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Abstract

In this thesis, we consider numerical Calabi-Yau metrics. We present an

overview of currently available methods and we introduce the reader to the

energy functional approach developed by Headrick and Nassar (1). Their

method is compared to Donaldson algorithm (2; 3). We describe recent

work (4) presenting a hybrid approach that uses machine learning to signifi-

cantly speed up Donaldson’s method. Inspired by (4) we propose to replace

the minimisation step in (1) by a simple neural network, hoping to provide

a faster version of (1). Using supervised learning, we demonstrate that our

network can predict the Kähler potential in a matter of seconds on the Calabi-

Yau Quintic with 1.5% error after 2 minutes of training. We establish the ro-

bustness of our predictions and ponder whether our alternative method could

be viably used for computing Calabi-Yau metrics on threefolds beyond the

Quintic. We offer further directions of research to consolidate our results and

answer remaining questions.
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1 String theory, compactification and machine learn-

ing

String theory, a potential quantum theory of fundamental forces including gravity,

describes particles as extended objects, so-called “strings” instead of points. Quan-

tisation of the string is subtle, yet the particle spectrum can be obtained. It turns

out, however, that the spectra of the quantised theories are at odds with observ-

able physics. Even worst, bosonic string theory contain tachyons, i.e. particles

with negative rest mass going faster than the speed of light. This goes against the

fundamental axioms of relativity. Bosnic string theory additionally can only be con-

sistently written in d = 26 spacetime dimensions.

Physical features predicted by the theory are however promising and all forces

including gravity can be found in the spectrum. To the best of our knowledge, the

spacetime we live in is 4 dimensional and contains both bosonic and fermionic ex-

citations. The latter can be introduced by adding “supersymmetry” on the string’s

worldsheet. In supersymmetric string theories (referred to as superstring theories),

all known fundamental fermionic and bosonic particles in the Standard Model are

paired with a “super-partner” of respectively bosonic and fermionic nature. The

introduced symmetry can also remove the tachyon from the spectrum, leaving a

consistent theory. In the world we see, there doesn’t seem to be any hints of SUSY.

A possible resolution is the following: at the low energy scales that we experience,

supersymmetry could be broken. The super-partners acquire mass above the energy

scales we probe, thus explaining why they are not observable in collider experiments.
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The resulting superstring theories (type I, IIA, IIB and the two heterotic ones)

then need to be formulated in “only” 10 dimensional spacetime to be consistent.

Assuming the observable universe consists of 4 spacetime dimensions, there remain

6 auxiliary dimensions. These are understood to be “compactified”, in contrast with

the non-compact directions spanned by the 4 spacetime dimensions. These redun-

dant dimensions can be pictured as “curled up” around a space of negligible scale

compared to the world we experience. Consequently, they become are imperceptible

at the scales we can probe in experiments.

Mathematically, the spacetime is a 10 dimensional manifold formulated within

the framework of differential geometry. This space is then decomposed into the prod-

uct of a 4d space e.g. Minkowski, and a 6d compact space (that is described using a

3 dimensional complex manifold, also called threefold). The geometrical character-

istics of the compactification space (called internal space) determine the properties

of the physics observed in 4 dimensions. Observed 4d physics then restricts the

possible choices of internal spaces. In 1985, Candelas et al. (5) provided the first de-

scription of the properties and conditions that the compactification threefolds must

obey in order to predict Standard Model (SM) like physics in Minkowski space. In

practice, the resulting effective theories remain supersymmetric. With the correct

internal space and boundary conditions they can describe so-called Minimally Su-

persymmetric Standard Models (MSSM) which look like the SM at low energy scales.

Additionally, the 10-dimensional manifold and consequently the compactification

threefold, need to obey the vacuum Einstein equation. In particular,the Ricci-tensor

associated to the metric on the internal space must vanish. Such a metric is called
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Ricci-flat. It was also found in (5) that the compactification spaces must also be

Kähler manifolds. The natural candidates for the internal space are then Ricci-flat

Kähler manifolds, named Calabi-Yau manifolds in (5) after the academics who stud-

ied them.

The characteristics of the compactification space can be restricted further by

imposing that the MSSM admits the SM gauge group and contains 3 generations

of quarks and leptons. The following was initially derived in (5) (see (3) for an ac-

cessible review). In practice, the original string theory admits a larger gauge group

(unified group) that contains the SM group. In order to break the unified group

to the correct correct SU(3)×SU(2)×U(1) SM gauge group at low energies, the

compactification space must admit a Yang-Mills connection such that the internal

gauge group commutes with the SM gauge group inside the unified group. Addition-

ally, the observed 3 generations of leptons and quarks then restricts the topology

of the space, imposing χ = ±6, where χ is the Euler characteristic of the Calabi-Yau.

Soon after these conditions were derived in (5), examples of appropriate Calabi-

Yaus where constructed in (6). These were then used to construct superstring theory

models in (7; 8). Since then, about 1010 Calabi-Yau threefolds have been constructed

and classified in the monumental Kreuzer-Skarke (KS) data set (9). Of the 1010

constructed spaces, about 106 admit χ = ±6 (10). In fact, while the number of

Calabi-Yau threefolds was conjectured to be finite (11), it is still unclear how many

there could be.

Any of these threefolds could be used as a compactification space. This forms
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the “Calabi-Yau landscape”. Every threefold in the landscape then leads to different

physics on Minkowski space. However, beyond the choice of Calabi-Yau, choices of

boundary conditions and flux data also affect the physics observed and content of

the theory. This is the “string landscape”, which can contain up to 10500 possible

configurations in the case of type IIB string theory (12). This provides an interesting

playground at the boundary of mathematics, theoretical physics and data science.

This exciting field of research is elegantly introduced in (10).

The question now is, while each Calabi-Yau manifold in the landscape corre-

sponds to a universe, which one could result in our universe? Unfortunately, this is

an arduous question to answer. It decomposes into two parts: how can we predict

the physical properties of the physics associated to a given Calabi-Yau and how can

we find the correct one(s) in the numerous possibilities. The latter could be tack-

led with machine learning. This line of research was simultaneously imagined by

different collaborations in 2017 (13; 14; 15; 16). Following a paradigm imagined by

Yang-Hui He (17) to probe the landscape with machine learning techniques, libraries

of all Calabi-Yau spaces with some of their topological properties (like the KS set

from (9)) have been analysed to spot patterns and discover potential compactifica-

tion spaces. More details can be found in (18; 10).

Predicting physical observables from string theory to compare them to the SM

measured parameters is a more complicated story. While gauge and Higgs bosons

masses, calculated in (19) for (20), are found to be compatible with observations

at low energies, the masses of the fundamental fermions have never been com-

puted. They can in principle be determined from cubic Yukawa couplings that
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depend in particular on the geometry and Yang-Mills connection of the Calabi-Yau.

The couplings have been calculated using topological data (21) but this yields non-

normalised values that can’t be compared against the known measured parameters.

Obtaining canonically normalised couplings requires, in particular, knowledge of the

Ricci-flat metric and Yang-Mills connection coefficients on the tangent bundle of the

compactification space (see the introduction of (4) and (22) for details).

Unfortunately, the metric and connection coefficients are particularly arduous

to calculate. While Calabi-Yau manifolds can be easily constructed as described

in (10), there exists, as of now, no known closed form for the Ricci-flat metric on

any non trivial Calabi-Yau. While analytic metrics could exist, finding them is

classified as a “hard problem” by (22). Consequently, efforts have been deployed

to compute the metrics numerically (23; 3; 24; 1).1 We now present some of these

numerical methods.

The first Ricci-flat metrics were calculated in 2005 in (23). They introduced a

lattice and coordinate patches on a family of Calabi-Yau twofolds and solved the

Einstein equations on the lattice. This yielded metrics within 1% accuracy in a few

days of computation. The extent of the lattice used was limited by the computation

time, while memory requirements kept the method from being applicable to most

threefolds.

Shortly after, a different method was developed in (3; 25) using theoretical work

by Donaldson (2). The idea is to expand the metric in a basis of complete func-

1We note that such a method would generalise to the connection coefficients.
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tions (akin to Fourier modes) and find appropriate expansion coefficients. This

“momentum representation” of the metrics was a significant improvement as stor-

ing coefficients and avoiding patches on the Calabi-Yau requires less computational

resources than (23). The method itself consists in applying a map iteratively to the

coefficients. This was shown to converge to a so-called balanced metric, which is an

approximation to a Ricci-flat metric. This produced metrics of similar accuracy to

the ones found in (23) through an easier implementation and shorter computation

time (order of a few hours to a few days depending on the accuracy).

Additionally, using the same expansion of the metric, (1) turned the question

into a minimisation problem by defining an energy functional that has a unique

minimum on the Ricci-flat metric. This method has the advantage of being compu-

tationally inexpensive and mathematically elegant while yielding results comparable

in accuracy to its predecessors. The metrics can be generated in times of the order

of a few minutes to a few hours and the accuracy is found to improve more quickly

than Donaldson’s approach. The set up and results will be explained in detail in

section 3.2 and forms the basis of our work.

These methods were all successfully developed to produce metrics of a sufficient

accuracy on highly symmetric Calabi-Yaus (in particular the so-called Fermat Quin-

tic), thus acting initially as proofs of principle. Donaldson’s method has since been

developed further and used to compute connection coefficients (26) as well as to

predict spectra of the scalar Laplace operator (27).

Following up from (3), a hybrid method incorporating machine learning elements
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was found to speed up the original method by a factor of 50 with little loss in accu-

racy (4). We describe the work of (4) in more details in section 3.1. This approach

is currently investigated further to compute metrics on the Calabi-Yau used in (25).

Inspired by the work in (4), which mixes machine learning and Donaldson algo-

rithm, we apply and present a similar strategy to the promising energy functional

method (1).2 We aim to replace the ultimate minimisation of the functional by a

simple neural-network in order to speed up the computation of the metrics. In such

a hybrid approach, the data required for the minimisation of the functional becomes

the input of the neural network where we use supervised learning to predict the

result of the minimisation. We apply this to the Quintic Calabi-Yau and hope to

pave the way for an alternative viable method that can yield results for more so-

phisticated Calabi-Yau manifolds and contribute to finding a unified description of

our universe through string theory.

This thesis is organised as follows. The first section introduces elements of com-

plex geometry – starting from complex manifolds, the complexification of the tangent

space and complex forms – then introduces Hermitian manifolds and Kähler geome-

try. This lays the foundation required to define Calabi-Yau manifolds in section 2.6.

We briefly discuss different definitions and introduce complex projective space and

the Calabi-Yau Quintic in section 2.7. In section 3, we introduce Donaldson algo-

rithm briefly and show how the use of machine learning significantly improves the

method. We then discuss in section 3.2 the energy functional method. We present

all the elements required to construct the functional and discuss the algorithm. In

2We refer to the method of (1) as the “Headrick and Nassar method” or the “Energy functional
method” throughout this thesis
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section 4, we introduce elements of machine learning and present our results, build-

ing up from the energy functional method. Finally, we discuss the significance of

our results and conclude in section 5.

2 Complex geometry and Calabi-Yau manifolds

In the following section, we reproduce definitions (from Chapter 8 in (28)) on a

“need to know” basis where we have selected necessary concepts required to define

Calabi-Yau manifolds and the energy functional method. We extend the definition

of a real manifold to that of a complex manifold, introduce the complexified tangent

space and complex differential forms and finish by defining Hermitian and Kähler

manifolds. We finally define Calabi-Yau manifolds and discuss some of their prop-

erties.

We assume the reader is familiar with real differentiable manifolds and the differ-

ential geometry jargon. We refer the reader to the QFFF course notes for Differential

Geometry (29) and the book “Geometry, Topology and Physics” by Nakahara (28)

(especially chapters 5, 6 and 8) for an introduction to differential geometry.

About the wording of definitions: the author has learned content of this section

from the book “Geometry and topology for physics” by Nakahara. An effort is made

to independently phrase definitions given in this thesis in the clearest and most con-

cise way and this sometimes simply coincides with the wording from (28). The choice

was made not to overcomplexify the definitions and we acknowledge that some of the

definitions in this section may be written coincidentally in the exact or very similar

form as given initially by Nakahara in (28).
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2.1 Complex manifolds and the complex structure

Loosely speaking, an m-dim real (dimR = m) differentiable manifold is a smooth

space that is locally isomorphic to Rm. In analogy, an m-dim complex (dimC = m)

manifold is bi-holomorphic to Cm. More formally,

Definition 1. A real differentiable manifold is a Hausdorff topological space (M,O).3

M has an atlas (Ui, ψi) such that:

1. the charts Ui ∈ {O} cover M:
⋃
i

Ui =M

2. ψi are homeomorphisms into a subset of Rm

3. in any overlap Ui∩Uj 6= ∅, the maps φij = ψi◦ψ−1
j (called transition functions)

are infinitely differentiable.

The homeomorphisms ψi locally (and smoothly) map all points in the manifold

onto Rm. The transition functions specify the particular structure ofM. The image

of ψi in Rm is called a coordinate patch and differential calculus can be applied as

usual there. The smoothness of the transition functions allows this to be extended

from patch to patch and to the entirety of M.

Two types of objects can be defined on M: global and local structures. A local

structure is defined at a point p ∈ M or in a neighborhood of p but cannot be

smoothly glued over the whole manifold. A global structure is defined everywhere

onM and transforms smoothly between coordinate patches. Most of the structures

following are defined at a point (highlighted throughout by the use of the subscript

p) and naturally extend to the whole manifold to form a field. For example, a tensor

3We label the topology of M by the collection of open sets {O} and keep the conventional J
for the complex structure.
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field, where a tensor is smoothly associated to each point on M is an example of a

global structure.

A complex manifold is defined analogously to definition 1 with the requirement

that the homeomorphisms ψi map open sets of M to Cm and transition functions

φij are holomorphic on any overlap. Formally,

Definition 2. An m-dim complex manifold is a Hausdorff topological space (M, ′).

M has an atlas (Ui, ψi) such that:

1. the charts Ui ∈ {O} cover M:
⋃
i

Ui =M

2. ψi are homeomorphisms from Ui into a subset of Cm

3. in any overlap Ui ∩ Uj 6= ∅, the maps φij = ψi ◦ ψ−1
j are holomorphic.

Since C ' R2, in a coordinate patch, an m-dim complex manifold (with m

complex coordinates zµ, µ = 1, 2, 3...m) is locally equivalent to a 2m-dim real man-

ifold (with 2m real coordinates {xµ, yµ}) under the correspondence zµ = xµ + iyµ.4

The holomorphicity of the transition functions between patches guarantees that this

equivalence holds for the entire manifold. This is true of any m-dim complex man-

ifold and allows us to use the structures and calculus originally developed on real

manifolds on complex manifolds by viewing them as a 2m real manifold. While

both are the same manifold, we use MR when considering the 2m-dim associated

real manifold and reserve M to the complex manifold viewed as complex.

Clearly, an odd-dim real manifold cannot be complex and even-dimensional real

manifolds aren’t in general complex manifolds. Complex manifolds instead come

4We use m for both complex and real dimensions depending on context.
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equipped with a “complex structure” related to the additional requirement imposed

on transition functions.

Definition 3. The complex structure of a complex manifold M is a linear map

Jp : TpMR −→ TpMR. This endomorphism of the tangent space obeys:

1. it squares to −idTpMR,

2. it can be put in the form J( ∂
∂xµ

) = ∂
∂yµ

; J( ∂
∂yµ

) = − ∂
∂xµ

at a given point p ∈M

3. it can be defined globally on M, in which case it is labelled J .

While any real manifold admits a tensor that locally squares to −idTpMR , such a

structure can only be globally defined on complex manifolds. This object thus fully

encodes the complex structure of M.

2.2 Complexification and tangent spaces

Complex manifolds also admit tangent and co-tangent spaces which are derived from

the complexification of the tangent and cotangent spaces of the equivalent 2m-real

manifold (MR).

We start by describing how objects on M can be extended from MR to M.

Generally: real linear operators are said to be “extended” to act on complex domains

and vector spaces are “complexified” once their elements are extended.

We start with smooth functions and remind the reader that a smooth function

on MR, f :MR −→ R, locally maps a point in MR to f(x, y) ∈ R. The set of all

such functions is denoted F(M).
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Such a real smooth function can be defined on M in complex coordinates by

rewriting {xµ, yµ} in terms of {zµ, z̄µ}, seen as coordinates onM. This allows us to

define the set of complex functions and its elements as follows.

Definition 4. The complexified space of smooth functions is the set

F(M)C = {h = f + ig : ∀f, g ∈ F(M)}. (1)

Elements of F(M)C are complex functions on M. In general, any complex

function h(z, z̄) on M can then be written in the form h(z, z̄) = f(z, z̄) + ig(z, z̄)

where f, g ∈ F(M) are real functions.

Definition 5. The conjugate of a complex function h is h̄(z, z̄) = f(z, z̄)− ig(z, z̄).

Definition 6. A complex function h ∈ F(M)C is real if h(z, z̄) = h̄(z, z̄).

We extend this to vectors and tensors defined at a point, which then generalise

to fields over M. A real vector is extended to act on complex functions as follows.

Definition 7. A real vector, seen as a linear map A : F(M) −→ R is extended to

act on complex valued functions from F(M)C and becomes A(h) = A(f) + iA(g) for

h = f + ig ∈ F(M)C.

Complex vectors can be defined as follows.

Definition 8. Given two real vectors X and Y , the vector Z = X+ iY is a complex

vector. The complex conjugate of Z is Z̄ = X−iY . A complex vector obeying Z = Z̄

is a real vector.

Definitions 7 and 8 can be extended to vector fields where they now hold at each

point in M smoothly patched together.
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Identically to spaces of functions, vector spaces (at a point) are complexified to

obtain a complex vector space with double the starting real dimension.

Definition 9. The complexification V C of a real vector space V is the set V C =

{Z = X + iY : X, Y ∈ V }. V C is also a vector space with rules for addition and

scalar multiplication inherited from the structure of V itself with elements extended

to act on complex functions.

The space V is contained in V C, and the real dimension of V becomes the complex

dimension of V C.

As real vectors in definition 7, all linear operators are “extended” to act on

complex arguments. For example, a linear operator defined on V , A : V −→ R, is

extended to V C such that A : V C −→ C. The action of A on elements in V C is

determined from linearity such that A(X + iY ) = A(X) + iA(Y ). This applies to

all linear operators on M. In this manner, general tensors are extended (at every

point) and spaces of tensors (which are vector spaces) are complexified.

Definition 10. Given two real tensors t1 and t2 at p, both of rank (p, q), the tensor

t = t1 + it2 is a complex tensor at p. The conjugate of t is t̄ = t1 − it2. t is real if

t̄ = t.

This process straightforwardly generalises to tensor fields allowing us to construct

the complexified tangent and co-tangent bundles of M.

The tangent space of MR is spanned locally, in coordinate basis, by

{∂/∂x1, ∂/∂x2, ..., ∂/∂xm, ∂/∂y1, ∂/∂y2, ..., ∂/∂ym}. It is straightforward to show

that the complexified tangent space TpMC is spanned by the 2m complex basis
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vectors
∂

∂zµ
=

1

2

{ ∂

∂xµ
− i ∂

∂yµ

}
,

∂

∂z̄µ
=

1

2

{ ∂

∂xµ
+ i

∂

∂yµ

}
.

(2)

We highlight that this basis is 2m-complex dimensional and consequently 4m-real

dimensional, double the real dimension of the real tangent space that is complexified.

This is a feature of complex manifolds where points are identified with both z and

z̄ coordinates.

Vectors of the form V = V µ ∂
∂zµ

and V = V µ ∂
∂z̄µ

are respectively called holomor-

phic and anti-holomorphic vectors.5 Generally, vectors are linear combinations of

both types of basis vectors.

Similarly, the complexified co-tangent space is spanned by the basis

dzµ = dxµ + idyµ,

dz̄µ = dxµ − idyµ,
(3)

which again is 2m-complex dimensional. It can be easily checked that these bases

are dual to each other (as one would expect). In particular, they obey

〈 ∂

∂zµ
, dz̄ν

〉
=
〈 ∂

∂z̄µ
, dzν

〉
= 0,〈 ∂

∂zµ
, dzν

〉
=
〈 ∂

∂z̄µ
, dz̄ν

〉
= δνµ.

(4)

These complexified tangent and co-tangent spaces are the tangent and co-tangent

spaces of the complex manifold M.

As all linear operators, the complex structure J is then extended to act on

5As will be explained in detail in the case of forms, holomorphic and anti-holomorphic vectors
are sometimes referred to as (1,0) and (0,1) vectors respectively. Note that the components of
holomorphic vectors are not necessarily holomorphic functions of z.
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Tp(M)C. In the basis defined in eq. 2, J takes the form

J
( ∂

∂zµ

)
= i

∂

∂zµ
,

J
( ∂

∂z̄µ

)
= −i ∂

∂z̄µ
,

thus highlighting that holomorphic and anti-holomorphic vectors are invariant spaces

of J . This defines two independent subspaces of Tp(M)C: the holomorphic tangent

space

TpM+ = {V ∈ TpMC : J(V ) = +i}

and its anti-holomorphic counterpart

TpM− = {V ∈ TpMC : J(V ) = −i}.

The complexified tangent space is the direct sum of TpM− and TpM+.

The split between holomorphic and anti-holomorphic tangent spaces is entirely

determined by J . This split is preserved by the transition functions and is there-

fore independent of the coordinates worked with. This is the characteristic feature

of complex manifolds which allows significantly more structure to be defined and

considered, some of which we introduce in section 2.4.

2.3 Differential forms and differential calculus

We give here the main properties of complex differential forms required to under-

stand the geometry of Calabi-Yau manifolds presented in section 2.6 and the meth-

ods developed to compute Ricci-flat metrics detailed in 3. Forms being particular

tensors, the following are direct consequences of definitions 9 and 10.
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Real differential forms are extended to act on complexified vector spaces, as

explained in section 2.2. Complex differential forms are constructed as follows.

Definition 11. Given two real q-forms at a point p, ω and η, the superposition

ζ = ω+ iη is a complex p-form. The conjugate of ζ is ζ̄ = ω− iη and a form obeying

ζ = ζ̄ is a real form.

The space of real q-forms at p, denoted Ωq
p(M) is extended then complexified.

Definition 12. The space of complex differential forms is defined as

Ωq
p(M)C =

{
ω + iη : ω, η ∈ Ωq

p(M)
}
.

The space Ωq
p(M)C is a vector space under addition and multiplication by a scalar.

This is inherited from the structure of Ωq
p(M) and the linearity of the elements.

This generalises straightforwardly to fields where a q-form is smoothly assigned

to every point inM. When referring to the space of q-form fields, the subscript p is

dropped. q-form fields are extended at every point and the space of all q-form fields

is complexified to obtain Ωq(M)C, the space of all complex q-forms.

The exterior product and derivative are naturally extended to act on complex

forms.

Definition 13. Given two complex q-forms ζ and ξ with decomposition ζ = ω+ iη,

ξ = α + iβ for ω, η, α and β real q forms, the exterior product of ζ and ξ is defined

as:

ζ ∧ ξ = (ω + iη) ∧ (α + iβ) = (ω ∧ α− η ∧ β) + i(η ∧ α + ω ∧ β)
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Definition 14. The exterior derivative of a complex q-form is

dζ = dω + idη.

Properties of these operators extended to complex forms can be derived from the

properties of their real counterparts and linearity.

The split of the tangent space into the two disjoint subspaces described in sec-

tion 2.2 naturally brings additional structure to complex forms. As a consequence of

eq. 4, differential forms act independently on the holomorphic and anti-holomorphic

parts basis vectors and any q-form splits into a fully holomorphic part (acting on

holomorphic parts of vectors) and a fully anti-holomorphic part (acting on anti-

holomorphic parts of vectors). This is formalised below.

Definition 15. Given q complex vectors Vi (i = 1, 2, ..., q) either in TpM+ or

TpM−, a complex q-form ω is said to be of bi-degree (r, s) if ω(V1, V2, ..Vq) = 0

unless exactly r of the Vi are in TpM+ and s = q − r of them are in TpM−. The

space of (r, s) forms at p is labelled Ω(M)
(r,s)
p .

This generalises straightforwardly to form fields over M. The bi-degree of a

form corresponds to its degree in dzµ basis and its degree in dz̄µ. For example,

ω = ωµνρdz
µ ∧ dzν ∧ dz̄ρ is a 3 form of bi-degree (2, 1). The orthogonality of the

bases given in eq. 4 ensures that ω(Vi) with r holomorphic and s anti-holomorphic

vectors V will only be non-zero if ω has r holomorphic indices and s anti-holomorphic

ones.

A q form of bi-degree (r, s) in the basis defined in eq 3 is generally written

ω =
1

r!s!
ωµ1µ2...µrν1ν2...νsdz

µ1 ∧ dzµ2 ∧ ... ∧ dzµr ∧ dz̄ν1 ∧ dz̄ν2 ∧ ... ∧ dz̄νs (5)
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and the product of differentials {dzµ1 ∧ dzµ2 ∧ ... ∧ dzµr ∧ dz̄ν1 ∧ dz̄ν2 ∧ ... ∧ dz̄νs}

forms a basis for (r, s) forms.

Not all forms are of a specific bi-degree but any q-form can be expressed as a

superposition of (r, s)-forms for all (r, s) such that q = r+s. In practice, most of the

forms we will introduce and manipulate will be of a specific (r, s) bi-degree, with the

exception of some exact forms. Indeed, the exterior derivative of the general (r, s)

form given in eq 5 is

dω =
∂

∂z̃λ
ωµ1...µrν1...νs(z, z̄)dz̃λ ∧ dzµ1 ∧ ... ∧ dzµr ∧ dz̄ν1 ∧ ... ∧ dz̄νs

where z̃ refers to both z and z̄. Splitting the sum over the λ into both holomorphic

and antiholomorphic components yields

dω =
1

r!s!

∂

∂zλ
ωµ1...µrν1...νs(z, z̄)dzλ ∧ dzµ1 ∧ ... ∧ dzµr ∧ dz̄ν1 ∧ ... ∧ dz̄νs

+
1

r!s!

∂

∂z̄λ
ωµ1...µrν1...νs(z, z̄)dz̄λ ∧ dzµ1 ∧ ... ∧ dzµr ∧ dz̄ν1 ∧ ... ∧ dz̄νs

where the first and second terms are respectively (r+ 1, s) and (r, s+ 1) forms. The

exterior derivative naturally splits into two operators producing forms of definite

bidegrees defined below.

Definition 16. The Dolbeault operators ∂ and ∂̄ are defined from the exterior deriva-

tive d as d = ∂ + ∂̄. They are the linear maps

∂ : Ω(r,s)(M) −→ Ω(r+1,s)(M),

∂̄ : Ω(r,s)(M) −→ Ω(r,s+1)(M),
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which take ω ∈ Ω(r,s) to

∂ω =
1

r!s!

∂

∂zλ
ωµ1...µrν1...νs(z, z̄)dzλ ∧ dzµ1 ∧ ... ∧ dzµr ∧ dz̄ν1 ∧ ... ∧ dz̄νs ∈ Ω(r+1,s),

∂̄ω =
1

r!s!

∂

∂z̄λ
ωµ1...µrν1...νs(z, z̄)dz̄λ ∧ dzµ1 ∧ ... ∧ dzµr ∧ dz̄ν1 ∧ ... ∧ dz̄νs ∈ Ω(r,s+1).

Both Dolbeault operators can be shown to be nilpotent. As for real forms, exact

and closed complex forms can be defined with respect to the exterior derivative.

The equivalent of the de Rham cohomology class can also be constructed yielding

cohomology groups of complex forms. Similarly, Dolbeault cohomologies are con-

structed for both ∂ and ∂̄ operators. For example, a form obeying ∂ω = 0 is said to

be ∂-closed and the set of all ∂-closed (r, s) forms is labelled Zr,s
∂ (M). The space of

exact forms and cohomology classes are constructed similarly. The equivalent for ∂̄

can also be constructed.

Before defining Hermitian manifolds and introducing the field of Kähler geome-

try, we define a specific type of (r, 0) form:

Definition 17. A complex form ω ∈ Ω(r,0)(M) is a holomorphic (r, 0)-form if it

obeys ∂̄ω = 0. Consequently, the components of ω are holomorphic functions of z.

2.4 Hermitian manifolds and Kähler geometry

As explained in section 2.2, linear operators defined on a real differentiable manifold

are extended to complex manifolds. This also applies to the metric.

With X, Y, U, V ∈ Tp(M), a Riemannian metric g onMR is extended toM and

acts on complexifications Z = X + iY , W = U + iV ∈ Tp(M)C such that

g(Z,W ) = g(X + iY, U + iV ) = g(X,U)− g(Y, V ) + i
(
g(Y, U) + g(X, V )

)
∈ C.
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The metric has four types of components in the generic basis introduced in eqs. 2

and 3:

gµν = g(
∂

∂zµ
,
∂

∂zν
),

gµν̄ = g(
∂

∂zµ
,
∂

∂z̄ν
),

gµ̄ν = g(
∂

∂z̄µ
,
∂

∂zν
),

gµ̄ν̄ = g(
∂

∂z̄µ
,
∂

∂z̄ν
),

where we have used the convention of barred indices (i.e. µ̄) to distinguish between

holomorphic and antiholomorphic components. Due to the defining symmetric prop-

erty of g, its components aren’t independent. In particular, gµν = gνµ, gµ̄ν = gνµ̄,

gµν̄ = gν̄µ and gµ̄ν̄ = gν̄µ̄. Additionally, we note that components of the conjugate of

the metric are related to those of the metric through ḡµν̄ = gµ̄ν , etc.

Using the complex structure J defined on complex manifolds, a more restrictive

class of metrics with additional properties can be defined by their action on the real

2m-dim tangent space. They are then extended as described in section 2.2.

Definition 18. A Hermitian metric g is a Riemannian metric that obeys

g(JpX, JpY ) = g(X, Y )

for any p ∈M and for any X, Y ∈ Tp(M).

Hermitian metrics are therefore compatible with the complex structure J . This

requirement greatly restricts the number of independent components of g once it

is extended.6 It can be easily shown (see (28), p.325) using the action of J given

in definition 3 that the Hermiticity condition imposes antisymmetry on gµν and

gµ̄ν̄ . These components are symmetric by definition and must therefore be zero.

Consequently, a Hermitian metric only has gµ̄ν and gµν̄ non-zero components.

Moreover, any form obeying hµν = h̄νµ is referred to as Hermitian.

6We drop the label p on the metric from now on.
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Definition 19. A complex manifold endowed with a Hermitian metric, (M, g) is

called a Hermitian manifold.

Theorem 1. Every complex manifold admits a Hermitian metric (28).

The Kähler form, a particular 2-form, is then defined on Hermitian manifolds

from the action of the Hermitian metric. Like the metric, it is defined on the real

tangent space then extended to act on the complexified tangent space.

Definition 20. The Kähler form of (M, g) is the 2-form

ω(X, Y ) = g(JpX, Y ) ∀X, Y ∈ Tp(M)

defined smoothly at all p in M.

When ω is extended to the complexified tangent space Tp(M)C, it becomes a

real (1, 1)-form. Its non-zero components are given by

ωµν̄ = igµν̄

ωµ̄ν = −igµ̄ν .

The form ω ∧ ω ∧ ... ∧ ω where ω appears m times is a nowhere vanishing 2m-dim

real top-form (a proof can be found in (28) p. 326− 327). This yields the following

theorem:

Theorem 2. All complex manifolds are orientable (28).

This guarantees that all top forms onM can be integrated in the usual manner.

All forms differing from the Kähler form ω by an exact form (with respect to the

exterior derivative) form the so-called Kähler class, of which ω is a representative.
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Definition 21. A Kähler manifold is a Hermitian manifold (M, g) whose Kähler

form is closed, i.e. it obeys dω = 0. The associated metric g is a Kähler metric.

The requirement that the Kähler form is closed allows ω to be reformulated

in terms of a single real function called the Kähler potential. The statement that

dω = 0 is equivalent, in a coordinate patch, to

∂αωµν̄(z, z̄)dzα ∧ dzµ ∧ dz̄ν + ∂̄ᾱωµν̄(z, z̄)dz̄α ∧ dzµ ∧ dz̄ν = 0

where we have used the shorthand ∂/∂zα = ∂α and ∂/∂z̄α = ∂̄ᾱ. Both terms

are of different bi-degree and must therefore be 0 independently. The first term

being 0 requires ωµν̄ ∝ ∂µβν̄ for βν̄ the components of a 1-form. Equivalently, the

second term yields ωµν̄ ∝ ∂ν̄ β̃µ for β̃µ the components of another 1-form. These are

simultaneously satisfied by writing

ωµν̄ = i∂µ∂̄ν̄K(z, z̄) (6)

for K(z, z̄) ∈ F(M), a real function, where the i is a conventional proportionality

factor. 7 The scalar function K is the Kähler potential. It fully specifies the Kähler

form and consequently the associated metric. This holds in a coordinate patch

and the resulting expression is valid locally. To highlight this, the Kähler potential

conventionally carries a patch index. For exmaple, ω = i∂∂̄Kc(z, z̄) in the patch

O(c). The Kähler potential Kc(z, z̄) then transforms smoothly from patch to patch

according to the transition functions. The patch index is mostly omitted in the

remainder of this thesis where it is understood that the Kähler potential is defined

locally.

7The Kähler potential is real because the Kähler form is real by definition.
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2.5 Connection and curvature

Before introducing Calabi-Yau manifolds in the next section, we sketch the defini-

tions of the metric-compatible connection on complex manifolds and the associated

curvature tensor. This leads to the Ricci form and the associated first Chern class.

With a metric g, a unique connection, compatible with the complex structure

can be defined.8 We sketch the construction of the connection and refer the reader

to p. 327− 328 of (28) for more details.

Just as with real differentiable manifolds, one can identically construct a co-

variant derivative acting on complex vector fields. The connection coefficients are

defined from its action on basis elements, as usual, giving:

∇µ
∂

∂zν
= Γλµν(z)

∂

∂zλ
,

∇µ̄
∂

∂z̄ν̄
= Γλ̄µ̄ν̄(z̄)

∂

∂z̄λ̄
,

where Γλµν(z) and Γλ̄µ̄ν̄(z̄) = Γλµν(z) are the connection’s only non-vanishing compo-

nents. Consequently, the holomorphic covariant derivative (∇µ) acts like a partial

derivative to anti-holomorphic vector fields and vice-versa.

Similarly, covariant derivatives are defined for the dual basis such that

∇µdzν = −Γνµλdz
λ,

∇µ̄dz̄ν̄ = −Γν̄µ̄λ̄dz̄
λ̄.

Using the defining properties of the covariant derivative (as introduced in (29)), it

can be extended to act on generic tensor fields (see (28) p. 328). Given a metric g,

a connection for which ∇µgρσ̄ = 0 and its conjugate hold is referred to as metric-

8This is analogous to the Levi-Civita connection.
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compatible. A metric-compatible connection for which all components with mixed

holomorphic and anti-holomorphic indices vanish is called a Hermitian connection

(as was naturally constructed above). As the Levi-Civita connection, the Hermitian

connection is unique. Writing down the metric-compatibility condition in terms of

the connection components, their explicit form can be read off. The complex struc-

ture can then be shown to be covariantly conserved by the Hermitian connection:

they are compatible structures.

Given a Hermitian connection, the Riemann curvature tensor field can be con-

structed. Its components take the usual form. For example, the fully holomorphic

components are given by

Rκ
λµν = ∂µΓκνλ − ∂νΓκµλ + ΓηνλΓ

κ
µη − ΓηµλΓ

κ
νη.

However, the values of the Γ components and the symmetries of the Riemann tensor

restrict greatly its non-zero independent components. It can be shown ((28) p.329)

that the only independent components are Rκ
λµ̄ν and its conjugate.

Tracing over the first two indices yields the components of the Ricci tensor which,

with the explicit form of the Hermitian connection components, are found to be

Rµν̄ = Rκ
κµν̄ = −∂ν̄∂µ ln (det g), (7)

where g is the metric associated with the Hermitian connection. A metric for which

the Ricci tensor vanishes is called Ricci-flat and a manifold with such a metric is a

Ricci-flat manifold.

Associated to the Ricci tensor is the Ricci form, R = iRµν̄dz
µ ∧ dz̄ν̄ . It can be

shown that it is a real form that is closed but not generally exact. The cohomology
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class of the Ricci-form is called the first Chern class, c1(M) = [R/(2π)]. This is

a topological invariant which characterises the non-triviality of the canonical line

bundle of M.

2.6 Calabi-Yau manifolds

With these concepts in place, we now introduce Calabi-Yau manifolds and their

properties. We begin with the formal definitions of Calabi-Yau manifolds as well

as the Calabi conjecture and its consequences. In the remainder of the section, we

focus on the Fermat Quintic Calabi-Yau threefold, a manifold extensively used in

string compactification as a warm-up to more sophisticated spaces. We detail its

mathematical construction from its embedding in CP 4. An emphasis is put on the

set-up of coordinate patches and labels as this will be important in discussing the

definition of the energy functional and its numerical minimisation in section 3.2.

Calabi-Yau manifolds admit different definitions which are equivalent when they

are compact manifolds.9 In line with our interest for Calabi-Yaus as Ricci-flat com-

pactification spaces, we introduce them with the following definition.

Definition 22. An m-dim Calabi-Yau manifold is a compact Kähler manifold which

admits a Ricci-flat metric (unique in each Kahler class).

However, this definition can be stated in many mathematically equivalent ways,

in particular:

Definition 23. An m-dim Calabi-Yau manifold is a compact Kähler manifold of

vanishing first Chern class.

9The story is slightly different in the case of non-compact Calabi-Yaus. This is beyond the
scope of this thesis. See (10) for an accessible treatment.
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An important property of m-dim Calabi-Yau manifolds sometimes also quoted as

a definition, is that they always admit a nowhere-vanishing unique (up to constant

rescaling) holomorphic (m, 0)-form. This form is denoted Ω and yields a natural

volume form, µ = (−i)mΩ ∧ Ω̄ which will be explicitly constructed for the Fermat

Quintic later on.

Defs. 22 and 23 can look trivially equivalent from the definition of the first Chern

class. However, we note that the Ricci-form could be non zero but exact. In that

case, the Chern class would vanish but the metric would not be Ricci-flat. This

was conjectured by Calabi in (30) and proved by Yau in (31; 32). Calabi famously

conjectured in 1957 (30) that a vanishing first Chern class always guarantees the

existence of a Ricci-flat metric. This powerful statement relating curvature to topol-

ogy was only proved 20 years later by Yau in (31; 32) who showed that a Ricci-flat

metric can always be constructed when the first Chern class vanishes.10

Further details on the Calabi conjecture and other equivalent definitions are

beyond the scope of this thesis but can be found in (10).

Unfortunately, the conjecture and following proof don’t provide any elements

beyond the existence of the Ricci-flat metric. We note that the definitions quoted

also don’t point to a specific construction of Calabi-Yau manifolds. In practice, they

can be easily constructed as hypersurfaces embedded in CPm+1. The construction

can be generalised to products of projective spaces.11 The specific constructions also

don’t directly provide an explicit Ricci-flat metric. Finding such a metric remains

a topic of active research as we have described in section 1.

We refer the reader to (18; 10) for an accessible introduction to common con-

10Quite amazingly, Yau first attempted to disprove it by constructing (flawed) counter examples
before writing down a formal proof of the conjecture.

11These aren’t the only ways to construct Calabi-Yaus, see (10; 18) for an accessible review.
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structions of Calabi-Yau manifolds and (33; 34; 35; 36) for a more formal account.

The rest of this section goes into the details of the definition and set-up of the Fer-

mat Quintic, the 3-dim Calabi-Yau manifold most often used as a starting point to

show feasibility of methods.

2.7 The Quintic Calabi-Yau threefold

We first construct the complex projective space CPN , in which many Calabi-Yaus

can be embedded.

Consider CN+1 (covered by a single coordinate patch) with coordinates labelled

{za} with a = 1, 2, ..., N + 1.

Definition 24. The N dimensional complex projective space CPN is CN+1 − {0}

with the coordinate identification {z1, z2, ...zN+1} ∼ {λz1, λz2, ...λzN+1} ∀λ ∈ C −

{0}. This is the space of all undirected complex lines in CN+1 through the origin.

The {za} on CN+1 can be used to label points in CPN (i.e. lines in CN+1). They

are called “homogeneous coordinates” of CPN and infinitely many {za} (all equiv-

alent under ∼ defined above) correspond to a single point in CPN . Alternatively,

an “inhomogeneous coordinate system” (where a point is specified by a unique set

of coordinates) can be defined on CPN using at least N + 1 coordinate patches.

The following is illustrated in fig. 1 with N = 4. A non-zero coordinate in {za},

labelled zc, defines the patch O(c) on CPN . It contains all points with zc 6= 0. In

this patch, a point is labelled by the coordinates

ua(c) =
za

zc
with a = 1, 2...N + 1.

This includes uc(c) = 1. For cleanliness, uc(c) is usually dropped and the set of coor-
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dinates, labelled by Greek indices, now contains N elements:

uα =
zα

zc
with α = 1, 2...N skipping c.

The patch label c is omitted from now on for ease of notation. This requires at least

N + 1 patches, overlapping on points with multiple non-zero coordinates za.

Figure 1: The embedding of CP 4 and the Calabi-Yau Quintic in C5 is schematically
represented. The relationships between the coordinates systems on those spaces are illus-
trated.

A natural family of metrics on CPN are the generalised Fubini-Study metrics,

which will be the starting point when attempting to find the Calabi-Yau metric

later on. Fubini-Study metrics are defined from the form of their Kähler potential
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as follows.

Definition 25. Given a positive definite Hermitian form Gab̄ on CN+1, the Fubini-

Study metric on CPN is the metric whose Kähler potential is of the form

KFS = ln (Gab̄u
aūb̄) (8)

locally.

Different Hermitian forms G pick out particular representatives in the Kähler

class which is determined by the embedding in CPN . The class of the Kähler form

ω therefore does not depend on G.

With the coordinates defined above, the Fermat Quintic, X is defined in C5−{0}

as the locus of points which obey

P (z) = Σ5
a=1(za)5 = (z1)5 + (z2)5 + (z3)5 + (z4)5 + (z5)5 = 0. (9)

This is illustrated in fig. 1. The defining eq. 9 can be rewritten in coordinates on

CP 4, giving

P (u) = 1 + Σ4
α=1(uα)5 = 0 (10)

Coordinate patches on X also can be constructed. 12 A coordinate uδ in {uα} (δ 6= c,

of course) is fixed by expressing it as a function of the remaining coordinates using

eq. 10. This patch, labelledO(c,δ), is characterised by the remaining three coordinates

{ui} where i = 1, 2, 3 (skipping δ). This forms inhomogeneous coordinates on the

Quintic. These different coordinate systems and embeddings are illustrated in fig. 1.

As expected, the Fubini-Study Kähler potential keeps its form when pulled back to

12However, in practice using them avoided where possible.
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X but only admits three independent arguments when evaluated on X.

In practice, it is much easier to work in CP 4 with the additional constraint

P (u) = 0 to obtain points on X than to build coordinate patches on the Calabi-Yau

threefolds. This requires caution when using derivatives. To take derivatives on X,

the polynomial P is kept fixed while it is not when taking derivatives on CP 4. These

derivatives are respectively labelled ∂̂i and ∂i (or ∂δ when taking a derivative with

respect to the additional CP 4 coordinate). A relationship between them is derived

using the chain rule in section 3.2.4.

3 Computing Calabi-Yau metrics

Calabi-Yau manifolds admit a Ricci-flat metric (sometimes called a Calabi-Yau met-

ric), which solves Einstein’s vacuum equations. But neither the Calabi conjecture

nor the explicit constructions of the manifold specify how to find the Ricci-flat met-

ric. There has been no successful attempt at analytically writing down Ricci-flat

metrics. 13 Finding Calabi-Yau metrics is now mainly approached as a numerical

problem (22) and progress was made using various approaches (3; 23; 24; 1).

In this section, we present two methods to numerically compute Calabi-Yau met-

rics. We describe in broad terms Donaldson algorithm and highlight recent work

where machine learning was used to mitigate some of its drawbacks. We then intro-

duce in detail an alternative method, based on the construction and minimisation of

an energy functional over the space of Kähler metrics. This was originally developed

by Headrick and Nassar in (1). Building up from their work, we then offer a hybrid

method using supervised machine learning implemented through a neural network.

13Except on highly symmetric Calabi-Yaus presenting little interest as a compactification space,
see (36; 22) for more details
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Using quantities computed with Headrick and Nassar’s Mathematica package avail-

able at (37), one seeks to replace their minimisation process to predict the Kähler

potential with one requiring fewer computational resources. The latter is original

work performed by the author under the supervision of Prof Yang-Hui He and Dr

Anthony Ashmore.

3.1 Donaldson algorithm

Donaldson algorithm, like the energy functional method of (1) that we introduce

in section 3.2, encodes the metric information numerically using “algebraic met-

rics”.14 The construction, originally attributed to (38) is reproduced in detail in

sections 3.2.1 and 3.2.2 when introducing the energy functional method. The main

idea is to express the Kähler potential as an expansion in a complete basis, commonly

the eigenspaces of the Laplacian on CP 4. These eigenspaces are built from homo-

geneous polynomials of degree k and form a complete basis on CP 4. When pulled

back to the Calabi-Yau X, the polynomials aren’t linearly independent anymore. A

complete basis on X is obtained by removing all redundant polynomials.

The algebraic metrics are then constructed from the Kähler potential expanded

in the basis. The coefficients of superposition encode the metric information. The

accuracy of the results (and the number of coefficients) then increases with k. Con-

sequently, the larger k, the closer to “Ricci-flatness” is the resulting Calabi-Yau

metric and the longer the computations to find the metric become.

Using this set up and theoretical work of Donaldson (2), a numerical procedure

to find an approximate Calabi-Yau metric was presented in (3; 25). The algorithm

14A similar encoding of the information was presented in (24) using a symplectic structure and
coordinates.
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relies on a non-linear map, the “T map”, that acts on the coefficients. This map

admits a unique fixed point (such that T (h) = h) which corresponds to the “bal-

anced metric”. Donaldson showed in (2), that iteratively applying the map to the

coefficients, the metric converges to the balanced metric. This balanced metric is

itself an approximation to the Ricci-flat metric. Extended details of the procedure

are beyond the scope of this thesis but can be found in the original work (2; 3; 25)

and in introductory sections of (4).

The power of this method is the small number of iterations (10 or so) necessary

to reach convergence (to sufficient accuracy for most applications). However, the

algorithm relies on the generation of a significant number of points (of the order of

109 for k = 8), which is a time expensive process. The required number of points also

increases with k, further limiting the best reachable accuracy. Additionally, while

the increasing accuracy was originally predicted to increase exponentially with k,

the metrics were found to only approach Ricci-flatness as a power of k (1). Overall,

this method produces metrics that are Ricci-flat within 1% error which is sufficient

for most applications. The time required is of the order of hours and the storage

requirements are fewer, thus providing a net improvement compared to previous

attempts (23). In particular, for the Quintic, computing the metric for k = 12 was

found to take 50 hours (4).15 While a 50 hours computation is manageable once

or twice, this becomes a significant limitation when one needs to scan over a few

Calabi-Yaus.

The limitations of Donaldson algorithm can be mitigated in different ways. One

approach is to change the modality of some of its steps. In particular (4) showed that

it is possible to use supervised learning, a form of machine learning, to significantly

15A back of the envelope calculation in (4) extrapolates this to suggest that k = 20 would then
require about 35 years to yield results...
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decrease the computation time to reach a metric. They managed to reduce the

required time by a factor of 50 and produce metrics of a similar accuracy in an

hour. The method can be summarised as follows.

1. A set of points on the Calabi-Yau (larger than the number necessary for con-

vergence) is computed (they use 500, 000).

2. Coefficients in the polynomial expansions are then calculated for k = 4, 5, 6, 7

using the smallest subset of the points guaranteeing convergence (that turns

out to be 99, 000).

3. Using the resulting coefficients, the metrics are calculated on the remaining

points.

4. Through curve-fitting techniques, the metric can then be extrapolated to

higher k (they do this up to k = 15) on a subset of the points (they use

10, 000 points).16 These metrics are of lower accuracy than when calculated

through Donaldson algorithm.

5. Using supervised learning, a machine learning algorithm is then trained on

the values of the metric calculated with Donaldson’s at k = 4, 5, 6, 7 and the

values of the metrics extrapolated on 10, 000 points.

6. Upon successful training (which (4) demonstrates) the algorithm can then

predict the metric at k = 15 can then be fully predicted for the 500, 000 points

computed initially.

They found that their final metrics computed using the method above were similar in

accuracy to Donaldson’s k = 12 metrics. The former takes an hour for the full metric

16This is known as extrapolating to the continuum.
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components while the latter needs about 50 hours. This highlights the significance

of the time gain with minimal compromises on the accuracy of the results. This

approach was investigated in detail for the Fermat Quintic and deemed a success. It

can be directly applied to other Calabi-Yau threefold, for example the torus-fibred

Schoen Calabi–Yau threefolds used in (39) to obtain a heterotic standard model.

This work is currently underway by the collaboration behind (4).

Alternatively, a radically different method was developed by Headrick and Nassar

in (1). They encode the numerical information using the same algebraic metrics but

instead of finding a balanced metric using the “T map”, they construct an energy

functional that admits a unique minimum on the Ricci-flat metric. This turns the

numerical Calabi-Yau metric problem into a minimisation procedure, which is well

studied and easy to implement and solve. The method requires significantly less

points than Donaldson’s method. Moreover, the number of point required doesn’t

increase significantly with k. In practice, Headrick and Nassar found that 3000 is

sufficient to obtain metrics of similar accuracy (about 1% deviations from Ricci-

flatness). The accuracy of the metrics was also shown to improve exponentially

with k.

Overall, the method is easy to implement, requires less storage and compu-

tational power and yields results of higher accuracy. It thus presents significant

improvements to Donaldson algorithm.

A drawback of this method is that it relies on the exploitation of the symmetries

of the manifold. This is used to reduce the number of polynomial basis elements.

This is particularly well suited to produce metrics on the highly symmetric Quintic.

Results of high accuracy are then produced in short times.17 However, this trick

17Headrick and Nassar claim in (23) that a few minutes of computation yield results of sufficient
accuracy for most applications. We present an in-depth analysis of the computation times in
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can’t be generalised to more complicated Calabi-Yau spaces. This would require

ignoring the symmetries of the space. This consequently increases the dimension of

the basis elements and the space of Kähler metrics that is minimised over, which in

turn translates to longer computation times. This currently significantly limits the

use of the method to obtain the metric on other Calabi-Yaus, in particular the ones

relevant to string theory.

This limitation can be mitigated by speeding up the overall method to a point

where the additional time required when ignoring symmetries becomes manageable.

This is the goal we work towards in the remainder of this thesis. Building up on the

work using machine learning on data collected with Donaldson algorithm presented

in (4), we propose a similar approach to Headrick and Nassar’s method. This is

explored in section 4 where we replace their ultimate minimisation process by a

neural network to shorten the required computation time.

Before we introduce the specifics of our method and present our results, we give

details of the energy functional method and show why it works. We use Headrick

and Nassar’s strategy document (40) to gain an understanding of (1) and provide

here an accessible description of the method.

3.2 The energy functional minimisation method

A word about conventions: we chose to stick to the standard labelling for the com-

plex structure (J), Kähler form (ω) and Calabi-Yau holomorphic (m, 0) form (Ω).

However, this is different from the conventions used by Headrick and Nassar in (40)

and (1) where the Kähler form is labelled J . We hope this isn’t a source of confusion

and have tried to make the following section as self-contained as possible to reduce

section section 3.2.6.
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any back and forth with (40) and (1).

We start by defining the polynomial basis used to numerically express the Kähler

potential. Most of the construction is done in homogeneous coordinates on C5 and

CP 4 to avoid using coordinate patches on X. Once this is set up, the energy

functional is defined and massaged into a form appropriate for the minimisation.

Finally, the algorithm is summarised.

3.2.1 Polynomial basis

As briefly mentioned in section 3.1, the Kähler metrics on X are constructed by

expanding their corresponding Kähler potential in a complete basis. A conventional

choice of basis is the eigenspaces of the Laplacian operator. While these are tedious

to construct on X, they take the simple form of polynomials on CPN . This is

the basis that is used to represent the potential. We have chosen to introduce the

method using N = 4 exclusively, which corresponds to the Quintic Calabi-Yau. The

same construction could be done for a general N (as is presented originally in (1))

and applied to Calabi-Yau hypersurfaces of different dimensions.

Let ρI(z) be the set of homogeneous polynomials of degree k in the homogeneous

coordinates za where the index I iterates over the elements. For example, for k = 1, 2

the sets are given by

k = 1 : {z1, z2, z3, z4, z5},

k = 2 : {z1z1, z1z2, z1z3, z1z4, z1z5, z2z2, z2z3, z2z4, z2z5, z3z3, z3z4, z3z5, z4z4, z4z5, z5z5}.

The sets have dimensions given by Nk = (N + k)!/(N !k!) where N is the dimen-

sion of the projective space we work in (for our purposes, N = 4). The eigenspaces

of the Laplacian, up to k, in the patch O(c), are then spanned by the functions
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ρI(z)ρ̄J̄(z̄)

(Gab̄z
az̄b̄)k

(11)

where Gab̄ is the Hermitian form specifying the Fubini-Study metric on CP 4. We

highlight that ρI and ρ̄J̄ are taken at a given k.

While eq. 11 provides a basis on CP 4, the basis elements aren’t linearly inde-

pendent anymore when pulled back to X. To obtain a basis on X the polynomi-

als must be quotiented out by the defining Quintic equation (P (z) = 0, eq. 9).

Mathematically, this corresponds to removing from ρI any degree (k − 5) polyno-

mial proportional to P (defined in eq. 9). All homogeneous polynomials of degree

k linearly independent on X are denoted pA. The dimensionality of pA is then

N ′k = Nk −N(k−5) for k > 5 and N ′k = Nk for k ≤ 5. Different indices (I and A) are

used to highlight the different dimensions.

3.2.2 Kähler potentials

We now describe how Kähler potentials are expressed in terms of the eigenspaces

defined in eq. 11.

The Calabi conjecture implies that there exists a unique Ricci-flat metric in

every Kähler class. In the case of the Quintic, there is only one cohomology class

as h(1,1) = 1 (all closed (1, 2)-forms differ by an exact form). As a consequence,

this Calabi-Yau admits a single Ricci-flat metric. This isn’t necessarily the case for

more sophisticated Calabi-Yaus for which every Kähler class would contain a unique

Ricci-flat representative. In any case, this method finds the Ricci-flat representative

in the class containing the Fubini-Study metric which serves as starting point when

minimising the functional over the space of possible Kähler potentials.
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Any representative with potential K in the same Kähler class as KFS differs by a

globally defined function. In practice, the exponential of this function is expanded

in the basis as follows:

ek(K−KFS) = hAB̄
pA(z)p̄B̄(z̄)

(Gab̄z
az̄b̄)k

,

where hAB̄ is a positive definite Hermitian N ′k × N ′k matrix. Taking the logarithm

of both sides and substituting the form of KFS, given in eq. 8 yields

K =
1

k
ln (hAB̄p

A(z)p̄B̄(z̄))− ln (|zc|2)

which, although we omit the c label on the potential for readability, is only valid in

the patch O(c). Expressing the polynomials in terms of the coordinates ua on CP 4

then yields the following expression

K =
1

k
ln
(
hAB̄p

A(u)p̄B̄(ū)
)

=
1

k
lnψ

(12)

(still valid in the patch O(c)), where ψ = hAB̄p
A(u)p̄B̄(ū).

We point out that pA(u) takes as argument the ua, which includes uc = 1 in

the given patch. For a given k, the product pA(u)p̄B̄(ū) will contain elements of

degree k in both uα and the corresponding complex conjugate but also elements of

lower degree. For example, taking k = 1 and specifying c = 5, the Kähler potential

is expanded in the members of pA × p̄B̄ = {u1, u2, u3, u4, 1} × {ū1, ū2, ū3, ū4, 1}.

Multiplying the elements out, the set product contains 1, u1, u2, ..., ū1, ..., u1ū2, ...

and confirms that all degrees up to k are present in the expansion although the

polynomials in pA were taken at k only. This straightforwardly applies to k > 1.
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Different matrices hAB̄ pick out specific representatives in the Kähler class. When

looking for the Ricci-flat metric, these are the coefficients that are minimised for. In

practice, K is relevant up to constant scaling as the metric is determined from its

derivatives. Therefore hAB̄ is computed up to overall scaling to avoid redundancy.

The dimension18 of hAB̄ corresponds to the dimension of a subset of the Kähler class

that can be practically scanned for the most Ricci-flat metric when optimising the

coefficients hAB̄. As k increases, the subset tends to the full space of Kähler metrics.

It was shown in (1) that k = 3 yielded accurate enough results for most applications.

We therefore deduce that the reduction of the Kähler class to this subset doesn’t

have a significant effect.

The advantage of these algebraic metrics is the simplicity of the construction

in terms of polynomials. It only requires coordinate patches in CP 4 which are all

identical and simple to manipulate. However, the size of the matrix hAB̄ grows

extremely quickly with k, about ∼ k2(N−1) = k6 in the case of the Quintic. The

Quintic however admits an internal Z5×Z5 symmetry and consequently any metric

and thus Kähler potential must be invariant under these transformations. This

allows for reducing the basis of eigenspaces given in eq. 11 by quotienting it by

the discrete symmetry group of the Quintic. This group given by all transformation

leaving P invariant contains the following operations expressed in the C5 coordinates

in X: permutations of any za, overall complex conjugation (za → z̄a), multiplication

of any za by the fifth root of unity (modulo overall multiplication by any root of

unity).

Instead of reducing the size of the polynomials in pA, Headrick and Nassar limit

the number of terms appearing in ψ and they simultaneously reduce the overall basis

18By dimension we mean the number of degrees of freedoms, not the size.
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to X. This approach yields an alternative formulation where they construct directly

a complete and linearly independent basis on X that is also invariant under the

symmetry group of X. In this formulation, basis elements (corresponding to eq. 11)

become vectors given by

P l = clIJ̄ ρ̄
J̄ρI . (13)

The matrix hAB̄ is then replaced by hl such that ψ = hlP l. The multi-indices

object cl
IJ̄

, found with Mathematica (41), restricts the basis to X. The metric

information is now encoded in hl where l iterates over the basis elements as opposed

to a pair of holomorphic and anti-holomorphic indices as in eq. 11. In that case,

the values of hl are the parameters that are varied when minimising the functional

defined in the next section. This corresponds to varying the Kähler metric within

its class. The metric closest to Ricci-flat is thus found by scanning over the metrics

this way.

To compute the results in (1), the second formulation was used and this is what

is implemented in Headrick and Nassar’s Mathematica (41) package available on-

line at (37).19 In the description of the energy functional method in (1) and (40),

Headrick and Nassar mainly use the first formulation which doesn’t account for the

symmetries of the Calabi-Yau. To facilitate any reference to(40), we use the first

formulation here when presenting the functional in the following section. Once the

method is set up, we reproduce an argument, originally given in (40) which shows

that both formulations which are essentially equivalent.

19We note that this formulation can also be used without exploiting the symmetries of the
manifold at hand. This affects the form of cl

IJ̄
.
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3.2.3 Energy functional

With the representation of the Kähler potential in terms of the eigenspaces of the

Laplacian given in the previous section, the energy functional to be minimised can

now be defined.

The geometrical structure of Calabi-Yau manifolds yields two natural volume

forms. The first one is constructed through wedge products of the Kähler form –

ω ∧ ω ∧ ω – and the second one using the natural holomorphic form the Calabi-Yau

µ = (−i)3Ω ∧ Ω̄. Their ratio is formally given by

vω =
ω ∧ ω ∧ ω
m!µ

, (14)

where we use the subscript ω to highlight the dependence on the Kähler represen-

tative ω. It should be understood as the ratio of their single component in a given

orientation. The ratio can be manipulated into the form

vω =
det gij̄
|Ω123|2

(15)

where gij̄ is the metric associated to ω on X in inhomogeneous coordinates.

As defined in section 2.5, the Ricci tensor associated to the metric gij̄ has com-

ponents given by

Rij̄ = −∂i∂̄j̄ ln (det gij̄). (16)

Recalling that Ω is a holomorphic form, ∂̄j̄Ω123 = 0. The quantity ∂i∂̄j̄ ln vω differs

from Rij̄ by ∂i∂̄j̄ ln (Ω123Ω̄123) which vanishes by the holomorphic property of Ω.
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The Ricci tensor components originally defined in eq. 16 are therefore equivalent to

Rij̄ = −∂i∂̄j̄ ln vω.

The unique representative ω in the Fubini-Study Kähler class for which the

Ricci tensor vanishes then obeys vω = constant or ω ∧ ω ∧ ω ∝ Ω ∧ Ω̄. The latter

form is an instance of the Monge-Ampère equation. Without loss of generality, the

scaling factor can be set such that vω = 1 on the Ricci-flat representative. Since

the components of the Ricci-tensor are determined by derivatives of ln vω, scalar

multiplication of vω leaves the components unchanged

Finding a Ricci-flat metric hence reduces to picking a representative ω such that

vω = 1. Having expressed the Kähler potential in the pA basis (in the first formula-

tion), the task consists in varying hAB̄ to find the right ω (or equivalently, hl in the

second formulation). This is done by minimising an appropriate energy functional

over the space of hAB̄ matrices. Headrick and Nassar present, in particular, two

such functionals with the key properties that they admit a unique minimum on the

Ricci-flat metric, have no other critical points and are non-negative. Both vanish

on the Ricci-flat representative only.

The two functionals are

H1[ω] =

∫
X

µ
(
vω −

Vω
Vµ

)2

,

H2[ω] = −1

2

∫
X

µRω

(17)

where Rω = gij̄∂i ln (vω)∂̄j̄ ln (vω) is the Ricci scalar of the Kähler metric gij̄. The

quantities Vω and Vµ are the volumes of X with respect to the two volume forms
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defined previously. Namely,

Vω =

∫
X

µvω ∝
∫
X

ω ∧ ω ∧ ω (18)

and

Vµ =

∫
X

µ. (19)

It can be shown that Vω only depends on the Kähler class, not the representative ω.

It is therefore be computed once and remains fixed during the minimisation.

The first functional corresponds to the “variance” of vω over the manifold. Quo-

tation marks are used as the variance is weighted by the measure µ and is therefore

not equivalent to the statistical variance of the integrand viewed as a statistical

sample. The integration therefore can’t be approximated by the statistical variance

of the integrand and needs to be performed. The meaning of H2 is less straight-

forwardly explained. Its form appears very similar to the Einstein-Hilbert action,

which by construction, admits a minimum on the solutions of Einstein’s equations.

It differs from H2 by the volume form integrated over. The functional defined here

is integrated over µ whereas the Einstein-Hilbert action would be integrated over

the volume form constructed from the Kähler form. This difference is what makes

H2 suitable since the Einstein-Hilbert action can be shown to vanish for any Kähler

metric (1). A more detailed discussion of the relevance and motivations behind H2

can be found in (1).

Other functionals could be constructed to admit a minimum on the Ricci-flat

metric and the two presented here are simply a starting point. From their form,

H1[ω] is significantly easier to compute as it doesn’t require the gradient information

necessary to calculate H2[ω]. From now on we will work with H1, henceforth labelled
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H, to obtain the Ricci flat metric.

3.2.4 The minimisation

The elements of the previous sections are now brought together to show exactly how

the minimisation process yields the Ricci-flat metric. The key is to reformulate the

integrand to render the dependence on hAB̄ explicit. We wish to exclusively work in

the CP 4 embedding of the Calabi-Yau. All quantities are therefore expressed in the

uα homogeneous coordinates on X. We say a few words about the integration and

generation of the points but mainly refer the reader to p.7 of (40) for more rigorous

details which are beyond the understanding required to follow this thesis.

The integrand

The following 4 component object is defined

Qα =
∂̂P

∂uα

∣∣∣
uβ ;β 6=α

(20)

in the patch O(c) on CP 4. As denoted by ∂̂, the derivative is taken on CP 4 as defined

in section 2.7. Pulling back Qδ to the patch O(c,δ) in X, the (3, 0) non-vanishing

Calabi-Yau holomorphic form Ω (unique up to a constant scaling) is defined as

Ω = Q−1
δ

∏
i

dui

in inhomogeneous coordinates on X. We abbreviate du1 ∧ du2 ∧ du3 by
∏

i du
i, a

convention used throughout. From this, it can be inferred that Ω123 = Q−1
δ (ignoring
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combinatorial factors). The volume form is then

µ = (−i)3|Qδ|−2
∏
i

dui ∧
∏
j̄

dūj̄ (21)

on X.

Another ingredient required to express vω in terms of homogeneous coordinates

on CP 4 is the relationship between derivatives on X, ∂i, and on CP 4, ∂̂i. As

mentioned in section 2.7, derivatives on X are at uj (j 6= i) and P fixed, implying

that uδ, the coordinate on CP 4 (that becomes a scalar function on X) is implicitly

varied. On the other hand, derivatives in CP 4 are at both uj and uδ fixed (since uδ

is a simple coordinate, on the same footing as uj). This gives, using the chain rule

on X,

∂

∂ui

∣∣∣
uj

=
∂

∂ui

∣∣∣
uj ,uδ

+
∂uδ

∂ui

∣∣∣
uj

∂

∂uδ

∣∣∣
ui
, (22)

where we identify ∂̂i ≡ ∂
∂ui

∣∣∣
uj ,uδ

and ∂̂δ ≡ ∂
∂uδ

∣∣∣
ui

.

An expression for ∂uδ

∂ui

∣∣∣
uj

is found by applying eq. 22 to P , remembering that

it vanishes identically on X. This yields, in the patch O(c,δ) on X (a trick found

in (3)),

∂P

∂ui

∣∣∣
uj

=
∂P

∂ui

∣∣∣
uj ,uδ

+
∂P

∂uδ

∣∣∣
ui

∂uδ

∂ui

∣∣∣
uj

= 0.

Using the definition of Qα and rearranging gives

∂uδ

∂ui

∣∣∣
uj

= −Qi

Qδ

.
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Plugging this into eq. 22 gives us the final relationship between the derivatives:

∂i = ∂̂i −
Qi

Qδ

∂̂δ. (23)

This relationship between derivatives translates into a relationship between the

metrics on CP 4 and X, gij̄ = ∂i∂̄j̄K and ĝαβ̄ = ∂̂α
ˆ̄∂β̄K respectively. In particular,

using matrices and determinant identities, it is found that

det gij̄ =
|Q|2

|Qδ|2
det ĝαβ̄ (24)

where |Q|2 = ĝαβ̄QαQ̄β̄. The ratio vω as written in eq. 15 can then be reformulated

as

vω = |Q|2 det ĝαβ̄, (25)

now expressed fully through the embedding of X in CP 4.

Using matrix identities, we now explicitly write det ĝαβ̄ in terms of hAB̄ from

the definition of the metric in terms of the Kähler potential. We defie the following

quantities:

qAα = ∂̂αp
A(u),

q̄B̄β̄ = ˆ̄∂β̄ p̄
B̄(ū),

ψα = hAB̄q
A
α (u)p̄B̄ = ∂̂αψ,

ψβ̄ = hAB̄p
A(u)q̄B̄β̄ = ˆ̄∂β̄ψ,

ψαβ̄ = hAB̄q
A
α q̄

B̄
β̄ = ∂̂α

ˆ̄∂β̄ψ.

(26)

Applying the product rule to the Kähler potential defined in eq. 12, the metric then
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takes the form, with the variables defined above,

kĝαβ̄ =
(ψαβ̄
ψ
−
ψαψβ̄
ψ2

)
. (27)

For convenience we repackage the quantities defined in eq. 26 into 5 × 5 matrices

and 5-component vectors as follows

Ψab̄

ψαβ̄ ψα,

ψT
β̄

ψ


Qa = (Qα, 0),

(28)

where a = α, c in the patch O(c), i.e Ψαc = ψα and Ψcc̄ = ψ. Using Schur’s determi-

nant identity together with the first few formulae in (42) and taking into account

the symmetry properties of the quantities manipulated, it can be verified that

vω = k−5ψ−4 det ΨQ̄b̄Ψ
b̄aQa, (29)

where the dependence on ψ and hence hAB̄ is now explicit. This expression for vω

doesn’t depend on the metrics and all quantities are expressed in CP 4 coordinate

patches. This is the form of vω that is calculated at random points in X, integrated,

and then optimised for the most Ricci-flat ψ.

Going back to the second formulation, vω and its building blocks are now ex-

pressed in terms of the vector basis P l defined in eq. 13. The corresponding optimi-

sation coefficients become hl. We have already noted that ψ = hlP l. The quantities
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defined in eqs. 26 and 28 become

Ψab̄ = hlQlab̄, (30)

with

qIc = ρI ,

qIα = ∂̂αρ
I ,

Qlab̄ = clIJ̄ q̄
J̄
b̄ q

I
α.

(31)

In their Mathematica implementation (available in the Fermat.m package and

optimal.nb notebook at (37)), these are the quantities that Headrick and Nassar

are working with. In this language, the coefficients hl are minimised for.

Numerical integration

The integral in eq. 17 is evaluated using a Monte-Carlo method. It is approximated

by a sum of the integrand, weighted by the volume form µ, evaluated at random

points generated with respect to the measure µ. The overall method to find Calabi-

Yau metrics presented here doesn’t rely on the particular method to generate the

points for the integration. In this section, we therefore give a flavour of the particular

algorithm used by Headrick and Nassar to generate the points and refer the reader

to (40) for a more rigorous account of this part of their work.

The volume form µ in the form given by eq. 21 is expressed in homogeneous

coordinates uα on X embedded in CP 4 by using the integral definition of the delta

function (over duδ). We find that

µ = (−i)3δ(P )2
∏
α

duα ∧
∏
β̄

dūβ̄. (32)
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This corresponds to the same volume form (when integrated over), written in CP 4

and restricted to X.

To generate the points, Headrick and Nassar spread the delta function by ±ε

(which can be set to 0.01 in most applications). Random coordinate values are

generated in each patch on CP 4. All points lying within ±ε of the Calabi-Yau hyper-

surface are kept and projected onto it orthogonally with respect to the Fubini-Study

metric gFS. The volume form µ is independent of hAB̄ and the points are calculated

once at the start of the computation. In practice, Npoints = 3000 is more than

enough to get accurate results when minimising (compared to the 109 required by

Donaldson algorithm). Generating the points can take from a few seconds to longer,

depending on the value of ε. This is however an upfront cost as they don’t need to

be recomputed. Once the points are calculated, the values of P l, qI and Ql
ab̄

, defined

in eq. 31 are computed at each point. This is done with hl initially equivalent to the

Fubini-Study metric. These quantities are then used to compute Ψab̄ and vω. They

form the initial values for the minimisation.

3.2.5 Summary of the set-up and minimisation

In summary, the algorithm has the following setps:

1. Calculating bases. For a given k, findthe basis of polynomials P l.

2. Generating points. Generate random points in CP 4 with respect to the

measure µ given in eq. 32 and project them onto X with the Fubini-Study

metric. This yields Npoints tuples of 4 homogeneous coordinates {uα}. This

requires Npoints and ε and outputs a list of 4 coordinate values, uα, at every

point.
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3. Calculating data. Calculate the following quantities at every point and for

each polynomial basis: Qα, Ql
ab̄

. Construct the matrix Ψab̄ at every point.

Putting these all together, compute the value of vω point-wise.

4. Integrations. Calculate Vω and Vµ by performing a numerical integration.

Construct the integrand together with the value of vω compute H[ω] through

numerical integration.

5. Minimisation. Using the Levenberg-Marquardt method, minimise H1[ω] to

find the values of hl closest to the Ricci-flat metric. The values of the compo-

nents of hl obtained fully characterise the Ricci-flat metric.

All functions required to this method are implemented in Mathematica and are

available in the Fermat.m package at (37). Headrick and Nassar also wrote a

Mathematica notebook, (that we extensively used) to illustrate their work and the

use of the package. The notebook is available at (37) under the name optimal.nb.

We encourage the reader to download the Mathematica package and notebook to

generate results themselves and feel the satisfaction of computing a Calabi-Yau met-

ric if they don’t do it routinely.

3.2.6 Results

Headrick and Nassar apply the energy functional method to the Fermat Quintic

(and other threefolds in the generalised Quintic family). They also generate metrics

for the Quartic 2-fold. The reader is referred to their result section for a detailed

discussion.

Note that the volume form µ, as presented in section 3.2.4 is not the one inte-

grated over in practice. The latter, denote µ̃ is a numerical approximation to µ.
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They differ by a scaling factor which is irrelevant to the results since the functional

is minimised for both. However, Headrick and Nassar work in their paper with nor-

malised integrals. The following is explained in detail in section 4.5 of (40) and 6.2

of (1). They define the quantity

ηω =
vω
〈vω〉

. (33)

The expectation value of vω is defined through

〈vω〉 =
1

Vµ̃

∫
X

µ̃vω (34)

where µ̃ is the approximate numerical measure and Vµ̃ is defined in eq. 19. With η,

the energy functional H1[ω] defined in eq. 17 can be rewritten with correct normal-

isation as E[ω] =
〈
(ηω − 1)2

〉
. A quick manipulation shows that both functionals

are equal up to a constant in the limit µ̃→ µ. In practice, the results are calculated

with H1[ω] and then normalised, as presented in (1).

The functional E[ω] is relevant as it is directly related to a standard measure of

Ricci-flatness,

σ[ω] =

∫
X

µ̃|η − 1|. (35)

This is used in particular to assess the quality of the metrics in (4; 3). Headrick

and Nassar compute it for various k. They find that the value of σ decreases ex-

ponentially with k, which is a significant improvement compared to the polynomial

decrease found in (3) using Donaldson’s method. This effectively means that for a

given k, metrics calculated with this method will be more Ricci-flat than Donald-

son’s balanced metrics. This is clearly shown in figs. 1 and 2 of (1) where they
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plot the value of E[ω] as a function of hl for the Quartic in the case of k = 2, 3

(where hl is respectively 1 and 2 dimensional). They show on the figures the posi-

tion of the balanced metric computed with Donaldson which doesn’t correspond to

the minimum of E[ω]. In comparison, their own metrics visibly correspond to the

minimum of the functional, thus again highlighting the improved accuracy. Overall

the results confirm the robustness of the method by showing the obtained accuracy

is comparable to existing methods while requiring fewer resources. In particular, it

can produce highly accurate metrics on the conifold Quintic, a phenomenologically

relevant space treated in (43).

While Headrick and Nassar have developed an elegant, easy to implement and

efficient method to compute Calabi-Yau metrics of the Quintic and Quartic Calabi-

Yaus, we remind the reader that generating similar results for other threefolds like

the Schoen manifold used in (39) would require significantly more resources. Indeed,

we wouldn’t be able to reduce the basis P l as we move away from the highly sym-

metric Fermat Quintic. This directly translates to a longer initial step to calculate

the basis. However, the increased size of hl also results in longer subsequent steps

(apart from the generation of the points which is independent of the basis). This

increase in time can be evaluated by measuring the time taken by each step detailed

in section 3.2.5. This was done for dimensions of the basis varying between 2 and

460, corresponding to k = 2 to 19 in integer steps for the Quintic. This is shown in

fig. 2.

The times shown in fig. 2 clearly demonstrate that the minimisation step in-

creases fastest and thus becomes “problematic” first. This motives our attempt to

replace the last step with a neural network. Indeed, using fig 9 in (1), we estimate

that a non-reduced basis of dimension 1000 would correspond to k = 3 for a general
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Figure 2: We show times (in seconds) taken to compute the steps described in sec-
tion 3.2.5 for different basis dimensions. This demonstrates that the ultimate minimisation
step scales the fastest with the dimension of the basis.

threefold. The time taken in that case isn’t on the figure as the maximum dimension

we managed to work with was 460. We expect that it would take order of hours, if

not days (similarly to Donaldson’s method) to compute metrics with 1000 dimen-

sional bases. If we were to successfully replace the minimisation step by a faster

method without losing too much accuracy, we could hope to compute metrics on

more physically relevant spaces using a modified version of the energy functional

method. We now investigate whether this is possible using a neural network.

4 Machine learning the Kähler potential

The results presented in the remaining sections are fully original, building up from

the code developed by Headrick and Nassar available at (37). We take caution to

highlight where their contribution ends and where our work starts.

The field of machine learning consists of the investigation, development and use

of algorithms which automatically perform their task better as the number of times

they’ve been executed increases. This ranges from “learning” chess moves, driving

or classifying different objects (like the 106 samples of handwritten digits compiled

in (44)). In practice, the list doesn’t end and various forms of machine learning can
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be applied to most problems. This wide range of possible uses motivated the devel-

opment of various algorithms and diverse approaches to machine learning. Some of

these are described in (10; 45), which are our main sources for what follows.

Three main methods of learning have been developed in particular. These are

unsupervised, reinforcement and supervised learning. We say a few words about the

first two and focus on the third, which we use in our implementation.

In unsupervised learning, algorithms are designed to group some input data

without any guidance. Doing so, it highlights clusters, similarities or categories. This

has been recently used on data sets of symptoms observed in COVID-19 patients.

The analysis revealed 6 different distinct groups of symptoms and associated illness

severity (46).20

Reinforcement learning is similar to unsupervised learning but requires a notion

of quality of performance. This is particularly appropriate when there is a pre-

ferred output to the task at hand but no information regarding how to obtain it. In

practice, the algorithm is rewarded when producing the preferred output. This is

the approach taken for example in (47) to explore the type IIA string landscape. In

particular, different string vacua are scanned over and the algorithm is rewarded pro-

portionally to how close the corresponding physical properties are to the Standard

Model.

Supervised learning is essentially a highly non-linear regression method. To train

the algorithm, an ordered set of input (for example pictures of handwritten digits)

and output (what the digits represent) is required. This however requires being

20While a reference to applications of unsupervised learning related to our field would have
been appropriate here, we couldn’t resist highlighting that it is 2020 and point the reader to an
interesting topical study.
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able to perform the task at hand in the first place. Once the algorithm is trained,

it can be used to produce previously unknown output given more input. This is

particularly useful in the case of difficult tasks that can’t be accomplished more

than a limited number of times. This approach is commonly used in theoretical

physics, for example in (4; 18; 48; 49). It is also well suited to many problems in

algebraic geometry, as highlighted in (10).

This is the approach we take in the present work using a neural network al-

gorithm. Our input data are the necessary quantities to compute the functional

calculated at every point and our output is ψ (the exponential of the Kähler poten-

tial) calculated at every point with the minimised hl. Each random point on the

manifold constitutes a training example. Once the algorithm is trained on a set of

points, it can be used to calculate ψ at additional points, bypassing the computa-

tionally expensive integration and minimisation process originally used.

The process is split between the learning and the validation phases. During

the learning phase, the algorithm is given input and output pairs (the training set)

and adjusts its internal parameters in order to match the given outputs as well

as possible. The larger the training set, the more the algorithm can fine-tune its

parameters and the better it will perform. In order to measure how well it has

learned, some data is kept unseen from the algorithm. This forms the validation

set. Only the inputs only are given to it and the corresponding predicted values are

compared against the known output. The fraction of the total known data used for

training, γ ∈ (0, 1), is typically varied. The algorithm is said to be learning if its

performance on unseen data improves with γ.

Our input point-wise data is calculated with Headrick and Nassar’s code. It

contains
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– the values of the coordinates: 4 complex numbers,

– the gradients Qα: also 4 complex numbers,

– the matrix Ql
ab̄

defined in eq. 31: 25 complex numbers for each basis element.

We work with k = 10, an intermediary providing a balance between accuracy of the

results and computation time. This yields for the Quintic 38 basis elements corre-

sponding 958 complex input values per point. The neural network is implemented

using the TensorFlow library in Python (50). Consequently, inputs must be real

and the complex numbers are separated into real and imaginary parts which equates

1916 real values for each point on the manifold. These 1916 are then given to the

neural network. Their values, like an electrical signal, will propagate by activating

different nodes going forward to produce an appropriate value of ψ. To differentiate

the known and predicted values, we use the following convention. The values of ψ

calculated with the energy functional minimisation method are labelled ψ and the

associated values computed with the neural network ψ̂.

4.1 Neural networks and their parameters

Now that we have introduced our training data, we define a neural network and

its parameters in more detail. We present the specific network we have used in

fig. 3 and give a flavour of how the network can “learn” the data. We focus on the

conceptual perspective and attempt to keep the mathematical details to a minimum

for conciseness and clarity. A clear introductory discussion can be found in the

video series“Neural Networks” (51) on 3Blue1Brown by Grant Sanderson, a Stanford

alumni in mathematics. The videos go into more detail regarding the adjustment
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of parameters during training. For a more academic account, we direct the reader

to (45) and (10), both accessible and tailored to theoretical physics applications.

A neural network is a network (i.e. points linked together by edges) which

roughly imitates how the brain processes information. The network is built out of

successive layers of nodes. Nodes in one layer aren’t connected to each other but all

of them are connected to the next layer. This is shown in fig. 3. In analogy with

a brain, nodes are like neurons and the edges correspond to all possible synapses.

Nodes each take a value x, corresponding to how active they are. The values of the

nodes in the initial layer are the input data. The initial data is propagated forward

through the edges from the input to the output layer, where we wish to find the

value of ψ. Consequently, our first layer consists of 1916 nodes and our last one is

a single node. Intermediate layers are called hidden layers and can be of any size.

The network we have picked consists of 3 hidden layers with 150, 70, 10 nodes each.

There is no hard rules about which network structure would give the best result for

a given problem. Consequently, the structure presented here was found to work best

through trial and error. The structure of the network is called a hyper-parameter: it

can be varied to improve the overall performance but isn’t adjusted during training.

We now describe the internal parameters of the network: weights (a) and biases

(b) of each node and activation functions (f) of each layer impact and characterise

the flow of information through the network. The weights and biases make up the

internal parameters which are adjusted during training. The activation functions

are hyper-parameters of the network. When discussing the following in the litera-

ture, the nodes’ values, weights and biases are labelled with indices to specify their

position in the network. Similarly, the activation functions carry an index linked to

the layer they act on. For simplicity and clarity, we highlight how these parameters
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play together to create a unique flow of information in the network but don’t use

any indices. 21 It is understood that the weights and biases take different values for

each node and activation functions take different form depending on the layer. The

set up and following discussion are illustrated in fig. 3.

Given a node with input, or activation value, x, the weight a and bias b act on

x to give y = ax + b. This value y will be transmitted to all connected nodes in

the next layer. When transmitted through an edge, this value y is modified by the

activation function f associated with the layer. The following connected nodes then

receive their own activation value, x = f(y). In most cases, as shown in fig. 3, nodes

in subsequent layers are connected to more than one node in the previous layer and

therefore receive more than one x = f(y). Then, their activation value x, which

is turn modified by their parameters and transmitted further, is the sum of the

activation values coming from all connected nodes in the previous layer. Through

this process, the input is modified, transmitted through all nodes and edges (in our

case ' 300, 000 edges) and produces in the last layer a single output.

This network is essentially a function, that takes in 1916 arguments and maps

them onto the reals. If all activation functions were set to the identity, the network

would correspond to a linear function with 298, 841 parameters and the learning

process would simply become a classic optimisation process over an extremely large

parameter space. It would also likely not produce any “correct” output unless there

was a way to write ψ as a linear function of the input data. The power of neural

networks comes from the non-linearity of the activation functions. A list of most

used activation functions together with their advantages and drawbacks can be found

in (45). Again, there is no hard rule when choosing activation functions but one

21A more rigorous description can be found in (45).
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Figure 3: The specific structure of neural network we have implemented. The flow
of information between the first and last layers is highlighted. We precise the hyper-
parameter of the network.

should be mindful of the type of input data at hand as some activation functions

are more suitable for particular data sets (depending on range, negativity of values,

etc.).

In our case, we found the Rectified Linear Unit (ReLU) activation function to

produce particularly accurate results. This was used for all layers but the last one

where no activation function was implemented. By introducing non-linearity in

the data flow, the network becomes able to reproduce highly complex, non-linear

functions, like the underlying link between the input data and ψ which, as we saw

in Section 3.2, corresponds to an integration over many points and the minimisation

of a functional. This is particularly fascinating considering that, once trained, the

network can produce ψ with knowledge of Ql
ab̄

and Qα at a single point.
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Now that we have described how the network acts like a non-linear function, we

sketch out how it “learns” during training and how to measure its progress during

validation. As we shall see in more detail, this is simply an optimisation process

where the internal parameters of the network are adjusted during a so-called back-

propagation. In practice, the parameters are adjusted to minimise a loss function,

akin to the sum of squares used in most linear fits. What is described now happens

automatically during the training:

– The network is given a batch of random training elements from the training

set. The network runs each input and collects the output it predicts with its

current parameters for each element.

– Each computed output is compared to the known output and the correspond-

ing value of the loss is calculated for all the points.

– Going backwards from the last to the first layer, all parameters are adjusted

to minimise the loss for all the points in the batch. This is back-propagation.

– New batches are given to the network until all the data has been seen.

This process is called an epoch. The network can see the same training data multiple

times throughout an epoch but this isn’t a problem as the combinations of points in

the batches is unlikely to repeat. In practice, the network is trained over multiple

epochs, improving its parameters further every time. In our case, we train during

100 epochs and with 70 points in each batch.

The loss function we minimise is the mean absolute percentage error (MAPE)

given by

MAPE = 100 ∗ 1

nbatch

nbatch∑
i=1

|ψ − ψ̂|
ψ

(36)
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where nbatch is the number of points in a batch, which is 70 in our case. At each

epoch, the value of the MAPE is calculated for both the training and validation data

sets, giving us an overview of the training progress. In the case of the validation

data set, the MAPE isn’t computed over the points in a batch but over all points

in the validation set.

Before we present the results obtained with the neural network described above,

we introduce a common pitfall of machine learning: over-fitting. This happens when

the performance of the model improves as it sees more training data but stagnates

(or worsens) when tested on validation data. In a standard fitting procedure, this

corresponds to using a fit function with more parameters than the number of data

points fitted. In the case of neural networks, this is also associated to networks

whose structures are overly complex. An easy way to minimise over-fitting is there-

fore to keep the network as small and simple as possible, while still ensuring good

performance. Over-fitting also means that the network is “learning” local structures

in the training data (and therefore improves) but this doesn’t translate to better

performance on unseen data. A way to mitigate this effect is to implement a so

called drop-out rate for some of the layers. A proportion of the nodes are then ran-

domly set to zero (i.e. turned off) during each pass over the data. The set of deleted

nodes are randomly picked each time which forces the network to learn more global

structures and effects in the data. In our computation we found that a drop-out

rate of 0.01 in the first hidden layer was sufficient to avoid over-fitting.

4.2 Performance of the network during training

The network described above is implemented to machine learn data calculated with

Headrick and Nassar’s Mathematica package available at (37). As discussed above,
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the Fermat.m package is used to calculate the coordinates, values of Qα and Ql
ab̄

(collectively referred to as input data) as well as the point-wise value of ψ (the

output data). This is done at 5000 points on the manifold and at k = 10. On the

author’s personal laptop, the whole process takes 16 minutes of which 10 are needed

to generate the input data and 6 to perform the minimisation and obtain the values

of ψ.

4.2.1 A single training

We train the network once with γ = 0.7, meaning that 3500 points are used for

training and 2500 remain unseen and are used to validate the data. After each

epoch, the values predicted are compared to the known output by calculating the

loss function defined in eq. 36. This is done for the points that the network was

trained on as well as for the remaining validation points.22 Both are plotted against

the number of epochs in fig. 4. The network is trained over batches of 70 points

during 100 epochs. The value of the loss decreases during training as shown in fig. 4.

The network is learning the underlying features primarily during the first 40 epochs,

after which it predicts output with a mean error below 3.5%. During the remaining

60 epochs, the discrepancy between the predictions and the known values further

drops to 1.6% after 100 epochs. Continuing training after 40 epochs often results

in over-fitting where the value of the loss on the training set decreases while the

performance on the validation data stagnates. As explained in the previous section,

this was prevented by using drop-out in the first hidden layer.

At first sight, fig. 4 visually shows no performance gap between the training and

validation data sets. A precise look at the values tells a different story. In fact, the

22There is no back-propagation on the validation data and the network doesn’t learn on it. They
therefore remain “unseen” during the entire training.
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Figure 4: The values of the loss for both the training and validation sets are plotted
after each epoch. All 100 epochs constitute the training. For indication, the 2.5% error
mark is superimposed.

value of the loss on the training set is 1% above that on the validation set. This

is a direct effect of the implemented drop out. When nodes are randomly removed

(during training), the network doesn’t perform as well as when all nodes are used

(during validation). This discrepancy can appear surprising when recalling the drop-

out rate is 1%. Consequently only 1.5 nodes on average are removed during each

pass. This highlights the subtleness of neural networks: a single removed node can

significantly alter the performance.

This is a good time to recall that the network, once trained, acts essentially as a

fit function. Tools of statistical analysis and modelling can therefore be used to assess

its performance further. We generate 10, 000 additional inputs and outputs using

Headrick and Nassar’s code.23 The trained network (with the parameters described

above) is now used to predict the values of ψ for the 10, 000 points (denoted ψ̂i

23None of these points are used during training or validation and they are all completely unseen.
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where i labels the points). This takes a single second! The ψ̂i are compared to the

corresponding ψi found by minimising the functional (which have remained unseen

by the network). This is shown in fig. 5 where ψ̂i is plotted against ψi. Ideal
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Figure 5: The point-wise predictions of the trained network (ψ̂i) are plotted against
the values calculated by minimising the functional (ψi) for 10, 000 unseen points. The
result of a fit to 37 is superimposed. The optimised coefficients are m = 1.012 ± 0.002
and v = 6354 ± 196 where the uncertainties represent standard deviation errors on the
parameters.

predictions by the network would results in the straight line ψ̂i = ψi. This can be

visually observed in fig. 5. To gain a quantitative understanding, we fit the data

shown in fig. 5 to the function

ψ̂i = mψi + v (37)

to obtain coefficients m and c. The ideal network would then correspond to fit

coefficients m = 1 and v = 0. When fitting the data, we find that m = 1.012 ±

0.002 and v = 6354 ± 196 where the uncertainties are standard deviation errors

on the parameters returned by the fitting algorithm. The value of m with its low

uncertainty confirms the quality of the predictions. However, the significant offset

found in v suggests that the network tends to systematically underestimate slightly
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the value of ψ. The mean value of ψ over the 10, 000 points lies at 433, 971. The offset

then corresponds to an average systematic shift of 1%. This is of the same order as

the 1.6% MAPE error observed after training in fig. 4. This systematic shift could

potentially limit the minimum reachable error. Improving this discrepancy would

require changes in the hyper-parameters. In particular, we notice in fig. 5 that the

network performs worst for larger values of ψ. Using different activation functions

could potentially resolve this.

4.2.2 Training over multiple γ

To assess the overall performance of the network, the proportion (γ) of data given

to the network for training is varied between 0.01 and 1 in steps of 0.02. For each

γ in the range, the network is trained from scratch using batches of 70 points over

100 epochs. After training, the network is given the remaining unseen points which

constitute the validation set. One then computes the overall percentage error in the

output from the unseen data for each γ. The plot of the mean absolute percentage

error (MAPE) against γ is commonly called the learning curve of the network.

In order to measure the uncertainty in the predictions, the process described

above is repeated 10 times using the same set of 5000 points (which are redistributed

between the training and validation set every time). An average of the MAPE value

at each γ is taken over the 10 runs and the corresponding standard error on the

mean is computed. Both are plotted against γ in fig. 6. It can immediately be seen

that the mean value of the loss (itself a mean percentage error) decreases as the

amount of data seen during training increases. This confirms that the algorithm is

learning from the data given. Additionally, the error on the mean MAPE decrease

as γ increases, showing the network is learning reliably. When learning from γ = 0.4
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Figure 6: The value of the mean percentage error (eq. 36), averaged over 10 runs is shown
at each γ. The errorbars represent the standard error on the average. We superimpose
the 2.5% error threshold. The neural network trained using 5000 points

of the data (i.e. 2000 points), the MAPE is already below 3%. It reaches 2.5%±0.1

at γ = 0.46 (i.e. having seen 2300 points). For γ = 0.78 (3900 points), the error

drops to 1.5% ± 0.07. While extremely promising, we emphasize that this doesn’t

say anything about the Ricci-flatness of the results. Hence we can’t compare right

away to results obtained through different methods presented in (4; 1). However,

the values of the MAPE obtained during training shown in fig. 6 do demonstrate

that the simple network structure we have constructed is able to learn the features

of the data from Headrick and Nassar’s code to a high accuracy.

To confirm this, we computed the coefficient of determination R2,

R2(ψ, ψ̂) = 1−
∑

i(ψi − ψ̂i)2∑
i(ψi − ψ̄)2

(38)

where ψ̄ is the statistical mean of all ψi (10). This coefficient measures the degree of
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linearity between the ψi’s and ψ̂i’s. It becomes 1 if both are identical (corresponding

to a perfect fit). The value of R2 is positive if there is correlation between ψ̂ and

ψ. In particular, if the network always produced the constant average of the ψi, we

would find R2 = 0. No correlation results in a negative R2. This is calculated for

the validation data after each epoch during training. We plot an average of the 10

runs with the corresponding standard error on the mean in fig. 7. The R2 coefficient
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Figure 7: The value of the R2 coefficient averaged over 10 runs is shown at each γ. The
error bars represent the standard error on the mean. We superimpose R2 = 1 representing
a perfect fit. The neural network is trained using 5000 points

visually reaches 1 around γ = 0.4, thus confirming that 2000 points are enough for

the network to learn the underlying features of the data. The exact values found

are R2 = 0.996± 0.001 for γ = 0.46 and R2 = 0.998± 0.0003 for γ = 0.78.

Overall, this demonstrates that the network is capable of learning with great

accuracy the features underlying the relationship between ψ and the corresponding

input data. In particular, it is capable of predicting ψ with less than 2.5% error

after having seen only 2300 data points. Training the network on 3500 points (with
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error around 1.5%) only takes 2 minutes and obtaining the predictions on 10, 000

additional points once the network is trained takes under 2 seconds. This may

seem like a considerable gain from the 6 minutes required to compute the 5000

values of ψ with the minimisation. However, we shouldn’t forget that, to obtain

the training data necessary to reach 1.5% error, 3500 points need to be computed

using the energy functional. This itself takes 12 minutes of which 3.5 are spent on

the minimisation. Now we also recall that, with 3000 points, the energy functional

method generates highly Ricci-flat metrics. This yields the overall coefficients hl

which are used to evaluate ψ and consequently the Kaähler potential. However, ψ

can be evaluated using hl on as many points as we have coordinates for, beyond the

ones used to obtain the coefficients.

If the problem was to compute ψ on more points, our neural network would be

an efficient solution. However, once we have obtained the training data, there is no

barrier to computing the Kähler potential on additional points using the existing

method in (1). Estimating the time gained by replacing the minimisation by our

network isn’t so obvious anymore. We explore in the next section whether our

network can provide a significant improvement to the energy functional method.

Going back to our ultimate aim, we then try to conclude on the to viably of our

hybrid method to predict numerical Calabi-Yau metrics on manifolds beyond the

Quintic.

4.3 Using our network for research

An important feature of figs. 6 and 7 is the decrease of the error on the mean of

the MAPE and R2 coefficients. The values of the MAPE and R2 themselves already

show that the quality of the predictions of the network is poor for γ ≤ 0.2. This
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is confirmed when looking at the size of the error bars on both figs. 6 and 7. The

deviation are largest for γ ≤ 0.2 meaning that the network’s outputs vary in accuracy

from run to run and thus produce unreliable outputs. However, this stabilises for

γ ≥ 0.2 which corresponds to the minimum amount of training data required for the

network to effectively learn. The deviation in the quality of the predictions decreases

significantly and the network produces values with an accuracy that can be trusted.

This feature is essential as it shows that the network would produce values of ψ

with a close-to constant accuracy. Consequently, if it was used to generate values

of ψ for which we don’t have the value calculated using the energy functional, we

would know to trust these to 2.5% and 1.5% if the network was trained respectively

on 2900 or 3900 points. This essentially shows that a neural network is capable of

quickly learning (2 minutes) and then predicting (1 second) trustworthy values of

ψ with ∼ 1.5% error. This means that the simple structure detailed in section 4.1

is capable of emulating the relationship between ψ, the exponential of the Kähler

potential at a point and the point’s coordinates and values of Qα and Ql
ab̄

.

We now attempt to resolve whether our hybrid method using a neural network

coupled to the energy functional method by Headrick and Nassar could offer a viable

alternative to currents methods used to compute numerical Calabi-Yau metrics, in

particular (1; 3; 4). This decomposes into two questions: are the metrics we produced

with our method as Ricci-flats as the ones from (1; 3; 4) and if so, would our method

offer a significant speed up to (1). The former couldn’t be answered here due to lack

of time. It would require computing the value of the functional σ defined in eq. 35.

This measure of Ricci-flatness is commonly used in the literature and obtaining it

for the metrics produced with the neural network would quickly show how their

Ricci-flatness compares. This remains one of the main investigations necessary to
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evaluate the feasibility of our method.

Whether our method provides a significant time gain has already been discussed

briefly in the previous section. We remind the reader that as we consider more

sophisticated spaces, the basis of polynomials can’t be reduced using symmetry

arguments anymore. The dimension of the space minimised over thus increases

greatly. As shown in fig. 2, the time required to minimise the functional is likely

to scale faster than the time needed to compute the input data. This shows that a

small gain of time on the Quintic would become more significant when applying our

method to more sophisticated manifolds, our ultimate motive. Using our network in

that case however still requires producing data using the energy-functional method,

including its ultimate minimisation step. As we have demonstrated in section 3.2.6,

this appears severely limited by the time required to carry out the process. As it

stands, our network doesn’t appear to be a viable solution to the drawbacks of (1).

It is unlikely that our network also produces metrics of better accuracy (in the sense

of Ricci-flatness) than the ones already calculated for the training set. There are,

however, slight modifications that could make the method competitive.

An example that comes to mind is to use as a loss function a measure of Ricci-

flatness directly similarly to (49). One could then imagine calculating approximately

Ricci-flat metrics (for example using few points and/or lower k) with the minimisa-

tion method. This would provide a low accuracy training set quickly and thus bypass

the time limitations pointed out above by compromising on the accuracy. Using a

similar algorithm as (4), we can then use our neural network, with an adapted loss

function, to produce Calabi-Yau metrics closer to Ricci-flat than originally computed

for the training set. Once trained, it could be used to predict the Kähler potential

on a larger sample of points. Such a procedure could offer a significant gain of time
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and become a viable solution to the limitations of the energy functional method. In

an alternative direction, we could ask whether a network trained on data from the

Quintic could successfully predict the output of a different Calabi-Yau. This would

require generating Quintic training data using Headrick and Nassar’s method. Con-

sequently, the minimisation step for the other Calabi-Yau could be fully bypassed,

thus providing a significant speed-up.

5 Conclusion

In this thesis, we studied numerical Calabi-Yau metrics and showed through original

computations that machine learning can provide significant short-cuts.

To this end, we have introduced concepts of complex geometry needed to under-

stand Calabi-Yau manifolds and the methods developed to obtain Ricci-flat metrics

on them. We have also provided an introduction to machine learning, in particular

supervised learning with neural networks. Moreover, we reviewed different methods

of obtaining Ricci-flat metrics, emphasizing the energy functional approach. We

then showed that a simple neural network was able to predict Kähler potential on

the Quintic to high precision. Finally, we discussed whether our method could be

used to compute metrics on physically relevant compactification threefolds.

Finding the Ricci-flat metric was motivated by string theory as it is one of

the main ingredients required to obtain further predictions on existing minimally

supersymmetric standard models (MSSM). Such predictions are in turn necessary to

reject or further confirm some of these models. As it stands, the energy functional

method can’t be used to evaluate metrics on compactification spaces beyond the

Quintic. The main limitation is the time required to obtain results on spaces where
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the symmetries can’t be exploited. This is the case of most relevant Calabi-Yaus.

However, if the method were to take less time, it could become viable for other

threefolds. In that direction, we attempted to replace the ultimate integration and

minimisation step of the energy functional method by a neural network. We have

shown that a (relatively) simple network is capable of learning in a few minutes how

to predict the Kähler potential on the Quintic Calabi-Yau. The obtained values

were found to have 1.5% average discrepancy from values calculated using the energy

functional method developed in (1). This is in itself quite an impressive achievement

considering the mathematical complexity of the underlying data.

To be able to answer whether our hybrid method could offer a viable alternative

to existing methods would firstly require an assessment of the Ricci-flatness of the

resulting Kähler potential. If our results are of comparable accuracy to those of the

energy functional method, it still remains to consider whether our network imple-

mentation does provide a speed-up of the original method. As we have discussed,

this isn’t an easy question. However, slight changes to the method, e.g by using

a measure of Ricci-flatness directly as a loss function, could potentially provide a

significant improvement and lead to an alternative method of calculating numerical

Calabi-Yau metrics. We hope to investigate this line of research further and seek

answers to the remaining questions.
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