditions together allow us to simplify [34] our equations of motion to

∇µ∇µhαβ = 0 (24)

2.5 Helicity Decomposition

Our equation of motion, together with the de Donder gauge, implies that we have a con-

served energy momentum tensor, although we could also demand this from the theory our-

selves. However, this can only be true if the energy and matter responsible for Tµν do not

interact with gravity, emitting no gravitational waves. In reality, the conserved quantity
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2.5 Helicity Decomposition
would actually be that of the energy and matter, as well as the gravitational field, Tµν + t(2)

µν ,

and so our equation of motion becomes �hµν = 1
M2
P L

(Tµν + t(2)
µν ). A new problem now arises

that the extra term in the equation of motion requires an extra term in the action. More

specifically, t(2)
µν is of second order in h, and so we require a term that is third order in h in

the action, implying self interactions between gravitons. This should not be so surprising,

seeing as how the full theory of general relativity is known to be highly non-linear. There is

now also a third term that appears on the right hand side of the equation of motion. The term

that is third order in h in the action then adds another term to the energy-momentum tensor

associated with gravity, t(3)
µν , through Noether’s theorem. One can see this procedure will

continue forever but there does exist a resummation algorithm which reproduces Einstein’s

General Relativity. The extra terms in the action must also change the form of the gauge

transformation needed to keep the action invariant (i.e we can no longer cut it off at the lin-

ear level). Again, this perhaps should be expected since the full theory has a diffeomorphism

invariance, rather than the linear gauge transformation given here.

hµν −→ hµν − (∂µξν +∂νξµ)− 1

M2
P L

O(h∂ξ) (25)

This complicates things when we try to do a similar gauge transformation to the tranverse

traceless gauge in a spacetime such as FRW. One way to work around this is to give a helicity

decomposition of the metric perturbations, i.e. split up hµν in to irreducible representations

of SO(3) (for our use only the scalar, vector and tensor are required). Then since we know

that gravitational wave are tranverse and traceless in flat spacetime we expect the same in

FRW. The helicity decomposition in Minkowski is actually very similar to that of FRW too.

The metric is given by (1) again, and we write the perturbation as in (26) [32].

h00 = 2ψ

h0i = βi +∂iγ

hij = −2φδij + (∂i∂j −
1
3
δij∇2)λ+

1
2

(∂iεj +∂jεi) + h(T T )
ij

(26)

∇2 is the flat space Laplacian, and the quantities βi , εi and h(T T )
ij are transverse. h(T T )

ij is also

traceless. We have simplified the expression further by splitting the vector in to a longitudi-

nal and transverse part, and have made a similar decomposition for the tensor. So, it seems
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2 GRAVITATIONAL WAVES IN MINKOWSKI
that we have split the perturbation in to 4 scalars, 2 vectors and 1 tensor. In full, this is actu-

ally a decomposition in to irreducible representations of SO(2) (so they are invariant under

rotations around some fixed axis k which turns out to be the momentum of the field). There

are certain boundary conditions we must impose at spatial infinity so that the expressions

given in (26) are invertible.

γ −→ 0 , λ −→ 0 , ∇2λ −→ 0 , εi −→ 0 (27)

When finding inverse expressions for the fields in terms of the metric, only ψ and φ are local

functions of the metric perturbation. The remaining fields involve the inverse Laplacian,

which is not a local operator, and also the reason why we require these boundary conditions.

We have not yet used our gauge freedom, which will allow us to actually reduce the d.o.f to

six. This may seem strange at first after our discussion in 2.3, but the extra four degrees of

freedom obey Poisson’s equations and so are non-radiative. At a linear level, the gravitational

field itself is taken not to be a source of gravitational waves, so the non-radiative d.o.f do not

play a role there, but they are still important. For instance, the 2 scalar d.o.f play a major

role in inflation to produce the small inhomogeneities which lead to galaxy formation. The

gauge functions ξµ are also written in the form

ξ0 = A , ξi = Bi +∂iC (28)

From this we can find out how the helicity variables transform directly.

h00 = 2ψ −→ 2ψ − 2∂0A

h0i = βi +∂iγ −→ (βi −∂0Bi) +∂i(γ −∂0C −A)

hij = −2φδij + (∂i∂j − 1
3δij∇

2)λ+ 1
2(∂iεj +∂jεi) + h(T T )

ij −→

−2(φ−∇2C)δij + (∂i∂j − 1
3δij∇

2)(λ− 2C) +∂(i(ε −B)j) + h(T T )
ij

Therefore, we get

ψ′ = ψ −∂0A , β′i = βi −∂0Bi , γ
′ = γ −∂0C −A , φ′ = φ−∇2C

λ′ = λ− 2C , ε′i = εi − 2Bi , h
(T T )
ij

′ = h(T T )
ij

(29)

Unsurprisingly, h(T T )
ij is completely unchanged by the gauge transformation. This can also be

predicted by considering that we have decomposed the gauge functions in to SO(2) irreps,
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2.5 Helicity Decomposition
a scalar and a vector. Since h(T T )

ij is a tensor, the scalar and vector functions will have no

effect on it. From these quantities we may form 3 more gauge invariant quantities that are

preferable to work with. There exist two scalar fields (and therefore 2 d.o.f)

Φ = −φ− 1
6
∇2λ (30)

Ψ = ψ −∂0γ +
1
2
∂0∂0λ (31)

and one vector field (therefore 2 d.o.f)

Ξi = βi −
1
2
∂0εi (32)

Of course, we also have the transverse, traceless tensor too, which has two d.o.f. So using the

four functions ξµ, we can eliminate 4 of the 10 degrees of freedom. These gauge invariant

quantities are called the Bardeen variables when used in FRW [6].

Another useful aspect about using this helicity decomposition is that the equations of mo-

tion can also be split up according to helicity. Only the TT part of the energy-momentum

tensor can effect the TT part of the metric perturbation. The decomposition of the energy-

momentum tensor is quite similar to hµν , seeing as they are both rank-2 symmetric tensors.

T00 = ρ (33)

T0i = Si +∂iS (34)

Tij = pδij + (∂i∂j −
1
3
δij∇2)σ +∂(iσj) + σ (T T )

ij (35)

Where the equivalent fields obey the same boundary conditions at spatial infinity, and the

same transverse conditions. The reason why h(T T )
ij is sourced only by the TT part of the

energy-momentum is plain to see in this decomposition. In the coupling term, h(T T )
ij could

only possibly couple to T ij .

h
(T T )
ij T ij = h(T T )

ij (pδij + (∂i∂j −
1
3
δij∇2)σ +∂(iσj) + σ (T T )

ij )

= h(T T )
ij ∂i∂jσ + h(T T )

ij ∂iσ j + h(T T )
ij σ (T T ),ij

(36)
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2 GRAVITATIONAL WAVES IN MINKOWSKI
The first two terms go to zero after we integrate by parts since the tensor is transverse.

Although this was done in Minkowski, as mentioned earlier, a nearly identical decomposition

is possible in FRW with the same result that the tensor part responsible for gravitational

waves only couples to the TT part of the stress tensor (the anisotropic stress). For a generic

tensor, we can project it on to its TT part using the projector defined as

Λij,kl(n̂) = PikPjl −
1
2
PijPkl (37)

where Pij(n̂) = δij−ninj . This definition is transverse and traceless on (i,j) or (k,l) by construc-

tion. It also has the property that Λij,klΛkl,mn = Λij,mn and are symmetric upon switching of

the two pairs of indices.

2.6 Gravitational waves from Massive Gravity

Later on, we will be investigating the theorised primordial gravitational waves left over from

inflation, and will also be comparing these to the predictions from massive gravity. It will be

useful to first take a look at massive gravity within Minkowski spacetime. Massive gravity

has been studied for a while, with Fierz and Pauli first producing the unique linear action for

a spin-2 massive field [24] back in 1939. There are two possible terms one may choose for

the mass term in the linear theory without a second ”reference” metric 1 being used: h2 and

hµνh
µν . We can have just one of these or a linear combination of the two, but it was shown

by Pauli and Fierz that the only combination that does not produce ghosts is hµνµν −h2. Ghosts

are particles with negative kinetic energy terms in the Lagrangian, which causes instabilities

in the theory and especially the vacuum, which can decay in to particles of positive and

negative kinetic energy indefinitely. A major consequence of the adding a mass to the theory

is that we lose the gauge invariance. At first, it may seem that we have gained 8 degrees of

freedom (d.o.f) but thanks to the equations of motion, we can actually still reduce them to

1If one allows for a theory that has two metrics then we can use the second one to contract the indices of
the perturbation, giving us a few extra options here.
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2.6 Gravitational waves from Massive Gravity
5, in a similar way that one may do with the Proca Lagrangian of a massive spin-1 field.

SMG =
M2
P L

8

∫
d4x[∂µhαβ∂µhαβ −∂µh∂µh+ 2∂µh

µν∂νh− 2∂µh
µν∂ρhρν

+m2(hµνh
µν − h2)] +

1
2

∫
d4xhµνT

µν

(38)

The coupling to the stress energy tensor could actually have a dimensionless coupling con-

stant, but we set it to one here. One way to find the coupling constant would be to find the

weak field limit to massive gravity and match it up to Newton’s potential. However, with

massive gravity, the weak field limit is broken much easier than in massless and it cannot

be used for solar system dynamics. Since the only difference between this action and that

of the massless theory is an extra two terms proportional to m2, it is easy to see that the

only difference in the equations motion will also be due to the mass term. We make the

same substitution for h̄ as before and take the divergence, again demanding that the source

is conserved, ∂µTµν = 0. Since any term that was also in the massless equations of motion go

to zero, a condition similar to the de Donder condition drops out from the equations.

∂µ(hµν − ηµνh) = 0 (39)

Which is equivalent to the de Donder if we have a zero trace. If we take the trace instead of

the divergence

2∂ν∂µ(hµν − ηµνh) = −T − 3m2h =⇒ h = − 1
3m2T (40)

Equation (40) along with the condition (39) take away five of the d.o.f leaving the massive

graviton with five instead of the two of the massless. The field can be decomposed in to a

helicity-2 rank-2 tensor (with two d.o.f), helicity-1 vector (with two d.o.f) and a helicity-0

scalar (with one d.o.f) using the Stuckelberg fields [15]. Once we have introduced the mass

term to Gravity, we no longer have Gauge invariance. We can formally bring it back by

introducing the Stuckelberg fields Aµ and π. We replace hµν with:

hµν −→ hµν +∂µχν +∂νχµ (41)
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2 GRAVITATIONAL WAVES IN MINKOWSKI
Where we define χµ = 1

mAµ + 1
m2∂µπ.

hµν −→ hµν +
1
m
∂µAν +

1
m
∂νAµ +

1
m2∂µ∂νπ+

1
m2∂ν∂µπ (42)

To find the new action, we only need to worry about what happens to the mass term since

the field redefinition is of the form of the gauge transformation and so clearly leaves the

kinetic term (i.e. the massless action) unchanged.

hµνh
µν −→ hµνh

µν +
4
m2∂(µAν)∂

(µAν) +
4
m
hµν∂

(µAν) +
4
m2hµν∂

(µ∂ν)π

+
8
m3∂(µAν)∂

(µ∂ν)π+
4
m4∂(µ∂ν)π∂

(µ∂ν)π

h2 −→ h2 +
4
m
h∂µA

µ +
4
m2h�π+

4
m2 (∂µA

µ)2 +
8
m3∂

µAµ�π+
4
m4 (�π)2

(43)

Adding these together, defining Fµν = 2∂[µAν] and Sm=0 as the original linearised massless

action (i.e. equation (5) without the Tµν term), then the new action is

S = Sm=0 +
M2
P L

2

∫
d4x
√−g[− 1

2
m2(hµνh

µν − h2) +FµνFµν − 2m(hµν∂
µAν −∂µAµ)

− 2(hµν∂
µ∂νπ − h∂2π)]

(44)

We can see we have brought back the gauge symmetry of the massless action if we also

change the vector field at the same time. A gauge transformation of the form hµν −→ hµν +
2
m∂(µξν) will produce a change in the action that is of the same form as the vector terms in

(44), so to preserve the action, we must also change Aµ −→ Aµ − ξµ so as to cancel these

terms. There is also a gauge symmetry that is of the same form as that of electromagnetism.

Aµ −→ 1
m∂µλ π −→ π −λ

There is one last field redefinition we would like to do so that the kinetic terms of hµν and π

are not mixing.

hµν −→ hµν + ηµνπ (45)
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2.6 Gravitational waves from Massive Gravity
This redefinition is no longer of the form of the gauge symmetry of the massless action, so it

too will change due to this. The total change in the action (denoted S∆) is

S∆ =
M2
pl

2

∫
d4x
√−g[m2(3hπ+ 6π2) +mπ∂µAµ − 2∂µπ∂

µπ+ 2(hµν∂
µ∂νπ − h∂2π)] (46)

The last term cancels the mixing of the kinetic terms of hµν and π in the old action, which is

exactly why we introduced this redefinition. Our final action now reads

S = Sm=0 +
M2
P L

2

∫
d4x
√−g[− 1

2
m2(hµνh

µν − h2) +FµνFµν − 2m(hµν∂
µAν −∂µAµ)

+m2(3hπ+ 6π2) +mπ∂µAµ − (∂µπ)(∂µπ)]
(47)

and has a gauge symmetry of the form

hµν −→ hµν + 2
m∂(µξν) + ηµνλ π −→ π −λ
Aµ −→ Aµ − ξµ + 1

m∂µλ

We see that we have split the tensor part in to three different fields, and with it we have also

split the five propagating d.o.f between the three fields. The tensorial part hµν (helicity-2

with two degrees of freedom), the vector part Aµ (helicity-1 with two degrees of freedom),

and the scalar part π (helicity-0 with one degree of freedom).

From here we can make a gauge transformation so that h0i = 0. Remembering that in a

vacuum h = 0 for the massive theory, and from the equations of motion that the tensor part

is transverse.
h′0i = 0 =⇒ h0i +

1
m
∂0ξi +

1
m
∂iξ0 = 0

ξi = −
∫
dt(mh0i +∂iξ0)

(48)

We can simply choose ξ0 = 0 and so there is a single integral left to do. Note that h00

can be shown to be time independent once again in the same way as we did for the massless

case. The Stuckelberg fields correspond to different polarisations of the graviton. In massless

gravity, we only have the two associated with the the tensor, and they squeeze and stretch

the spacetime perpendicularly to their direction of travel. Massive gravity actually gets an

extra four propagating d.o.f but one of the scalar modes is a Boulware-Deser ghost [8] that

is not present if the correct action is used (the Fierz-Pauli at the linear level).
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2 GRAVITATIONAL WAVES IN MINKOWSKI

Figure 1: The different polarisations of gravitational waves for massive gravity. The top two
are also present in massless gravity and are coming out of the page. The vector modes have
the direction of propagation to the right and the scalars are also coming out of the page. The
bottom one is actually a ghost and is not present. [13]

2.7 Stress-energy tensor of the gravitational waves

There are a few different ways to derive the stress-energy tensor (SET) for gravitational

waves but they all give the same result. When in a general spacetime, techinically we should

find the SET by varying the action of the perturbations with respect to the background metric.

We can also treat the perturbations as a Lorentz covariant field living within Minkowski

spacetime, and take advantage of the field theory methods developed by Noether. For each

continuous symmetry of the action, we know there exists a conserved current. We take the

derivative of the Lagrangian of hµν with respect to the coordinates.

∂L
∂xµ

=
∂L
∂hνρ

∂µhνρ +
∂L

∂(∂σhνρ)
∂σ∂µhνρ

∂L
∂xµ

= ∂σ

(
∂L

∂(∂σhνρ)

)
∂µhνρ +

∂L
∂(∂σhνρ)

∂σ∂µhνρ

=⇒ ∂σ

(
δσµL+

∂L
∂(∂σhνρ)

∂µhνρ

)
= 0

(49)
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2.7 Stress-energy tensor of the gravitational waves
It follows that our conserved canonical SET is

T σµ = δσµL+
∂L

∂(∂σhνρ)
∂µhνρ (50)

If we are to ask what the energy density is at a specific point, we will get an ambiguous

answer. This is integral to the wave-like nature of the perturbations and to be expected. So,

a spatial average must be taken over a few wavelengths to get a sensible result. We also

apply the transverse traceless gauge to the Lagrangian, although this must be done after the

differentiation. In the spatial average we are allowed to integrate by parts, so the the spatial

average of the Lagrangian is zero (four terms are zero due to the gauge, and the last one due

to integration by parts and use of the equation of motion, �hµν = 0. The derivative of the

Lagrangian also becomes simpler after noticing that even after differentiation, four of the

terms will go to zero due to the fact they are quadratic in terms that are zero in this gauge.

This means we only need to worry about a single term in the Lagrangian.

∂
∂(∂µhρσ )

(κ∂αhβγ∂
αhβγ ) = 2κ∂µhρσ

=⇒ T σµ = 2κ 〈∂µhρν∂σhρν〉
(51)

The average over multiple wavelengths is somewhat similar to what is found in electro-

magnetism for rapidly changing fields. A local energy-density makes no sense. In general

relativity, this is even more pronounced since we cannot define a local energy-density even

when looking at slowly varying gravitational fields. This is due to the fact that we can al-

ways go to normal coordinates at any point so that the spacetime is flat and thus the energy

density seems to be zero.
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3 FRW
3 FRW

3.1 Single-fluid

Since we are interested in gravitational waves from inflation we will cover a little about FRW

spacetime here. More precisely, we will look at the ΛCDM model. This has 3 main eras, each

dominated by a different form of matter. The first, when nearly everything was relativistic,

was the radiation dominant (RD) era, then the matter dominant (MD) era, and lastly the

dark-energy (ΛD) era. Currently, we are in the transition between MD and ΛD. The metric

is the well known Friedmann–Robertson–Walker (FRW).

ds2 = −dt2 + a2(t)
( 1
1− kr2dr

2 + r2dΩ2
2

)
(52)

Where k is the curvature and can take values k=-1,0,1 depending on the spatial curvature.

From experiment, it seems that k=0 to a very high confidence level [7] so we will assume

that from here on for simplicity. Before any perturbations, the energy-momentum tensor is

just that of a perfect fluid. This is inevitable, since a homogeneous space requires that the

energy and matter is also homogeneous.

Tµν = (ρ+ p)uµuν + pgµν (53)

With p being the pressure of the fluid and ρ the energy density. Ignoring the cosmological

constant, the Einstein equations then give us

for the (0,0) component: H2 =
1

3M2
P L

ρ (54)

for the (i,j) component: 2Ḣ + 3H2 = −M2
P Lp (55)

Where a dot signifies differentiation with respect to the coordinate time, t, and we have

defined the Hubble parameter as H = ȧ
a . If the universe was not spatially flat, then equation

(54) would include a curvature term. If the energy density in (54) is then defined as the

critical density one would expect for a flat universe, then we have a neat way of measuring

the curvature of the universe by comparing the Hubble parameter to the energy density

of matter in the universe. To (54) and (55) the conservation of energy equation from the
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3.2 Comoving coordinates and the horizon scale
Bianchi identity ∇µT µν = 0 can be added.

ν = 0 =⇒ ρ̇+ 3H(ρ+ p) = 0 (56)

An equation of state connecting p and ρ is also usually assumed so that we have enough

information to solve the system of equations.

p(t) = w(t)ρ(t) (57)

During an era dominated by one form of matter, we can approximate w by the w-value of the

dominant form of matter. In inflation we would like a quasi-exponential expansion meaning

a(t) = eαt (normalised such that a(t0) = 1) for some constant α.

ȧ
a =H =⇒ a = eHt

What value does the energy density take? We can look to what we know from the cos-

mological constant. It too causes an exponential expansion. The equation of state for the

cosmological constant is w=-1.

ρ̇ = −3H(1 +w)ρ = 0

=⇒ ρ = const.

So, rather strangely, it seems that ”energy” is being created as the universe expands.

3.2 Comoving coordinates and the horizon scale

We define the comoving set of coordinates for FRW. There is not much difference except for

the time which now absorbs the expansion factor to give

dη =

∫
1
a
dt (58)

=⇒ ds2 = a(η)2ηµνdx
µdxν (59)

with dx0 = dη. In these coordinates

H =
a′

a
=

1
a
H (60)
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3 FRW
These coordinates turn out to be useful since an observer that begins as stationary, stays

stationary for the rest of time, thus why they are named ”comoving”. Usually, we consider

things like galaxies to be stationary within these coordinates, although not exactly true for

many, especially the smaller ones.

The horizon scale is a very important concept in cosmology. It dictates what is considered

important since it defines the characteristic length scale (or time scale) of the FRW universe.

LH =H−1 (61)

This helps define two important regimes when looking at gravitational waves, or cosmology

in general. The condition for the super-horizon regime (i.e. outside the horizon) is

λ
2π

>>H−1 ⇐⇒ k <<H (62)

where k is the momentum in the comoving frame and λ = 2π
k . Whereas the sub-horizon

limit, when we are firmly inside the horizon

λ
2π

<<H−1 ⇐⇒ k >>H (63)

Since H = a′
a , we expect H∼ O(η−1), except of course if a ∝ η, but in that case H will always

be smaller than the absolute value of k. This is useful when we want to use the conditions

(62) and (63) in practice. If we want to think about it in the usual coordinates with t instead

of η, then we use the ”physical” wavelength λph = a(t)λ. The condition is then λ
2π >> H

−1.

3.3 Multi-component fluid

In reality, if we want an accurate picture of the universe we need to take in to account all the

different forms of matter: radiation(w=1
3), cold dark matter (w=0), ”dark energy” (w=-1).

We still model all of these as perfect fluids, but now the Friedmann equations are with ρtot
and ptot.

ρtot(t) =
∑
λ

ρλ(t) (64)

ptot =
∑
λ

wλ(t)ρλ(t) (65)
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3.3 Multi-component fluid

wtot =
∑
λwλ(t)ρλ(t)∑

λρλρλ
(66)

So from the Bianchi identity, we the conservation of energy requires ∇µT
µν
tot = 0. The ν = 0

component of this gives

ρ̇tot + 3H(ptot + ρtot) = 0 (67)

instead of conservation for each species separately. Importantly though, we can take the

individual energy-momentum conservation if the interaction rate (Γ ) that exchanges energy

between species is small compared to H. This is significantly simplifies the problem and also

means we can treat some fluids as totally separate apart from their gravitational interaction

(e.g. neutrinos after decoupling) which is dictated by the background FRW metric anyway.

We also define the energy fractions for the different fluids here

ΩR =
ρR(t)
ρC(t)

ΩM =
ρM(t)
ρC(t)

ΩΛ =
ρΛ(t)
ρC(t)

ρC(t) =
3H2

8πG
(68)

The subscripts R, M and Λ correspond to radiation, matter and dark energy respectively

whereas ρC is the critical density. The Friedmann equations can be used to determine an

expression for the energy densities up to some constant of integration. We then use the

present day values of the energy fractions, and the present day value of the critical density

to give explicit expressions for the energy densities.

ρλ(a) = ρ0Ωλ,0a
−3(1+wλ) (69)

So, for instancee, ρM ∝ a−3. Equation (54) similarly changes to

H2 =
1

3M2
P L

ρtot (70)

If we decided to include curvature, the equation would gain a term proportional to k (the

curvature) which can also be interpreted as an energy density.

H2 =
1

3M2
P L

(ρtot + ρk) where ρk = −3M2
P L

k

a2(t)
(71)
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As mentioned earlier, we can use the deviation from the critical density to determine the cur-

vature of the universe. We define the energy fraction for the curvature analogously to those

in (68), (i.e. Ωk(t) = ρk(t)
ρC(t)). Current measurements give an upper bound of |Ωk(t)| < 0.0094

at 94% confidence level [7].

The radiation era is still more complex. The primordial soup at the beginning of RD was

made up of all the particles in the Standard Model (and any particles we have yet to dis-

cover), and all of them were relativistic. As the universe expanded and cooled, different par-

ticles left the relativistic phase at different times, with the heavier ones such as top quarks

going first. When a particle leaves the relativistic regime, it is referred to as annihilation,

since they annihilate with their antiparticles to produce lighter particles (although there

obviously was not a perfect symmetry between the number of particles and antiparticles).

Since the lighter particles are still relativistic, there is not a big drop in ρR seen. Each species

begins the transition when the temperature is roughly equal to its mass, but it is not an in-

stantaneous transition.

Even though this era is called ”radiation” dominant, photons only make up a part of the

total energy density. With the neutrino experiencing only the Weak force, it decouples al-

most completely from the other particles at around T=1Mev, producing a cosmic neutrino

background akin to the CMB but from a much earlier time. From then on, we treat the

neutrinos as a separate fluid since it only weakly interacts with the other. Within the first 10

seconds or so, the only non-relativistic particles left were the photons and neutrinos. In the

Standard Model, the neutrino is massless and so would remain relativistic forever. However,

experiments in recent years have shown the neutrino probably has a minute but real mass

[25][4]. Electron-positron annihilation occurs after the neutrino decoupling, meaning that

most of their energy was transferred only to photons. At these energies, photons were still

highly-coupled to matter and there was exchange of energy. They are often considered as

a single baryon-photon fluid and it remained like this for as long as there were many free

electrons. Once the temperature dropped to a point where neutral atoms were forming, the

photons were no longer strongly coupled to the matter and their mean free path increased

significantly. This is known as recombination and is the origin of the CMB.
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3.4 Gravitational Waves
3.4 Gravitational Waves

We move on to finding the equation of motion for gravitational waves in FRW. The simplest

way to find the action for massless gravitational waves in FRW is to carry out a helicity

decomposition, similar to that done in section 2, and then focus solely on the transverse

traceless tensor part that we know is responsible for the propagation. The metric is taken to

be

gµν = a2(ηµν + hµν) (72)

and we then decompose hµν in exactly the same way as in (26). The gauge transformation

for curved space (derived in section one) can be used to reduce the variables to five. As in

section one, since the gauge transformation functions ξµ do not actually have a transverse,

traceless part, we already know that h(T T )
ij is going to be invariant and so is a real physical

quantity.

gµν = a2(−1,δij + hij) gµν = a−2(−1,δij − hij + hikhkj + ...) (73)

With hij transverse and traceless. The final action is given by equation (74). The details of

the calculation are in the appendix again.

S =
M2
P L

8

∫
d4xa2(h′ijh

′
ij − hij,khij,k + hijσ

(T T ),ij) (74)

This leads to an equation of motion

h′′ij −∂k∂khij + 2Hh′ij = σ (T T )
ij (75)

At the linear level the mass term in a general spacetime is the same Pauli-Fierz term we

introduced for Minkowski. Using the metric in (73), the Pauli-Fierz mass term becomes

m2(hµνh
µν − h2) =m2a−4hijh

ij (76)

This being the only change in the action, we can see the difference in the equations of motion

quite simply by just varying this extra term to get

h′′ij −∂k∂khij + 2Hh′ij −m
2a−2hij = σ (T T )

ij (77)
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3.5 Stress-energy tensor (SET) in curved space

Since gravitational waves themselves have energy, it follows that they themselves should

affect the curvature of the spacetime. To investigate this, the SET is needed. From it we can

see how gravity couples to itself, and investigate other problems, such as determining the

energy carried away from a source due to gravitational waves. In fact, the first (indirect)

observations of gravitational waves were actually made by measuring the decay in orbit of

two neutron stars [37]. When thinking about gravitational waves a question of definition

arises since they themselves are part of the spacetime. What do we define to be part of

the background spacetime, and what is deemed to be a gravitational wave? In Minkowski

spacetime it was somewhat simpler since any curvature can be attributed to the waves.

For a general metric, gµν , we need an obvious distinction between the background and the

fluctuations so that we can write gµν = g̃µν + hµν . We define L as the spatial length scale of

the background g̃µν over which significant changes happen. Then, we can define GW if the

reduced wavelength of the fluctuations (o = λ
2π) is much smaller than L. Alternatively, but

obviously equivalently, we could look at this in terms of frequency. If the largest frequency

within the background metric (fB) is much smaller than the frequency of the fluctuations,

a sensible definition can be made. In FRW, the relevant length scale is the Hubble scale.

Therefore, to study the SET we assume we are working in such a spacetime where one of

Figure 2: An example of a clear cut situation where we can define gravitational waves in a
spacetime. The gravitational waves are at the frequency f >> fB. [31]

the above conditions is satisfied. In curved space, as when we found the canonical SET in

section 2, we are required to average over some length l. This coarse-graining procedure is

needed not just because the ambiguity of a local energy density definition. By integrating

out the shorter wavelengths, we are also getting rid of the high-momentum or high-energy

parts of the field. After all, we do not trust our theory above some energy threshold. By
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3.5 Stress-energy tensor (SET) in curved space
getting rid of this finer structure, we can study the slowly-varying d.o.f better. There a few

methods that one could use to find SET in general relativity. From the linearised action of

the perturbations and then varying the action, followed by the averaging [34].

δS =
∫
d4x

√
−g̃tµνδg̃µν (78)

One could also work with the field equations and expand the Einstein tensor to second or-

der in the perturbations. The zeroth order in the expansion is just due to the background,

whereas the first order disappears after the spatial average since it has only single hµν . The

second order in the expansion is what we take as the gravitational waves SET (to second

order of course). Since it is quadratic in the perturbations, it will have high momenta can-

celling out to give a small one that will not be cancelled by the coarse-graining. The answer

from all of these methods is actually the same and agrees with the result we obtained in

section 2, except with the partial derivatives replaced by covariant derivatives.

Tσµ = 2κ 〈∇µhρν∇σhρν〉 (79)
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4 INFLATION
4 Inflation

With General Relativity and the Cosmological Priciple, together with the Standard Model,

we can explain much about the universe e.g. the Hubble expansion or the existence of the

CMB and its black body spectrum. It does have some downfalls though that can not be

addressed such as the horizon problem and the flatness problem.The initial conditions of the

universe are chosen so that they fit observations, rather than being explained. Considering

how finely-tuned these initial conditions seem to be - up to 60 decimal places if we accept

that our current physics models still work all the way back to the Planckian epoch - this is

unsettling. Inflation was introduced in order to fix the magnetic monopole problem, but it

was soon realised that it could solve other problems too (notably the horizon and flatness

problems). It was an era before RD when a scalar field (dubbed the inflaton field) had a very

high energy density and drove a roughly exponential expansion.

a(t) ≈ eHt and H ≈ const. (80)

Once over, the energy in the inflaton was transferred to the other fields during the reheating

phase. From then on, we can revert back to the Big Bang model, with its explanation for

events such as nucleosynthesis. One of the advantages of inflation is that is that it has

testable predictions, such as the primordial gravitational wave power spectrum it produces

(which will be explained further later on). It should also be noted that many inflationary

models include more than one inflaton field, but we will only be looking at the single field

variants.

4.1 The inflaton and slow-roll conditions

Initially, it was thought that the scalar field needed for inflation was a Higgs field from

a grand unified theory but this was soon ruled out. The Higgs field has to be strongly

interacting in order for it to induce spontaneous symmetry breaking. This in turn would have

made the early universe be highly inhomogeneous due to large quantum fluctuations. The

most popular solution was to introduce a different scalar field, dubbed the inflaton (which

has so far escaped detection at particle colliders) that is much more weakly interacting. Its

action is

Sφ = −
∫
d4x
√−g(

1
2
gµν∂µφ∂νφ−V (φ)) (81)
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4.1 The inflaton and slow-roll conditions
and it is taken to be spatially homogeneous to zeroth order. Interestingly, the same effect can

be achieved using a modified gravity theory, called the Starobinsky model [35]. It was even

the first inflationary model. The Einstein-Hilbert action gains an extra term proportional to

R2 resulting in an extra degree of freedom equivalent to the scalar one in (81). As already

discussed in section 2, an exponential expansion of the universe is caused by a constant

energy density and implies a negative pressure. This may seem a little weird but one can

try and think about it in terms of a piston that closes off a box to illustrate the principles

at work in a more familiar setting. Inside the box is a ”vacuum” of constant energy density,

i.e. its energy density does not change if the piston moves in or out. Outside the piston is

a true vacuum that has a zero energy density. If we move the piston out so that the inside

increases by a volume of ∆V , then we must have done work, since the energy inside has

increased by ρp∆V where ρp is the energy density inside the piston. We know the work done

on the system is equal W = −p∆V . Therefore, the pressure must be negative. There are

some downfalls to this analogy of course, for instance we do not know what is ”outside” our

box (which is the universe) or even if such a question makes sense (although there likely is

an outside).

Next, we would like to fine tune V (φ) such that the conditions in (80) are satisfied for some

period of time, but do come to an end. The action in (81) leads to an equation of motion

gµν∇µ∇νφ = V ′(φ). If we work in flat FRW, then

gµν∇µ∇νφ = V ′(φ) =⇒ gµν(δαµ∂ν − Γ αµν)∂αφ = V ′(φ)

g00∂0∂0φ− g ijΓ 0
ij∂0φ = V ′(φ)

−φ̈− δijHδijφ̇ = V ′(φ)

=⇒ φ̈− 3Hφ̇+V ′(φ) = 0 (82)

From the variation of the action (81) with respect to the metric we find the stress-energy

tensor of the inflaton (equivalently, it can also be derived using Noether’s theorem).

Tµν = ∂µφ∂νφ− gµν(
1
2
gαβ∂αφ∂βφ+V (φ)) (83)

Then, by comparing this to the usual fluid Tµν (in the rest frame of the fluid so uµ = (1,0)).

T00 = ρ Tij = a2pδij
=⇒ ρ = φ̇2 − g00(1

2g
00φ̇2 +V ) pa2 = ∂iφ∂iφ− gii(−1

2φ̇
2 +V )
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4 INFLATION

ρ =
1
2
φ̇2 +V (φ) p =

1
2
φ̇2 −V (φ) (84)

We know already for a ≈ eHt we need an equation of state p = −ρ. So, for an inflationary era

we need

|V (φ)| >> 1
2
φ̇2 (85)

=⇒
1
2 φ̇

2−V (φ)
1
2 φ̇

2+V (φ)
≈ 1 It should be noted that these conditions for inflation ((85), p=-ρ,Ḣ ≈

0,p ≈ −V ) classify a certain type of inflation called slow-roll inflation. The first Friedmann

equation becomes

H2 ≈ 1

3M2
P L

V (φ) (86)

We only want these to be true for some period of time, or equivalently between V (φ1) to

V (φ2) with the potential ”slowly rolling” between the two values of the field. We can get

another condition by differentiating (85).

φ̇φ̈ << V ′(φ)φ̇ =⇒ |φ̈| << |V ′(φ)| (87)

Note, the condition for inflation is (85) over some range of φ. Then (85) implies (87).

We do not need to require (87) to be true. Two slow-roll parameters are usually defined

to summarise equations (85) and (87). Firstly, we simplify the equation of motion for the

inflaton.

From the equation of motion H ≈ − 1
3φ̇
V ′(φ) (88)

Then, we define the first slow roll parameter as

εV ≡
1

2M2
P L

(
V ′

V

)2

=
3
2
φ̇2

V
(89)

Where we have simplified the expression using (88) and (86). Then we see that εV <<

1 ⇐⇒ (85). The second slow-roll parameter is defined differentiating the first one by time.

ηv ≡M2
P L

∣∣∣∣∣V ′′V
∣∣∣∣∣ (90)
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4.1 The inflaton and slow-roll conditions
Often, there are two different slow-roll parameters used that are defined in terms of the

Hubble parameter and its derivatives, denoted εH and ηH .

εH = − Ḣ
H2 ηH = εH −

Ḧ

2HḢ
(91)

These are more useful in general but up to first order they are equal to the parameters defined

in (89) and (90). To lighten the notation, I will omit the subscript on the slow-roll parameters

from now on unless stated otherwise. Once ε is no longer much smaller than one, inflation

finishes. V rolls quickly down the potential and oscillates around the minimum. As V rolls

down, the energy stored in the inflaton field is transferred to other fields. The conservation

of energy equation comes in to play here. During inflation, the decay rate or exchange

of energy between the inflaton and other fields was small compared to H (i.e. Γ << H , Γ

being the rate of exchange found in the conservation equation). When inflation finishes, the

conservation equation for φ now has a Γ term that is no longer negligible

ρ̇φ + 3H(1 +wφ)ρφ = Γ ρφ (92)

This is the process known as reheating and is essential so that inflation fits our current

proven models since the inflaton decays into all the known particles increases the tempera-

ture rapidly. It does not play out exactly as shown here in all models though. For instance,

the inflaton may not even be coupled to conventional matter and so it would have to be

created in some roundabout way. The rapid expansion during inflation would have had a big

cooling effect on the universe due to dilution of all the other particles, but we know that the

temperature at around 10−15s must have been higher than 100MeV. Thus the need for the

reheating phase.

Although inflation fixes the problem of initial conditions in the ΛCDM model there is a prob-

lem of initial conditions for it too, admittedly though it they are much less stringent and

actually quite flexible depending on which inflation theory one picks. The minimal require-

ment is usually taken to be that in the very early universe, before inflation has started, there

is some very small region of space that by chance has a high energy density and 〈φ〉 ≈ 0.

However, there are other, perhaps more compelling reasons to believe the initial conditions

for inflation present little problem, if any. It has been shown that once inflation begins it is

unlikely it will ever stop i.e. eternal inflation [36]. This would then lead to many pocket
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4 INFLATION
universe being created that would not be in contact with one another, but could also mean

evidence of how inflation began may not be found. Then, since it is eternal, as long as the

chance of it starting is non-zero then the initial conditions need not be worried about any

longer. One may have noticed that while speaking about the highly curved spacetime before

inflation we have actually been using the FRW metric with a Euclidean spatial section. This

is because we have assumed that the region of space where inflation takes place is small

enough so that it can be taken to be spatially flat, or alternatively that we add this to the

initial conditions (i.e. we now need a high energy density, a zero v.e.v and a spatially flat

region) for the small section of spacetime where it begins.

4.2 Solution to the horizon problem

In ΛCDM, up until recently we lived in a universe with decelerating expansion rate. This

means there existed a particle horizon. Two points separated by a particle horizon cannot

be in causal contact with one another i.e. no signal could have been sent between them.

The issue then comes about when studying the CMB. It is nearly totally homogeneous (with

WMAP registering a difference of only 0.0002K). If causality is to remain intact we must

then assume one of two things. Either, by some great feat of luck, that the universe is

homogeneous by chance, or that despite the apparent particle horizon these points have

been in causal contact. An easy way to demonstrate the problem is with a diagram (see

figure 3).

Figure 3: On the left we have a diagram that is easier to understand if one hasn’t covered
Penrose diagrams. The one on the right is the Penrose diagram for an FRW universe with
Euclidean spatial section, ρ = 0 and P > 0 [17]. χ is the comoving radial distance, which for a
Euclidean spatial geometry is usually just denoted as r. In both diagrams the green line is meant
to be the surface of last scattering when the CMB was made. The blue dot on the left one is us
now.

39



4.2 Solution to the horizon problem
What is the particle horizon? If we take two photons and set them off in opposite directions

we get the expression for it which is

dPH = 2
∫ t2

t1

dt
a

= 2
∫ a2

a1

dã

ã2H(ã)
(93)

This is basically just two times the comoving time η since we set them off. In figure 3, it is

the time below the green line. The time from the surface of last scattering to now (i.e. above

the green line) would then be given by the integral

dlss = 2
∫ a0

a2

dã

ã2H(ã)
(94)

The problem then arises because dPH
dlss

< 1. When investigating the CMB, a2 is fixed from

whenever the surface of last scattering was made. A history containing only RD would

give an integral over some constant (since H ∝ a−2 during RD). If instead, a1 is during an

inflationary epoch, we would have a divergent integral as a1 goes to zero since H is roughly

constant. Knowing this, we just need to find out how far back a1 must be in order for all of

the CMB to be in causal contact i.e. we split dPH in two like

dPH =
2
H

∫ a3

a1

dã

ã2 + 2
∫ a2

a3

dã

ã2H(ã)
(95)

where a3 is the value of a from the transition from inflation to RD. Even though this model

is somewhat simplified and skips the reheating phase it highlights the key ideas. Roughly

speaking, we only really need to take in to account the lower bound of only the first integral

(from a1 to a3) since all other quantities will be significantly smaller.

dph =
2
H

[−2
a

]a3

a1

=
4
a3H

(
eN − 1

)
(96)

Where N = ln
(
a3
a1

)
, the number of times the universe expanded by a factor of e during

inflation. N is usually referred to as the number of e-folds. We take N>> 1, and take the ratio

of dph and dlss.
dph
dlss

=
4a0H0

a3H
eN (97)
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4 INFLATION

Figure 4: This Penrose diagram includes an inflationary epoch that has been shaded in. The
surface of last scattering is the red dashed line. t0 is an observer today. Points A and B on the
surface of last scattering are causally connected if the shaded region lasts long enough. [17]

We can therefore tune N so that the ratio is larger than one and the problem is solved.

Equation (106) requires a minimum of sixty e-folds to solve the problem.

4.3 Solution to the flatness problem

As already discussed in section 3, the universe is very flat, with an upper bound on the

curvature energy density fraction of |Ωk,0| < 5 × 10−3. This implies that the earlier universe

must have been even flatter since any curvature at the beginning would only have increased

as it expands. This simply comes from the fact that matter and radiation get diluted with

expansion much quicker than curvature does. Going back to (69), we see that ρR ∝ a−4 and

ρM ∝ a−3 whereas ρk ∝ a−2.

We would like to know Ωk at some time during RD. We only want a rough answer, so we

estimate ρc by the energy density of the dominant fluid of that era.

During MD Ωk(t) ≈
ρk
ρM
≈ a
−2

a−3 = a and during RD Ωk(t) ≈
ρk
ρR
≈ a
−2

a−4 = a2 (98)

Defining aeq as the value of the expansion factor during the RD-MD equilibrium, the explicit

expression for Ωk(ti) for any time during RD comes from

Ωk,0

Ω(ti)
=

Ωk,0

Ω(teq)

Ω(teq)

Ω(ti)
=
a0

aeq

a2
eq

a2
i

(99)
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If we turn back the clock to the time of nucleosynthesis, a time when we still highly trust our

current description of physics, then we have |Ωk(ti)| ≈ 10−18. This is quite unnerving to just

take as true without cause other than observation. The inflation era before RD explains it

rather nicely. In the beginning (or at least, before inflation) the universe was highly curved.

Then, the period of rapid expansion in inflation ”flattens” out the spacetime. The fact we

have an accelerated expansion means ȧ is increasing so a2H2 is also increasing. Ωk can in

general be written as

Ωk =
3M2

P Lk

a2ρc
=

k

a2H2 (100)

The period of time with increasing a2H2 then leads to a decrease in curvature. We could

work out the minimum e-folds needed to solve this problem but it is somewhat similar to the

horizon problem and has been done many time in literature.

4.4 Small field and large field inflation

As mentioned, there are many different types of inflation so it is useful to categorise them.

Two substantial groups are the small and large field. Although both produce gravitational

waves, those from the large field models are significantly bigger and so would be the easiest

to detect. The main distinction between the two is their potentials, although this also affects

the initial conditions needed.

Large field usually has a power law (some have an exponential) of the form V (φ) = λφn,n > 0

and for some constant λ. The slow-roll condition then gives

ε =
n2M2

P L

2φ2 (101)

We need ε << 1, therefore, φ2 >>M2
P L if n is of order 1. We are also interested in the change

of the inflaton’s value over the duration of inflation. This can be found from the number of

e-folds needed to solve the problems spoken about in sections 4.2 and 4.3, so we take N≈60.

The number of e-folds comes from the scale factors growth a(tf ) = aineN = aine
∫ tf
ti
H(t)dt. The

Hubble parameter is often approximated as constant during inflation but we keep its time

dependence here so that we can use the expression H ≈ V φ̇

M2
P LVφ

, which is derived by dividing
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4 INFLATION
(86) by (88).

N = −
∫ tf

ti

V φ̇

M2
P LVφ

=
1

M2
P L

∫ φi

φf

V
Vφ
dφ =

1

nM2
P L

(
φ2
i −φ

2
f

)
≈

φ2
i

nM2
P L

(102)

Where we have ignored the final value of the field as it is much smaller than the initial.

We find that for large field inflation, the initial value of the inflaton is super-Planckian i.e.

φi ≈
√

2NnM2
P L. Below are given two examples for an idea of the size of the field.

N=60 n=2 =⇒ φi ≈ 15.5MP L

N=60 n=4 =⇒ φi ≈ 21.9MP L

This may seem like it should cause an issue for classical GR, but we actually only need to

worry about quantum effects if the field’s energy density is super-Planckian i.e. if M4
P L .

V (φ). To avoid this we require φ << λ−
1
nM

4
n
P L. If we would like to stay in the classical regime

(so that we can trust our results better) and still have inflation, we the full requirements are

then

MP L << φ << λ
− 1
nM

4
n
P L (103)

in large field inflation. Taking the coupling to be very small (λ << M4−n
P L ) provides more

leeway with which field values are still considered to be in the classical regime.

Conversely, small field inflation does not require super-Planckian field values. In this branch,

the early universe goes through a ”phase-change” of sorts. At high temperatures (as is as-

sumed to be the case before inflation) the potential has a minimum at φ = 0. Once the

temperature has fallen enough, the potential changes shape to the form usually attributed to

small-field models.

Figure 5: Small field inflation model including the ”phase transition”. Note, the up turn for
higher |φ| in the low temperature potential requires an extra term not usually included when
giving the form of the potential i.e. V (φ) = V0 − gφn + g̃φm , (m>n≥3).
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After the phase change, φ is still at zero, in what is referred to as the ”false vacuum” since

it is no longer the state with lowest energy density. Quantum fluctuations cause it to come

off the maximum and it begins it slowly roll down the potential, which is usually given as of

the form V (φ) = V0−gφn, n≥3, at least near the origin. Since φ is small during inflation and

does not increase to very high value, we can use the first few term of its Taylor expansion

accurately and do not need to know the potential’s complete form (this is in effect what we

are doing when defining V (φ) = V0 − gφn).

=⇒ ε =
M2
P L

2

(
V ′

V

)2

=
M2
P L

2

(
−gnφn−1

V0 − gφn

)2

(104)

It is evident from (104) that the slow roll condition is satisfied from a small φ close to 0.

Now to talk a little about the initial conditions needed for the two branches. Large field is

easier to justify, although the discussion earlier on eternal inflation should make the issue of

likelihood somewhat of a moot point. It seems reasonable to imagine that the early universe

was highly curved, highly non-homogenous, and highly non-isotropic at lengths larger than

the Planck length. From there, a small patch may by chance have an extremely high energy

density large enough so that the slow-roll conditions are satisfied and sets off inflation. Since

the expansion begins out of a chaotic universe, this is also called “chaotic inflation” and was

first proposed by Linde [30]. On the other hand, small field inflation may come about from

conditions similar to the Hot Big Bang model except that homogeneity and isotropy are not

needed. Once the universe has expanded and cooled enough, the potential changes form

and we enter the inflationary epoch. Small field inflation was suggested first (after Starobin-

sky’s) with Linde also publishing one of the first papers on it [29]. It should be noted that

large field inflation does not necessarily have to adhere to the upper bound, since this only

comes from a gap in our knowledge. This an advantage of the small-field inflation. It may

be harder to detect the GW signal left behind from it, but the physics can be understood

without having to fear that the energies may become super-Planckian.

There is a third type of inflation that is popular called hybrid inflation but it is not single-

field. The initial conditions are close to those of large field but do not require the energy

density to be super-Planckian. The second scalar field (which should actually be taken to

have more than one component) acts similarly to a Higgs field, providing a symmetry break-

ing mechanism that changes the potential shape once inflation has ended and reheats the

universe.
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4 INFLATION
4.5 Tensor perturbations during inflation

What we call primordial gravitational waves are tensor perturbations to the metric that were

produced during inflation and are still travelling through the universe. In this section, we

will consider only the tensor perturbations and then later we will look at the scalar.

We take the relevant modes as the sub-horizon modes, those with comoving momentum

k >> H, which is sometimes restated in terms of the physical wavelength
λph
2π << H . Infla-

tion’s solution to the horizon problem comes in useful again here. Presumably, there are

gravitational waves with physical wavelengths that have only recently entered the Horizon.

Without inflation, this would cause an issue much akin to that discussed in the horizon prob-

lem section, areas of the universe that should not have a correlation have a gravitational

wave spanning across them. Assuming inflation did happen, we take it so that all modes

that have entered the horizon during RD and MD, had previously been in the horizon during

inflation. A graph with both the physical horizon and some of the physical wavelengths can

be very useful here.

Figure 6: The physical horizon is roughly constant during inflation, but begins to grow during
RD and MD (at different rates, although it is not clear in this diagram). It finally tails off back to
a constant towards the end since we are thought to be entering another exponential expansion.
The physical wavelengths go as straight lines, all with the same gradient since they are just
proportional to their comoving wavelengths with a proportionality factor a(t). [32]

We have already derived the action for gravitational waves in flat space FRW back in section

2, as well as their equations of motion. Importantly, during inflation there is no stress that

contributes to σ (T T )
ij so there is no source for the gravitational waves at first order. If we go

further, then the perturbations of the metric itself, can act as a source for tensor perturba-

tions. We use the stress-energy tensor from Noether’s theorem (i.e. one index up and one
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4.5 Tensor perturbations during inflation
down). The metric is defined as before

gµν = g̃µν + hµν (105)

with g̃µν = a2ηµν and since we are worrying about the tensor perturbations responsible for

gravitational waves only, hµν = (0, a2h
(T T )
ij ) , although we will omit the (TT) superscript.

T
µ
ν = g̃µρ∂ρφ∂ν − δ

µ
ν

(1
2
g̃ρσ∂ρφ∂σφ+V (φ)

)
δT

µ
ν = δgµρ∂ρφ∂νφ+ 2g̃µρ∂ρφ∂νδφ

− δµν
(1
2
δgρσ∂ρφ∂σφ+ g̃ρσ∂ρφ∂σδφ+V ′(φ)δφ

) (106)

We insert for δgµν = (0,−a−2hij) and take the (i,j) component of (106), remembering that

the inflaton is spatially homogeneous to zeroth order.

δT ij = −δij
(
g̃ρσ∂ρφ∂σδφ+V ′(φ)δφ

)
(107)

This obviously does not contribute to the transverse traceless tensor σ (T T )
ij . We remind our-

selves that after linearising, the action in comoving coordinates is

S[h] =
M2
P L

8

∫
d3xdηa2(η)(∂ηhij∂ηhij −∂khij∂khij) (108)

where we have ignored the energy momentum tensor due the discussion just above. From

this, the equation of motion is

∂2
ηhij −∂2

khij + 2H∂ηhij = 0 (109)

We would like to treat the metric perturbations as a scalar field so we switch to their fourier

transform to utilise their decomposition in to polarisation tensors (+ and ×). Then, from the

normalisation of the polarisation tensors (eAije
A′
ij = 2δAA′ ) we get an action that is like that

of two scalar fields in a curved background. By this I mean, we have the usual kinetic term
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4 INFLATION
∂µφ∂νφ, but its contracted with g̃µν and of course the volume element includes

√
−g̃.

S[h] =
M2
P L

4

∑
A

∫
d3xdη

√
−g̃ g̃µν∂µhA∂νhA (110)

Whereas the action for canonically normalised scalar fields is

S[φ] = −1
2

∑
A

∫
d3xdη

√
−g̃ g̃µν∂µφA∂νφA (111)

So, the gravitational waves only differ from the canonically normalised scalar fields by a

proportionality constant (some normalisation).

We would like to get some sort of experimental prediction. What we measure is the ampli-

tude of incoming gravitational waves at different frequencies. For the ground based detectors

the frequencies are usually quite high. This is due to the fact that there are many gravita-

tional effects at quadratic order that are not due to the gravitational waves. Luckily, we can

still make ground based detectors because these other sources have a lower frequency than

many GW sources, but this does mean there are some lower frequency GW that we are not

able to detect on the ground. One way around this is to build space based detectors, such as

LISA planned by the ESA to be launched in 2034. Another way, for which the infrastructure

already exists, is to use accurate CMB readings.

Before introducing the power spectrum, we go over a normalisation convention for the FT

used here that just makes the expressions a little lighter on the eyes and easier to follow.

We introduce a volume in to the fourier transform since cosmology deals with finite volumes

that are measurable. A clear advantage being we do not need to require our functions to

decay to zero sufficiently fast.

f̃ (k) =
1
√
V

∫
V
d3xf (x)e−ik.x ⇐⇒ f (x) =

√
V

∫
V

d3k

2π3 f̃ (k)eik.x (112)

We have spoken a lot about initial conditions and their origin but so far we have failed to

mention that the exact initial conditions cannot be predicted. There is no way that we would

be able to explain or predict the value of the field hij at a certain point in space. We can

see this as originating from the quantum nature of reality and the fluctuations that happen

on the smallest of scales. Practically, this means we treat the initial conditions at a point
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4.5 Tensor perturbations during inflation
as a random variable. We try not to predict hijinitial at a point, but instead its two point

correlation function which we will use to define its power spectrum. We assume Gaussian

initial conditions from here on since all data from experiments support this. In Gaussian

statistics all n-point correlation functions can be found using the 2-point correlation function,

so all the information we need is encoded in that. Note that the 3-point correlation function

is actually zero. Since the FRW metric is invariant under spatial translations and rotations,

we know that the 2 point correlation function is actually only a function of ηin and the

absolute value of the difference of the two points i.e. |x− x′ |.

〈h̃A(ηin,k)h̃∗A′ (η,k’)〉 =
1
V

∫
V
d3xd3x′ 〈h̃A(ηin,x)h̃∗A′ (ηin,x’)〉e−ik.xe−ik

′ .x′

We make the substitution X =
1
2

(x + x′) and y = x− x′

〈h̃A(ηin,k)h̃∗A′ (η,k’)〉 =
1
V

∫
V
d3Xd3yf (y)e−i(k−k

′).X− i2 (k+k′).y

(113)

We can do the X integral easily enough resulting in a three dimensional delta function and a

factor of (2π)3. The remaining integral is packaged in to the definition of the power spectrum

PT , given below in equation (114).

〈h̃A(ηin,k)h̃∗A′ (ηin,k’)〉 =
(2π)3

2V
PT (ηin;k)δ(3)(k− k’)δAA′ (114)

Where V is the finite volume that the perturbations are in. We have also chosen the normali-

sation convention of 1
2 because of the polarisation tensors we defined in section 1 that satisfy

eAije
A′
ij = 2δAA

′
. It means we have the cleaner expression without the one half normalisation

for the 2-point correlation function of the field hij . From the form given in (112), we can see

why we changed normalisation convention for the fourier transform. By including the V in

the denominator we avoid the apparent singularity one would get from the delta function if

we were to look at k = k′, i.e V ≡ (2π)3δ(3)(0). Therefore

〈|h̃A(η,k)|2〉 =
1
2
PT (k;η) (115)

We call PT the power spectrum of hA. From this we further define

PT (k;η) =
k3

2π2PT (k;η) (116)

48



4 INFLATION
Which, confusingly, is also referred to as the power spectrum. When measuring GWs, we

usually do so around some reference value of k (called k∗) and within a small band around

it. Around this value k∗, we expect a simple form for PT (k;ηin) (i.e. the primordial power

spectrum). The simplest parametrisation is

PT (k;ηin) = AT (k∗)
(
k
k∗

)nT (k∗)

⇐⇒ nT (k∗) =
d

dln(k)
ln(PT ,in(k)) (117)

AT is called the amplitude, and nT is called the tilt. A flat spectrum is defined as one

with zero tilt. However, what we measure is PT (k;η0), η0 being the time today. So, after

using making a prediction for PT (k;ηin), and evolving it in time (this will depend on the

cosmological model used), we can compare our prediction to what is measured in the present

day. Going back to the equation (in momentum space this time)

∂2
η h̃ij + k2h̃ij + 2H∂η h̃ij = 0 (118)

This can be simplified by making a field redefinition hA = 1
a(η)MP L

χ. Using the chain rule and

remembering that dηdt = 1
a we get

χ̃′′ + (k2 − a
′′

a
)χ̃ = 0 (119)

For which the general solution is

χ(η,x) =
∫

d3k

(2π3)

(
f (η,k)eik.xa(k) + f ∗(η,k)e−ik.xa∗(k)

)
(120)

To find the two point correlation function we actually find the vacuum expectation value

of the quantum field. This means we need to perform a second quantisation in a curved

spacetime. There is a difficulty that arises with doing this in general relativity. We are free to

change coordinates because of the diffeomorphism invariance, which can cause ambiguities

when defining the vacuum. There is no guarantee that the vacuum of one set of coordinates

will be the same as the vacuum of another set. This problem also materialises itself when

looking at the modes in equation (119). In Minkowski, a Lorentz transformation keeps

the positive modes as the positive and the negative modes stay as the negative. This is

not necessarily true after a coordinate change in a curved spacetime. Here, we will take
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4.5 Tensor perturbations during inflation
the Bunch-Davies vacuum [9] because in the limit |kη| >> 1 it agrees with the Minkowski

vacuum. We therefore have

χ̂(η,x) =
∫

d3k

(2π3)

(
f (η,k)eik.xâ(k) + f ∗(η,k)e−ik.xâ†(k)

)
(121)

With the â obeying the commutation relation [â, â†] = (2π)3
√
V δ3(k−k′), with the rest being

zero. The hats will be omitted from now on for ease. The vacuum expectation value is then

〈0||χ(η,x)|2|0〉 = 〈0|
∫

d3k

(2π)3
d3k′

(2π)3

(
f (η,k)eik.xa(k) + f ∗(η,k)e−ik.xa†(k)

)
(
f (η,k)eik

′ .xa(k′) + f ∗(η,k′)e−ik
′ .xa†(k′)

)
|0〉

=
∫

d3k

(2π)3d
3k′f (k)f (k′)

√
V eix(k−k′)δ3(k− k′)

=
∫

d3k

(2π)3 |f (k)|2

=
∫ ∞

0

dk

2π2k
k3|f (k)|2

(122)

From this, we can easily find the power spectrum PT . We just multiply the two fourier

transforms of hij(η,x) and hij(η,x′) (given in (112)) and take the vev. Then substitute in

(114), simplify and change to polar coordinates. Now going back to the original field we

had for the tensor perturbations, the power spectrum we get is therefore

PT (k;η) =
2

a2π2M2
P L

k3|fk(η)|2 (123)

Before giving the exact solution we will take a look at the two limiting extremes. The full

solution is more complicated and harder to extract information from. In the sub-horizon

limit (|kη| >> 1) we get the usual Minkowski wave equation for χ. So the hA oscillates while

its amplitude is decreasing over time as 1
a , we can see this damping as being a direct result of

the expansion of the universe. On the other hand we have the super-horizon limit (|kη| << 1).

Then the two independent solutions are

χ̃1 ∝ a and χ̃2 ∝
1
a2 (124)
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4 INFLATION

=⇒ h̃1 = const. and h̃2 ∝
1
a3 (125)

We get a constant mode and one which decays very quickly. We are usually interested in the

constant mode since the other will decay to being negligible very soon after ηin. We conclude

that any mode that exits the horizon during inflation remains ”frozen” until it has reentered

the horizon.

The approximate exponential expansion means we are in a roughly de Sitter spacetime. In

de Sitter, a = 1
Hη . We want to get a more accurate expression for a, and since we are in a slow

roll inflation, we can expand H in terms of ε, but only to first order like all the expansions

so far.

Using ε = − Ḣ
H2 and H = 1

aH

ε = − a4

(a′)4

dη

dt
d
dη

(
1
a
H) =− a2

(a′)2

(
H′ − a

′

a
H

)
= −H−2

(
H′ − a

′

a
H

)
=⇒ H′ =H2(1− ε)

(126)

We are working only to first order in the slow roll expansion so we can take ε to be constant.

After integration we get

H = −(1 + ε)
η

(127)

By definition we have H = 1
a
da
dη = d(ln(a))

dη

=⇒
∫
d(ln(a)) = −(1 + ε)

∫ dη
η
∝∼ ln(η−1−ε)

a ∝∼ η
−1−ε (128)

Using this expression for a(η), we can write

a′′

a
=

2 + 3ε
η2 +O(ε2) (129)

=⇒ χ̃′′ + (k2 − 2 + 3ε+O(ε2)
η2 )χ̃ = 0 (130)

=⇒ χ̃′′ + (k2 −
ν2 − 1

4

η2 )χ̃ = 0 where ν =
3
2

+ ε+O(ε2) (131)
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4.6 Massive tensor perturbations during inflation
One can then show that the mode functions take the form

fk(η) = −1
2

√
π
k

√
−kηH (1)

ν (−kη) (132)

Where H (1)
ν (x) is the Hankel function of the first kind and we take ν ≈ 3

2 since ε is small.

=⇒ 〈|χ(ηin,x)|2〉 =
∫

d3k

(2π)3 |fk(ηin)|2 =
∫ ∞

0

dk
k
k3

2π2 |fk(ηin)|2

=⇒ PT (k;ηin) =
k3

2π2a2M2
P L

|fk(ηin)|2 (133)

PT (k;ηin) =
k2

2πa2M2
P L

(−kηin)|H (1)
ν (ηin)|2 (134)

We have assumed that the initial condition for the vacuum state is such that ak |0〉 = 0, which

is the Bunch-Davies vacuum as mentioned earlier.

4.6 Massive tensor perturbations during inflation

Later on we will be looking at what happens to the primordial power spectrum were we

to couple the usual metric to a second spin-2 field. The coupling term results in a massive

mode. Therefore, we will explore the implications of massive gravity on the power spectrum

here first. Usually, when a particle ”gains” a mass, its potential gains a decaying exponential

i.e. we expect a Yukawa-like potential. This is what happens with photons and the Proca

Lagrangian. It is also what happens to the (00) component of gµν , which is the component

responsible for the classical Newtonian potential in regular GR. One might expect then that

something similar happens to the gravitational waves once they gain mass. In reality, the

sub-horizon remain the same while for the super-horizon we get one decaying mode and

one increasing mode (at least during inflation). We already derived the equation of motion

for massive gravitational waves in section 3.4, equation (77).

=⇒ h′′ij + 2Hh′ij −∂k∂khij −m
2a2hij = 0 (135)
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4 INFLATION
We then proceed exactly as we did for massless gravity, changing to fourier space and split-

ting the equation in to the two polarisations before making the substitution h̃A = MP L
a χ̃A.

χ̃′′A + (k2 −m2a2 − a
′′

a
)χ̃A = 0 (136)

Since we are in a quasi de Sitter space, a2 ≈ 1
H2

0η
2 . This means that if we look at the sub-

horizon modes, all we are left with is the usual wave equations i.e. there is no change to the

massive tensor modes. Note that we require the mass to be roughly the same order as H0

for this to be true. Although current experimental upper bounds place the graviton mass at

orders of magnitude bigger than H0 [18], our requirement is not so stringent or unheard of.

Later on, we will be looking at bimetric theories of gravity in FRW, in one paper exploring

this a theoretical upper bound for the graviton mass was found to be an order of magnitude

less than H0 [16]. Taking the limit in the other direction, |kη| << 1, we are left with the

equation

χ̃′′A − (m2a2 +
a′′

a
)χ̃A = 0 (137)

Remembering equations (128) and (129), we continue to first order in slow roll. Since

a =H−1
0 η−1−ε. We now look to expand η−2ε to first order.

η−2ε = 1− 2εln(η) +O(ε2)

=⇒ m2a2 ≈m2H−2
0 η−2(1− 2εln(η) + ...)

(138)

Then we rely on [16] to ensure the mass is at least one order smaller than H0, we take

m2H2
0ε as being of the same order as ε2.

=⇒ −m2a2 − a
′′

a
≈
−m2H−2

0 − 2− 3ε
η2 (139)

For ease, we define b = (m2H−2
0 + 2 + 3ε). The equation is now

χ̃′′A − bη
−2χ̃A = 0 (140)

and has two solutions:

χ̃A± ∝ η
r± (141)
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4.7 Scalar perturbations during inflation
With r± = 1

2(1 ±
√

1 + 4b). We have one decaying mode again, but this time instead of a

constant mode we have one that is increasing. However, this does not necessarily mean that

h̃A is also increasing. We check this next.

h̃A± ∝ η
3
2 +ε± 1

2

√
1+4b (142)

Looking at the power only

3
2

+ ε ± 1
2

√
1 + 4b =

3
2

+ ε ± 1
2

√
9 + 4m2H−2

0 + 12ε

=
3
2

+ ε ± 1
2

√
9 + 4m2H−2

0 ±
3ε√

9 + 4m2H2
0

=
3
2
± 1

2

√
9 + 4m2H−2

0 + β±ε

where we have defined β± ≡ 1± 3√
9 + 4m2H−2

0

(143)

We have also kept the power only to first order in ε. It is easy to see that the index of hA+
is

positive. However, since η ∝ 1
a , this mode actually decays with time. To check the behaviour

of the other mode, we expand its index

3
2
− 3

2

√
1 +

4m2H−2
0

9
+ ε

1−
(
1 +

4m2H−2
0

9

)− 1
2
 = −

m2H−2
0

3
+

2m2H−2
0

9
ε < 0 (144)

Therefore, we have a decaying mode and an increasing mode (the power of the increasing

mode is of order one or less, according to our assumption earlier O(m) . O(H0)). Since

β+ −→ 0 as m −→ 0, when we take the massless limit we get back one decaying mode and

one constant mode as expected.

4.7 Scalar perturbations during inflation

Although not dynamical, the scalar perturbations of the metric are of interest when consid-

ering how the small inhomogeneities in the universe formed. They are what led to matter

accumulation in certain areas and eventually the development of galaxies. If we are explor-

ing gravitational waves at second order or above, then the scalar perturbations can be a
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4 INFLATION
source of GWs themselves. Unlike h(T T )

ij , the scalar perturbations do couple to the inflaton

perturbations at the linear level. The quantum fluctuations of the inflaton can be show to

be the origin of the small inhomogeneities in the early universe. There are a couple of ways

to find the resulting equation of motion. One could go from the perturbed field equations.

Alternatively, the action of the inflaton minimally coupled to gravity can be perturbed.

S =
1
2

∫
d4x
√−g

(
M2
P LR− (∂φ)2 − 2V (φ)

)
(145)

Since we are looking at the scalar perturbations, we ignore the tensor and vector perturba-

tions of both the metric and the gauge transformation. In (146) we write the most general

FRW metric with scalar perturbations as well as the perturbed inflaton field.

ds2 = −(1 + 2ζ)dt2 + 2a∂iγdx
idt + a2[(1− 2ψ)δij + 2∂i∂jλ]dxidxj

φ(t,x) = φ0(t) + δφ(t,x)
(146)

The gauge functions ξµ are defined as

ξ0 = α ξ i = ∂iβ (147)

Using the curved space gauge transformation hij −→ hij − 2∇(µξν) leads to the following

transformations

ζ −→ ζ − α̇ γ −→ γ + a−1α − aβ̇ λ −→ λ− β ψ −→ ψ +Hα

δφ −→ δφ− φ̇0α
(148)

Note that we are using (t,x,y,z) coordinates in this calculation and of course have ξµ = g̃µνξν

so ξi = g̃ijξ
j = a2∂iβ. There are four scalar metric d.o.f and one more from the inflaton

field so five in total. The gauge invariance removes two and there are constraints from the

perturbed field equations which would remove another two. The one physical d.o.f is chosen

to be the comoving curvature R = ψ + H
∂tφ0

δφ. On a comoving hypersurface where δφ = 0,

then R = ψ and it gives the intrinsic spatial curvature via a Poisson equations dictating ψ

(R(3) = 4
a2∇2ψ). We can see that R is gauge invariant. If we go in to the comoving gauge

so that δφ = 0 and gij = a2[(1− 2R)δij + hij] (where hij is transverse and traceless) then the
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4.7 Scalar perturbations during inflation
resulting action is

S =
1
2

∫
d4x
√−ga3 φ̇

H2 [Ṙ2 − a−2(∂iR)2] (149)

Next, we make a field redefinition u = zR where z2 = a2 (∂tφ)2

H2 and change to conformal time.

The final action is

S =
1
2

∫
dηd3x[(u′)2 − (∂iu)2 +

z′′

z
u2] (150)

Varying this action will give us the Mukhanov-Sasaki (MS) equation.

u′′ −∇2u − z
′′

z
u = 0 or in Fourier space ũ′′ + (k2 − z

′′

z
)ũ = 0 (151)

The MS equation turns out to be quite similar in form to the equation we had for the two

polarisations of h(T T )
ij . Both look like simple harmonic motion with a frequency that changes

with time. Next, we would like to quantize the MS variable , u, to find its vacuum fluctua-

tions. One may wonder how to go about finding the vacuum fluctuations when the vacuum

itself is not unique, as we mentioned earlier. To get around this we choose the same vacuum

as before, the Bunch-Davies vacuum, because of its transition to Minkowski at sub-horizon

regimes. After quantisation, the mode functions can be written as

ˆ̃u(k) = ũ(η,k)â(k) + ũ∗(η,k)â†(−k) (152)

With the â(k), â†(−k) the creation and annihilation operators. They are defined using the

Wronskian (W [u,v] = i
h̄
(u∗v′ −u∗′v) and satisfy the the commutation relation

[â(k), â†(k′)] = (2π)3δ3(k− k) so that W [ũ(η,k), ũ(η,k)] = 1 (153)

Differentiating (70) with respect to time (with ρtot = ρinf ), and then using equation (67)

(again with the total pressure and energy density taken as that of the inflaton) and (84)

(i.e. ρinf + pinf = φ̇2), we can show that Ḣ = −M
2
P L
2 φ̇2. Therefore, z2 = M2

P La
2

2
Ḣ
H2 = 2a2

M2
P L
ε. If

we are only working to first order in slow-roll, then we take epsilon as constant meaning

that z′′
z = a′′

a and the equation of motion for the MS variable becomes identical to that of the

tensor polarisations except for a normalisation. The power spectrum for the MS variable can
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then easily be inferred to be

Pu(k;η) =
k2

2π
(−kη)

∣∣∣∣H (1)
ν (η)

∣∣∣∣ (154)

where ν = 3
2 + ε again. The power spectrum for R (at lowest order so we only use the

background inflaton for z = aφ′0
H ) is

PR(k;η) =
k2

2π

(
H
aφ′0

)2

(−kη)
∣∣∣∣H (1)

ν (η)
∣∣∣∣ (155)

It can be useful to point out that to choose the vacuum, we have to choose appropriate

boundary conditions. We take the sub-horizon limit of (151) and find its solution (which are

just oscillating modes). The vacuum is then the minimum energy state for this solution. Just

as we did with the tensor sector, we can parametrise the scalar perturbations power spectrum

around a certain moementum k∗ (called the ”pivot scale” as before) to get a simpler form.

Again, we do this because experiments will only be looking at a relatively small bandwidth

of different momenta. We have a tilt again too, although by convention the spectrum is flat

this time if the tilt is one rather than zero.

PR,in(k) = AR(k∗)
(
k
k∗

)ns(k∗)−1

⇐⇒ ns(k∗)− 1 =
d

dln(k)
PR,in(k) (156)

Now that we have both tensor and scalar power spectra, we introduce their ratio. The tensor-

to-scalar ratio is usually used when discussing the effects of the metric perturbations on the

CMB. It quantifies the strength of the GWs in comparison to the scalar perturbations.

r(k) =
PT ,in(k)
PR,in(k)

(157)

This turns out to be quite small as shown below using (134) and (156).

r(k) =
1

M2
P L

(
φ′0
H

)2

=
1

M2
P L

(
φ̇0

H

)2

(158)
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4.7 Scalar perturbations during inflation

Using φ̇2
0 = −M

2
P L
2 Ḣ and ε = − Ḣ

H2 gives us

r =
1
2
ε (159)

The exact value of the ratio can vary depending on the model of inflation, which is apparent

in (159) since the slow-roll parameter does depend on the inflaton’s potential (one of the

main aspects that defines an inflation model). In general, the r value is around 0.15 to 0.4

for generic models with a minimum number of e-folds. From (159) we can see roughly why

large field inflation will have a greater effect on the CMB than small field. We already know

what ε we get for generic small and large field models. We also need the η =M2
P L

∣∣∣V ′′V ∣∣∣.
Large field η =M2

P L

∣∣∣∣∣n(n− 1)
φ2

∣∣∣∣∣ ≈ ε
Small field η =M2

P L

∣∣∣∣∣∣gn(n− 1)φn−2

V0

∣∣∣∣∣∣ > ε
(160)

Inflation ends when either of the slow-roll parameters approaches one. Since they are

roughly equal in large field, inflation ends when ε ≈ 1. In small field, η is larger and so

inflation ends before ε can reach one, meaning the tensor to scalar ratio will also be smaller.

Although this argument is somewhat crude, it gets across the main point. Observations from

Planck 2015 give an upper bound on r of 0.11 [3]. This is below most mainstream inflation-

ary models. This is not the only problem with inflation. Inflation has a fine-tuning which is

especially unsettling considering it was created to try and fix a previous fine-tuning problem.

As mentioned earlier, the coupling parameter in the inflaton potential must be very small

in order to produce the small quantum fluctuations that produce the observed amplitude of

primordial density fluctuations
(
δρ
ρ = 10−15

)
. If we consider 2 V (φ) = λφ4 , this means we

need to have λ ≈ O(10−15), although not as extreme as what we saw for the flatness problem

it should not be taken lightly.

2This particular potential has been ruled out by Planck2015 since it r value is too high.
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5 BIMETRIC GRAVITY AND ITS EFFECT ON THE POWER SPECTRUM
5 Bimetric gravity and its effect on the power spectrum

5.1 Short introduction to dRGT

So far, when considering massive gravity, we have only done so to linear order with the

Fierz-Pauli action. Since its first introduction, there have been many attempts to write down

the fully non-linear theory and find the complete kinetic term of a massive spin-2 field. Until

recently, these attempts could not avoid the Boulware-Deser (BD) ghost that was avoided in

the Fierz-Pauli action. There have been theories produced without this ghost but the major-

ity are not Lorentz invariant. The many massive gravity models usually only differ in their

predictions once we start probing huge, cosmologically relevant distances. This is somewhat

expected, and built in by design since we know that General Relativity is extremely accurate

at the level of the solar system. Arguably, it is perfectly healthy at larger scales too, but we

do have to introduce dark energy which one may argue points to a hole in the theory rather

than a missing ”substance”. Furthermore, any new theory should agree largely with the pre-

dictions of GR for the evolution of the universe, since the ΛCDM model has been thoroughly

tested.

The problem of ghosts was solved using the dRGT Lagrangian [15], which is Lorentz invari-

ant and is made up of a two-parameter family of potentials. Since we choose to work with

a Lorentz invariant theory, the mass of the graviton (defined using the propagator of the

graviton) is given by a single pole. However, the theory must also be invariant under trans-

lations, but we do not need to worry about this since we are working with FRW. Although

the BD ghost is no longer an issue, there may be other instabilities in the theory, and we will

come across some in the bimetric FRW. These are not as problematic as the BD ghost, and

well-behaving physical models can be found from dRGT.

To build the dRGT Lagrangian we must define a second reference metric usually denoted as

fµν . The full, non-linear Lagrangian of the dRGT theory is then given in (161) (if fµν is not

dynamic).

Ltot =
M2
P L

2
√−g

R+m2
4∑
I=0

αILI

 (161)
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5.1 Short introduction to dRGT
The αI are the free parameters, of which only two need to be kept general and the LI are

L0 =1 , L1 = [K] , L2 =
1
2

(
[K]2 −

[
K2

])
L3 =

1
6

(
[K]3 − 3[K]

[
K2

]
+ 2

[
K3

])
L4 =

1
24

(
[K]4 − 6[K]2

[
K2

]
+ 3

[
K2

]2
+ 8[K]

[
K3

]
− 6

[
K4

]) (162)

The square brackets denote the trace operation and

Kµν ≡ δ
µ
ν −

(√
g−1f

)µ
ν
,

(√
g−1f

)µ
ρ

(√
g−1f

)ρ
ν
≡ gµρfρν (163)

The zeroth term is just the cosmological constant, while the first is to do with the v.e.v of

the field. The full non-linear Lagrangian is given here, but when calculating the primor-

dial power spectrum of the gravitational waves, we will only be using the linear Lagrangian

(i.e. α3 = α4 = 0). Often, the second reference metric is just taken as the Minkowski met-

ric. In [20] both the background and the reference were taken to be FRW, although the

reference remained without perturbations and varied only with time. This massive gravity

theory led to a deviation from the usual Yukawa potential expected by redressing the mass

to m̃2
g(H) = m2

g
H
H0

(
c0 + c1

H
H0

+ c2
H2

H2
0

)
(the ci are dimensionless constants that depend on the

αi parameters). This redressing is actually not unique to the FRW model studied in [20] -

the mass is commonly seen to change depending on the background spacetime.

If one instead takes fµν to be a general symmetric rank two tensor that is dynamical, then

we would need to include a kinetic term for it too. We already know the form of this, since

the Einstein-Hilbert action is the unique action for a massless spin-2 field (at the non-linear

level). The sum in (161) is then a coupling term between the two dynamical spin-2 fields

and the theory is referred to as bi-gravity.

S =
M2
P L

2

∫
d4x
√−gR[g] +

M2
f

2

∫
d4x

√
−f R[f ] +m2M2

P L

∫
d4x

4∑
I=0

αILI (164)

The full action only contains one graviton bare mass. It is essential that we have a massive

spin-2 field interacting with a massless in a bimetric theory, since Weinberg’s theorem [38]

[39] shows that we cannot have two massless spin-2 fields mediating gravity in a Lorentz
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5 BIMETRIC GRAVITY AND ITS EFFECT ON THE POWER SPECTRUM
invariant theory. After diagonalisation , we are left with one massive and one massless tensor

mode and an effective mass which is what appears in predictions. There are therefore seven

d.o.f in this bimetric theory, two carried by the massless mode and five carried by the massive

mode.

5.2 ADM formalism

In this part of we will be closely following [19][22] where the ADM formalism is used. The

ADM formalism is a Hamiltonian formulation of General Relativity first introduced in [5]. It

takes a generic form of the metric to be

gµνdx
µdxν = (−N 2 +γijN iN j)dt2 +γijN jdxidt +γijdx

idxj (165)

Where N is the lapse function, N i the vector and γij the spatial metric. The generalised

coordinates are taken to be the spatial metric part of gµν and the canonical momenta are

those of the spatial metric
(
i.e πij = ∂L

∂ġij

)
. This formalism separates time from the three

spatial coordinates and spacetime is foliated in to Cauchy surfaces (which can be thought

of as spatial surfaces of constant time). In this form, the volume element can be shown to

be
√−g = N

√
γ. In FRW, we have already foliated our spacetime . The general FRW metric

with tensor perturbations for gravitational waves is:

gµνdx
µdxν = −N 2dt2 + a(t)2(γij +H (T T )

ij )dxidxj (166)

As before, we are taking γij = δij during inflation. Interestingly, in an FRW universe, the

second spin-2 field cannot be the Minkowski metric as it leads to instabilities [16], although

this can be worked around by taking approximate FRW solutions instead ([16] drops homo-

geneity and also provides an upper bound for the graviton mass, while [21] and [27] drop

isotropy). We take the reference metric to be of the same form as gµν , but with a different

lapse function, as well as a different perturbation to the spatial metric.

fµνdx
µdxν = −n2dt2 + b(t)2(γij + h(T T )

ij )dxidxj (167)

We have some gauge freedom and can actually set the lapse function of gµν to be equal to

a(t) so that we are using conformal time again. It is not possible to do this for both metrics
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5.3 FRW background with two metrics
at the same time though, unless forced by us as a physical condition.

There is a question of how to couple bi-gravity to matter. Coupling both metrics to to the

same matter in a covariant way leads to the emergence of a ghost[33], so we eliminate this

option. There are a few alternatives. We could couple Tµν to one of the metrics, or couple

each metric to its own separate part of Tµν . There is also the possibility to couple Tµν to a

composite metric, again given in [33], to be of the form g
ef f
µν = α2gµν+2αβgµ

√
g−1f αν+β2fµν ,

where α and β are arbitrary constants. Then the stress energy tensor couples to matter by

the action Smatter =
∫
d4x

√
−gef f gef fµν T µν .

5.3 FRW background with two metrics

We now have two metrics, both homogeneous and isotropic (to zeroth order). This results

in two sets of ”Friedmann” equations, as well as extra terms in the equations due to the

coupling of the two fields to each other. For instance, four of the six background equations

are given below and are from [22].

3H2
g =m2ρm,g +

ρg

M2
P L

3H2
f =

m2

κ
ρm,f +

ρf

κM2
f

(168)

2
Ḣ
N

=m2XJ(c̃ − 1)−
ρg + Pg
M2
P L

2
Ḣf
n

= − m2

κX3c̃
J(c̃ − 1)−

ρf + Pf
κM2

P L

(169)

where ρg and ρf are the energy densities due to the matter coupled to gµν and fµν respec-

tively. We list some definitions for (168) and (169) below, as well as some extra ones we will

need later.

Hg =
ȧ
aN

, Hg =
ȧ
bn

, κ =
M2
f

M2
P L

, X =
b
a
, ρm,g =U (X)− X

4
U ′(X)

ρm,f =
1

4X3U
′(X) , U (X) = −6α2(X − 1)2 + 4α3(X − 1)3 −α4(X − 1)4

J(X) =
1
3

[U (X)− X
4
U ′(X)]′ , c̃ =

na
Nb

(170)
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5 BIMETRIC GRAVITY AND ITS EFFECT ON THE POWER SPECTRUM
We see that we get a Hubble parameter for each metric, and an energy density due to matter

for each metric, so unsurprisingly we get a copy of everything in section 2 for the second

metric. One could think of ρm,g or ρm,f as the energy density due to the coupling of the spin-

2 field fµν to gµν or vice versa, since LdRGT is in effect what replaces the coupling via a stress

energy tensor and is worked out by variation of the dRGT Lagrangian with respect to the

respective metric. From the background equations for gµν one can find a constraint equation

for the theory J(X)(Hg −XHF) = 0 which leads to two ”branches” that can be explored. The

J=0 branch implies that X is a constant and so ρm,g is also constant and we get a naturally

appearing cosmological constant term. Although this seems appealing at first, at the linear

level, the J=0 branch has only four d.o.f instead of the seven that are expected [11] while

at the non-linear it has many instabilities akin to the self-accelerating massive gravity FRW

model [12]. We therefore focus on the Hg = XHf branch.

If we then multiply the (0,0) equation for fµν (that is, the right one in (168)) by X2 and

subtract it from the (0,0) component for gµν , we arrive at (171) which we should use to

determine X.

ρm ≡ ρm,g(X)− X
2

κ
ρm,f (X) ≡

X2ρf

m2κM2
P L

−
ρf

m2M2
P L

(171)

We will find that our effective mass is dependent on X = b
a . For convenience and ease

in our calculations, it would be better to work in a regime where the effective mass can

approximately be taken as constant. One such regime is given by taking ρm << 1. It has

the solution X = Xc =constant, with ρm(Xc) = 0. Technically, even if ρm(Xc) is not zero, it is

constant and can be taken as part of the cosmological constant. Equation (171) can be true

if and only if
ρg

m2M2
P L

<< 1 ,
X2ρf

m2κM2
P L

<< 1 (172)

It is the two conditions in (172) which we refer to as the low energy limit. If we want the

low energy condition to agree with the cosmological history provided by GR, then (168)

demands that ρm,g <
H2
g

m2 << 1 up until the recent dark energy epoch (i.e. we need the

energy density of the matter fields to be dominant). Depending on which matter sector is

coupled to which of the two metrics, we may also need corresponding conditions for the

second dynamical metric. Another consequence of the low energy limit can be found by
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5.4 The tensor perturbations’ action
differentiating Hg −XHf = 0 with respect to time, and then using equations (169).

Ẋ =
ḃ
a
− bȧ
a2 =

bnHg
aX

−
bNHg
a

(173)

Then just rearrange (169) to get expressions for Ḣf and Ḣg . Substitute these all in to Ḣg −
ẊHf −XHf = 0 to get (174).

2(c̃ − 1)
[
m2J(1 +κX2)

2κX
− 2H2

g

]
=
ρg + Pg
M2
P L

−
X2c̃(ρf + Pf )

κM2
P L

(174)

So even though we do not have the gauge freedom to set both a=N and b=n (and therefore

c̃ = 1), equation (174) ensures that c̃ approaches 1 in the low energy limit, meaning a ∝ b
and N ∝ n.

5.4 The tensor perturbations’ action

We are interested in how the primordial power spectrum for a bimetric theory of gravity

differs from what we found in section 3. What part of the power spectrum is measurable

by our instruments very much depends on how the metrics are coupled to matter. The

instruments can only detect gravitational waves due to a metric that it is coupled to. We

will give the power spectra of both massless and massive eigenstates here, and discuss their

coupling later. To find their power spectra we obviously need the action for the two metrics’

tensor perturbations. We will only be working to linear order, which means we set α3 = α4 =

0 from now on.

S =
M2
P L

8

∫
d4xNa3√γ

Ḣ ijḢij
N 2 +

H ij

a2 ∇
2Hij +κc̃X4

 ḣij ḣijn2 +
hij

b2 ∇
2hij


−m2Γ (X)

(
H ij − hij

)(
Hij − hij

)] (175)

Where Γ (X) ≡ XJ(X) + X2(c̃−1)
2 J ′(X). There a few simplifications we can do from here. Firstly,

we can set
√
γ = 1. We can also take the low energy limit, letting X = Xc and c̃ = 1. This

means that b ≈ aXc which then also implies that n ≈ NXc. From the interaction term in

(175), it is easy to see that the massive mode must be of the form s(Hij − hij). We then

require that the other mass eigenstate is of the form (qHij + rHij), and we have q, r and s
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5 BIMETRIC GRAVITY AND ITS EFFECT ON THE POWER SPECTRUM
to determine. We do so in appendix D, and we also make an attempt at deriving the action

(175) in appendix C. We find that the two mass eigenstates are

H+
ij =

Hij +κX2
c hij

1 +κX2
c

, H−ij =Hij − hij (176)

We have chosen the normalisation of each eigenstate so that the new action can easily be

separated in to two, each with its own separate ”Planck mass”, M2
− ≡

κX2
c

1+κX2
c
M2
P L and M2

+ ≡
M2
P L(1 + κX2

c ). Lastly, we choose the gauge so that N = a and therefore we are in comoving

coordinates.

S =
1
8

∫
d4xa2

[
M2

+

(
Ḣ
ij
+ Ḣ

+
ij +H ij

+ ∇2H+
ij

)
+M2

−
(
Ḣ ij
− Ḣ

−
ij +H ij

− ∇2H−ij −m
2
eff H

ij
− H

−
ij

)]
m2
ef f ≡

1 +κX2
c

κX2
c
m2Γ (X2

C)

(177)

This is the final form for the action, and makes apparent the fact that we have one massless

mode and one massive mode. The power spectra of the two modes are easy enough to

read straight off (177), since the fields only differ from those we found in section 4 by a

normalisation.

PH+(k,η) =
1

1 +κX2
c
PT (k,η) =

k2

2π2a2M2
P L(1 +κX2

C)
(−kη)|H (1)

ν (η)|2 (178)

PH−(k,η) =
1 +κX2

C

κX2
C

PTM(k,η) (179)

Where PT is the massless power spectrum from single gravity, and PTM is the massive. It

was said in [19] that the massive modes oscillate once outside the horizon, but as shown

in section 3, we found one to decay and one to increase. After an email sent to one of the

authors, they agreed that they probably made a mistake writing up their results.

Only the massless mode survives, since we know that the massive mode decays once it

reaches super-horizon levels. Now we turn to the question of detection. It is obvious that

since we are using matter to detect these gravitational waves, that our experiments will only

be able to detect perturbations in the metric that the matter is coupled to. In a flat FRW
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5.4 The tensor perturbations’ action
spacetime, using normal linearised GR (gµν = a2(ηµν + hµν)), the stress energy tensor for

matter is given by equation (180).

Smatter =
∫
d4xa2hµνT

µν (180)

Therefore, the predictions made by bimetric gravity depends on what metric we choose to

be coupled to matter. The simplest and most common choice is to take gµν to be coupled

to all matter. Then, Tµν is coupled to a linear combination of massless and massive modes

which can be worked out by inverting the equations in (176).

Smatter =
∫
d4xa2

(
H+
ij +

κX2
c

1 +κX2
c
H−ij

)
T ij (181)

However, as we know that the majority of the massive modes have decayed, we expect the

power spectrum detected to be very similar to that predicted by normal GR except for the

normalisation given above in equation (180).

We could take the matter as being coupled to only one of the mass eigenstates. In order

to do this, we would need to use a composite metric similar to that mentioned earlier from

[33], except that we would have to take the middle term containing
√
g−1f

µ
ν to be zero.

I am not sure of the validity of this assumption and have not found literature exploring it

either. Nonetheless, coupling T µν to only one of the mass eigenstates would contradict some

of the assumptions made earlier when finding the background equations. Namely, we took

each metric to be coupled covariantly to some matter sector (and separately from the other

metric) but this can easily be conciled by just taking the energy density of matter to be zero

for that metric. If there existed some exotic form of matter that only coupled to fµν , then

anyone wishing to make a detector for these different gravitational waves would need to do

so out of the exotic matter. If we couple matter to gµν as given in equation (181), then the

power spectrum we would get is that from equation (182).

PT g = 〈hijhij〉 = 〈H+
ijH

ij
+ 〉+

(
κX2

c

1 +κX2
c

)2

〈H−ijH
ij
− 〉 =

1

1 +κX2
c
PT (k,η) +

(
κX2

c

1 +κX2
c

)
PTM(k,η)

(182)

If we take M2
P L >> M

2
f =⇒ κ << 1, then the power spectrum will be nearly that of GR.

Note that we may need to be careful about the details here, since the massive gravity modes
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5 BIMETRIC GRAVITY AND ITS EFFECT ON THE POWER SPECTRUM
actually increase while in the super-horizon region during inflation. If we take the limit the

other way, M2
P L << M

2
f then we would get the power spectrum just for massive gravity. So

we see what was mentioned earlier that the strength of the respective Planck masses for the

metrics dictates how similar this bigravity theory is to massless or massive gravity. In the low

energy limit, we actually require κ << 1 [19]. If we want to take the predictions from this

seriously then we must impose this, meaning we expect little change from current models of

normal GR. On one hand, this may be seen as advantageous, considering how successful GR

has been, but on the other it means we must have extremely sensitive instruments to find

evidence allowing us to distinguish the two theories in reality.
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6 Conclusion

This dissertation gave a quick overview of some of the main ideas for gravitational waves,

both massless and massive, before going on to explore the predicted signals from a non-

specific theory of inflation. In particular, an important point was the Helicity decomposition

of the perturbations, which allowed us to significantly simplify our calculations of the action.

For massive gravity, we used a Stuckelberg decomposition for Minkowski space, attempts

have been made at using a similar method in FRW (or a general spacetime), but no real

progress has been made. Once the basics were covered, we moved on to deriving the tensor

perturbations for massless and massive gravity in an FRW spacetime. Lastly, we briefly intro-

duced the dRGT Lagrangian which allows for a bimetric theory, which after diagonalisation

presents a gravitational force that is communicated by a massive and massless tensor mode.

Crucially, we took the low energy limit to be able to get this result, so this significantly nar-

rows the scope of our predictions but ensures we have an approximately constant effective

mass. We can still recover most of the universe’s history in agreement with the ΛCDM model,

and the gravitational waves due to the massive mode are likely many orders of magnitude

smaller than the massless (although we did not work out the evolution of the massive modes

in RD or MD). Anyway, even if the dRGT predictions for the primordial spectra is wrong, it

may in fact be inflation which is the incorrect theory.

A numerical analysis of the differential equation for the massive modes could be used in

future discussions in order to get a better picture of the full evolution of these modes with-

out having to result to the super and sub horizon limits. This has been done already for

the massless modes and a transfer function has been defined too [32]. Another area we

could have explored in more detail is the predictions of different models of inflation for the

power spectrum. As mentioned briefly, new data has ruled out many of the ”classic” inflation

theories. There are new ”post-modern” versions which purport to solve the disagreement

between theory and experiment. For instance in [23] they give a supergravity model with a

scalar field (as well as vector and tensor modes required by supersymmetry) and 3 param-

eters that can be tuned in any way so that the theory will fit any prediction for the tilt, ns,

and r. This may be unsettling for some as it is not so much a predictive theory, but one that

is just fit to the data.

One could also look to alternative theories rather than inflation, such as the ekpyrotic theo-

ries that attribute the flatness and smoothness today to a period of slow contraction before
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6 CONCLUSION
the big bang. The horizon problem is solved due to the fact the universe was larger before

this big bounce. Predictions from this for the non-gaussianities and r-value have matched the

WMAP and Planck2015 data well while sticking to a simple theory without many parameters

[28].
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A Linearising the EH action in Minkowski spacetime

This is the linearisation of the EH action in Minkowski space. Therefore, we write the metric

as gµν = ηµν + hµν . Firstly, we find the Christoffel symbol to second order

Γ αµν =
1
2
ηαβ(hβµ,ν + hβν,µ − hµν,β)− 1

2
hαβ(hβµ,ν + hβν,µ − hµν,β) (183)

Then we work out the Ricci tensor in two, the first part being of first order and the second

or second order. This is done solely to make the working out easier to follow as otherwi

R
(1)
µν =

1
2
ηµβ(hβσ,νµ − hβµ,νσ − hσν,βµ + hνµ,βσ ) (184)

R(1) = h
µν
µν −�h (185)

R
(2)
µν =

1
2

[1
2
∂µhαβ∂νh

αβ + hαβ∂µ∂νhαβ − hαβ∂ν∂βhαµ − hαβ∂µ∂βhαν

+ hαβ∂α∂βhµν +∂βhαν∂βhαµ −∂βhαν∂αhβµ −∂βhαβ∂νhαµ

+∂βh
αβ∂αhµν −∂βhαβ∂µhαν −

1
2
∂αh∂αhµν +

1
2
∂αh∂νhαµ

+
1
2
∂αh∂µhαν

]
(186)

R(2) =
1
2

[3
2
∂µhαβ∂

µhαβ + hαβ�hαβ − 2hαβ∂µ∂βhαµ + hαβ∂α∂βh

−∂βhαµ∂αhβµ − 2∂βh
αβ∂µhαµ +∂βh

αβ∂αh−
1
2
∂αh∂

αh

+∂αh∂µhαµ − hνσ∂ν∂µh
µ
σ +

1
2
hνσ�hνσ +

1
2
hνσ∂ν∂σh]

(187)

Lastly, what we need is the determinant to be expanded, but we only need it to first order

since the Riemann curvature is at least to first order.

ln(|det(g)|) = T r(ln(gµν)) = T r(ln(ηµν + hµν))

= ln(det(ηµν)) + T r(ηµνhµν) +O(h2)

= h

=⇒ |det(g)| = eh

=⇒
√
|g | = 1 +

1
2
h
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B LINEARISING THE EH ACTION IN FRW SPACETIME
Putting these all together we would get

S = − c3

16πG

∫
d4x(R(1) +

1
2
hR(1) +R(2)) +

1
2MP L

∫
d4xhµνT

µν (188)

We would also like to add a matter part to this action, which is done simply enough by

adding a coupling term. The final action is then given below.

S =
M2
P L

8

∫
d4x[∂µhαβ∂µhαβ −∂µh∂µh+ 2∂µh

µν∂νh− 2∂µh
µν∂ρhρν] +

1
2

∫
d4xhµνT

µν (189)

B Linearising the EH action in FRW spacetime

We begin with the form of the metric. gµν = a2(ηµν + hµν) We only take into account the

transverse and traceless peturbations that are the gravitational waves, so hµν = h(T T )
ij (again,

will omit the superscript (TT) for ease). The Christoffel symbols to second order are:

Γ 0
i0 = Γ i00 = 0 Γ 0

00 =H Γ 0
ij =H(δij + hij) +

1
2
h′ij

Γ ij0 =Hδij +
1
2
h′ij −

1
2
h′jkhik

Γ ijk =
1
2

(hij,k+hik,j − hkj,i)−
1
2
hil(hlj,k + hlk,j − hkj,l)

(190)

Then the Ricci tensors are:

R00 = −3H′ + 1
2
h′′ikhki +

1
4
h′ijh

′
ij +

1
2
Hh′ikhik

Rij =H′(δij + hij) +Hh′ij +
1
2
h′′ij −

1
2
hij,kk −

1
2
hkl(hli,jk + hlj,ik − hij,lk) +

1
2
hkl,jhlk,i +

1
2
hkl,ijhkl

+ 2H2δij + 2Hhij −
1
2
Hh′klhklδij −

1
2
h′kjh

′
kj −

1
4

(hlj,k + hlk,j − hkj,l)(hik,l + hkl,i − hil,k)
(191)

We then contract the Ricci tensor using the inverse metric.

R = gµνRµν = g00R00 + g ijRij

= −a−2R00 + a−2(δij − hij + hikhkj)Rij
(192)
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δijRij = 3H′ + 1
2
hkl,ihlk,i +

1
2
hklhkl,ii + 6H2 − 3

2
Hh′ijhij −

1
2
h′ijh

′
ij −

1
2
hli,khkl,i +

1
4
hil,khil,k

−hijRij = −H′hijhij −Hh′ijhij −
1
2
h′′ijhij +

1
2
hij,kk −

7
2
H2hijhij

hikhkjRij = −H′hijhij + 2H2hijhij
(193)

Add these all together to get the Ricci scalar.

R = a−2(6H′ + 6H2 − 1
4
h′ijh

′
ij −3Hh′ijhij +

3
4
hij,khij,k +hij,kkhij −

1
2
hij,khkj,i −

3
2
H2hijhij) (194)

The second last term will go to zero after integration by parts. We also need to take in to

account the volume element. We can use the same formula as derived for the Minkowski

volume element, but substitute in the FRW metric instead.

√−g = a4(1− 1
4
hijhij) (195)

After some integration by parts and ignoring the terms independent of hij , we get

a2(−1
4
h′ijh

′
ij +

1
4
hij,khij,k) (196)

Finally, the action for gravitational waves in comoving FRW coordinates is

S =
M2
P L

2

∫
d4x a2(h′ijh

′
ij − hij,khij,k) +

∫
d4x a2(hijσ

(T T ),ij) (197)

This leads to an equation of motion

h′′ij −∂k∂khij + 2Hh′ij =
1

M2
P L

σ (T T ),ij (198)

C Linearising dRGT Lagrangian

Since we have already linearised the massless action in FRW (albeit, not in the ADM for-

malism) we will only try to expand the interaction term in the dRGT action to linear order

in the tensor perturbations. We will not be using the full non-linear dRGT action, and set
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C LINEARISING DRGT LAGRANGIAN
α3 = α4 = 0, α2 = 1

2 . The two metrics are assumed to be homogeneous and isotropic to zeroth

order (i.e. FRW) and their perturbations are transverse and traceless tensors only.

gµν = (−N 2, a2δij + a2Hij) =⇒ gµν = (−N−2, a−2δij − a−2H ij + a−2H ikHkj) (199)

fµν = (−n2,b2δij + b2hij) (200)

and we define

X =
b
a

c̃ =
na
Nb

=
n
NX

A
µ
ν = gµρfρν B

µ
ν =

√
A
µ
ν (201)

Since we will be taking the low energy limit (X = XC and c̃ = 1) anyway, we decide to

implement it now just for ease in the calculation. The square root of a tensor significantly

complicates our working. Luckily, since we are only working to second order we only need

the square root of the tensor to second order. Below, we use an expansion for a square root

of a matrix used in [26].

A
µ
ν =

n2

N 2δ
µ0δν0 +X2δij +X2

Ch
i
j −X

2
CH

i
j −X

2
CH

ikhkj +X2
CH

ikHkj

=⇒ (A(0))tt =
n2

N 2 , (A(0))it = (A(0))tj = 0 , (A(0))ij = X2
Cδ

i
j ,

(A(1))tt = 0 , (A(1))it = (A(1))tj = 0 , (A(1))ij = X2
C(hij −H

i
j) ,

(A(2))tt = 0 , (A(2))it = (A(2))tj = 0 , (A(2))ij = X2
C(H ikHkj −H ikhkj)

(202)

=⇒ (B(0))tt =
n
N
, (B(0))it = (B(0))tj = 0 , (B(0))ij = XCδ

i
j ,

(B(1))tt = 0 , (B(1))it = (B(1))tj = 0 , (B(1))ij = XC(hij −H
i
j) ,

(B(2))tt = 0 , (B(2))it = (B(2))tj = 0 ,

(B(2))ij =
1
2
XC

(3
4
H ikHkj −

1
4
hikhkj −

1
4
H ikhkj −

1
4
hikHkj

) (203)
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We need the potential to second order in h and H. Note that we are working with Kµν =

δ
µ
ν −A

µ
ν , not just Aµν .

([K])2 = 16− 8
n
N
− 24X + 6c̃X2 +

n2

N 2 +H ijHij

(3
4
c̃X2 − 3X

)
+ hijhij

(
X − 1

4
c̃X2

)
+H ijhij

(
2X − 1

4
c̃X2

)
[K2] = 4− 2

n
N

+
n2

N 2 − 6X + 3X2 +H ijHij

(
X2 − 3

4
X
)

+
1
4
Xhijhij +H ijhij

(1
2
X −X2

)
(204)

([K])2 − [K2] = 12− 6
n
N
− 18XC + 6c̃X2

C − 3X2
C +H ijHijXC

(
XC

(
1 +

3
4
c̃
)
− 15

4

)
+ hijhijXC

(5
4
− 1

4
c̃XC

)
+H ijhijXC

(5
2
−XC

(1
4
c̃+ 1

))
= 12− 6

n
N
− 18XC + 6X2

C − 3X2
C +H ijHijXC

(7
4
XC −

15
4

)
+ hijhijXC

(5
4
− 1

4
XC

)
+H ijhijXC

(5
2
− 5

4
XC

)
(205)

We then need to multiply by
√−g =Na3(1− 1

4h
ijhij). The correct expansion is given in [19].

It is given below.

Lmass = −
M2
P L

8
Na3m2Γ (X)

(
Hij − hij

)(
H ij − hij

)
(206)

Where

Γ (X) = X
(3
2
−X

)
(207)

and the final action is

S =
M2
P L

8

∫
d4xNa3√γ

Ḣ ijḢij
N 2 +

H ij

a2 ∇
2Hij +κc̃X4

 ḣij ḣijn2 +
hij

b2 ∇
2hij


−m2Γ (X)

(
H ij − hij

)(
Hij − hij

)] (208)

D Diagonalising the linearised dRGT Lagrangian

We start from the linearised action from (208). It is clear from the action that one of the

mass eigenstates should be of the form s(Hij − hij), where s is some coefficient. The second
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D DIAGONALISING THE LINEARISED DRGT LAGRANGIAN
mass eigenstate can be taken to be qHij + rhij , again q and r some coefficients yet to be

determined. We can bring the time derivatives in the action together and try and match up

the coefficients in order to find q, r and s.

ḢijḢ
ij +κX2

c ḣij ḣ
ij = (qḢij + rḣij)(qḢ

ij + rḣij) + s(Ḣij − ḣij)(Ḣ ij − ḣij)

= (q2 + s)ḢijḢ
ij + 2(qr − s)Ḣij ḣij + (r2 + s)ḣij ḣ

ij

=⇒ q2 + s = 1 , qr = s , r2 + s = κX2
c

(209)

We substitute the second equation in to the the third one to get q as a function r. This can be

used in the first equation (along with s = κX2
c − r2) to find r as a function of κ and Xc only.

Once we have r, we just work backwards to get q and s.

q =
1√

1 +κX2
c

, r =
κX2

c√
1 +κX2

c

, s =
κX2

c

1 +κX2
c

(210)

Writing out only the massless eigenstate’s action we see that we get

Smassless =
M2
g

8

∫
d4xNa3

 1
N 2

Ḣij +κX2
c ḣij√

1 +κX2
c

Ḣ ij +κX2
c ḣ

ij√
1 +κX2

c


+

1
a2

Ḣij +κX2
c ḣij√

1 +κX2
c

∇2

Ḣ ij +κX2
c ḣ

ij√
1 +κX2

c


(211)

Just for cleanliness, we square the denominator of the massless mode and then multiply by

an extra factor of 1 +κX2
c (in effect multiplying by one). Finally, we define

H+
ij =

Hij +κX2
c hij

1 +κX2
c

(212)

=⇒ S =
1
8

∫
d4xNa3M2

g (1 +κ2X2
c )

Ḣ
ij
+ Ḣ

+
ij

N 2 +
H
ij
+

a2 ∇
2H+

ij


=

1
8

∫
d4xNa3M2

+

Ḣ
ij
+ Ḣ

+
ij

N 2 +
H
ij
+

a2 ∇
2H+

ij


(213)

Where we have defined M2
+ = M2

g (1 + κX2
c ). For the massive mode, we absorb s in to the

coefficient at the front, defining M2
− = κX2

c

1+κX2
c
M2
g . The massless eigenstate is then simply
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given by H−ij =H ij −hij . A similar procedure for the spatial derivative can also be carried out

(or can just be verified). The final action is then

S =
1
8

∫
d4xNa3

M2
+

Ḣ
ij
+ Ḣ

+
ij

N 2 +
H
ij
+

a2 ∇
2H+

ij


+M2

−

Ḣ ij
− Ḣ

−
ij

N 2 +
H ij
−
a2 ∇

2H−ij −m
2
eff H

ij
− H

−
ij




(214)

E Showing the Bunch-Davies vacuum agrees with Minkowski

at sub-horizon levels

The mode function we found for the scalar field χ was

fk(η) = −1
2

√
π
k

(−kη)
1
2H

(1)
ν (−kη) ν =

3
2

+ ε (215)

H
(1)
ν is a Hankel function of the first kind and is defined in (216).

H
(1)
ν (x) ≡ Jν(x) + iYν(x) (216)

Jn+ 1
2
(x) ≡

√
2x
π jn(x) is Bessel function of the first kind and Yn+ 1

2
(x) ≡

√
2x
π yn(x) is the Bessel

function of the second kind. jn(x) and yn(x) are the spherical Bessel functions. Since ε << 1,

then ν ≈ 3
2 . So we only need the first spherical Bessel functions. They are given in (??).

j1(x) = − d
dx

sin(x)
x

, y1(x) =
d
dx

cos(x)
x

(217)
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E SHOWING THE BUNCH-DAVIES VACUUM AGREES WITH MINKOWSKI AT
SUB-HORIZON LEVELSWe write −kη = x for ease in the working below.

√
xH1+ 1

2
=
√
x(J1+ 1

2
(x) + iY1+ 1

2
(x))

=

√
2
π
x (j1(x) + iy1(x))

=

√
2
π
x

(
− d
dx

(
sin(x)
x

)
+ i

d
dx

cos(x)
x

)
=

√
2
πx2 (−xcos(x) + sin(x)− ixsin(x)− icos(x))

= −
√

2
π

(
eix +

i
x
eix

)
(218)

For |x| >> 1, we get
√
xH

(1)
1+ 1

2
(x) ≈ −

√
2
π
eix (219)

=⇒ fk(η) ≈
√

1
2k
eikη for |kη| >> 1 (220)

Which are the mode functions for Minkowski spacetime.
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