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Abstract

This dissertation focus on three dimensional N = 4 quiver gauge theories. We

study these quiver theories by counting holomorphic functions on the moduli

space of vacua via computing Hilbert series. To obtain the Coulomb branch

classically, we introduce the monopole formula to compute the corresponding

Hilbert series for A-series quivers corresponding to some minimal nilpotent

orbits, i.e. the minimal nilpotent orbit of A1, A2, A3, A4 and the supra minimal

nilpotent orbit of A3, A4. We then try to distinct the moduli space of the A3

and A4 quivers with the different orbits. Consequently, the moduli space of

the quivers corresponding to the supra minimal orbit is big comparing to the

minimal orbit quivers.

We also provide a technique of ungauging scheme applied to the monopole

formula for a non-simply laced quivers without any flavour group, i.e. affine G̃2.

choices of the ungauging scheme are on the long side of the non-simply laced

edges. We find that all the choices are equivalent and provide the same moduli

space.



Acknowledgements

Firstly, I would like to express the warmest thank to Amihay Hanany for giving

me the opportunity to write this thesis. I would also like to thank him for taking

so much time to check my answers, guiding what I should know step-by-step

and his patience answering a lot of questions.

To his postdoctoral researchers, I would like to thank especially Rudolph

Kalveks, who usually checked and corrected my answers when I faced technical

problems, and also Antoine Bourget, who explained some concepts and guided

how to make calculation simple.

To his PhD students, I would like to thank especially Julius Grimminger and

Zhenghao Zhong, whom I could approach with any problem, not just under-

standing the subject contents but also providing simple computations in this

thesis.

Also I would like to thank Krai Cheamsawat a lot for answering me every time.

He always say he is free whenener I have not only academic problems but also

others.

I would like to thank DPST for the scholarship supporting me during the MSc

study.

Finally, I would like to thank my family, my girlfriend and my friends for

supporting and encouraging me all the time.

vii





1
Introduction and Motivation

1.1 Motivation

Supersymmetric (SUSY) gauge field theories have played a crucial role

in quantum field theory. A model of the theory can be written as SUSY

lagrangian which contain irreducible representation (irreps) of the Super-

Poincaré algebra. These irreps are called supermultiplets. In this disser-

tation, we study three dimensional N = 4 gauge theories so the corre-

sponding supermultiplets are vector multiplets and hypermultiplets cor-

responding to the gauge groups and the matter fields in the theory. There

is also a superpotential, being included in the lagrangian, specifying the

interactions in the theories. One can obtain these 3d N = 4 theories by

performing dimensional reduction from 4d N = 2 theories. More pre-

cisely, the N = 4 vector multiplets are constructed from the N = 2 vector

and the N = 2 chiral multiplets; while N = 4 vector multiplets are formed

by combining the N = 2 chiral and anti-chiral multiplets. However, as

shown in [1], the lagrangian of the theories is very complicated and diffi-

cult to study. Therefore, the challenge for us is to find a succinct way to

encode the matter contents of the theories, the gauge group which they

all transform under and also the superpotential.

Quiver diagrams was first introduced to physics in [2] by Douglas and

Moore. In 3d N = 4, these diagrams encode the gauge groups and matter

contents of the theories. 3dN = 4 SUSY gauge theories, that are described

by the quiver diagrams, are known as 3d N = 4 Quiver Theories.

1



2 CHAPTER 1. INTRODUCTION AND MOTIVATION

These theories have a moduli space of vacua, including a Higgs branch

and a Coulomb branch. The moduli space is defined as the space of vacua

parameterised by VEVs of scalars in the theory. We may see the VEVs of

Gauge invariant Chiral Operators (GIO) as holomophic functions on the

moduli space. To understand the moduli space, we can count GIO in

the chiral ring of the theories [3]. This is mathematically equivalent to

enumerating holomorphic functions in the moduli space [4] and yields

a generating function [3], called a Hilbert series. This perspective allows

us to study the moduli space as algebraic varieties. This aspect will be

discussed in chapter 2.

Generally, we are fascinated by the 3d N = 4 Higgs and the 3d N = 4

Coulomb branch, repectively parameterised by VEVs of in the hypermul-

tiplet and the vector multiplet in the theory. Since the Higgs branch is

an object in classical level, it does not receive any quantum correction

[AH-mono]. Moreover, its Hilbert series can be determined by Molien-

Weyl integrals as illustrated in [5; 6; 7]. On the other hand, the Coulomb

branch is a quantum object which is difficult to compute its Hilbert se-

ries due to quantum corrections. In the past few decades, there has

been the method, introduced in [8], to achieve the Coulomb branch by

computing its mirror Higgs branch or understanding the metric of the

Coulomb branch at one-loop correction. These methods are exhausted

and time-consuming when we face a big quiver with a large number of

gauge groups, which means that they work efficiently if the gauge group

are sufficiently small. Therefore, we wish to find an approach to compute

the Coulomb branch classically.

In the recently years, there has been an efficient formula, called the

monopole formula [9]. It allows us to compute the Coulomb branch

Hilbert series via counting dressed monopole operators which are the

classical objects. It can be thought of multiplying by the classical factors

corresponding to the gauge groups in our theory. We will investigate

more computing details by using the formula or , particularly, calculate

the Coulomb branch Hilbert series of A-series quivers corresponding

some minimal nilpotent orbits in chapter 3.



1.1. MOTIVATION 3

In addition to the computation of the Coulomb branch as the moduli

space of dressed monopole operators, for a simply (single) laced quiver

with purely gauge nodes, one has to ungauge a residual center-of-mass

U (1) symmetry. We can make any choice to ungauge the U (1) symmetry,

leading to the equivalence in the unique Coulomb branch [10]. This is

non-trivial for a flavorless non-simply laced quiver with edge multiplic-

ity λ = 2,3, since the monopole formula need to be modified in order to

achieve its Coulomb branch Hilbert series. More importantly, all choices

of ungauging scheme are inequivalent, introduced in [10] in this April.

More precisely, this technique, interestingly, yields a valid or non-valid

Coulomb branch depending on the choices of the ungauging scheme. In

chapter 4, we will only take the analysis of the ungauging scheme on the

long side of the non-simply laced edge quiver resulting in the same valid

Coulomb branch. For any choice on the short side, one may look further

in [10].





2
Preliminary

In this chapter we would like to introduce briefly the space of vavua,

also called the moduli space, in 3d N=4 gauge theory through physical

and mathematical aspects. We also serve mathematical machinery to

find the key features of moduli spaces, including their dimensions, their

generators and their relations, in the following sections.

2.1 3d N =4 Supersymmetry

In this paper we interest moduli spaces of 3d N=4 gauge theory. This

theory carries 8 supercharges, which it can be obtained from dimen-

sional reduction of 5+1d N=(1,0) theory. In 5+1d N=(1,0) SU (2)R is the

R-symmetry group rotating the supercharges [11]. In the representations

of SU (2)R ×SO(4)littile, there is the 5+1d vector multiplet consisting of a

right-handed chiral spinor and a 5+1d gauge field. We can decompose

the 5+1d vector Vν , ν = 0,1, ...,5, into a 2+1d vector Aµ, µ = 0,1,2, and

three scalar fields φi , i= 1, 2, 3. These scalar fields lie in the defining rep-

resentation of SO(3)S which corresponds to a rotation in three reduced

dimensions (Vν, ν= 3,4,5).

Since 3dN=4 vector multiplet contains a 2+1d vector field, three scalars

and a 4 components fermionic field transforming in (1,0,0), (0,1,0) and

( 1
2 , 1

2 , 1
2 ) spin representation respectively under the SO(2,1) × SO(3)S ×

SU (2)R [12], we also have to take the double cover SU (2)S of SO(3)S to in-

clude other fermions. Thus the R-symmetry of a 3d N=4 gauge theory is

5



6 CHAPTER 2. PRELIMINARY

SO(4) ∼= SU (2)S ×SU (2)R , and the scalar fields in 3d N=4 vector multiplet

lie in the adjoint representation of SU (2)S .

In the next subsection we will state how to construct a 3d N=4 gauge

theory, namely embodying 3d N=2 multiplets as the building blocks for

the N=4 theory.

2.2 3d N=2 to 3d N=4

Due to high constrains in N = 4 Super Yang-Mills (SYM) theories, i.e.

3d N=4 gauge theories, there is an easy way to build up the 3d N=4 SUSY

by working on 3d N=2 supersymmetric theories which have a half of su-

percharge numbers. By doing this, it might be easy to write the superpo-

tential of the theories in order to consider their moduli spaces. To con-

struct N=4 from N=2 in three dimensions, one can decompose the N=4

vector multiplet into the N=2 vector multiplet V and the chiral multiplet

Φ; and the N=4 hyper multiplet into the N=2 chiral multiplet C and the

anti-chiral multiplet C̄ [9].

2.2.1 Decompsition of 3d N=4 Vector Multiplet

We will follow [13] to help us discuss the decompositions of the N=4

vector multiplet in more details. The N=2 vector multiplet V contains

a vector field Aµ, a Dirac spinor ζα and a real scalar ϕ; while the chiral Φ

includes a complex scalar fieldχ and a Dirac spinorλα. These fields are in

the adjoint representation of the gauge group. In the terms of the global

symmetry SU (2)S ×SU(2)R , both Dirac spinors (ζα,λα) transform in
(1

2 , 1
2

)
spin representaion as doublets of the global symmetry. This is equivalent

to a vector transforming under the global symmetry SO(4). To analyse the

scalars’ transformation, we can take the scalarsφ1, φ2, φ3 from the vector

of the reduced dimensions in the previous section 2.1. So let us setϕ≡φ3

and χ≡ 1p
2

(φ1+iφ2) so that one can map (φ1,φ2,φ3) 7→ (ϕ, Re[χ], Im[χ])

being in the triplet of SU (2)S , or (1,0) under the global.
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2.2.2 Decompsition of 3d N=4 Hyperumltiplet

Now analysing the N=4 hypermultiplet under the same global symme-

try SU (2)S ×SU(2)R , the hyper multiplets is built by combining the N=2

chiral C and anti-chiral C̄ [13]. These two chirals C and C̄ contain the

same types of fermionic fields which are ψα, ξα Dirac spinors and A, B

complex scalars. Those two dirac spinors transform in ( 1
2 , 1

2 ) as doublets

of the global, while the real and imaginary parts of those two complex

scalar fields can be arranged as (A, B †) and (A†, B) transforming in ( 1
2 ,0)

and (0, 1
2 ) respectively under the global. In the terms of the gauge group,

one could have the the N=2 chiral transforms in the fundamental repre-

sentation R of the gauge group and the N=2 anti-chiral in the conjugate

representation R∗ of the chiral.

2.2.3 Spaces of Supersymmetric Vacua

To understand the moduli spaces of the theory, let us consider a holo-

morphic superpotential (2.1) restricted by N=4 SUSY. [13]

Ssp =−i
p

2
∫

d 3xd 2θ
∑

mat ter
(C̄ΦC )+ c.c. (2.1)

where the summation is running over matters, which is charged under

the gauge group, connected with the adjoint N=2 chiralΦ. Moreover, this

sum has a couple of the tensor product of R∗⊗
Ad j

⊗
R corresponding to

the cubic terms , i.e. C̄ΦC , in the superpotential. This leads to an addition

of a trace to the superpotential and one obtains

W = Tr (C̄i jΦ j kCkl ) (2.2)

We can vary the superpotential W with respect to the superfields, i.e.

C̄ ,Φ,C ; subsequently, and set each of them to zero. By doing this we will

obtain the set of F -term equations of the theory, as
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∂W

∂C̄i j
= (ΦC ) j i = 0,

∂W

∂Ci j
= (C̄Φ) j i = 0,

∂W

∂Φi j
= (CC̄ ) j i = 0 (2.3)

Let us analyse a case where the scalar vacuum expectation value(VEV),

〈Φ〉, is non-zero. To satisfy the first two terms in (2.3), C and C̄ have to

vanish. Since the moduli spaces parameterised byΦwhich are in the N=4

vector multiplet, this space of vacua correspond to the Coulomb branch,

MC . However, one cannot calculate MC through the F-term due to the

requirement of quantum corrections, discussing in [14].

Another case is 〈Φ〉 = 0, then C and C̄ must not be zero. This gives us a

non-trivial third term in (2.3). In this case the space of vacua is parame-

terised by the complex scalars found in the N=4 hypermultiplet, leading

to the Higgs branch moduli space, MH . It can be computed by using the

F-term equations, since MH does not receive quantum corrections. In

[15], the relations are derived by using the F-terms in order to define MH

as an algebraic variety. More interestingly, one can use 3d mirror symme-

try to obtain a corresponding algebraic variety of MC [14; 16].

I the following section, we would provide an understanding and al-

gebraic description of the moduli space of supersymmetric vacua via a

scalar potential of the theory.
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2.3 Moduli Spaces of Vacua

2.3.1 Moduli Spaces: M

We firstly look at the physical aspect of the space of vacua solutions

by extracting the 3d N=2 scalar potential. Since the 3d N=2 multiplets

can be obtained by dimensional reduction of 4d N=1 vector and chiral

multiplet [4]. Classically1, one can write down the 3dN=2 scalar potential

as in 4d N=1 theories.

Under the gauge group G with representation R, let us consider the 3d

N=2 scalar potential V with Φi being the i th complex chiral multiplet,

i = 1,2, ...,di m(R) [4].

V =∑
i
|Fi |2 + g 2

2

∑
a

(Da)2 (2.4)

where Fi = ∂W /∂Φi are the F-term equations, Da = ∑
i j Φ

†
i (T a)i

jΦ
j are

the D-terms and a gauge coupling constant g .

Physically, the moduli space (M) or the space of vacua determines the

lowest energy behaviour of the supersymmetric QFT under the gauge

group. Mathematically, the moduli space (M) is defined as the set of

constant field configurations minimising the potential (2.4) with gauge

invariance considered.

M= {(Φ,Φ†)|Fi = 0,∀i Da = 0,∀a}

G
(2.5)

It provides a connection between supersymmetric field theory and alge-

braic geometry. So we can always see M as the space of supersymmetric

vacua solutions.

1 When we reduce 4d N=1 to 3d N=2, there are similarities between those two theories at
classical level (MH ). However, they behave differently quantum-mechanically (MC ) as it
receives quantum loop corrections. Surprisingly, we can have a new tool, called monopole
operators [4], help us compute the coulomb branch. We will see it in the following chapters.
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2.3.2 Chiral Operators

Let us move to crucial physical objects that can bridge between physi-

cal and mathematical perspective of the moduli space of 3d N = 2 theory.

First are chiral operators, Oi , which break one half of N=4 SUSY. There

is also a commutative ring, called chiral ring RC , of which are vacuum

expectation values of chiral operators. The VEVs 〈Oi 〉 of gauge invariant

chiral operators are holomophic functions on the moduli space M. With

relations taken into account, we obtain a one-to-one correspondence be-

tween 〈Oi 〉 and holomophic functions on M [4].

One may consider a coordinate ringC[O1,O2, ...,On] of M, with genera-

tors O1,O2, ...,On (being a surrogate for VEVs of gauge invariant chiral op-

erators). This ring consists of all feasible polynomial functions, formed

from the generators, on M. By quotienting the coordinate ring with its

ideal I (generated by the relations that the chiral operators obey) [17],

there exist a chiral ring

RC [M] = C[O1,O2, ...,On]

I
(2.6)

This picture help us have a nice view of the moduli space as an algebraic

variety characterised by the generators and relations in the theory. Thus

we can equivalently study the moduli space, turning this into a geometry

problem.

We will provide an example that might help one have a nice picture, in

the next subsection.
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2.3.3 Simplest Example of M

As we have in the previous subscetion, 3dN = 2 supersymmetry implies

that M is a Kähler2 Manifold with possible sigularities.

This subsection provides the simplest example of a two complex dimen-

sional orbifold. It is constructed by taking a complex plane C2 and using

its quotient by the central symmetry, i.e. Z2, of the origin. The corre-

sponding orbifold is therefore C2/Z2. Note that this space is homeomor-

phic to a cone CP1. To identify the algebraic variety of C2/Z2, we use x1

and x2 be C2 coordinates and take the action of a group Z2. Under this

parity action, one can have

(x1, x2) ↔ (−x1,−x2)

Then let us find all of the possible monomial functions f (x1, x2) = xa
1 xb

2

being invariant under the Z2 action. We need to consider all powers that

satisfy

a −b = 0 mod 2 (2.7)

So that we obtain Z2 three invariant monomial functions of degree two

as

X ≡ x2
1; a = 2, b = 0

Y ≡ x2
2; a = 0, b = 2

Z ≡ x1x2; a = b = 1

where X ,Y , Z are complex variables describing the orbifold C2/Z2 alge-

braically. These variables are called generators ofZ2 invariant polynomial

functions and also have a relation as the constraint to each other, as fol-

lowing

2 In fact, the moduli spaces of 3d N=4 gauge theory are a special class of manifolds, called
HyperKähler. The paper [18] provide a great introduction to the HyperKähler
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X Y = Z 2 (2.8)

This constraint is such an algebraic curve in C3. To think of X ,Y , Z as

real coordinates, (2.8) is a simple cone equation so that C2/Z2 is usually

called a complex cone with the conical singularity at the origin.

Furthermore, all of these descriptions can be written algebraically as

C2/Z2 = {X ,Y , Z ∈C3|X Y = Z 2} (2.9)

We will show the way to find the supesymmetric quantum field theory

that has these generators and their relation, i.e. providing the same MC ,

in section 3.3.

We might see these mathematical objects, i.e. chiral rings and moduli

space, can be used to describe the 3d N=2 moduli space. However, this

tool works very well classically, since the observables (formed by chiral

operators) in the theory are protected from quantum corrections. There

is thus great understand of the Higgs branch [6; 9; 14; 19]. Regarding

the Coulomb branch, we have to concern quantum corrections and the

study is not quite simple, Therefore we require new tools and operators,

i.e. monopole operators, for better pictures and calculations.
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2.4 Hilbert series: HS

We are capable of describing the moduli space M of vacua by using

the idea of the chiral ring and then extracting the algebraic variety of the

supersymmeric gauge theories. Although this idea helps us to exploit as

much as feasible the symmetry of the theory; generally, determining gen-

erators and relations of the chiral ring is very tough. There is a very con-

venient and useful mathematical tool, called Hilbert series (HS) [3; 4; 20],

that is used for counting scalar gauge invariant chiral operators (GIO).

The Hilbert series is generating functions of the polynomial ring, rele-

vant to the chiral ring, in terms of fugacity3 t for M.

One may have the form of the Hilbert series [22; 23] as

H(t ;M) =
∞∑

i=0
mi t i (2.10)

where mi is the number of linearly independent combinations of

monomials of degree i . To expand all the series, we experience each

combination is graded by the degree of the polynomial i [24]. We also

normally write the HS (2.10) in terms of a rational function, looking like

H(t ;M) = Q(t )

(1− t )di mM (2.11)

Where Q(t ) is a polynomial in terms of the fugacity t [25]. There is also

the theorem stating the order of the pole of the Hilbert Series at t = 1 is

the dimension of M.

3 t is a fugacity that is relevant to the chemical potential in a statistical mechanics perspective
[21].
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2.4.1 Example of HS

We will try to determine the Hilbert series of the moduli space C2/Z2 to

relate them to (2.9).

Let us firstly consider the simplest moduli space C with a coordinate

ring of a holomorphic function C[x], where x is a complex variable. The

corresponding number of linearly independent (LI) monomials is given

in table 2.4.1

i No. LI Monomial(s)

0 1 1

1 1 x

2 1 x2

...
...

...

Table 2.4.1 shows LI monomials which live in the coordinate ring C[x]

and the number of them at each order.

It is apparently clear that there is only LI monomials of each degree and

the generator x. Therefore, mi = 1 and the Hilbert series is taken as

H(t ;C) =
∞∑

i=0
(1)t i

= 1

1− t

(2.12)

Where |t | < 14

The next example of the moduli space is C2 with two generators x1 and

x2. One will have

4 We will always take an assumption of t being small in this thesis.
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i No. LI Monomial(s)

0 1 1

1 2 x1 x2

2 3 x2
1 x1x2 x2

2
...

...
...

d d +1 xd
1 . . . xd

2
...

...
...

Table 2.4.2 shows LI monomials which live C2[x1, x2] and the number of

them at each order.

Thus the Hilbert Series follow

H(t ;C2) =
∞∑

i=0
(i +1)t i

= 1

(1− t )2

(2.13)

Subsequently, we now consider C/Z2. The parity action is taken into

account on the generator x as (x) → (−x). We obtain

i No. LI Monomial(s)

0 1 1

1 0 -

2 1 x2

3 0 -

4 1 x4

...
...

...

2d 1 x2d

...
...

...

Table 2.4.3 shows LI monomials which is in the ring C/Z2[x] and the

number of them at each order.
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There is only generator x2 at degree 2 and the Hilbert series are

H(t ;C/Z2) =
∞∑

i=0
(1)t 2i

= 1

(1− t 2)

(2.14)

The final example is C2/Z2 and the corresponding LI monomials is

i No. LI Monomial(s)

0 1 1

1 0 -

2 3 x2
1 x1x2 x2

2

3 0 -

4 5 x4
1 x3

1 x2 x2
1 x2

2 x1x3
2 x4

2
...

...
...

2d 2d +1 x2d
1 . . . x2d

2
...

...
...

Table 2.4.4 shows LI monomials which live C2[x1, x2]/Z2 and the

number of them at each order.

This identifies the generators x2
1, x1x2, x2

2. So the Hilbert series take form

H(t ;C2/Z2) =
∞∑

i=0
(2i +1)t 2i

= 1+ t 2

(1− t 2)2

= 1− t 4

(1− t 2)3

(2.15)

Simply, we could read off 3 generators (corresponding to X = x2
1, Z =

x1x2, Y = x2
2 in 2.3.3) at degree 2 from the denominator (1− t 2)3 and 1

relation (corresponding to (2.8)) at degree 4 from the numerator (1− t 4)1.
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One may find that the first and the second examples do not have rela-

tions, since there is no quotient. On the other hand, the third and the

fourth experience LI monomials at some degree disappear due to the par-

ity action.

All of these examples are a special class of algebraic varieties called

complete intersections which are, generally, given by

H(t ;M) =
∏

j
(
1− t b j

)r j∏
i (1− t ai )gi

(2.16)

(2.16) illustrates the coordinate ring which has generator numbers∑
i gi . The gi generators live in degree ai . Moreover, all the generators

obey
∑

j r j relations where r j relations are of degree b j
5.

Note that the Hilbert series are not always appear as (2.16). Even

though we are able to calculate the Hilbert series in the rational form,

its numerator might not be factorisable6. This is what we call the syzygy

problem. The problem has not only the generators obeying relations, but

the relations obeying their own relations.

5 In the example 1 and 2, their algebraic varieties are trivially a complete intersection. We call
them a freely generated variety.

6 There is an theorem [26] state that an affine variety is Calabi-Yau, if and only if the numerator
of the rational form Hilbert Series is palindromic or antipalindromic.
Additionally, complete intersection variety have palindromic or antipalindromic numerators
and, hence, are Calabi-Yau.
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2.4.2 Refined Hilbert Series

One may write the refined form of Hilbert Series by accounting for the

global symmetry of the algebraic variety. Let us consider the example of

the moduli space C2 with complex variables x1 and x2. A natural U (2)

global symmetry acts on C2. There is maximal torus U (1)2 as the Cartan

subgroup which the first U (1) acts on x1 and another acts on x2. We may

introduce fugacities t1 and t2 for each U (1), which they are used to count

x1 and x2 respectively. With no group of symmetry taken into account,

the Hilbert series7 is given by

H(t1, t2;C2) =
∞∑

i1,i2=0
t i1

1 t i2
2

= 1+ (t1 + t2)+ (t 2
1 + t1t2 + t 2

2 )+ . . .

= 1

(1− t1)

1

(1− t2)

(2.17)

Let us perform the fugacity map t1 → xt and t2 → t/x, so we obtain

H(t , x;C2) = 1+
(

x + 1

x

)
t +

(
x2 +1+ 1

x2

)
t 2 +O(t 3)

= 1

(1−xt )

1(
1− t

x

)
=

∞∑
k=0

χ([k]SU (2))t k

(2.18)

where [k]SU (2) is a Dynkin label, corresponding to the charactersχ([k]SU (2))

of SU (2). If we take the fugacity map t1, t2 → t , i.e. setting x = 1, of (2.17),

we will get the same Hilbert series as (2.13). So far, we always call (2.18)

7 One may consider Cn as the general case. There are, similarly, fugacities t1, ..., tn for each U (1),
counting x1, ..., xn respectively. Therefore the Hilbert series H(t1, ..., tn ;Cn) =∏∞

i=1
1

(1−ti )
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as the refined Hilberts series of the moduli space C2, and obviously (2.13)

is the unrefined Hilberts series of C2 and take the form

H(t ;C2) =
∞∑

k=0
di m(χ([k]SU (2)))t k (2.19)

We now, again, analyse the moduli space C2/Z2. The natural U (2) acts

on the space C2, with Cartan subalgebra U (1)2. So we can choose the

same fugacity t1, t2 as in the C2 case, but the summation of Hilbert series

need to obey the parity action, i.e. i1 − i2 = 0mod2. So the Hilbert series

is (2.20).

H(t1, t2;C2/Z2) =
∞∑

i1,i2=0
t i1

1 t i2
2 ; i1 − i2 = 0mod2

= 1+ (t 2
1 + t1t2 + t 2

2 )

+ (t 4
1 + t 3

1 t2 + t 2
1 t 2

2 + t1t 3
2 + t 4

2 )+ . . .

= (1− t 2
1 t 2

2 )

(1− t 2
1 )(1− t1t2)(1− t 2

2 )

(2.20)

To get a character expression, we then follow the same map as for C2.

H(t , x;C2/Z2) = 1+
(

x2 +1+ 1

x2

)
t 2

+
(

x4 +x2 +1+ 1

x2 + 1

x4

)
t 4 +O(t 6)

= (1− t 4)

(1−x2t 2)(1− t 2)(1− t 2

x2 )

=
∞∑

k=0
χ([2k]SU (2))t 2k

(2.21)

where [2k]SU (2) is also a Dynkin label of SU (2). One may see that the unre-

fined Hilbert series of the case is given as (2.15) if we perform the fugacity

map t1, t2 → t of (2.20).
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We obtain

H(t ;C2/Z2) =
∞∑

k=0
di m(χ([2k]SU (2)))t 2k (2.22)

Moreover, (2.21) is thus the refined form of the Hilbert series for the

moduli space C2/Z2.

To summarise, we are capable to describe algebraic varieties and what

representation of a global symmetry their monomials in each order trans-

form in, so the refined and the unrefined Hilbert series, generally, are

H(t , x;M) =
∞∑

k=0
χk [(x1, ..., xr )G ]t k (2.23)

H(t ;M) =
∞∑

k=0
di m(χk [(x1, ..., xr )G ])t k (2.24)

where χk [(x1, ..., xr )G ] is the character of a representation of a group G

rank r , where the LI monomials of a certain degree transform in.

Note that we will work in a basis zi of root fugacities instead of in a

basis xi of character fugacities. However, we can always map between

these two basis by using

zi =
∞∏

j=1
(x j )Mi j (2.25)

where Mi j is an element of the Cartan matrix M of the group G .

In the next section we will introduce the useful mathematical tools with

help us identify the number of generators, the relations among the gener-

ators and the syzygies; due to the fact that the algebraic varieties are not

always complete intersections and the Hilbert series is not (2.16) which is

difficult to be extracted those properties.
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2.5 Plethystic Programmes

To enumerate chiral operators in the moduli space, this section talk

about mathematical tools for extracting the number of generators, the re-

lations (between the generators) and even the syzygies (relations of the

relations). The plethystic programme contains these tool [23]. One of

them is called Plethystic Exponential (PE) of a multivariable function

f (t1, ..., tn) with variables t1, ..., tn . It is defined as

PE [ f (t1, ..., tn)] = exp

( ∞∑
r=1

f (t r
1 , ..., t r

n)

r

)
(2.26)

Due to being used for symmetric products of any multivariable func-

tion, it is very vital in the calculation of Higgs branch [5; 6; 14; 23; 27]. In

this dissertation we interest in computing the Coulomb branch Hilbert

series, so we would not talk about the PE in the further chapter.

The relevant tool, which plays a crucial role in the Coulomb branch, is

the inverse form of the PE . It is Plethystic Logarithm (PL) given as

PL[ f (t1, ..., tn)] =
∞∑

r=1

µ(r )

r
log( f (t r

1 , ..., t r
n)) (2.27)

where µ(r ) is the Möbius function defined as

µ(r ) =


0 if r has a repeated prime factor

1 if r = 1

(−1)n if r is a product of n distinct primes

(2.28)

For instant, we can evaluate the PL of (2.13) and (2.18) for the moduli

space C2. So we obtain

PL[HC2(t ); t ] = 2t (2.29)

PL[HC2(t , x); t , x] = [1]t (2.30)
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These tell us there are 2 generators at order 1, which transform as the

fundamental representation of SU (2).

Another example is computing PL of (2.15) and (2.21) for the moduli

space C2/Z2). The PL are

PL[HC2/Z2
(t ); t ] = 3t 2 −1t 4 (2.31)

PL[HC2/Z2
(t , x); t , x] = [2]t 2 − [0]t 4 (2.32)

Hence these tell us there are 3 generators at order 2, which transform

as the adjoint representation of SU (2); and there is 1 relation at order 4,

transforming as the trivial representation of SU (2).

It is very easy to read off the generators and relations in terms of finite

PL if the algebraic variety is a complete intersection. Generally, the PL of

(2.16) is given by

PL[HM(t ); t ] =∑
i

gi t ai −∑
j

r j t b j (2.33)

This is the same content as we have mentioned in the subsection 2.4.1.

We can also take the PL of the refined Hilbert Series of a complete inter-

section. Consequently, we will see the representation characters of the

global symmetry that the generators and relations transform in. [22; 28;

29]

In the syzygy problem which the variety is NOT a complete intersec-

tion, the PL of the Hilbert Series is infinite. We can identify the first few

positive terms are the generators, the first few negative terms are the rela-

tions, and the following terms are syzygies. We will discuss them more in

chapter 3.
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2.6 Highest Weight Generating Function: HWG

The last, but not least, mathematical tool is a generating function en-

capsulating the refined Hilbert series with a new compact rational form.

It is called highest weight generating function (HWG) [29] counting the

highest weight monomials8 µ
n1
1 ...µnr

r of the irreps, that the coordinate ring

monomials of the algebraic set transform in.

We specify an irrep of a group G with a rank r as

[n1, ...,nr ]G ↔
r∏

i=1
µ

ni
i

=µn1
1 ...µnr

r

(2.34)

[n1, ...,nr ]G is the Dynkin label for the group G .

To clarify, we take an example with G = SU (5) [30], so we will get the

Dynkin fugacity map

[n1,n2,n3,n4]G ↔µ
n1
1 µ

n2
2 µ

n3
3 µ

n4
4 (2.35)

For the adjoint representation of SU (5) [1,0,0,1], the highest weight

monomial take the form µ1
1µ

0
2µ

0
3µ

1
4 =µ1µ4.

Another example is mapping the Hilbert series in (2.21) to a highest

weight generating function. The map is given by

H(t , x) =
∞∑

k=0
χ([2k]SU (2))t 2k

= 1+ [2]t 2 + [4]t 4 + [6]t 6 +O(t 8)

↔ 1+µ2t 2 +µ4t 4 +µ6t 6 +O(t 8)

= 1

1−µ2t 2 = HGW (t ,µ)

(2.36)

8 It is probably called a Dynkin label fugacity.
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It is obviously compact comparing to its Hilbert series. Furthermore,

one can calculate its PL for extracting the generators of the HW G .

So, in this case, we get

PL[HW G(t ,µ)] =µ2t 2 (2.37)

This clearly shows that there is only generator µ2 at degree 2.

We will combine all these mentioned concepts and these mathematical

approaches to understand the 3dN = 4 Coulomb branch in chapter 3 and

4. In the next section we will, additionally, introduce one of the 3d N = 4

supersymmetric gauge theories in order to encode its gauge groups and

its matter contents into a diagram. Analysing this diagram provides the

Coulomb branch of the theory which will be discussed in chapter 3 and

4.

2.7 Quiver Diagrams in 3d N=4

In the supersymmetric gauge theory, a quiver gauge theory is one of the

Super Yang-Mill(SYM) theories whose gauge groups and matter contents

can be encoded into a diagram. This diagram is also known as a quiver

diagram. Each diagram can be differed by its dimensions and number

of supercharges. We would like to introduce how to construct a quiver

diagram in the theory in the following subsection.

In a 3dN=4 Quiver diagram there are simple components; representing

a gauge group, a matter content and a flavour group [30].

: Square node

It denotes the flavour group the theory. In this paper we will focus only

a SU (N ) flavour group.
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N

k

Figure 2.7: A simple example of a quiver diagram in 3d N = 4 gauge the-

ory. In the diagram, the square node and the circular node represent a

SU (N ) flavour group and a U (k) gauge group respectively.

: Circular node

It represents a gauge group G in the quiver theory. Vector multiplets in

the theory transform under the adjoint representation of the gauge group.

In this paper we will focus only a U (k) gauge group.

: Edge or Connection line

It summarises the matter contents by linking two nodes. In the theory

there are hypermultiplets transforming in the bifundamental representa-

tion of both the gauge node and the flavour node, or between two the

gauge nodes.

In figure 2.7, we provide a simple quiver diagram, consisting of a U (k)

gauge group linked to a SU (N ) flavour group. The vector multiplets in

the theory transforms under U (k) gauge group. Meanwhile, each N hy-

permultiplets is in the fundamental representation of U (k) so there are

kN hypermultiplets in total.





3
Coulomb Branches

3.1 Monopole Operators

Differing from the Higgs branch, the Coulomb branch needs quantum

collections to be considered, leading to tough computations [8]. How-

ever, there is the concept of monopole formula [9] helping us compute

the Hilbirt series of Coulomb branch in 3d N = 4. In this section we first

review the concept of monopole operators and explain what the terms in

the monopole formula represent.

Considering the Coulomb branch, local disorder operators (chiral op-

erators), which are enumerated at position x, are ’t Hooft monopole oper-

ators Vm(x) [31]. At an insertion point x, they are defined in the infrared

conformal field theory (CFT) [32] by specifying the gauge field to have a

Dirac monopole singularity [9]. The gauge field one-form, in the northern

and the southern hemisphere, is given as

AN /S ∼ m

2
(±1−cosθ)dϕ (3.1)

We can perform the integration of the gauge fields over a two-sphere

S2 covering the singularity at x; consequently, this provides a magnetic

charge m [32] being a member of the Lie algebra g of the gauge group G .

27
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Moreover, the magnetic charge have to obey a Dirac quantization con-

dition [9]:

e2πi m = 1G (3.2)

We can see that m ∈Z making sure there is the requirement of m to be

in the weight lattice Γ∗
Ĝ

of the Langland Ĝ [9; 33]1. Due to the monopole

operators which are specified by m, we use the monopole formula as

summing over m. In order to ensure gauge invariant monopole opera-

tors (GIO) being counted, we require the quotient of the weight lattice by

the Weyl groupWĜ to form the quotient spaceΓ∗
Ĝ

/WĜ [33]. Consequently,

the magnetic monopoles, which are summed over, are in the Weyl cham-

ber of the weight lattice of Ĝ [34].

The Hilbert series counts GIO that are graded regarding their dimen-

sion and quantum numbers under global symmetry [9; 30]. Our monopole

operator are charged under R-symmetry, U (1)R . As mentioned the de-

composition of the 3d N = 4 hypermultiplet and vector multiplet in

chapter 2, there is the U (1)R , which assigns charge 1/2 to the complex

scalars in the chiral and anti-chiral multiplets from decomposing N = 4

hypermultiplets and also charge 1 to the scalars in the adjoint chirals and

the gaugino in the vector multiplets from decomposing N = 4 vector mul-

tiplet [9]. Thus the quantum number we are looking for is the R-charge,

∆, which is given by

∆(m) =∆V (m)+∆H (m) =− ∑
α∈∆+

|α(m)|+ 1

2

n∑
i=1

∑
ρi∈Ri

|ρi (m)| (3.3)

where the first sum, over only positive root α ∈ ∆+ in the gauge group

G , contributes to the N = 4 vector multiplets. Another term contributes

to the N = 4 hypermultiplets, which sum over the weights of the matter

field representation Ri under the same gauge group.

1 The Langland is also known as GNO dual group of the gauge group G .
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We restrict our quivers to the boundary condition in [20]; in the in-

frared CFT, the R-charge is the conformal dimension if the quivers are

good (∆(m) Ê 1) or ugly (∆(m) Ê 1/2). For ∆(m) < 1/2, the quivers are bad

which are not the case.

According to the conformal dimension (3.3) stated above, the Hilbert

series we will construct just counts bare monopole operators; since there

are no constant background complex scalars2 [9]. This background scalar

is a contribution of another type of GIO, called dressed monopole opera-

tors. To include this operators into our Hilbert series, we have to multiply

by the classical factor3 PG accounting for the residual group Hm of the

gauge group G broken by the magnetic charge m [9]. The classical factor

is given by

PG (t ,m) =
r∏

i=1

1

1− t 2di (m)
(3.4)

where r is the rank of G and di (m) are the degrees of the Casimir invari-

ants of Hm which is left unbroken by the GNO magnetic charge m. [9]

provides the expression for this classical factor in Appendix A.

To combine the bare monopole operators and their dressing into the

Hilbert series, the monopole4 is expressed as

H(t ) = ∑
m∈Γ∗

Ĝ
/WĜ

t 2∆(m)PG (t ,m) (3.5)

This is the unrefined Hilbert series. To refine it, we have to consider

the topological symmetry Z (Ĝ) under which the monopole operators are

probably charged.

2 This scalar field comes from the adjoint chiral multiplet as dicussed in section 2.2.1.
3 This contributes to turning on the constant background complex scalar which is an element

of Lie algebra hm of the residual group Hm .
4 The convention of the fugacity t may be different from other papers. In this paper, we use t 2

instead, as a different normalization.
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The corresponding charge is called the topological charge J (m) [33].

Z (Ĝ) is a non-trivial topological symmetrySince, when the gauge group

G is non-simply connected5. let us assign the fugacity zG , for the gauge

group G , which each fugacity carries J (m). Therefore, the refined form of

the Hilbert series is

H(t , z) = ∑
m∈Γ∗

Ĝ
/WĜ

z J (m)
G t 2∆(m)PG (t ,m) (3.6)

In this paper we only focus on the unitary gauge group in our quivers.

One can have a fugacity map which converts the fugacities zG to the char-

acter fugacities of the global symmetry by using (2.25). By doing this, we

can promote the topological symmetries of the gauge theory to a global

symmetry.

3.2 Balanced quivers

For ADE quivers6, the balance of each U (Ni ) gauge node is given [5]:

B al anceSLE (U (Ni )) = ∑
j∈adjacent nodes

2Ni −N j (3.7)

where N j is the rank of the linked U (N j ) gauge node. We call the node i

balanced if (3.7) is zero, otherwise it imbalanced or excess [20]. Moreover,

we state that quiver is balanced if (3.7) of all its nodes is zero. With an only

unbalanced node, the quvier is said to be minimally unbalanced [35].

For BCF and G quivers7, the long node directly adjoined to the non-

simply laced edge (NSLE) obtains double and triple the contribution from

the other side node respected to the NSLE.

5 U (N ) and SO(N ) are non-simply connected groups, while SU (N ) and U Sp(N ) are simply
connected

6 These types of quivers are simply laced edge (SLE) quivers
7 These quivers have double and triple laced edge.
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N

1

Figure 3.2: the simplest 3d N = 4 quiver diagram, consisting of a U (1)

gauge group linked to a SU (N ) flavour group.

3.3 U (1) with N Flavours

We now begin with analysing the simplest 3d N = 4 quiver, the gauge

theory of U (1) with SU (N ) flavour. This quiver is shown in fugure 3.2.

The magnetic charge of the U (1) gauge node is labeled by a. Since this

gauge group is abelian, there is no the vector contribution. Therefore,

the conformal dimension is only contributed by the matter content and

expressed as:

∆(a) = N

2
|a| (3.8)

Simply, one can have classical factor for the U (1) gauge group given by

PU (1)(t ) = 1

1− t 2 (3.9)

For any a ∈ Z, U (1) cannot be broken to residual groups. Thus the

monopole formula (3.5) used to compute the unrefined Hilbert series of

the Coulomb branch of the for the quiver is:

Hunr e f (t ) = 1

1− t 2

∞∑
a=−∞

t 2
( N

2 |a|)

= 1− t 2N

(1− t 2)(1− t N )2

(3.10)
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2

1

Figure 3.3: the 3d N = 4 quiver diagram, consisting of a U (1) gauge

group linked to a SU (2) flavour group.

To balance (3.10)8, we can choose N = 2, so the Hilbert series becomes

Hunr e f (t ) = 1− t 4

(1− t 2)3

= 1+3t 2 +5t 4 +O(t 6)

(3.11)

One may notice this is the same as (2.15). By seeing at the Taylor series

of the Hilbert series, we find that the coefficient9 of the term t 2 is the

dimension of the adjoint representation of SU (2). The global symmetry

group is, therefore, SU (2). Interestingly, this balanced quiver given in fig.

3.3 corresponds to the Dynkin diagram10 A1.

To refine (3.11), we add another fugasity z associating to the gauge

node. The refined form and its Taylor expansion are expressed as:

Hr e f (t , z) = 1

1− t 2

∞∑
a=−∞

za t 2
( N

2 |a|)

= 1− t 4

(1− t 2)(1− zt 2)(1− t 2

z )

= 1+
(

z +1+ 1

z

)
t 2 +

(
z2 + z +1+ 1

z
+ 1

z2

)
t 4 +O(t 6)

(3.12)

8 Following (3.7), we choose N to obtain B al anceSLE (U (1)) = 0.
9 This coefficient always equal to the dimension of the global symmetry group.

10 There is a corollary stating that for a balanced quiver that corresponds to the Dynkin diagram
of a Lie algebra g, then the corresponding Lie group G is the global symmetry group.
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The Cartan matrix of SU (2) is used to map z to the fundamental weight

fugacities x, i.e. z → x2. We obtain the refined Hilbert series as:

Hr e f (t , x) = 1+
(

x2 +1+ 1

x2

)
t 2

+
(

x4 +x2 +1+ 1

x2 + 1

x4

)
t 4 +O(t 6)

= 1+ [2]t 2 + [4]t 4 + [6]t 6 +O(t 8)

=
∞∑

n=0
[2n]t 2n

(3.13)

where [2n] is the highest weight Dynkin label for SU (2) irreps. To iden-

tify the moduli space of the Coulomb branch, we compute the plethystic

logarithm (PL) of (3.13), expessed by

PL[Hr e f ](t , x) = [2]t 2 − [0]t 4 (3.14)

There is the positive term at degree 2, corresponding to the 3 genera-

tors lying in the adjoint representation of SU (2). There is the following

negative term at degree 4, which corresponds to the relation transform-

ing under the trivial representation. One can find that the PL terminates;

thus the moduli space is a complete intersection.

Following section 2.6, one can simply turn (3.13) into the highest weight

generating function (HWG). The HWG is given by:

HW Gr e f (t ,µ) =
∞∑

n=0
µ2n t 2n = 1

1−µ2t 2 (3.15)

along with its PL:

PL[HW Gr e f ](t ,µ) =µ2t 2 (3.16)

where µ is the Dynkin label fugacity for SU (2). And we find µ2 is a gener-

ator at t 2 for the HWG.
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3.4 Minimal Nilpotent Orbit of A2

1 1

1 1

a b

Figure 3.4: The quiver corresponds to the minimal nilpotent orbit of A2.

The magnetic charges a and b associated to the U (1) gauge nodes.

Let us now consider minimal nilpotent orbit11 of A2. We label the mag-

netic charges a,b for both U (1) gauge nodes. Thus the conformal dimen-

sion ,associating to three matter contents, reads

∆(a,b) = 1

2
(|a|+ |a −b|+ |b|) (3.17)

For the classical factor, the two U (1) provide

PU (1)2(t ) = 1

(1− t 2)2 (3.18)

The unrefined Hilbert series is

Hunr e f (t ) = 1

(1− t 2)2

∞∑
a,b=−∞

t (|a|+|a−b|+|b|))

= 1+4t 2 + t 4

(1− t 2)4

= 1+8t 2 +27t 4 +64t 6 +O(t 8)

(3.19)

11 See more about quiver gauge theories of classical group nilpotent orbits in [5].
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We can refine (3.19) by taking two additional fugacities z1, z2 associat-

ing to those two gauge nodes. The refined Hilbert series is

Hr e f (t , z1, z2) = 1

(1− t 2)2

∞∑
a,b=−∞

za
1 zb

2 t (|a|+|a−b|+|b|))

= 1+ (2+ z1 + 1

z1
+ z2 + 1

z2
+ z1z2 + 1

z1z2
)t 2 +O(t 4)

(3.20)

Since fig. 3.4 is the balanced quiver and the global symmetry is SU (3), we

are capable to use the Cartan matrix to map ugacities z1, z2 to the charac-

ter fugacities x1, x2, as following

z1 →
x2

1

x2
, z2 →

x2
2

x1
(3.21)

The refined Hilbert series is rewritten as

Hr e f (t , x1, x2) = 1+ [1,1]t 2 + [2,2]t 4 + [3,3]t 6 +O(t 8)

=
∞∑

n=0
[n,n]t 2n (3.22)

where [n1,n2] is the highest weight Dynkin label for SU (3) irreps. We

also compute the PL given by

PLr e f (t , x1, x2) = [1,1]t 2 − ([1,1]+ [0,0])t 4 +2[1,1]t 6 +O(t 8) (3.23)

This shows that the PL of the Hilbert series is infinite so the moduli

space of the theory is not a complete intersection.

Regarding the first positive term at degree 2, we can see the generators

of the moduli space transforming under the adjoint irrep of SU (3).
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At degree 4, all relations transform in the adjoint and trivial representa-

tion. We can construct the order 4 of the Hilbert series by taking

Sym2[1,1] = [2,2]+ [1,1]+ [0,0] (3.24)

Subsequently the relations is used to subtract [1,1]+ [0,0] out. At the de-

gree 4, there is [2,2] remained for the moduli space. Moreover, this PL has

also provided the syzygies12 lying in the two adjoints irreps. These syzy-

gies help us find the degree 6 of the Coulomb branch Hilbert series. We

take the third symmetric product of [1,1]:

Sym3[1,1] = [3,3]+ [2,2]+ [1,1]+ [0,0]+ [3,0]+ [0,3] (3.25)

And then we subtract with [1,1]([0,0]+ [1,1]), constructed from degree

2 and 4 of the PL, and add the syzygies to obtain

[3,3] = Sym3[1,1]− [1,1]([0,0]+ [1,1])+2[1,1] (3.26)

One may receive the corresponding HWG as following

HW Gr e f (t ,µ1,µ2) =
∞∑

n=0
µn

1µ
n
2 t 2n = 1

1−µ1µ2t 2 (3.27)

And its PL is given by

PL[HW Gr e f ](t ,µ1,µ2) =µ1µ2t 2 (3.28)

where µ1,µ2 correspond to the Dynkin label [n1,n2]. Therefore, µ1µ2 is a

generator at degree 2.

12 They act as the relations of the relations. We have mentioned about the syzygy problem in
section 2.5
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3.5 Minimal Nilpotent Orbit of A3

1 1

1 1 1

a b c

Figure 3.5: The quiver corresponds to the minimal nilpotent orbit of A3.

The charges a, b and c associate to the three U (1) gauge nodes.

Fig. 3.5 illustrates the quiver diagram of the minimal nilpotent orbit of

A3. The conformal dimension of the theory is contributed by four matter

fields and expressed as

∆(a,b,c) = 1

2
(|a|+ |a −b|+ |b − c|+ |c|) (3.29)

Similar to the previous section, there is the classical factor:

PU 3(1)(t ) = 1

(1− t 2)3 (3.30)

corresponding to three U (1) gauge nodes. One can construct the unre-

fined Hilbert series is

Hunr e f (t ) = 1

(1− t 2)3

∞∑
a,b,c=−∞

t 2∆(a,b,c)

= 1+9t 2 +9t 4 + t 6

(1− t 2)6

= 1+15t 2 +84t 4 +300t 6 +O(t 8)

(3.31)

The refined Hilbert series is written as

Hr e f (t , z1, z2, z3) = 1

(1− t 2)3

∞∑
a,b=−∞

za
1 zb

2 zc
3t 2∆(a,b,c) (3.32)
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where z1, z2, z3 associate to the gauge nodes. We also do the same charac-

ter map as using the Cartan matrix of the global symmetry group SU (4),

since this quiver is balanced:

z1 →
x2

1

x2
, z2 →

x2
2

x1x3
, z3 →

x2
3

x2
(3.33)

(3.32) becomes

Hr e f (t , x1, x2, x3) = 1+ [1,0,1]t 2 + [2,0,2]t 4 + [3,0,3]t 6 +O(t 8)

=
∞∑

n=0
[n,0,n]t 2n (3.34)

where [n1,n2,n3] represents the highest weight Dynkin label for SU (4)

irreps. We also compute the PL of the refined Hilbert series:

PLr e f (t , x1, x2, x3) = [1,0,1]t 2 − ([1,0,1]+ [0,0,0]+ [0,2,0])t 4

+ (2[1,0,1]+2[0,2,0]+ [2,1,0]+ [0,1,2])t 6

+O(t 8)

(3.35)

What we can, overall, see that the moduli space is not a complete inter-

section. At degree 2, the PL tell us there is, similarly, the generators in the

adjoint irreps of the global symmetry. The relations at order 4 is used to

subtract the second symmetric product of [1,0,1]. Thus the degree 4 of

the Hilbert series is given by:

[2,0,2] = Sym2[1,0,1]− ([1,0,1]+ [0,0,0]+ [0,2,0]) (3.36)

and also the syzygies given in (3.35) is used to compute the order 6

[3,0,3] = Sym3[1,0,1]− [1,0,1]([1,0,1]+ [0,0,0]+ [0,2,0])

+ (2[1,0,1]+2[0,2,0]+ [2,1,0]+ [0,1,2])
(3.37)



3.6. SUPRA MINIMAL NILPOTENT ORBIT OF A3 39

For the HWG of the theory, it is very simple to find. We can label µ1,µ2,µ3

corresponding to the Dynkin label of SU (4). We, consequently, obtain

HWG and its PL as:

HW Gr e f (t ,µ1,µ3) =
∞∑

n=0
µn

1µ
n
3 t 2n = 1

1−µ1µ3t 2 (3.38)

PL[HW Gr e f ](t ,µ1,µ3) =µ1µ3t 2 (3.39)

This shows that the generator of the HWG is µ1µ3 at degree 2.

3.6 Supra Minimal Nilpotent Orbit of A3

2

1 2 1

a b1,b2 c

Figure 3.6: The quiver corresponds to the supra minimal nilpotent orbit

of A3. The charges a and c associated to the two U (1) gauge nodes on

the left and right, respectively, of the diagram. The magnetic charges b1

and b2 are labelled on the middle U (2) gauge node.

The Coulomb branch of the quiver is the supra minimal nilpotent orbit of

A3. There are the magnetic charges of the monopole operators a, b1, b2

and c. The conformal dimension is

∆(a,b1,b2,c) = 1

2
(|a −b1|+ |a −b2|+2|b1|+2|b2|+ |c −b1|+ |c −b2|)

−|b1 −b2|
(3.40)

The first line is the contribution of the matter contents of the theory and

the second line associates to the vector multiplet.
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The non-abelian U (2) can be broken into the residual symmetry group

U 2(1). Therefore we can split the dressing factor into two cases due to

whether the U (2) is broken or not. The overall dressing factor is expressed

as:

PG (t ,b1,b2) =
 1

(1−t 4)(1−t 2)3 ; b1 = b2 = b
1

(1−t 2)4 ; b1 < b2

(3.41)

One can sum over the Weyl chamber of the U (2) weight lattice as
∑

b1≤b2∈Z.

The unrefined Hilbert series is

Hunr e f (t ) = ∑
a,b1≤b2,c∈Z

t 2∆(a,b1,b2,c)PG (t ,b1,b2)

= 1

(1− t 4)(1− t 2)3

∑
a,b,c∈Z

t 2∆(a,b,c)

+ 1

(1− t 2)4

∑
a,b1<b2,c∈Z

t 2∆(a,b1,b2,c)

= 1+7t 2 +12t 4 +7t 6 + t 8

(1− t 2)8

= 1+15t 2 +104t 4 +475t 6 +O(t 8)

(3.42)

We refine (3.42) by adding z1, z2, z3 with the assigned magnetic charges

(a), (b1,b2), (c) corresponding to the gauge nodes from the left to the right.

Hr e f (t , z1, z2, z3) = ∑
a,b1≤b2,c∈Z

za
1 zb1+b2

2 zc
3t 2∆(a,b1,b2,c)PG (t ,b1,b2) (3.43)

Since the global symmetry group of SU (4), we use the same map stated

in 3.33. The refined Hilbert series is rewritten as

Hr e f (t , x1, x2, x3) = 1

+ t 2([1,0,1])

+ t 4([2,0,2]+ [0,2,0])

+ t 6([3,0,3]+ [1,2,1])

+ t 8([4,0,4]+ [2,2,2]+ [0,4,0])

+ t 10([5,0,5]+ [3,2,3]+ [1,4,1])

+O(t 8)

(3.44)
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The corresponding PL is

PL[Hr e f ](t , x1, x2, x3) = [1,0,1]t 2 − ([1,0,1]+ [0,0,0])t 4

+ ([1,0,1]+ [0,2,0])t 6 +O(t 8)
(3.45)

This PL has less relations comparing to the previous case in section 3.5,

which means that we have the smaller subtraction for the degree 4 of the

Coulomb branch Hilbert series. Interestingly, it also implies that the mod-

uli space of the quiver in this section is bigger than the moduli space, cor-

responding to the minimal nilpotent orbit of A3.

The HWG is

HW Gr e f (t ,µ1,µ2,µ3) = (1+µ1µ3t 2)
∞∑

n=0
(µ2

1µ
2
3t 4)n

n∑
m=0

(
µ2

2

µ2
1µ

2
3

)m

= 1

(1−µ1µ3t 2)(1−µ2
2t 4)

(3.46)

along with its PL:

PL[HW Gr e f ](t ,µ1,µ2,µ3) =µ1µ3t 2 +µ2
2t 4 (3.47)

It is quite different that this theory has two generators µ1µ3 at t 2 and µ2
2

at t 4 for the HWG.
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3.7 Minimal Nilpotent Orbit of A4

1 1

1 1 1 1

a b c d

Figure 3.7: The quiver corresponds to the minimal nilpotent orbit of A4.

There are four manetic charges a, b, c and d assigned to the four U (1)

gauge nodes.

The analysis for the quiver in fig. 3.7 is very similar to the quivers in

section 3.3 and 3.5. It is a balanced quiver so SU (5) is the global symmetry

group of the theory.

The conformal dimension is

∆(a,b,c,d) = 1

2
(|a|+ |a −b|+ |b − c|+ |c −d |+ |d |) (3.48)

The classical factor for the residual symmetry group U 4(1) is given by

PU (1)4(t ) = 1

(1− t 2)4 (3.49)

So the unrefined Hilbert series is

Hunr e f (t ) = 1+16t 2 +36t 4 +16t 6 + t 8

(1− t 2)8

= 1+24t 2 +200t 4 +1000t 6 +O(t 8)

(3.50)

Equivalent to the minimal orbit cases, one can use the Cartan matrix of

SU (5) in order to get the character expression. The map is

z1 →
x2

1

x2
, z2 →

x2
2

x1x3
, z3 →

x2
3

x2x4
, z4 →

x2
4

x3
(3.51)
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Thus the refined Hilbert series is

Hr e f (t , x1, x2, x3, x4) =
∞∑

n=0
[n,0,0,n]t 2n (3.52)

where the highest weight Dynkin label for SU (5) irreps is represented

by [n1,n2,n3,n4]. And one may have the refined PL of the Hilbert series

given in (3.53)

PL[Hr e f ](t , x1, x2, x3) = t 2[1,0,0,1]

− t 4([1,0,0,1]+ [0,0,0,0]+ [0,1,1,0])

+ t 6(2[1,0,0,1]+2[0,1,1,0]

+ [2,0,1,0]+ [0,1,0,2]

+ [1,2,0,0]+ [0,0,2,1])

+O(t 8)

(3.53)

Generally, there are a majority of the relations that we have to remove

from the moduli space. We will, again, compare this PL with the refined

PL (3.60) of the Hilbert seires in the next section.

The highest weight generating function and its PL are expressed as:

HW Gr e f (t ,µ1,µ4) =
∞∑

n=0
µn

1µ
n
4 t 2n = 1

1−µ1µ4t 2 (3.54)

PL[HW Gr e f ](t ,µ1,µ4) =µ1µ4t 2 (3.55)

There is only one generator µ1,µ4 at degree 2 for the HWG.
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3.8 Supra Minimal Nilpotent Orbit of A4

1 1

1 2 2 1

a b1,b2 c1,c2 d

Figure 3.8: The quiver corresponds to the supra minimal nilpotent orbit

of A4. The assigned magnetic charges a and d associated to the leftmost

and rightmost U (1) gauge nodes, respectively. The magnetic charges

b1,b2 and c1,c2 are labelled on the two U (2) gauge nodes.

The conformal dimension is

∆(a,b1,b2,c1,c2,d) = 1

2
(|a −b1|+ |a −b2|+ |b1|+ |b2|

+ |b1 − c1|+ |b2 − c1|+ |b1 − c2|+ |b2 − c2|
+ |c1|+ |c2|+ |c1 −d |+ |c2 −d |)
− (|b1 −b2|+ |c1 − c2|

(3.56)

The first three lines associate to the matter contents of the theory. Since

there are two non-abelian gauge groups, U (2); there are the contribution

of the two vector multiplets, corresponding to the last line. The analysis

of the classical factor can be divided into four cases as following:

• Both U (2) gauge groups are not broken, i.e. b1 = b2,c1 = c2.

• The left U (2) is broken to the residual symmetry groups U (1)2, i.e.

b1 6= b2.

• The right U (2) is broken to the residual symmetry groups U (1)2, i.e.

c1 6= c2.

• Both U (2) are broken to the residual groups U (1)2
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Those four cases respectively have the corresponding classical factor:

PG (t ,b1,b2,c1,c2) =



1
(1−t 2)4(1−t 4)2 ; b1 = b2 = b, c1 = c2 = c

1
(1−t 2)5(1−t 4)

; b1 < b2, c1 = c2 = c
1

(1−t 2)5(1−t 4)
; b1 = b2 = b, c1 < c2

1
(1−t 2)6 ; b1 < b2, c1 < c2

(3.57)

The unrefined Hilbert series13 is

Hunr e f (t ) = ∑
a,b1≤b2,c1≤c2,d∈Z

t 2∆(a,b1,b2,c1,c2,d)PG (t ,b1,b2,c1,c2)

= 1+12t 2 +53t 4 +88t 6 +53t 8 +12t 10 + t 12

(1− t 2)12

= 1+24t 2 +275t 4 +2024t 6 +O(t 8)

(3.58)

The refined Hilbert series is

Hr e f (t , z1, z2, z3, z4) = ∑
a,b1≤b2,c1≤c2,d∈Z

za
1 zb1+b2

2 zc1+c2
3 zd

4 t 2∆(a,...,d)PG

(3.59)

where the fugacities z1, z2, z3, z4 associate from the gauge nodes leftmost

to the rightmost. Due to the global symmetry group SU (5), we use the

same character map mentioned in (3.51). The refined Hilbert series is

given by:

Hr e f (t , x1, x2, x3, x4) = PE [t 2[1,0,0,1]− t 4([1,0,0,1]+ [0,0,0,0])

+ t 6[1,0,0,1]]+O(t 8)
(3.60)

where [n1,n2,n3,n4] is the highest weight Dynkin label for SU (5) irreps,

as we are familiar. We have written the Hilbert series in term of its PL14.

This tell us the moduli space of the supra minimal orbit of A quiver is

bigger than the moduli space in section 3.7 due to the fact that the rela-

13 We will provide the calculation in detail and the useful technique compute the exact unrefined
Hilbert series in Appendix A

14 The full character expression is given in (A.3)
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tions given in (3.60) is less than in (3.53). This means we have the smaller

subtraction for the moduli space of the quiver in fig. 3.8.

One may compute the HWG expressed as:

HW Gr e f (t ,µ1,µ2,µ3,µ4) = 1

(1−µ1µ4t 2)(1−µ2µ3t 4)
(3.61)

where µ1,µ2,µ3,µ4 are labelled corresponding to [n1,n2,n3,n4]. The PL

of the HWG is:

PL[HW Gr e f ](t ,µ1,µ2,µ3,µ4) =µ1µ4t 2 +µ2µ3t 4 (3.62)

Hence, there are two HWG generators µ1µ4 at t 4 and µ2µ3 at t 4.

Overall in this chapter, we analyse balanced A series quivers; namely

minimal orbit of A1, A2, A3, A4 and supra minimal orbit of A3, A4. We

can see that all the unrefined Hilbert series, i.e. (3.11), (3.19), (3.31), (3.42),

(3.50) and (3.58), can be written in terms of palindromic form which we

have expected. The denominator of these Hilbert series imply the dimen-

sion15 of the Coulomb branch quiver. More interestingly, this dimension

can be used to compute the exact unrefined Hilbert series of the compli-

cated quiver from the perturbative approach as be shown in Appendix A.

We also provide generalised An Series nilpotent orbit moduli spaces.

The following table, which we have picked some parts from [AH,RK-

Nilpotent], will show the orbits, the dimensions of the Coulomb branch

quiver and the corresponding HWG.

Orbit Dimension PL of HWG

Minimal 2n µ1µn t 2

Supra Minimal (n ≥ 3) 4n −4 µ1µn t 2 +µ2µn−1t 4

where n is the number of gauge nodes in the the Coulomb branch quiver.

15 The dimension of the Coulomb branch quiver is equal to double the sum of the ranks of the
gauge nodes [5]



4
Ungauging Scheme

In this chapter, we provide another useful technique used for the com-

putation of the Coulomb branch for a flavourless quiver, i.e. the quiver

with purely gauge groups [10]. This technique is called "ungauging",

since we ungauge or decouple a residual center-of-mass U (1) symmetry.

Regarding a simply laced edge quiver, i.e. ADE series quivers, there are

arbitrary choices where this U (1) should be decoupled. Consequently,

the Coulomb branch we comepute is invariant due to changing the un-

gauged choice1 [10]. For non-simply laced edge quivers, we will start with

modify our monopole formula (3.5) to treat NSLE.

4.1 Modified Monopole Formula

What we have to concern about the modification of the formula is just

the conformal dimension contributed by the hypers [7; 10]. This part in

(3.3) turned into

∆H (m) = 1

2

N1∑
i=1

N2∑
j=1

|λm(1)
i −m(2)

j | (4.1)

where m(1) and m(2) are the assigned magnetic charges associating to

U (N1) and U (N2) gauge nodes.

1 One may see the example of ungauging the center-of-mass U (1) symmetry in the affined
Ã2quiver in section 5.2.2 in [14].

47
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λ

N1 N2

Figure 4.1: the flavourless quiver with two U (N ) gauge nodes. The

dashed line represents single, double and triple laced edge

corresponding to λ= 1,2,3.

(4.1) is the generalisation of the conformal dimension contributed by

matter contents: setting λ= 2,3 used for a double and a triple laced edge.

We can also recover the monopole formula (3.5) by choosing λ= 1.

4.2 Choice of Ungauging Scheme

λ

a b c d e

Figure 4.2: the flavourless quiver with five U (N ) gauge nodes. The λ

dashed line represents single, double and triple laced edge. The

magnetic charges a, b, c, d and e are assigned to these nodes.

We provide the flavourless quiver in fig. 4.2 as the example how a

choice of a ungauging scheme affects on our monopole calculation. The

monopole formula consists of a sum over magnetic charges taking val-

ues in the dual lattice as mentioned in section 3.1. We can think of the

change from one ungauging scheme to another as a change of the lattice

which we sum over (or the shift in the magnetic charges m). Generally,

the classical factors PG (t ,m) in (3.5) and also the confromal dimension

∆V (m) , contributed by the vector multiplets, are invariant under a shift

in the charges m [10]. However, the contribution of Hypers, i.e. ∆H (m),

has a non-trivial change.



4.2. CHOICE OF UNGAUGING SCHEME 49

λ

a b c d e

Figure 4.3: this is the quiver in fig. 4.2, ungauged at the e node.

Following Appendix B in [10], now let us consider the choice of the un-

gauging rightmost gauge node provided in fig. 4.2. The quiver has the

multiplicity λ for NSLE and the assigned magnetic charges a, b, c, d and

e associate to those five nodes. The conformal dimension contributed by

the matters is given by

∆H =∑
(|a −b|+ |b − c|+ |c −λd |+ |d −e|)×δ(e ′) (4.2)

where δ(e ′) ensures that our chosen ungauging scheme needs one of the

magnetic charges e, on the (long) rightmost node, set to be zero. We can

choose another ungauged d node by shifting the magnetic charges, e →
e +d ′. The result is

∆′
H =∑

(|a −b|+ |b − c|+ |c −λd |+ |d −e −d ′|)×δ(e ′+d ′) (4.3)

And we again make a shift d → d −e ′, leading to

∆′′
H =∑

(|a −b|+ |b − c|+ |c −λd |+ |d −e|)×δ(d ′) (4.4)

where δ(d ′) is left in order to guarantee one of the magnetic charges d

being zero. (4.4) is the conformal dimension corresponding to the choice

of the ungauging scheme on the long d node. Therefore, the Coulomb

branch Hilbert series is still the same for both cases. Generally, we can

still continue shifting the magnetic charges mL along the long side of a

NSLE quiver, resulting in the same Coulomb branch CL [10]2.

2 Regarding the ungauging scheme on the short side of the quiver, we will not analyse it in this
thesis. One might see it in [10]
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4.3 Affine G̃2

4.3.1 Ungauging

a b1,b2 c

1 2 1

Figure 4.4: The affine G̃2 quiver. The assigned magnetic charges a, b1,b2

and c associated to the gauge nodes from the left to the right.

The quiver given in fig. 4.3.1 is the affine G̃2 quiver. There are magnetic

charges a, b1,b2, c labelled for each gauge node from the left to right of

the quiver. The conformal dimension is

∆(a,b1,b2,c) = 1

2
(|a −b1|+ |a −b2|+ |3b1 − c|+ |3b2 − c|)

−|b1 −b2|
(4.5)

To compute the Coulomb branch of the theory, we can make two

choices of the ungauging scheme on the long side of the triple laced

edge. One is the left U (1) gauge node another is the middle U (2) node.

Due to the uncomplicated choice of ungauging the U (1) node, we obtain

the ungauged quiver given in fig. 4.3.1 and the conformal dimention

express as:

∆(b1,b2,c) = 1

2
(|b1|+ |b2|+ |3b1 − c|+ |3b2 − c|)

−|b1 −b2|
(4.6)

We can read off the classical factor taking the form

PG (t ,b1,b2) =
 1

(1−t 4)(1−t 2)2 i f b1 = b2 = b
1

(1−t 2)3 i f b1 < b2

(4.7)
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b1,b2 c

1 2 1

Figure 4.5: The G̃2 quiver with the ungauging scheme on the left U (1)

gauge node.

The Coulomb branch Hilbert series is

Hunr e f (t ) = 1+8t 2 +8t 4 + t 6

(1− t 2)6

= 1+14t 2 +77t 4 +273t 6 +O(t 8)

(4.8)

To refine this Hilbert seires, we add more two fugacities, i.e. z1 and z2.

The refined Hilbert series takes the form:

Hr e f (t , z1, z2) = ∑
b1≤b2,c∈Z

zb1+b2
1 zc

2t 2∆(b1,b2,c)PG (t ,b1,b2) (4.9)

The character fugacity map for G2 is

z1 →
x2

1

x3
2

, z2 →
x2

2

x1
, (4.10)

This is used to get its character expression give by

Hr e f (t , x1, x2) =
∞∑

n=o
[0,n]t 2n

PE [[0,1]t 2 − ([2,0]+ [0,0])t 4 +O(t 6)]

(4.11)

At degree 2, we have Dynkin label [0,1] which is adjoint representation3 of

G2. The global symmetry group is G2. The Coulomb branch is the closure

of the minimal nilpotent orbit of g2 algebra [10].

3 In some texts, [1,0] is used to represent the adjoint of G2.
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a b1 c

1 2 1

Figure 4.6: The G̃2 quiver with ungauging a residual center-of-mass U (1)

symmetry on the middle U (2) gauge node.

We also can compute the HWG has the form:

HW Gr e f (t ,µ1,µ2) = 1

(1−µ2t 2)

= PE [µ2t 2]
(4.12)

The HWG has the generator µ2
2 at degree 2.

We are able to ungauge another residual center-of-mass U (1) symme-

try on the middle U (2) gauge node, depicted in fig. 4.3.1. The conformal

dimension (4.5) turn into

∆(a,b1,c) = 1

2
(|a −b1|+ |a|+ |3b1 − c|+ |c|)−|b1| (4.13)

After computing the Hilbert series with this conformal dimension, we

will find the refined Hilbert series is also expressed as (4.11)

4.3.2 Re-expression

According to the quiver in fig. 4.3.1, the corresponding Dynkin diagram

of the affine G̃2 contains the Dynkin diagram of A2, which means that the

corresponding Lie group of A2 is a subgroup of G2, i.e. SU (3) ⊂G2

We can see the character map between the two groups from their Car-

tan matrix associating to the Dynkin diagram, as shown in fig. 4.3.2:
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x−1
1 x2

1 x−3
2 x2

2 x−1
1

y2
1 y−1

2 y2
2 y−1

1

Figure 4.6: The Dynkin diagram of G̃2 and A2. Their labelled characters,

where x1, x2 and y1, y2 are the characters for those two group

respectively, associate to each node of the Dynkin diagrams.

Therefore the character map between these two groups is:

x1 → y2

y2
1

, x2 → 1

y1
, (4.14)

The refined Hilbert series4 is rewritten in terms of the characters of SU (3)

as:

HG2→SU (3) = PE [([1,1]+ [1,0]+ [0,1])t 2

− ([1,1]+ [2,0]+ [0,2]+ [1,0]+ [0,1]+2[0,0])t 4

+O(t 6)

(4.15)

along with the HWG5 expressed by:

HW GG2→SU (3) = 1

(1−µ1t 2)(1−µ2t 2)(1−µ1µ2t 2)
(4.16)

Regarding other non-simply laced quivers in [10], one find that any un-

gauging scheme on the long side of a NSLE provides the Coulomb branch

which corresponds to the closure of the minimal nilpotent orbit of Lie

algebre g, corresponding to the global symmetry group G . On the other

hand, to ungauge a residual center-of-mass U (1) symmetry of the U (Ns)

on the short side of the NSLE gives us different interesting Hilbert series,

as described in [10].
4 We will provide the full character expression in Appendix A.2.
5 We will guide the way to simplify HWG of this re-expression also in Appendix A.2.





5
Conclusions and Future Work

5.1 Conclusions

In this thesis, we study the Coulomb branch of 3d N = 4 quiver gauge

theories throughout the monopole formula. The computation of the

monopole formula gives rise to the Coulomb branch Hilbert series which

is used to determine the generators, the relations and even the syzygies

of the moduli space of vacua in the theories. We also provide the use-

ful mathematical machinery, called Plethystic Logarithm or PL, helping

us extract those muduli space key properties. Since the refined Hilbert

series, sometimes, is very long and complicated to see due to the com-

plexity of the quivers with a majority of gauge nodes; we thus introduce

the Highest weight generating function or HWG corresponding to the

character expression of the Hilbert seires. Additionally, we also compute

the its PL in order to determine the generators of the HWG.

Particularly, the analysis in chapter 3 is calculating the Coulomb branch

of the balanced quivers corresponding to A series minimal and supra

minimal nilpotent orbits. As we have found in the computations, the

supra minimal orbit of the quivers, which is the next-to minimal nilpotent

orbit, has few relations (also syzygies) comparing to the minimal orbit of

the same A series quiver. This means that the moduli space of the vacua

associating to the supra minimal orbit of the quivers is bigger than the

space of the minimal orbit of the same quivers. In terms of HWG, there

is an additional generator at order 4 of the quivers corresponding to the

supra minimal orbit, confirming their moduli space is bigger.
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We have an ungauging scheme for in a computation of a Coulomb

branch for a non-simply laced edge (NSLE) quiver with purely gauge

groups. The ungauging choice of a residual center-of-mass U (1) symme-

try determines the Coulomb branch of the theory. In this paper, we focus

on the ungauging schemes on the long side of the NSLE. This results

in the same Coulomb branch independent to the choice of ungauging

scheme. Accordingly, the global symmetry is the Lie group G which cor-

responds to the Dynkin diagram of the Lie algebra g correlating with the

flavourless quiver. Regarding short ungauging schemes, it is pretty differ-

ent from the long schemes due to the Coulomb branch depending on the

ungauging choice. We can see in [10] for more details.

Finally we provide the useful computing technique in Appendix A.1.

The technique is "perturbative approach" allowed us to obtain the exact

Hilbert series by just summing the magnetic charges around the origin

of the lattice. This is not a time-consuming computation for the compli-

cated quivers. The yields take palindromic forms of the unrefined Hilbert

series which we have expected.



A
Detailed Calculation

A.1 Supra Minimal Orbit of A4

1 1

1 2 2 1

a b1,b2 c1,c2 d

Figure A.1: The quiver corresponds to the supra minimal nilpotent orbit

of A4, mentioned in section 3.7. The assigned magnetic charges are

labelled under the quiver diagram.

As we have stated in section 3.7, the gauge groups can be broken and di-

vided into four cases as following:

• Both U (2) gauge groups are not broken, i.e. b1 = b2,c1 = c2.

• The left U (2) is broken to the residual symmetry groups U (1)2, i.e.

b1 6= b2,c1 = c2.

• The right U (2) is broken to the residual symmetry groups U (1)2, i.e.

b1 = b2,c1 6= c2.

• Both U (2) are broken to the residual symmetry groups U (1)2, i.e.

b1 6= b2,c1 6= c2.
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Those four cases have the corresponding conformal dimensions and clas-

sical factors, given in:

∆1(a,b,c,d) = |a −b|+ |b|+2|b − c|+ |c|+ |c −d |
∆2(a,b1,b2,c,d) = 1

2
(|a −b1|+ |a −b2|+ |b1|+ |b2|

+2|b1 − c|+2|b2 − c|+2|c|+2|c −d |)−|b1 −b2|
∆3(a,b,c1,c2,d) = 1

2
(2|a −b|+2|b|+2|b − c1|+2|b − c2|

+ |c1|+ |c2|+ |c1 −d |+ |c2 −d |)−|c1 − c2|
∆4(a,b1,b2,c1,c2,d) = 1

2
(|a −b1|+ |a −b2|+ |b1|+ |b2|

+ |b1 − c1|+ |b2 − c1|+ |b1 − c2|+ |b2 − c2|
+ |c1|+ |c2|+ |c1 −d |+ |c2 −d |)
− (|b1 −b2|+ |c1 − c2|

(A.1)

PG (t ,b1,b2,c1,c2) =



1
(1−t 2)4(1−t 4)2 = PG1 ; b1 = b2 = b, c1 = c2 = c

1
(1−t 2)5(1−t 4)

= PG2 ; b1 < b2, c1 = c2 = c
1

(1−t 2)5(1−t 4)
= PG3 ; b1 = b2 = b, c1 < c2

1
(1−t 2)6 = PG4 ; b1 < b2, c1 < c2

(A.2)

The unrefined Hilbert series is expressed as:

Hunr e f = H1(t )+H2(t )+H3(t )+H4(t )

H1(t ) = ∑
a,b,c,d∈Z

t 2∆1(a,b,c,d)PG1

H2(t ) = ∑
a,b1≤b2,c,d∈Z

t 2∆2(a,b1,b2,c,d)PG2

H3(t ) = ∑
a,b,c1≤c2,d∈Z

t 2∆3(a,b,c1,c2,d)PG3

H4(t ) = ∑
a,b1≤b2,c1≤c2,d∈Z

t 2∆4(a,b1,b2,c1,c2,d)PG4

(A.3)
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One can simplify and rearrange the magnetic charges in the absolute val-

ues, but it is very complicated and tough to compute the Hilbert series

even using a calculating programme, i.e. Mathematica.

Accordingly, we will provide a useful computing technique, called the

perturbative approach. By the process, we only sum the magnetic charge

mi around the origin (mi = 0) of the lattice, i.e. −10 ≤ mi ≤ 10. After that,

we multiply by (1− t 2)12 due to the dimension1 of the Coulomb branch

quiver. We will receive the nominator, in the palindromic form, of the

Hilbert series in the quotient form, taking the following form:

1+12t 2 +53t 4 +88t 6 +53t 8 +12t 10 + t 12 (A.4)

The exact unrefined HS is

Hunr e f (t ) = 1+12t 2 +53t 4 +88t 6 +53t 8 +12t 10 + t 12

(1− t 2)12 (A.5)

We also refine (A.5) and get

Hr e f (t , x1, x2, x3, x4) = 1

+ t 2([1,0,0,1])

+ t 4([2,0,0,2]+ [0,1,1,0])

+ t 6([3,0,0,3]+ [1,1,1,1])

+ t 8([4,0,0,4]+ [2,1,1,2]+ [0,2,2,0])

+ t 10([5,0,0,5]+ [3,1,1,3]+ [1,2,2,1])

+ t 12([6,0,0,6]+ [4,1,1,4]+ [2,2,2,2]+ [0,3,3,0])

+ t 14([7,0,0,7]+ [5,1,1,5]+ [3,2,2,3]+ [1,3,3,1])

+O(t 16)

(A.6)

1 This dimension can be obtained by taking double of the sum of the ranks of the gauge nodes
[AH,RK-Nilpotent]
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and simplify (A.6)

Hr e f =
∞∑

n=0
t 4n([2n,0,0,2n]+ [2n −2,1,1,2n −2]+·· ·+ [0,n,n,0])

+
∞∑

n=0
t 4n+2([2n +1,0,0,2n +1]+ [2n −1,1,1,2n −1]+·· ·+ [1,n,n,1])

(A.7)

To obtain HWG, we use the Dynkin label fugacity for SU (5), as men-

tioned in section 2.6. The easy way to simplify the HWG is dividing into

two cases; namely the terms at order t 4n and at order t 4n+2 where n ≥ 0.

Therefore, we get

HW Gr e f =
∞∑

n=0
t 4nµ2n

1 µ2n
4

n∑
m=0

(
µ2µ3

µ2
1µ

2
4

)m

+
∞∑

n=0
t 4n+2µ2n+1

1 µ2n+1
4

n∑
m=0

(
µ2µ3

µ2
1µ

2
4

)m

= (1+µ1µ4t 2)
∞∑

n=0
(µ2

1µ
2
4t 4)n

n∑
m=0

(
µ2µ3

µ2
1µ

2
4

)m

= 1

(1−µ1µ4t 2)(1−µ2µ3t 4)
(A.8)

which is equivalent to (3.61).
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A.2 G2 in SU (3) Expression

The following [n1,n2] is the Dynkin label for SU (3). The full expression of

the refined Hilbert series (4.15) is

HG2→SU (3) = 1

+ t 2([11]+ [10]+ [01])

+ t 4([22]+ [21]+ [20]+ [12]+ [02]

+ [11])

+ t 6([33]+ [32]+ [31]+ [30]+ [23]+ [13]+ [03]

+ [22]+ [21]+ [12])

+ t 8([44]+ [43]+ [42]+ [41]+ [40]+ [34]+ [24]+ [14]+ [04]

+ [33]+ [32]+ [31]+ [23]+ [13]]

+ [22])

+ t 10([55]+ [54]+ [53]+ [52]+ [51]+ [50]+ [45]+ [35]+ [25]+ [15]+ [05]

+ [44]+ [43]+ [42]+ [41]+ [34]+ [24]+ [14]

+ [33]+ [32]+ [23])

+ t 12([66]+ [65]+·· ·+ [60]+ [56]+·· ·+ [06]

+ [55]+ [54]+·· ·+ [51]+ [45]+·· ·+ [15]

+ [44]+ [43]+ [42]+ [34]+ [24]

+ [33])

+ t 14([77]+ [76]+·· ·+ [70]+ [67]+·· ·+ [07]

+ [66]+ [65]+·· ·+ [61]+ [56]+·· ·+ [16]

+ [55]+ [54]+ [53]+ [52]+ [45]+ [35]+ [25]

+ [44]+ [43]+ [34])

+O(t 16)

(A.9)

After using the Dynkin label fugacity for SU (3), this is very difficult to sim-

plify the HWG. By the way, we will stick the process as splitting into the

terms associating to degree t 4n and t 4n+2.
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We first start considering the terms associating to degree t 4n . We obtain

∞∑
n=0

t 4n(µ2n
1 µ2n

2 +µ2n−1
1 µ2n−1

2 +µ2n−2
1 µ2n−2

2 +·· ·+µ2n−n
1 µ2n−n

2

+µ2n−0
1 µ2n−1

2 +µ2n−0
1 µ2n−2

2 +·· ·+µ2n−0
1 µ2n−2n

2

+µ2n−1
1 µ2n−2

2 +µ2n−1
1 µ2n−3

2 +·· ·+µ2n−1
1 µ2n−(2n−1)

2

+µ2n−2
1 µ2n−3

2 +µ2n−2
1 µ2n−4

2 +·· ·+µ2n−2
1 µ2n−(2n−2)

2
...

+µ2n−(n−1)
1 µ2n−n

2 +µ2n−(n−1)
1 µ2n−(n+1)

2

+µ2n−1
1 µ2n−0

2 +µ2n−2
1 µ2n−0

2 +·· ·+µ2n−2n
1 µ2n−0

2

+µ2n−2
1 µ2n−1

2 +µ2n−3
1 µ2n−1

2 +·· ·+µ2n−(2n−1)
1 µ2n−1

2

+µ2n−3
1 µ2n−2

2 +µ2n−4
1 µ2n−2

2 +·· ·+µ2n−(2n−2)
1 µ2n−2

2

...

+µ2n−(n−1)
1 µ2n−n

2 +µ2n−(n−1)
1 µ2n−(n+1)

2 )

=
∞∑

n=0
(µ2

1µ
2
2t 4)n(

n∑
p=0

µ
−p
1 µ

−p
2

+µ−0
1 (

2n−0∑
m=1

µ−m
2 )+µ−1

1 (
2n−1∑
m=1

µ−m
2 )+µ−2

1 (
2n−2∑
m=1

µ−m
2 )+·· ·+µ−(n−1)

1 (
2n−(n−1)∑

m=1
µ−m

2 )

+ (
2n−0∑
m=1

µ−m
1 )µ−0

2 + (
2n−1∑
m=1

µ−m
1 )µ−1

2 + (
2n−2∑
m=1

µ−m
1 )µ−2

2 +·· ·+ (
2n−(n−1)∑

m=1
µ−m

1 )µ−(n−1)
2 )

=
∞∑

n=0
(µ2

1µ
2
2t 4)n

(
n∑

p=0
µ
−p
1 µ

−p
2 +

n−1∑
p=0

µ
−p
1 (

2n−p∑
m=1+p

µ−m
2 )+

n−1∑
p=0

µ
−p
2 (

2n−p∑
m=1+p

µ−m
1 )

)
(A.10)
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Subsequently, we also do the same way, as order t 4n , for order t 4n+2:

∞∑
n=0

t 4n+2(µ2n+1
1 µ2n+1

2 +µ2n−0
1 µ2n−0

2 +µ2n−1
1 µ2n−1

2 +·· ·+µ2n−n+2
1 µ2n−n+2

2 +µ2n−n+1
1 µ2n−n+1

2

+µ2n+1
1 µ2n−0

2 +µ2n+1
1 µ2n−1

2 +·· ·+µ2n+1
1 µ2n+1−(2n+1)

2

+µ2n−0
1 µ2n−1

2 +µ2n−0
1 µ2n−2

2 +·· ·+µ2n−0
1 µ2n+1−(2n)

2

+µ2n−1
1 µ2n−2

2 +µ2n−1
1 µ2n−3

2 +·· ·+µ2n−1
1 µ2n+1−(2n−1)

2
...

+µ2n−(n−2)
1 µ2n−(n−1)

2 +µ2n−(n−2)
1 µ2n−n

2 +µ2n−(n−2)
1 µ2n−(n+1)

2

+µ2n−(n−1)
1 µ2n−n

2

+µ2n−0
1 µ2n+1

2 +µ2n−1
1 µ2n+1

2 +·· ·+µ2n+1−(2n+1)
1 µ2n+1

2

+µ2n−1
1 µ2n−0

2 +µ2n−2
1 µ2n−0

2 +·· ·+µ2n+1−(2n)
1 µ2n−0

2

+µ2n−2
1 µ2n−1

2 +µ2n−3
1 µ2n−1

2 +·· ·+µ2n+1−(2n−1)
1 µ2n−1)

2
...

+µ2n−(n−1)
1 µ2n−(n−2)

2 +µ2n−n
1 µ2n−(n−2)

2 +µ2n−(n+1)
1 µ2n−(n−2)

2

+µ2n−n
1 µ2n−(n−1)

2 )

= (µ1µ2t 2)
∞∑

n=0
t 4n(µ2n

1 µ2n
2 +µ2n−1

1 µ2n−1
2 +µ2n−2

1 µ2n−2
2 +·· ·+µ2n−n+1

1 µ2n−n+1
2 +µ2n−n

1 µ2n−n
2

+µ2n−0
1 µ2n−1

2 +µ2n−0
1 µ2n−2

2 +·· ·+µ2n−0
1 µ2n+1−(2n)

2

+µ2n−1
1 µ2n−2

2 +µ2n−1
1 µ2n−3

2 +·· ·+µ2n−1
1 µ2n+1−(2n−1)

2

+µ2n−2
1 µ2n−3

2 +µ2n−2
1 µ2n−4

2 +·· ·+µ2n−2
1 µ2n+1−(2n−2)

2
...

+µ2n−(n−1)
1 µ2n−(n)

2 +µ2n−(n−1)
1 µ2n−(n+1)

2 +µ2n−(n−1)
1 µ2n−(n+2)

2

+µ2n−n
1 µ2n−(n+1)

2

+µ2n−1
1 µ2n−0

2 +µ2n−2
1 µ2n−0

2 +·· ·+µ2n−0
1 µ2n+1−(2n)

2

+µ2n−2
1 µ2n−1

2 +µ2n−3
1 µ2n−1

2 +·· ·+µ2n−1
1 µ2n+1−(2n−1)

2

+µ2n−3
1 µ2n−2

2 +µ2n−4
1 µ2n−2

2 +·· ·+µ2n−2
1 µ2n−(2n−2))

2
...

+µ2n−(n)
1 µ2n−(n−1)

2 +µ2n−(n+1)
1 µ2n−(n−1)

2 +µ2n−(n+2)
1 µ2n−(n−1)

2

+µ2n−(n+1)
1 µ2n−n

2 )

(A.11)
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= (µ1µ2t 2)
∞∑

n=0
(µ2

1µ
2
2t 4)n(

n∑
p=0

µ
−p
1 µ

−p
2

+µ−0
1 (

2n−0∑
m=1

µ−m
2 )+µ−1

1 (
2n−1∑
m=1

µ−m
2 )+µ−2

1 (
2n−2∑
m=1

µ−m
2 )+·· ·+µ−(n−1)

1 (
2n−(n−1)∑

m=1
µ−m

2 )

+ (
2n−0∑
m=1

µ−m
1 )µ−0

2 + (
2n−1∑
m=1

µ−m
1 )µ−1

2 + (
2n−2∑
m=1

µ−m
1 )µ−2

2 +·· ·+ (
2n−(n−1)∑

m=1
µ−m

1 )µ−(n−1)
2

= (µ1µ2t 2)
∞∑

n=0
(µ2

1µ
2
2t 4)n

(
n∑

p=0
µ
−p
1 µ

−p
2 +

n−1∑
p=0

µ
−p
1 (

2n−p+1∑
m=1+p

µ−m
2 )+

n−1∑
p=0

µ
−p
2 (

2n−p+1∑
m=1+p

µ−m
1 )

)
(A.12)

Finally we can combine (A.10) and (A.12), resulting in

HW GG2→SU (3) = 1

(1−µ1t 2)(1−µ2t 2)(1−µ1µ2t 2)
(A.13)

which is also the same as (4.16).
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