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Abstract

This dissertation will examine the use of quantum field theory in the paradig-
matic setting of the quantum Hall effect. This work aims to provide a comprehen-
sive review of the use of non-perturbative field theory methods in the context of
the Chern–Simons effective action of this system. Particular emphasis is placed
on the role of anomalies in 2+1 dimensions and their responsibility in producing
gapless, chiral edge excitations. The canonical quantisation of the theory allows
for the full description of the edge modes of Laughlin states, and its spectrum
is described using conformal field theory techniques. This is extended by the
work of Moore, Read, and Witten to detail the duality between the topological
Chern–Simons action and its conformal boundary — a process which allows for
the calculation of the bulk wavefunction. The emergence of anyons with frac-
tionalised charge and statistics is scrutinised, and particular attention is paid to
the contradiction in the literature arising from the flux quantisation condition
of the statistical gauge field describing these particles. Bosonisation is discussed
throughout: first exactly by examining 1+1 dimensional edge excitations, and
then by following a recent field of work which provides a bosonisation duality in
2+1 dimensions that relates particle and vortex excitations. This is finally applied
to the half-filled lowest Landau level to motivate the pioneering Dirac composite
fermion theory of Son. Throughout this work, attention is paid to the validity of
dualities and effective theories away from the zero-magnetic field limit, an often
neglected regime which is of the utmost physical relevance in the quantum Hall
setting.
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The Quantum Hall Effect 1

“It is fortunate that solid-state and many-body
theorists have so far been spared the plagues of
quantum field theory”

Mattis and Lieb (1965)

1.1 Introduction

In much of theoretical physics, the study of spaces which do not have one temporal and
three spatial dimensions amounts to an abstract act of curiosity. Indeed one finds a rich
catalogue physical phenomena which only become possible outside of 3+1 dimensional
spacetime, but Nature does not allow us to probe these behaviours quite so simply.

Far from being abstract, the physics of electrons in a humble semiconductor pro-
vides a revolutionary theoretical playground for the behaviour of fermions in lower
dimensions: the quantum Hall effect (QHE). In a process well established since the
1980s, the boundary between semiconducting silicon and its insulating oxide allows for
the confinement of electrons in a two-dimensional ‘inversion layer’.

The application of a strong magnetic field adds further complexity by splitting the
spectrum of the two-dimensional electrons into Landau levels separated by large energy
gaps. The well-known classical result of passing a current through such a system is to
produce a ‘Hall voltage’ perpendicular to the current. However at high magnetic field,
the behaviour of this system fundamentally changes as quantum mechanics dominate.

Experimentally this was first noticed when the measured Hall conductivity of the
system showed noticeable plateaus at precise multiples of a quantum of conductivity,
as shown in Fig. 1.1 (von Klitzing et al., 1980). The plateaus of Hall conductivity
are interpreted as occurring at exact filling of 𝜈 Landau levels, and at these points the
longitudinal conductivity drops to zero because there are no partially-filled levels which
are able to conduct. The fractional quantum Hall effect was also observed within two
years of this initial observation (Tsui et al., 1982); this phase was first identified by a
𝜈 = 1

3 plateau of the Hall conductivity. Strong interactions between the electrons of
this system stabilise the system when a third of the lowest Landau level is filled, which
introduces a small gap in energy to the filling of additional states. This gap leads to a
plateau in the conductivity for a small range of filling fractions around a third.

Nowadays the quantum Hall system is a ubiquitous and all-important tool for
metrology as it provides an unparalleled measurement of the fine structure constant,
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. The Quantum Hall Effect

Figure .: Hall resistivity 𝜌𝑥𝑦 plotted as the filling fraction is varied (through exper-
imentally varying the magnetic field 𝐵). The visible plateaus are the hallmarks of the
quantum Hall effect. Reproduced from the Nobel prize lecture by Tsui (1998).

and its theoretical study has won two Nobel prizes and spurred countless fields of study
in the condensed matter community (von Klitzing, 2017).

This dissertation concerns the description of this quantum regime of the Hall ef-
fect using field theory methods. Quantum field theory is a stunning framework which
has been applied to understanding fundamental physics with astounding precision. In
the field of condensed matter physics, field theory is equally powerful but perhaps less
intuitive since one does not get to use the familiar inventory of fields and symmetries
which describe Nature. We will aim to describe the quantum Hall effect with an ef-
fective theory of the background electromagnetic (EM) gauge field 𝐴 in the sample.
The interactions of the electrons and the magnetic field will be encoded in the action
of this effective theory. The beauty of physics in these strongly interacting materials,
however, is that there may arise emergent degrees of freedom which one may describe
with quantum fields which provide an even larger inventory of possible theories. In the
fractional quantum Hall system, the emergent degree of freedom is a dynamical gauge
field, denoted 𝑎, which couples to the applied background EM field 𝐴 in a way which
gives it fractional charge.

What is the nature of the order that defines the quantum Hall phase? Rather sur-
prisingly there are no local operators which can be used to diagnose the phase as being
distinct from an ordinary gapped electron system. Though there do exist unforeseen
non-local signifiers of the phase which can clearly distinguish it from so-called trivial
phases: the degeneracy of the ground state is quantity which only depends on topo-
logical character of the manifold, and this quantity cannot be lifted by disorder. This
interesting feature defines a topological phase of matter (this name arising from a deep
connection with topology which will be investigated).

Such topological phases are characterised by some fascinating novel features: most
interestingly gapless chiral fermion edge excitations and bulk excitations with fractional

2



1.1. Introduction

charge.
The edge excitations are the only gapless excitations in the theory, and in fact these

are the only degrees of freedom which can contribute to the Hall conductance. The
chiral nature of these fermions is fundamentally due to the magnetic field causing a
precession of the electrons of the bulk in only one direction. However in our attempts
to describe the system with field theory, the consideration of the one-dimensional edge
theory in isolation is inconsistent with the fact that a local 1+1 dimensional theory can
never be chiral. The edge theory is therefore intrinsically connected to the bulk theory,
and cannot be described independently if we want our model to be local.

The bulk excitations of 𝑎 with fractional charge are another inherent feature of topo-
logical phases. These fascinating emergent particles are neither bosons nor fermions,
but instead under exchange they can pick up any phase which is not ±1 — for this rea-
son they were dubbed ‘anyons’. The study of quantum Hall systems spans four decades:
from the first discovery in 1980 to just this year when anyons were first measured. An-
other direction of research which propels forward the field of quantum Hall physics is
the project of realising a quantum computer using anyonic excitations. The robustness
of observables to local noise makes topological phases (such as the QHE) particularly
promising platforms for this purpose. In this realisation, the exotic braiding properties
of anyons — namely their fractional and even possibly non-Abelian exchange proper-
ties — provide a platform for manipulating quantum bits of information.

This work seeks to discuss the role of topological quantum field theories (TQFTs) in
the description of the quantum Hall effect. Specifically we will ask how the Chern–
Simons action describes the low-energy behaviour of electrons in two dimensions and
how the quantised conductivity of the QHE emerges in such a theory.

How can the general emergence of chiral edge modes be described in this frame-
work? The tools of field theory will show us that their behaviour can be predicted
through understanding the variation of the Chern–Simons action under gauge trans-
formations, and links this to the ‘chiral anomaly’ of edge fermions. We will then ask
about the implications of the boundary fermion possessing a conformal symmetry, and
attempt to develop a duality framework which will predict the wavefunction of the
quantum Hall electrons simply from correlation functions of the boundary fermions.

What special behaviours do topological quantum field theories have, and what ex-
actly is their relation to topology? A jumping-off point for this question is a calculation
of the ground state degeneracy of this system which shows how the topology of the
background manifold encodes the dependence upon geometry. Going even further,
we will derive general and exact expressions for the correlation functions and winding
properties of anyons through canonically quantising the topological action.

There exist particularly interesting fractional quantum Hall phases which are gap-
less and have excitations which look like fermions bound to quanta of magnetic flux.
We will finally attempt to develop a duality framework which allows for the description
of such phases using a relativistic field theory. In order to develop such a framework,
we must develop a deep understanding of the notion of ‘flux attachment’ which we
generalise to relativistic theories.

Through this work the discussion of the quantum Hall effect will be at the forefront.
Many of the field theoretical tools we use, such as particle-vortex dualities and effective
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. The Quantum Hall Effect

theories, will require care to be taken in this context due to the background magnetic
field.

Field theoretical tools in condensed matter are nowadays a tool of utmost impor-
tance. A number of the canonical condensed matter models first proposed in the ’60s
and ’70s, such as the Luttinger liquid of electrons and the Hubbard model of strongly
interacting spins, are now best understood with the use of field theory. Indeed, in the
case of the Luttinger system of interacting electrons in one spatial dimension which are
filled up to the crossing of Dirac cones, the model was at first solved incorrectly due to
the technicalities involved in quantising a continuum theory (Mattis and Lieb, 1965).
Julian Schwinger even commented a few years earlier on the “paradoxical contradic-
tions” inherent in quantum field theory which foreshadowed this mistake (Schwinger,
1959). However once one understands the subtleties of this calculation, and by follow-
ing the work of Wen (1990b) this result can be incorporated into the description of the
quantum Hall effect and will be identified as the cause of chiral edge modes which are
now seen as a fundamental and inseparable feature of the quantum Hall system.

Moreover, the much more recent phenomenology of topologically ordered phases
(not limited to just the QHE but including phases such as s-wave superconductors and
quantum spin liquids) provides a new landscape in which to apply field theory. Making
connection again with high energy physics, the topological bulk theory will be seen to
be dual to a conformally invariant boundary theory. This relation—which is sometimes
dubbed holography — may allow for the prediction of novel quantum Hall phases
through postulating boundary theories then dualising. In fact, extending this process to
other topologically ordered phases may allow the description of completely new phases
of matter altogether. This is not the same form of holography being investigated in
string theory, but is an entirely real duality between tractable theories.

Since the turn of the century there has been striking interest in the theoretical
description of, and experimental realisation of, anyons in the (particularly non-Abelian)
quantum Hall effect. These anyons with their exotic braiding behaviour are lauded as
a potential platform for the next generation of quantum computing, which is set apart
by its resilience to noise (Das Sarma et al., 2005). A major step towards control over
these particles was taken this year when a team first reported direct measurement of the
fractionalised statistics of anyons in the quantum Hall effect (Nakamura et al., 2020).

In the quantum Hall effect, the tools of field theory are indispensable. Topological
QFTs underpin our understanding of behaviours of this system and novel tools such as
particle-vortex duality provide a new set of non-perturbative tools to better understand
the behaviour of quantum matter in two spatial dimensions. This dissertation presents
a thorough review of modern aspects of topological quantum field theory and their nu-
ances, focusing on the application of the Abelian Chern–Simons action to the quantum
Hall effect for the most part. We will build towards present-day research concerning
FQHE states and the Dirac composite fermion theory of the 𝜈 = 1

2 system.
In an interesting case of apparently universal behaviours arising in widely different

model systems, the specific discussion of particle-vortex dualities applied to the half-
filled Landau level will also draw a fascinating connection with the surface states of
topological insulators. We will conclude by discussing the connection of this duality

4



1.2. Integer QHE

to the bodies of literature covering holography and supersymmetric dualities, and will
highlight the strengths of this new approach in forming developing new bosonisation
tools in higher dimensions.

In the remainder of Chapter 1 the quantum Hall effect will be discussed in the
more traditional many-body perspective. This will develop some intuition about the
behaviour of these interesting phases before we begin applying tools of quantum field
theory to the same system.

1.2 Integer QHE

1.2.1 Landau Levels

In order to introduce the quantum Hall effect, we will first show how electrons in a
magnetic field split into ‘Landau levels’. Consider a physical system of electronsmoving
in two spatial dimensions (𝑥, 𝑦) and amagnetic field withmagnitude 𝐵 passing through
the surface in the 𝑧-direction. Choosing the Landau gauge, the vector potential can be
written

𝐴𝑦 = 𝐵𝑥. (1.1)

Written in the notation of differential forms, this implies

𝐴 = 𝑥 d𝑦 ⟹ d𝐴 = 𝐵 d𝑥 ∧ d𝑦 . (1.2)

The magnetic field adjusts the free dispersion of the electron as follows

𝐻 = 1
2𝑚 (𝑝 + 𝑒𝐴)2 , (1.3)

which is more naturally written in terms of the new conjugate momentum

𝜋 = 𝑚 ̇𝑥 = 𝑝 + 𝑒𝐴. (1.4)

This implies the peculiar canonical commutator

[𝜋𝑥, 𝜋𝑦] = −𝑖𝑒ℏ𝐵 (1.5)

which implies the different spatial components of the momentum are conjugate vari-
ables. Following this identification, we define the conjugate variables in terms of the
cyclotron frequency 𝜔𝐵 = 𝑒𝐵/𝑚

𝑎 = 1
√2ℏ𝐵

(𝜋𝑥 − 𝑖𝜋𝑦) ⟹ 𝐻 = 1
2𝑚𝜋2 = ℏ𝜔𝐵(𝑎†𝑎 + 1/2). (1.6)

This result resembles a harmonic oscillator in 0 dimensions, with evenly spaced Landau
levels labelled by an integer 𝑛 which are each macroscopically degenerate.

Let us now calculate eigenstates of this Hamiltonian in the Landau gauge; in terms
of the different spatial components it reads

𝐻 = 1
2𝑚 [𝑝2

𝑥 + (𝑝𝑦 + 𝐵𝑥)
2
] (1.7)

5



. The Quantum Hall Effect

because of the 𝑦-independence we may search for eigenstates 𝜓𝑘 with the plane wave
ansatz 𝜓𝑘(𝑥, 𝑦) = 𝑓𝑘(𝑥) exp(𝑖𝑘𝑦). Substituting this into the Hamiltonian gives a
momentum-space Hamiltonian 𝐻𝑘𝜙𝑛,𝑘 = 𝜔𝑛𝜙𝑛,𝑘 with

𝐻𝑘 = 𝑝𝑥
2𝑚 +

𝑚𝜔2
𝐵

2 (𝑥 + 𝑘𝑙2𝐵)2, (1.8)

where 𝑙2𝐵 = ℏ/𝑒𝐵 is the magnetic length. This once again makes clear that the spectrum
is the same as a harmonic oscillator, with levels labelled by 𝑛 and the wavefunctions as
follows

𝜔𝑛 = ℏ𝜔𝐵 (𝑛 + 1/2) , 𝜙𝑛,𝑘(𝑥, 𝑦) ∼ 𝑒𝑖𝑘𝑦𝐻𝑛(𝑥 + 𝑘𝑙2𝐵) 𝑒−(𝑥+𝑘𝑙2𝐵)2/2𝑙2𝐵 , (1.9)

which are Gaussian-localised wavepackets located at 𝑥𝑛 = −𝑘𝑙2𝐵. Let us calculate the
number of states in each Landau level by regulating the system to a finite size and
calculating how many wavepackets fit in the system:

• Regulate 𝐿𝑦: The system is periodic in 𝑦, so 𝐿𝑦/2𝜋 states fit in this direction.

• Regulate 𝐿𝑥: States are localised around 𝑘𝑙2𝐵 with width 𝑙𝐵, so the approximate
number of states allowed is 𝐿𝑥/𝑙2𝐵.

Together the number of states per level is

𝑔 =
𝐿𝑥𝐿𝑦

2𝜋𝑙2𝐵
= 𝐵 × Area

Φ0
, (1.10)

in terms of flux quantum Φ0 = ℎ/𝑒 = 2𝜋ℏ/𝑒. The Landau levels specify flat bands
of electrons, in each of which a macroscopic number of charges must exist. We will
henceforth set the magnetic length to equal 𝑙𝐵 = 1 with a choice of units, but retain
factors of ℏ and 𝑒 for now.

Now we can derive the integer quantum Hall effect by applying an electric field
and observing the current

J = 𝜎E (1.11)
when 𝐸𝑥 = 𝐸 is the applied electric field strength. The Hamiltonian of the Hall sys-
tem with an applied electric field has an extra term −𝑒𝐸𝑥, so the spectrum is linearly
dispersive (to first order in 𝐸/𝐵)

𝜔(𝑘) = ℏ𝜔𝐵 (𝑛 + 1/2) − 𝑒𝐸𝑘 (1.12)
𝜙 = 𝜙𝑛,𝑘(𝑥 − 𝑚𝐸/𝑒𝐵2, 𝑦). (1.13)

The group velocity calculated from this linear dispersion is 𝑣𝑔 = 𝐸/𝐵 in the 𝑦 direction,
and the conductivity receives a contribution from each of 𝜈 filled Landau levels. This
result shows the off-diagonal conductivity is 𝜎𝑥𝑦 = 𝜈𝑔/2𝜋, which is quantised when
𝜈 Landau levels are filled.

In order to construct the full Hilbert space of states it is easier to work in the
symmetric gauge where

𝐴 = 𝐵
2 (𝑥 d𝑦 − 𝑦 d𝑥). (1.14)

6



1.2. Integer QHE

Define another type of conjugate momentum 𝜋̃ = 𝑝 − 𝑒𝐴, which differs from (1.4) by
a sign. This results in an additional non-zero commutator which differs from (1.5) by
a sign:

[𝜋̃𝑥, 𝜋̃𝑦] = +𝑖𝑒ℏ𝐵, [𝜋𝑖, 𝜋̃𝑗] = 0. (1.15)

This shows 𝜋 and 𝜋̃ are simultaneously diagonalisable, and the two ladder operators
defined from each ‘momentum’ will together span the full Hilbert space. Define this
new ladder operator as follows

𝑏 = 1
√2ℏ𝐵

(𝜋̃𝑥 − 𝑖𝜋̃𝑦) . (1.16)

The action of 𝑏 and 𝑏† is to move between different degenerate states within the same
Landau level. Moving to a position representation of these operators, we may gain
intuition about the meaning of the 𝑏-ladder. In holomorphic coordinates where 𝑧 =
𝑥 + 𝑖𝑦 and 𝑧 is its complex conjugate, the ladder operators take the form

𝑎 ∼ 𝜋𝑥 + 𝑖𝜋𝑦 ∼ −𝑖 ( ̄𝜕 − 𝑧
4) (1.17)

𝑏 ∼ 𝜋̃𝑥 + 𝑖𝜋̃𝑦 ∼ −𝑖 (𝜕 + ̄𝑧
4) . (1.18)

Note that the derivatives act like 𝜕 = 𝜕𝑥 − 𝑖𝜕𝑦. We may define the operator

𝐽 = (𝑏†𝑏 − 𝑎†𝑎), (1.19)

which has eigenvalue 𝑚. In these holomorphic coordinates this operator is explicitly
the angular momentum operator

𝐽 = 𝑧𝜕 − 𝜕𝑧. (1.20)

A general state is |𝑛, 𝑚⟩ and is constructed from the ground state |0, 0⟩ by acting with
𝑎†, 𝑏†. In the holomorphic representation, the wavefunction of the ground state can be
evaluated by using the fact that it is annihilated by 𝑎, 𝑏

⟨𝑧|0, 0⟩ = 𝑒−|𝑧|2/4. (1.21)

Acting on the ground state with (𝑏†)𝑚 gives the level-𝑚 angular momentum state in
the lowest Landau level

⟨𝑧|0, 𝑚⟩ = 𝑧𝑚𝑒−|𝑧|2/4. (1.22)

This eigenstate with angular momentum 𝑚 is peaked at a radius 𝑟 = √2𝑚; comparing
this radius to a sample area 𝐴 = 𝜋𝑅2 again yields the same number of states in each
Landau level as the Landau gauge calculation.

7



. The Quantum Hall Effect

Figure .: (a) The deforming effect of the Landau level in the presence of a confin-
ing potential 𝑉(𝑟). There are chiral excitations at the Fermi level 𝐸𝐹. (b) Explicitly
demonstrating the chiral edge current as a feature of the boundary.

1.2.2 Transport &The IQHEEdge

Confining the system of electrons with a potential 𝑉(|𝑧|2) which is radially symmetric
clearly breaks the degeneracy in 𝑚, eigenstates of 𝐽 are roughly shifted by +𝑉(2𝑚).
Therefore if 𝑉(|𝑧|2) always increases at larger radii, the system of electrons will fill the
Landau levels first in lower angular momentum states, then to higher angular momen-
tum and higher-radius states. This situation is relevant for physical systems where a
confining potential deforms the Landau levels to become dispersive. At a finite filling
density, the system will form a quantum Hall ‘droplet’. There are therefore naturally
gapless excitations at the edge, as shown in Fig. 1.2a. These take two forms: firstly there
are gapless and neutral excitations which promote a charge to above the Fermi level,
and correspond to a deformation in the shape of the edge. There are also excitations
which correspond to adding an extra charge to the edge.

In fact all of these edge excitations of the IQHE must be inherently chiral, as the
system is comprised of electrons in a magnetic field. At the boundary of the quantum
Hall fluid, confining the electrons will lead naturally to a chiral current. The orbits
scatter off the boundary, leading to a flow of current in one direction, as shown in
Fig. 1.2b. In Section 3.2 we will derive explicitly how these edge excitations propagate,
and show that they have a constant velocity.

There exists an argument for the quantised conductivity due to Laughlin (1981)
which instead relies upon the idea of spectral flow. Considered again a rotationally
symmetric disk-shaped sample of quantumHall fluid, arranged such that there is a hole
in the centre with Φ flux penetrating it. This setup is similar to the previous example,
except the additional inside boundary must have its own current with opposite chirality.
This annulus-shaped setup is shown in Fig. 1.3

If the flux is varied adiabatically from Φ to Φ + Φ0 in time 𝑇, there will be an
induced voltage E = −Φ0/𝑇. Because the flux changes by one quantum, the spectrum
before and after this transform must be unchanged, but this process will shift each
Landau level 𝑛 to the former position of the 𝑛 + 1 level. Using the result that in the
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1.2. Integer QHE

Figure .: Annulus geometry of the IQHE, shown with flux Φ penetrating the
centre. This induces a voltage E and a radial Hall current 𝐼𝑟.

radial gauge the wavefunction is peaked at 𝑟𝑛 = √2𝑚, this spectral flow from 𝑛 → 𝑛+1
involves physically moving electrons from √2𝑚 → √2(𝑚 + 1). As every electron in-
between the innermost and outermost filled state flows outwards, the net result is a
shift of one electron from the inside to the outside of the ring. Spectral flow has here
led to a contribution to the Hall current.

If 𝜈 Landau levels are filled, there will be 𝜈 electrons transported. The correspond-
ing Hall conductivity is found in terms of the induced voltage and the radial current

𝜎𝑥𝑦 = 𝐼𝑟
E = 𝑒2

ℎ 𝜈. (1.23)

This may be written in units where 𝑒 = ℏ = 𝑙2𝐵 = 1, which will be the form we prefer
in the field theory discussion

𝜎𝑥𝑦 = 𝐼𝑟
E = 𝜈

2𝜋 . (1.24)

In a more thorough quantum mechanical derivation, we may derive this expression
for the conductivity by using the Kubo formula in a linear response regime, and show
the conductivity is quantised by comparing to the TKNN invariant, of (Thouless et al.,
1982). This is an integer that was introduced as a measure of the topology of a series
of bands by characterising its Chern class, and its relation to the quantum Hall system
will explain the quantised nature of the conductivity.

The Kubo formula for conductivity in terms of quantum Hall ground states |𝑛 = 0⟩
writes the conductivity as a sum over the commutator of currents

𝜎𝑥𝑦(𝜔) = 1
ℏ𝜔 ∫

∞

0
d𝑡 ⟨0| [𝐽𝑦(0), 𝐽𝑥(𝑡)] |0⟩ . (1.25)

In the DC limit 𝜔 → 0, the conductivity is

𝜎𝑥𝑦(𝜔) → 𝑖ℏ ∑
𝑛>0

⟨0| 𝐽𝑦 |𝑛⟩ ⟨𝑛| 𝐽𝑥 |0⟩ − ⟨0| 𝐽𝑥 |𝑛⟩ ⟨𝑛| 𝐽𝑦 |0⟩
(𝜔𝑛 − 𝜔0)2 . (1.26)
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. The Quantum Hall Effect

Figure .: (a) The spectrum of a Landau level deformed by a confining spectrum
(b) Disorder broadens the density of states of the Landau levels, leaving only some
delocalised. Reproduced from (Powell, 2020).

Using the relation (A.8) in Appendix A, we may identify this expression with the Berry
curvature

𝑒2

ℏ 𝐹𝑥𝑦(k). (1.27)

In this identification, we have considered the Brillouin as the space of parameters and
expressed the current operators in position space. To evaluate the total conductivity,
integrate the curvature over all momenta (the torus of the Brillouin zone) to give the
quantised conductivity

𝜎𝑥𝑦 = 𝑒2

ℏ ∫ d2k
2𝜋 𝐹𝑘𝑦(k) = 𝑒2

2𝜋ℏ𝐶. (1.28)

The constant 𝐶 is the topological invariant Chern number which is naturally quantised.
It was calculated by integrating the Berry curvature over the Brillouin zone, which
must be integer since the Dirac condition quantises the total Berry flux. This is often
referred to as the TKNN invariant due to its similarity to the same calculation on a
lattice, but truly this is just the Chern number of the band.

One property is left to explain: how do the plateaus emerge in the quantum Hall
effect? Smooth disorder in this potential (due to impurities in the sample away from
the inversion layer) is actually necessary for Hall plateaus to be seen experimentally.

This is the key result in reproducing the quantum Hall plateaus in experiments:
the small amounts of disorder away from the inversion layer presents a weak and dis-
ordered potential for the electrons, broadening the energy width of the Landau level
(see Fig. 1.4). Most states now exist in the valleys and on the peaks of the disorder po-
tential; since (semiclassically) the electron orbits drift along equipotentials, all of these
states become localised. Only the states which exist in a narrow band around the centre
of the energy of the Landau level and exist on an inflection point of the potential are
delocalised along the system. These states are the ones which contribute to the spec-
tral flow in the presence of disorder, and thus are the only states which are capable of
contributing to the Hall conductivity (Halperin, 1982).
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1.3. Fractional QHE

Figure .: Hall resistivity 𝜌𝑥𝑦 and diagonal resistivity 𝜌𝑥𝑥 as a function of magnetic
field; data and figure reproduced from (Willett et al., 1987).

Therefore, as the Fermi level is adjusted up, when the single extended state is filled
there will be an increase in the Hall conductivity because of the contribution of that
level through spectral flow. As the Fermi level is continuously increased, there is no
further contribution from any other states because they remain localised, leading to the
plateau.

1.3 Fractional QHE

1.3.1 LaughlinWavefunction

The FQHE is an intrinsically many-body effect which eludes a single-particle descrip-
tion. Despite the partial filling of the lowest Landau level, the fluid is rendered in-
compressible due to strong electron-electron interactions. These interactions open a
gap at certain non-integer filling fractions, most notably is the ‘Laughlin series’ 𝜈 =
1
3 , 1

5 , 1
7 , … , and the conjugates 𝜈 = 2

3 , 4
5 , … .

There exist more exotic states too, shown in Fig. 1.5, including the ‘Jain sequence’
𝜈 = 2

5 , 3
7 , 4

9 , … and its conjugates which all become narrower as they approach the
𝜈 = 1

2 state, that is not gapped. There are also plateaus outside of the lowest Landau
level, including 3

2 , 4
3 , 5

2 , and more.
Now we will attempt to describe the most theoretically well understood series of

states using the Laughlin wavefunction. Assuming there is a radially symmetric inter-
particle potential 𝑉(|𝑧1 −𝑧2|), we may guess a possible wavefunction of the theory. For
example, a class of eigenstates of such a 2-particle potential take the form

𝜓(𝑧1, 𝑧2) = (𝑧1 − 𝑧2)𝑚𝑒−|𝑧1|2/4−|𝑧2|2/4. (1.29)
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. The Quantum Hall Effect

This looks like the general symmetric gauge wavefunctions, labelled by angular momen-
tum 𝑚. For a general 𝑁-body potential, the general wavefunction is

𝜓(𝑧1, … , 𝑧𝑁) = 𝑓 (𝑧1, … , 𝑧𝑁)𝑒− ∑𝑖 |𝑧𝑖|2/4, (1.30)

where 𝑓 (𝑧1, … , 𝑧𝑁) is an analytic and totally symmetric prefactor. Laughlin’s wave-
function is

𝜓(𝑧1, … , 𝑧𝑁) = ∏
𝑖<𝑗

(𝑧𝑖 − 𝑧𝑗)𝑚𝑒− ∑𝑖 |𝑧𝑖|2/4, (1.31)

with 𝑚 odd (Laughlin, 1983). The wavefunction vanishes (with order (𝑧1 − 𝑧𝑤)𝑚) as
any two electrons approach each other, thus instituting the Pauli exclusion principle.
One may further use the same wavefunction for even 𝑚 to describe a new ‘bosonic
Laughlin’ phase, where the wavefunction is even under particle exchange. The filling
fraction of such phases is related to the magnetic field 𝐵 and the electron density 𝜌 by

𝜈 = 2𝜋
𝐵 𝜌. (1.32)

This trial wavefunction has a strong overlap with numerical studies of small systems,
and has been shown to be the exact ground state for the interaction 𝑉(𝑧) = 𝑉2𝜕2𝛿(𝑧)
(Trugman and Kivelson, 1985). Generally it is expected not to be the exact wavefunc-
tion of such states, but instead it may live in the same universality class.

There is a close analogy of this wavefunction with superfluid helium, and indeed
there are common phonon excitations in both theories. However the FQHE liquid
is distinct because its phonon excitations are gapped, rendering the phase incompress-
ible (Girvin et al., 1986). This similarity allows for the construction of ‘hydrodynamic’
effective theories of the phase (in a similar manner to the superfluid model), which pro-
vide a particularly interesting semiclassical model of their dynamics and phase stability
(Chen et al., 1989; Abanov, 2013). We will develop the more modern version of such
a model in Chapter 5 when we develop the ZHK theory of the FQHE phases.

One may add quasiholes to this system, finally actualising the anyons we have been
attempting to introduce. These appear in the Laughlin wavefunction as a parameter 𝜂
in the wavefunction

𝜓(𝑧1, … , 𝑧𝑁 ; 𝜂) = ∏
𝑖

(𝑧𝑖 − 𝜂) ∏
𝑖<𝑗

(𝑧𝑖 − 𝑧𝑗)𝑚𝑒− ∑𝑖 |𝑧𝑖|2/4 (1.33)

The quasiholes act — like a fraction of an electron — to repel other charges as 𝑧𝑖
approaches 𝜂. The order of this pole is lower than for the electron, and correspondingly
other charges may approach closer to the quasihole than they may to another electron.
Adding additional quasiholes to the wavefunction, and then moving them all to the
same point 𝜂 recovers the order-𝑚 pole of an electron — the fusion of 𝑚 quasiholes
in this way may generate an electron. This motivates us to identify the charge of a
quasihole as 𝑒/𝑚.

We can also derive the fractional conductivity of this quantum Hall state by us-
ing a familiar flux-threading argument we used on the annulus previously. Recall that
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1.3. Fractional QHE

threading one unit of flux Φ0 acted to increase the angular momentum state of the Lan-
dau level eigenfunctions by 1. Using the same setup with the Laughlin wavefunction,
we may implement this increase by premultiplying the wavefunction by ∏𝑖 𝑧, which
appears like a quasihole inserted at 𝑧 = 0. This process of inserting flux now only
transports 𝑒/𝑚 of charge from the inner edge of the annulus to the outer, leading to
the fractional Hall conductance

𝜎𝑥𝑦 = 𝐼𝑟
E = 𝑒2

2𝜋ℏ
1
𝑚, (1.34)

which is described by the 𝜈 = 1
𝑚 filling factor. There is a ‘plasma model’ of this Laugh-

lin phase of electrons which provides a robust computational tool. In it the charges
are treated as particles in a plasma with charge density 𝜌0 = −1/2𝜋𝐵 and number
density 𝜌 = 𝜈𝐵/2𝜋, interacting with a background of magnetic field. Importantly,
this calculation of the filling fraction can also be verified by calculations in the plasma
model.

1.3.2 Fractional Statistics

We may use the Laughlin wavefunction to show that the anyons have fractional statis-
tics: consider looping one anyon around the other and calculate the Berry phase it
acquires due to the presence of the other. In a loose sense, consider a static ‘quasihole’,
represented by a unit of magnetic flux. Looping another quasihole around this flux in
a loop C picks up the Berry phase

𝑖𝛾 = 𝑖 𝑒
𝑚 ∫

C
𝐴 = 𝑖𝑒Φ0

𝑚 = 2𝜋𝑖
𝑚 . (1.35)

If the operation 𝑈 acts on two quasiholes to exchange them, then 𝑈2 describes this
looping procedure. Therefore the ‘statistical phase’ acquired on exchange is 𝛿 = 𝜋/𝑚.
The full calculation of the Berry phase of the Laughlin wavefunction under adiabatically
varying the parameter 𝜂 is presented by Arovas, Schrieffer, and Wilczek (1984).

Note that in higher dimensions the value of the phase that is acquired under ex-
change is restricted: looping one particle around another defines the operation 𝑈2, but
this path may be lifted out of the plane and smoothly deformed back to a point. This
implies that the 𝑈2 = 1 operation must be identical to the identity operator, and there-
fore 𝑈 = ±1. In 2+1 dimensions, because paths are fixed on the plane, they cannot
be deformed back to a point in this way, and therefore particles may acquire any phase
under braiding. The 2+1 dimensional worldlines of such particles which braid in this
way will become intrinsically knotted, and we will later show that the braiding phase
can be written as a ‘knot invariant’ of these paths. This is our first example of how two-
dimensional theories may have special features not accessible in higher dimensions.

One may also motivate this 𝛿 = 𝜋/𝑚 statistical phase by observing the analytic
structure of the Laughlin wavefunction containing two quasiholes. This wavefunction
may be written

𝜓(𝑧1, … , 𝑧𝑁 ; 𝜂1, 𝜂2) = (𝜂1 − 𝜂2)1/𝑚 ∏
𝑖

(𝑧𝑖 − 𝜂1)(𝑧𝑖 − 𝜂2) ∏
𝑖<𝑗

(𝑧𝑖 − 𝑧𝑗)𝑚𝑒− ∑𝑖 |𝑧𝑖|2/4,

(1.36)
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. The Quantum Hall Effect

which is multi-valued in the parameters 𝜂1, 𝜂2. There is a branch cut in the complex-
𝜂2 plane around the position of the other quasihole 𝜂1. Under rotating 𝜂2 around this
branch cut, the wavefunction acquires a phase — called a monodromy — of

𝑒2𝑖𝜋/𝑚. (1.37)

There are 𝑚 Riemann surfaces of this complex plane, and indeed rotating the quasiholes
𝑚 times will return the complex coordinate back to itself, with no monodromy phase
(Hansson et al., 2017).

Although the theoretical presence of anyons in the FQHE Laughlin states is well
established — a feature which has been bolstered by numerical Monte Carlo studies
(Kjønsberg and Leinaas, 1999) — experimental evidence of these fractionalised quasi-
particles has been somewhat elusive. There have been works which analyse the ‘shot
noise’ of a FQHE junction, and demonstrate there exists a regime where the charge car-
riers appear to have fractionalised charge (Hashisaka et al., 2015). Due to the intense
technical challenges of controlling anyons it had been until recently impossible to di-
rectly measure their braiding statistics. Promising recent work has performed advanced
interferometry experiments (Bishara et al., 2009; Bartolomei et al., 2020).

However the strongest evidence was published this year which performed a physical
braiding experiment on a sub-micrometer scale (Nakamura et al., 2020); this work
claims to provide a direct confirmation of the 𝛿 = 1

3 exchange statistics of the 𝜈 = 1
3

Laughlin state. This experiment is performed by running edge currents along one side
of a semiconductor heterostructure, which is placed in a FQHE phase using a high
magnetic field. The edge current is partly backscattered at two constriction points,
where it is directed by the opposing edge to flow backwards, as shown in Fig. 1.6.
In-between these two constriction points, there is a relatively large area which hosts
thermal anyon excitations. The interference of the currents which are backscattered
before and after the bulk anyons provides a measure of the statistical phase acquired by
looping the edge currents around these anyons. As magnetic field and gate voltage are
varied, the expected number of thermal anyons in the bulk changes, and the authors
of this study observe discontinuities in the interference phase — providing a direct
measurement of single-anyon’s phase contributions.

We have examined the Laughlin state and shown that its excitations are electrons
and quasiholes with fractional statistics. Such quasiholes appear in the wavefunction
as a depletion of charge at a point 𝜂 like∏𝑖(𝑧𝑖 −𝜂). The phase of this expression winds
through 2𝜋 as any 𝑧𝑖 loops around 𝜂, which appears like a vortex.

The Laughlin wavefunction is constructed of blocks (𝑧𝑖 − 𝑧𝑗)𝑚, meaning the wave-
function approaches zero order 𝑚 as the points are brought together. This can be seen
as a composite fermion (CF) built of an electron (𝑧𝑖 −𝑧𝑗) and 𝑚−1 further vortices ( Jain,
1989). For Laughlin states, where odd 𝑚 = 2𝑝 + 1, the blocks decompose as

(𝑧𝑖 − 𝑧𝑗)𝑚 = (𝑧𝑖 − 𝑧𝑗)2𝑝
⏟⏟⏟⏟⏟

vortices

(𝑧𝑖 − 𝑧𝑗)⏟
electron

. (1.38)

Winding a composite fermion along a closed path in this fluid of CFs, there is a
Aharonov–Bohm phase contribution due to the quasiholes attached to the electrons,
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1.3. Fractional QHE

Figure .: A schematic of the device used to measure anyon excitations, including
the path of edge currents; figure reproduced from (Nakamura et al., 2020).

as well as from the background magnetic field. When the CFs have a density 𝜌, the
accumulated phase per loop-area 𝐴 in a field 𝐵 is

𝛾 = 2𝜋 ( 𝐵
Φ0

− 2𝑝 𝜌) 𝐴. (1.39)

since 2𝑝 𝜌 is the vortex density. This motivates the definition of an effective magnetic
field 𝐵∗ for the CFs, given 𝐵∗ = 𝐵−2𝑝𝜌Φ0. Recall the definition of the filling fraction
of electrons is 𝜈 = 2𝜋𝜌/𝐵 (1.32), we are therefore motivated to define the effective CF
filling fraction as

𝜈∗ = 2𝜋𝜌
𝐵∗ = 2𝜋𝜌

𝐵 − 2𝑝𝜌Φ0
⟹ 𝜈 = 𝜈∗

1 + 2𝑝𝜈∗ . (1.40)

Hence the 𝜈 = 1
𝑚 Laughlin FQHE states are simply lowest Landau level 𝜈∗ = 1

IQHE states of the composite fermions ( Jain, 2007). Furthermore, we can simply
construct the Jain states by taking integer CF Landau level filling 𝜈∗ = 𝑘 (Blok and
Wen, 1990) and fixing 𝑝 = 1 so

𝜈Jain = 𝑘
2𝑘 + 1. (1.41)

These composite fermions will be the focus of the end of Chapter 5, where a field
theoretic method provides a novel understanding of these particles in the particularly
interesting 𝜈 = 1

2 phase.
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The Chern–Simons Effective Action 2

2.1 Chern–SimonsTheory of the IQHE

2.1.1 The Chern–Simons Action

The Quantum Hall state can be described by the Chern–Simons 2+1 dimensional topo-
logical quantum field theory (Frohlich and Zee, 1991). Let us motivate this action by
considering which terms we can construct from a 2+1 dimensional vector potential 𝐴𝜇.
We will be using differential form notation in this section, so the unfamiliar reader is
directed to Appendix A for a review.

The vector potential 1-form 𝐴 = 𝐴𝜇 d𝑥𝜇 has a topological current given by

𝐽 = 1
2𝜋 ⋆ d𝐴 , (2.1)

such that it is conserved identically in 2+1 dimensions

d†𝐽 = 1
2𝜋 ⋆ d2𝐴 = 0, (2.2)

and is gauge invariant under 𝐴 → 𝐴 + d𝜆. The factor of 1/2𝜋 in the current is simply
a normalisation.

In seeking a description of the integer QHE, we are looking for a low-energy (or
infrared) description of the gauge field. This means we must construct the action from
operators which are relevant with respect to the renormalisation group — relevant op-
erators are ones which have a scaling dimension less than 𝐷 = 3, and their couplings
increase as distance scales are increased. In our formation of an effective theory of the
QHE, we will describe the long-distance physics with a relevant term in the action
that encodes the universal properties of the QHE. Higher mass-dimension irrelevant
operators will describe non-universal microscopic properties of the state and can be
ignored at large distances.

Since 𝐴 has mass dimension 1 and 𝐽 has mass dimension 2, the lowest-dimension
3-form action we can construct using these two which involves derivatives of 𝐴 is the
marginal operator 𝐴𝜇𝐽𝜇 = 𝐴 ∧ ⋆𝐽, with mass dimension 3. This is the Chern–Simons
action, which when conventionally normalised is written as

𝑆CS = 1
4𝜋 ∫ 𝐴 ∧ d𝐴 . (2.3)

Other operators such as the Maxwell operator 𝐽 ∧ ⋆𝐽 are irrelevent in the IR and will
not affect the universal long-distance physics.
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. The Chern–Simons Effective Action

This CS theory has been argued to describe the long-distance physics of a 2+1
dimensional gauge field purely on symmetry and scaling grounds and so one expects
that this theory must arise generally as an effective theory in 2+1 dimensions. We will
later construct such a theory by integrating out fermions interacting with a gauge field,
which is physically motivated by the underlying physics of the quantum Hall effect. In
order to derive this effective theory we must only assume that the underlying theory
is gapped, and there exists an energy scale below which the dynamics of the heavy
fermions can be ignored.

This action is topological because 𝑆CS is an integral of a 3-form and is explicitly
independent of the metric 𝑔𝜇𝜈 when placed on a curved space M. This can be demon-
strated by evaluating the wedge product in coordinate basis

𝑆CS = 1
4𝜋 ∫ 𝐴𝜇𝜕𝜈𝐴𝜌 d𝑥𝜇 ∧ d𝑥𝜈 ∧ d𝑥𝜌 (2.4)

= 1
4𝜋 ∫ d3𝑥 𝜀𝜇𝜈𝜌𝐴𝜇𝜕𝜈𝐴𝜌, (2.5)

which only depends upon the Levi–Civita symbol 𝜀 and not the metric. Consequently
we see the stress tensor 𝑇𝜇𝜈, defined through 𝛿𝑆SC = ∫M 𝑇𝜇𝜈𝛿𝑔𝜇𝜈, is identically zero.

In 3+1 dimensions there are a slew of possible relevant actions which form possible
low-energy descriptions of quantum materials. Examples include ferromagnetic terms
n ⋅ B, (anisotropic) electric polarisation terms 𝛼𝑖𝑗𝐸𝑖𝐸𝑗, etc. These terms (which do
not have equivalents in 2+1 dimensions) have in common that they are constructed of
manifestly gauge invariant quantities B and E; in contrast, the Chern–Simons action
is constructed from the vector potential 𝐴𝜇. An important discussion which has so
far been deferred is the state of gauge invariance in the Chern–Simons theory. We
will later show that the action varies by a boundary term, and is only generally gauge
invariant if 𝑆 = 𝑘𝑆CS with a quantised coupling constant 𝑘 ∈ Z.

2.1.2 Gauge Invariance

The variation of the CS action by 𝛿𝐴, when on a flat and non-compact manifold M
with no boundaries, is

𝛿𝑆CS[𝐴] = 𝑘
4𝜋 ∫

M
[𝛿𝐴 ∧ d𝐴 + 𝐴 ∧ d𝛿𝐴] = 𝑘

2𝜋 ∫
M

𝛿𝐴 ∧ 𝐹 = 0. (2.6)

The stationary action condition gives the equation of motion d𝐴 = 0, which is the on-
shell flat-connection condition. Let us investigate the gauge transformation properties
of the CS action; the gauge variation in terms of the group element 𝑔 ∈ 𝑈(1) is

𝛿𝐴 = 𝑔−1 d𝑔 . (2.7)

Taking the group elements to be 𝑔 = exp(𝑖𝜆), then the variation is

𝛿𝐴 = d𝜆 . (2.8)
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Figure .: Examples of the categories of manifoldsM on which the Chern–Simons
gauge-invariance is discussed. (a) shows a non-compact open manifold, (b) shows an
manifold with a boundary 𝜕M, (c) shows a closed manifold.

Now again on a non-compact manifold there are no boundary terms and the CS vari-
ation is

𝛿𝑆CS[𝐴] = 𝑘
2𝜋 ∫

M
d𝜆 ∧ d𝐴 = 0. (2.9)

This action is therefore totally gauge invariant and well-defined on non-compact open
spaces without boundaries, as shown in Fig. 2.1a.

If instead we take M to be a manifold with a boundary 𝜕M (Fig. 2.1b), the varia-
tion picks up a total-derivative term

𝛿𝑆CS[𝐴] = 𝑘
2𝜋 ∫

M
𝛿𝐴 ∧ 𝐹 + 𝑘

4𝜋 ∫
M

d(𝐴 ∧ 𝛿𝐴) (2.10)

The on-shell condition 𝐹 = 0 removes the first term, and using Stokes’ theorem to
write the second term as a boundary integral gives

𝛿𝑆CS[𝐴] = 𝑘
4𝜋 ∫

𝜕M
𝐴 ∧ d𝜆. (2.11)

Therefore, on a manifold with boundaries, the Chern–Simons action is not gauge-
invariant. This non-zero variation is called a gauge anomaly of the theory and must be
dealt with carefully (Elitzur et al., 1989; Zumino et al., 1984).

However the case of a compact and closedmanifold is evenmore interesting (Fig. 2.1c).
Although this case has no boundary, it is still not invariant under so-called ‘large gauge
transformations’, which are not homotopically equivalent to the identity. The gauge
function 𝜆 along a cycle C on the manifold does not return to itself as it winds around
a full loop.

If we consider as an exampleMwith a compact time dimension and a spatial sphere
M = 𝑆1 ×𝑆2, we must identify the periodic ends of the time coordinate 𝜏 ∼ 𝜏 +𝛽. It
can be shown that this periodic-time theory is equivalent to placing the QFT at finite
temperature 𝛽−1 (Cabra et al., 1996). There now exist large gauge transformations
which wind 𝑁 times around the time coordinate

𝑔 = 𝑒2𝜋𝑖𝑁𝜏/𝛽. (2.12)
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. The Chern–Simons Effective Action

Figure .: A cycle (in blue) on the M = 𝑆2 × 𝑆1 manifold. The cycle winds around
the timelike manifold and is not contractible. Each spacial 𝑆2 manifold has 2𝜋 flux
penetrating its surface.

This group element is formed by taking 𝜆(𝜏, x) = 2𝜋𝑁𝜏/𝛽.
Separately, take the spatial volume to be unity and thread 2𝜋 of background mag-

netic flux through the surface of the sphere

∫
𝑆2

𝐹bg = 2𝜋. (2.13)

This configuration is shown in Fig. 2.2. Periodic time means there can exist gauge
transformations which are not homotopic to the identity involving the 𝜏 coordinate,
meaning they have a non-trivial winding number 𝑁 around the 𝑆1 manifold. Such a
transform in this system is

𝐴(𝜏) → 𝐴(𝜏) + 2𝜋𝑁
𝛽 d𝜏 (2.14)

which is constant in space; under this the total derivative term is

𝑘
4𝜋 ∫

M
d(𝐴 ∧ 𝛿𝐴) = 𝑘

4𝜋
2𝜋𝑁

𝛽 ∫
𝑆1

∫
𝑆2

d𝐴 ∧ d𝜏 = 2𝜋𝑁𝑘. (2.15)

This variation does not leave the action invariant, however the theory is unchanged if
the path integral 𝑍 = exp(𝑖𝑆CS) is invariant. Explicitly it changes as

𝑒𝑖𝑆CS → 𝑒𝑖𝑆CS𝑒2𝜋𝑁𝑘; (2.16)

the additional phase is 1 for all loops (𝑁 = 0, 1, … ) if 𝑘 is an integer. Therefore on a
closed manifold the Chern–Simons action can be made gauge invariant only if 𝑘 ∈ Z.

In conclusion, the Chern–Simons action cannot be well defined in isolation on
manifolds with a boundary. Instead the theory should be considered with non-compact
dimensions, or with periodic (closed) dimensions. We will later investigate the effect
of placing a quantum Hall fluid (described by a CS term) on a manifold with a bound-
ary, and the gauge variation on the boundary (2.11) will play a part in the ‘anomaly
cancellation’ story.
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2.1. Chern–Simons Theory of the IQHE

2.1.3 Emergence of the QHE

The path integral of the effective theory is written simply as the exponential of the CS
action with coupling constant, or ‘level’, 𝑘:

𝑍[𝐴] = 𝑒𝑖 𝑘𝑆CS[𝐴]. (2.17)

Here, the background gauge field plays the role of an external current which probes the
CS action. Expectation values of the ground state current 𝐽 can be evaluated by taking
functional derivatives of the partition function

⟨𝐽𝜇⟩ = −𝑖𝛿 log 𝑍
𝛿𝐴𝜇

. (2.18)

In contrast to usual descriptions, note that in this context 𝐽 is the operator and the
background field 𝐴 is its source. Since the gauge field always couples to currents like
𝐴𝜇𝐽𝜇 we can define the ground state current for the full theory to be

⟨𝐽𝜇⟩ = −𝑘 𝛿𝑆CS
𝛿𝐴𝜇(𝑥) = 𝑘

4𝜋 𝜀𝜇𝜈𝜌𝜕𝜈𝐴𝜌(𝑥). (2.19)

This is proportional to the topological current first introduced in (2.1). Evaluating the
components gives

⟨𝐽𝑖⟩ = 𝑘
4𝜋 2𝜀𝑖𝑗0𝜕𝑗𝐴0 = 𝑘

2𝜋 𝜀𝑖𝑗𝐸𝑗, (2.20)

⟨𝐽0⟩ = 𝑘
4𝜋 𝜀0𝑖𝑗𝜕𝑖𝐴𝑗 = 𝑘

2𝜋 𝐵. (2.21)

The first expression (2.20) gives an expression for the Hall current 𝐽2 in terms of the
applied electric field 𝐸1; as a result the CS action inherently describes a system with
Hall conductivity

𝜎𝑥𝑦 = 𝑘
2𝜋 . (2.22)

The quantised CS coupling (as a result of gauge invariance) therefore means the CS
action necessarily describes the integer quantum Hall effect with 𝜈 = 𝑘 filled Landau
levels. There exists a conserved charge associated with the spatial integral of 𝐽0; recall
that the number of electrons in each Landau level is

𝑔 = ∫ d2x
𝐵

2𝜋 , (2.23)

and therefore the charge is the number of electrons in 𝑘 filled Landau levels

𝑁𝑒 = 𝑘 ∫ d2x
𝐵

2𝜋 = 𝑘𝑔. (2.24)

The parity operator acts on the coordinates through 𝑃 𝜈
𝜇 = diag(1, −1, 1), and the

coordinates transform as 𝑥𝜇 → 𝑃 𝜈
𝜇 𝑥𝜈. The gauge field transforms in the same way
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. The Chern–Simons Effective Action

as the coordinates since it is a covariant vector (it is the components of a one-form).
Therefore under this transform the measure is invariant and the action transforms

𝜀𝜇𝜈𝜌𝐴𝜇𝜕𝜈𝐴𝜌 → −𝜀𝜇𝜈𝜌𝐴𝜇𝜕𝜈𝐴𝜌. (2.25)

This is affirming, since we expect to use the CS theory to describe a system in a mag-
netic field which inherently breaks parity. We have now checked that the CS action
possesses all of the required features needed for it to describe the integer quantum Hall
effect. There seems to be a contradiction at this stage: how can the fractional QHE
be described by the CS action when the results obtained thus far imply that we would
need a fractional 𝑘 which would not be gauge invariant? The answer will be delivered
later, and comes from the emergence of a new dynamical gauge field 𝑎 which is itself
charged under the background electromagnetic gauge field 𝐴.

2.1.4 Chern–Simons Effective Action & Parity Anomaly

The Chern–Simons action can be written down as an effective action of a gauge field 𝐴
interacting with massive Dirac fermions. This section will derive this important result,
which will uncover the parity anomaly of fermions in 2+1 dimensions. This result is
clearly pertinent to the quantum Hall system, where we expect the gauge field-electron
interaction to produce this action.

Consider the path integral of a theory with dynamical degrees of freedom interact-
ing in a background of an EM gauge field: integrating out all the matter fields defines
the generating functional in terms of only the gauge field

𝑍[𝐴𝜇] = ∫D(fields) 𝑒𝑖𝑆[fields;𝐴𝜇] (2.26)

and then the Chern–Simons action can be realised as its Wilsonian quantum effective
action

𝑖𝑆eff[𝐴𝜇] = log
𝑍[𝐴𝜇]
𝑍[0] . (2.27)

Since theCS action is parity-odd, we can seek for theCS term arising from the effective
theory by evaluating only the parity-odd components.

We can explicitly derive this effective action by considering a one-loop expansion
of a massive fermion model in 2+1 dimensions (Redlich, 1984b). This calculation must
be restricted to 𝐵 = 0 which will allow us to simply calculate the effective action, but
still serves to motivate how a CS term can arise by integrating out fermions. However
we will later offer more recent results which derives how the CS term appears even at
finite magnetic field, which is exactly the case we are interested in when describing the
QHE.

The path integral of the massive Dirac fermion is given by

𝑍[𝐴𝜇] = ∫D𝜓 ∫D ̄𝜓 exp[𝑖 ∫ d3𝑥 ̄𝜓 [𝑖/𝜕 + /𝐴 + 𝑚] 𝜓] (2.28)

For each fermion species, Fig. 2.3 shows the dispersion relation. The addition of a mass
gaps the spectrum into two spin-polarised bands, and the effective theory will be valid
when gauge-field momenta are well below the fermion mass 𝑚.
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2.1. Chern–Simons Theory of the IQHE

Figure .: Adding mass to the fermion splits its spectrum into two bands, a step
necessary to integrate out the fermions.

Parity inversion acts as 𝑥1 → 𝑥1 and 𝑥2 → −𝑥2, and acts on the fermion as 𝜓 →
𝜎2𝜓. The mass term 𝑚 ̄𝜓𝜓 breaks this Z2 parity symmetry, and therefore an effective
theory derived from a massive fermion may also break parity symmetry. The Chern–
Simons term is one such parity-odd term, and we will indeed find that it arises as a
quantum correction to the effective action (Redlich, 1984a). This result, wherein the
CS term breaks the classical parity symmetry of the gauge field, is dubbed the ‘parity
anomaly’.

An anomaly is a symmetry which is conserved in the classical action 𝑆, but is bro-
ken in the quantum path integral. In our example the tree-level effective action is
parity-symmetric but if one tries to quantise the massless theory there are IR diver-
gences which must be regulated with a mass. This mass term immediately breaks par-
ity symmetry (and so do the one-loop vacuum polarisation bubble diagrams which are
generated in perturbation theory), but this is an unavoidable step which must be taken
to have a regularised quantum theory (Ma, 2018). Therefore it can be shown that
the parity symmetry is not a true symmetry of the quantum theory, and the theory is
anomalous.

Explicitly integrating out the fermions, the path integral at one-loop is

log 𝑍[𝐴𝜇] = tr log(𝑖/𝜕 + /𝐴 + 𝑚) (2.29)

and the second-order expansion of the logarithm in 𝐴 is

𝑖𝑆eff = tr log [ 1
𝑖/𝜕 + 𝑚

/𝐴] + 1
2 tr log [ 1

𝑖/𝜕 + 𝑚
/𝐴 1

𝑖/𝜕 + 𝑚
/𝐴] + O(𝐴3). (2.30)

These first two terms are the tadpole diagram (which is evaluated to identically zero),
and the bubble diagram (shown in Fig. 2.4). This latter term leads to the vacuum
polarisation of the gauge field described by the polarisation tensor Π𝜇𝜈. The parity-
odd element of this term contributes to the parity anomaly (and we therefore suspect
it will contain the CS action, based on our RG arguments of Section 2.1.1). Explicitly
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𝑝 𝑝

𝑝 + 𝑘

𝑘

Figure .: One-loop Feynman diagram which contributes the CS term.

evaluating this term

𝑖𝑆eff = 1
2 ∫ d3𝑝

(2𝜋)3 𝐴𝜇(𝑝) Π𝜇𝜈
odd(𝑝) 𝐴𝜈(−𝑝), (2.31)

Π𝜇𝜈
odd = odd ∫ d3𝑘

(2𝜋)3 tr[𝛾𝜇 /𝑝 + /𝑘 − 𝑚
(𝑝 + 𝑘)2 − 𝑚2 𝛾𝜈 /𝑘 − 𝑚

𝑘2 − 𝑚2 ]. (2.32)

The parity transform on (2.31) takes 𝑝 ↔ −𝑝 and hence the parity-odd component of
Π𝜇𝜈 is its antisymmetric part Π[𝜇𝜈]. Evaluate this using the only antisymmetric trace
contribution tr(𝛾𝜇𝛾𝜈𝛾𝜌) = −2𝜀𝜇𝜈𝜌 in 2+1 dimensions. Evaluating the odd part of
the polarisation tensor gives

Π𝜇𝜈
odd(𝑝) = 2𝑚 ∫ d3𝑘

(2𝜋)3
𝜀𝜇𝜈𝜌𝑘𝜌 + 𝜀𝜇𝜌𝜈(𝑝𝜌 + 𝑘𝜌)

[(𝑝 + 𝑘)2 − 𝑚2] [𝑘2 − 𝑚2]
(2.33)

= 2𝑚 𝜀𝜇𝜈𝜌𝑝𝜌 ∫
1

0
d𝑥 ∫ d3𝑄

(2𝜋)3
1

[𝑄2 + 𝐷(𝑥, 𝑝2)]2 (2.34)

when evaluated using Feynman’s integral trick, with 𝐷(𝑥, 𝑝2) = 𝑚2 + 𝑝2𝑥(1 − 𝑥).
Evaluate this integral using the Euler gamma function identities, then take the limit
𝑚2/𝑝2 → ∞, which represents the correct hierarchy of energy scales for the effective
theory, to give

Π𝜇𝜈
odd(𝑝) = 2𝑚 𝜀𝜇𝜈𝜌𝑝𝜌 ∫

1

0

d𝑥
8𝜋

1
√𝐷

→ sign 𝑚
4𝜋 𝜀𝜇𝜈𝜌𝑝𝜌. (2.35)

This is compatible with the effective field theory limit, where all momenta are much
lower than the mass of the fermion being integrated out 𝑝2 ≪ 𝑚2. Using (2.31) and
moving back to real space to recover the form of the Chern–Simons action

𝑆eff = sign 𝑚
2

1
4𝜋 ∫ d3𝑥 𝜀𝜇𝜈𝜌𝐴𝜇𝜕𝜈𝐴𝜌 = sign 𝑚

2
1

4𝜋 ∫ d3𝑥 𝐴 ∧ d𝐴 . (2.36)

Extending the action to contain 𝑘 identical copies of the fermion,

𝑍[𝐴𝜇] =
𝑘

∏
𝑖=1

∫D𝜓𝑖 ∫D ̄𝜓𝑖 exp[𝑖 ∫ d3𝑥 ̄𝜓𝑖 [𝑖/𝜕 + /𝐴 + 𝑚] 𝜓𝑖], (2.37)
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then integrating them out gives the following CS action

𝑆eff = sign 𝑚
2

𝑘
4𝜋 ∫ d3𝑥 𝐴 ∧ d𝐴 . (2.38)

This is the level-𝑘/2 CS action, which is gauge invariant on an open manifold. If we
want to extend the analysis to a closed manifold then we must choose a regularisation
scheme — if possible — to preserve the gauge symmetry. Failure to do so would result
in a fatal gauge anomaly. Note that this coupling does not get renormalised at higher-
loops due to the topological nature of this term (Coleman and Hill, 1985).

The divergences of the theory have not been avoided; the parity-even component
of the polarisation tensor (2.32) contains a divergent term

Π𝜇𝜈
div(𝑝) = ∫ d3𝑘

(2𝜋)3
tr(𝛾𝜇𝛾𝜌𝛾𝜈𝛾𝜎)𝑘𝜌𝑘𝜎

[(𝑝 + 𝑘)2 − 𝑚2][𝑘2 − 𝑚2]
(2.39)

= 3 ∫ d3𝑘
(2𝜋)3

2𝑘𝜇𝑘𝜈 − 𝑘2𝜂𝜇𝜈

[(𝑝 + 𝑘)2 − 𝑚2][𝑘2 − 𝑚2]
. (2.40)

This scales as ∼ ∫ d3𝑘 /𝑘2, or in polar coordinates ∼ ∫ d𝑘 which means it has a linear
UV divergence (Fradkin, 2020a). A Pauli–Villars (PV) regulator must be introduced
to cancel this UV divergence, which is done by introducing a heavy fermion with mass
|𝑀| ≫ 𝑚 for every fermion of the theory (Turner, 2019, Sec. 9.2). These auxiliary fields
are decoupled by taking |𝑀| → ∞ and integrating them out as well as the original fields

𝑆PV[𝐴𝜇] = 𝑆eff[𝐴𝜇] − lim
𝑀→±∞

𝑆eff[𝐴𝜇, 𝑀] (2.41)

= sign 𝑚 + sign 𝑀
2

1
4𝜋 ∫ d3𝑥 𝐴 ∧ d𝐴 . (2.42)

The PV fields not only cancel the linear UV divergence, but they also contribute a
half-quantised CS term when they are integrated out, with a ± sign depending on 𝑚.
Taking the limits 𝑚 → +∞, 𝑀 → −∞ then gives an integer-quantised CS action

𝑆PV[𝐴𝜇] = 𝑘
4𝜋 ∫ d3𝑥 𝐴 ∧ d𝐴 . (2.43)

This remarkably is gauge invariant on all manifolds, resolving the gauge anomaly at
the expense of retaining the parity anomaly. This effective action of the gauge field
interacting with infinitely massive fermions has a quantum correction which leads to
parity non-invariance, despite the infinitely massive fermions themselves being parity
conserving. Alternatively, taking the limits 𝑚 → +∞, 𝑀 → +∞ means the PV
fermions exactly cancel the contribution of the dynamical fermions, removing the CS
action from the effective action. In this regularisation scheme the parity symmetry is
preserved and there is no anomaly.

2.1.5 Effective Action at 𝐵 ≠ 0
The previous Section demonstrated the emergence of the CS action from a gauge field
interacting with 2+1 dimensional massive fermions. However there is a problem if we
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hope to use this result in the context of the quantum Hall effect: the calculation was
performed at zero background magnetic field. Recent work has been able to calculate
the effect of turning on a background 𝐵 field, and confirm that a Chern–Simons action
indeed appears in this context too.

Let us walk through the previous derivation in order to understand how the as-
sumption of zero magnetic field affected the calculation. The polarisation tensor was
defined through the expansion in the perturbation 𝑉 = /𝐴

𝑖𝑆eff = log det(1 + 𝐺0𝑉) (2.44)

= tr(𝐺0𝑉) − 1
2 tr(𝐺0𝑉𝐺0𝑉) + ⋯ , (2.45)

where 𝐺−1
0 = 𝑖/𝜕 + 𝑚 is the inverse free propagator. The expansion of this second

order term (2.31) involved the trace over the whole Hilbert space of the intermediate
fermions. When the system is in a magnetic field, the physical states of the fermion
are not continuous-momentum representations, but instead are discrete Landau levels
in energy. Generally one would expect the propagator amplitude to depend upon the
density of states of the virtual particles which appear in loops, and indeed this case is
an extreme example where the only allowed states are discrete levels.

Now let us aim to perform this calculation with a magnetic field present; consider
the non-relativistic fermion as a more simple example (Abanov and Gromov, 2014).
This has the action

𝑆NR = ∫ d3𝑥 [𝜓†(𝑖𝜕0 + 𝐴)𝜓 − 1
2𝑚|(𝜕𝑖 − 𝑖𝐴𝑖)𝜓|2] , (2.46)

which has a quadratic dispersion in the free theory. Rather than perturbing around
a small gauge field 𝐴 (as in the previous example), in the presence of a constant (and
potentially large) backgroundmagnetic field 𝐵 wemust expand around this background
gauge field 𝐴 = 𝐴 + 𝛿𝐴 in a small perturbation 𝛿𝐴. The presence of a magnetic field
in 𝐴 splits the spectrum of fermions into Landau levels at all orders in perturbation
theory, and the Hilbert space of the virtual fermions is now the Hilbert space of the
harmonic oscillator (generated by ladder operators 𝑎, 𝑎†). The spectrum of the fermions
is split as shown in Fig. 2.5.

This action has inverse free propagator 𝐺−1
0 = 𝑖𝜕0 −|𝜕𝜇 −𝑖𝐴𝜇|2/2𝑚, and perturba-

tion 𝑉 = 𝛿𝐴0 + |𝜕𝜇 − 𝑖𝛿𝐴𝜇|2/2𝑚. The calculation presented by Nguyen and Gromov
(2016) evaluates the effective action of the gauge field when the fermion is integrated
out, and only appears as a virtual particle in loops. The strength of the background
magnetic field sets the Fermi level of these virtual fermions, and dictates how many
Landau levels are filled; call this number of filled levels 𝑁 and then the gauge field’s
one-loop effective action is

𝑆eff = 𝑁
4𝜋 ∫ d3𝑥 [𝐴 ∧ d𝐴 + ⋯] . (2.47)

This is a level-𝑁 Chern–Simons action, and the terms in ‘⋯’ depend only on 𝛿𝐸 and 𝛿𝐵
which are not topological. It intuitively makes sense that the CS level is proportional
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Figure .: Non-relativistic dispersion is split into Landau levels in a magnetic field.
The vacuum has no states occupied.

to the number of occupied Landau levels of intermediate virtual fermions — if, for
example, there were no occupied levels then there could be no fermions propagating
around the loop to contribute to the quantum effective action. Moreover, for each level
filled there will be a step in the number of electrons which can contribute to the vacuum
polarisation, increasing the CS level as if a separate fermion species were added to the
UV theory.

Next, we will examine the relativistic and massless Dirac theory

𝑆Dirac = ∫ d3𝑥 𝜓(𝑖/𝜕 + /𝐴)𝜓, (2.48)

where again 𝐴 = 𝐴 + 𝛿𝐴, and the background field is nonzero 𝐵 ≠ 0. The Dirac-cone
spectrum of the relativistic virtual fermions are again split into Landau levels by the
background field; when filled up to the Dirac point in the zero-field theory, there is
a Dirac sea of filled states with negative energy. In the presence of a magnetic field,
this sea is replaced by a Dirac ladder of occupied negative energy states, and the ℓ = 0
level is half-filled, as shown in Fig. 2.6. Compared to the effective action derived in
Section 2.1.4, this Dirac fermion did not need to have a mass introduced for it to be
integrated out. The magnetic field naturally gaps the system, and an effective theory
can be derived at energies much below the gap spacing 𝜔𝑐.

Now by varying the magnetic field, we will also adjust the number of filled Landau
levels 𝑁 above the vacuum which are occupied. The equivalent calculation of the effec-
tive action in this Dirac case yields a 𝑁 + 1

2 level Chern–Simons term; the difference
of a half is due to the 𝑁 = 0 limit corresponding to the half-filled ℓ = 0 Landau level,
which still contributes to the level. Physically this may be seen from Fig. 2.6; because
the excitations across the Fermi level cancel, in effect the only contribution of the filled
Dirac sea is to contribute an additional 1

2 to the level.
This result of an additional 1

2 contribution to the CS level will be important later
in the dissertation when we must again consider the Dirac action in a magnetic field.
In this future case the Dirac field has a different physical interpretation, but the half-
filled zero Landau level of the Dirac ladder vacuum will adjust observables such as the
conductivity of the model in the same way.
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Figure .: Relativistic Dirac dispersion is split into Landau levels in a magnetic field.
The vacuum is a ‘Dirac ladder’ with all negative energy Landau levels filled, as well as
half-filling the ℓ = 0 Landau level.

2.2 QuantumHall Boundary Anomaly

2.2.1 Relativistic Fermions from BandTheory

In Section 1.2.2 we have motivated the idea that the Hall states should support some
sort of chiral fermion at its edges, but we are yet to see how this result fits in with the
Chern–Simons approach to the edge. We will find that the presence of such chiral
fermions constitutes a ‘chiral anomaly’, and that it is only resolved through its conjunc-
tion with the gauge anomaly of the CS action at a boundary.

Let us now consider a general 1+1 dimensional fermion theory constituted of a
number of bands; we will show that at a finite-filling the excitation spectrum looks
like a theory of relativistic fermions. Moroever, there exists an important theorem
in condensed matter and high-energy physics: the Nielson–Ninomiya theorem which
states that chiral fermions are forbidden on a lattice, and so these excitations must be
Dirac fermions (Nielsen and Ninomiya, 1981b; Karsten, 1981). To understand this we
recall the topological proof provided by Nielsen and Ninomiya (1981a), which begins
by considering the spectrum of a generic 1+1 dimensional fermionic Hamiltonian.

The generic 1+1 dimensional Hamiltonian has no band degeneracies and crosses
the Fermi level with a non-zero gradient. Considering in isolation each pair of bands,
the theory describing them as a two-level system is described by 2 × 2 Bloch Hamilto-
nians. Because in 1+1 dimensions the momentum constitutes one degree of freedom,
tuning the eigenvalue these matrices to a specific energy requires fixing three param-
eters and therefore the bands cannot generically be made to cross. However a subset
of bands may intersect the Fermi level (set to 𝜔 = 0), and give rise to gapless exci-
tations, which is the behaviour of a metal. The Taylor expansion of the bands about
this point are 𝜔(𝑝) = 𝑣(𝑝 − 𝑝𝑖) where 𝑣𝑖 = 𝜕𝜔/𝜕𝑝|𝑝𝑖

defines the velocity of each
excitation’s propagation. Now, on a lattice, momentum 𝑝 is periodic and so the bands
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2.2. Quantum Hall Boundary Anomaly

Figure .: The spectrum of a generic Hamiltonian filled up to zero energy; bands
which cross the zero of energy have massless excitations. The chirality of the excitations
is set by their gradient as they cross the Fermi level, and there must be as many left-
handed excitations as right-handed ones.

lie in the ‘Brillouin zone’. Each band must be periodic over the Brillouin zone and
must therefore cross the Fermi level the same number of times upwards as downwards;
equivalently, we could say for every 𝑣 > 0 crossing there must be a 𝑣 < 0 crossing as
shown in Fig. 2.7.

Importantly we can interpret these left- and right-moving excitations as chiral
fermions through inspection of the 1+1 dimensional Dirac action:

𝑆 = 𝑣 ∫ d2𝑥 Ψ 𝑖/𝜕 Ψ. (2.49)

Its equation of motion is
(𝛾0𝜕𝑡 + 𝛾1𝜕𝑥) Ψ = 0 (2.50)

and using the Clifford algebra we rearrange to a Hamiltonian expression

𝑖𝜕𝑡Ψ = −𝑖𝛾0𝛾1𝜕𝑥Ψ. (2.51)

In 1+1 dimensions work in the chiral basis then the chirality operator is 𝛾5 = 𝜎𝑧 (see
Appendix A). Consequently, the eigenstates of chirality Ψ± are written simply as

Ψ+ = (𝜓+
0 ) , Ψ− = ( 0

𝜓−
) . (2.52)

These have ±1 eigenvalues 𝛾5Ψ± = ±Ψ±. The Hamiltonian (2.51) acting on parity
eigenstates gives

𝑖𝜕𝑡Ψ±(𝑥) = (−𝑖𝜕𝑥)𝛾5Ψ±(𝑥) (2.53)
= ±(−𝑖𝜕𝑥)Ψ±(𝑥) (2.54)
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which implies 𝜔𝑝 = ±𝑝. In the linear dispersion regime this shows the two chiralities
are left- and right-movers with positive and negative velocities (Witten, 2015). To-
gether with the Nielson–Ninomiya theorem, this result implies that in 1+1 dimensions
on a lattice, there must be as many left-handed fermions as right-handed ones. This
is relevant for general 1+1 dimensional condensed matter systems when electrons live
on a chain of atoms: the lattice structure provided by this system guarantees that the
Brillouin zone is periodic, and therefore that the fermion excitations have a relativistic
(and achiral) Dirac nature.

We find the Hamiltonian density of (2.49)

𝜛 = 𝜕L
𝜕𝜕𝑡Ψ

= 𝑖𝑣Ψ† ⟹ H = 𝑣Ψ†(−𝑖𝜕𝑥)𝛾1Ψ, (2.55)

which, if the state were to contain only one chirality eigenstate Ψ = Ψ± (which would
only be possible in a continuous theorem, to evade the NN theorem) then this reduces
to

H = ±𝑣 𝜓∗
±(−𝑖𝜕𝑥)𝜓±. (2.56)

Alternatively, if the state contains both eigenstates Ψ = Ψ+ + Ψ− (as must be true on
a lattice) then the Hamiltonian is

H = 𝑣Ψ∗(−𝑖𝜕𝑥)𝜎3Ψ (2.57)
= −𝑣𝜓∗

−(−𝑖𝜕𝑥)𝜓− + 𝑣𝜓∗
+(−𝑖𝜕𝑥)𝜓+, (2.58)

and the theory decouples into the sum of a chiral and antichiral fermion. This fac-
torisation means that the classical action has two separate 𝑈(1) phase symmetries
𝜓± → 𝑒𝑖𝛼±𝜓±. In terms of the Dirac fermion Ψ in the chiral basis, the generators
of the symmetries are (1 ± 𝜎𝑧)/2, which indeed commute with the Hamiltonian of
the theory. This leads to the charges 𝜌± = |𝜓±|2 being individually conserved, which
means that although we can excite a right-moving fermion to a higher energy (Fig. 2.8),
we cannot turn it into a left-mover (Tong, 2018).

From a different perspective, the classical 1+1 dimensional fermion action (2.49)
has a vector symmetry Ψ → 𝑒𝑖𝛼Ψ and axial symmetry Ψ → 𝑒𝑖𝛼𝛾5Ψ. The charges
associated with the vector and axial symmetries are defined in terms of the generators
of the transformation (1 and 𝜎𝑧 for the vector and axial symmetries, respectively)

𝜌𝑉 = Ψ† 1 Ψ = |𝜓+|2 + |𝜓−|2 (2.59)
𝜌𝐴 = Ψ† 𝜎𝑧 Ψ = |𝜓+|2 − |𝜓−|2. (2.60)

Because of the individual conservation of the 𝜌± charges, both the vector and axial
currents are conserved classically.

2.2.2 Chiral Anomaly

Does this necessarily mean the quantum field theory will inherit the same symmetry
group? In fact it need not — although the classical action is invariant under axial
transformations, the quantum theory may vary. The general process wherein a classical
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2.2. Quantum Hall Boundary Anomaly

Figure .: Excitations of the Dirac spectrum with chiral and antichiral branches
preserve the chirality of fermions.

symmetry is broken by quantisation is called an anomaly, and it can be traced to the
fact that the path integral measure varies under symmetry transformations.

Working purely in 1-dimension, there is a simple demonstration of this so-called
‘axial anomaly’ by turning on a (non-dynamical) background gauge field under which
the fermions are charged with coupling 𝑒

𝑆gauged chiral[𝐴] = 𝑣 ∫ d2𝑥 Ψ (𝑖/𝜕 + 𝑒 /𝐴) Ψ, (2.61)

In the classical theory, the action (2.61) remains invariant under axial transformations.
In the quantum theory however, the ground state is a filled Fermi sea of electrons, and
we can get an intuitive picture of the anomaly by considering their behaviour under
an applied electric field. Adiabatically applying an electric field 𝐸 causes a shift in
momentum of each electron Δ𝑝 = 𝑒𝐸Δ𝑡 in time Δ𝑡. The density of states of linear
bands in 1D is a constant 1/2𝜋, and so the change of density of right/left-moving
charge is

̇𝜌± = ± 𝑒𝐸
2𝜋 . (2.62)

This shows that the electric field shifts the right-moving electrons into higher momen-
tum states, and left-moving electrons into lower momentum states. The total num-
ber of electrons 𝜌𝑉 = 𝜌+ + 𝜌−, associated with the vector symmetry is conserved by
(2.62). However the difference between left-moving and right-moving chiral fermions
𝜌𝐴 = 𝜌+ − 𝜌−, which represents the total electric charge, is not conserved

̇𝜌𝐴 = 𝑒𝐸
𝜋 . (2.63)

This violates the rule, due to axial symmetry, that chiral fermions cannot be excited
into a state with the opposite chirality. The electric field was able to increase the charge
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Figure .: Under the application of the electric field there is a chiral anomaly wherein
the chirality of fermions is not preserved.

in the right-moving sector because there is an infinite sea of negative-energy states, as
shown in Fig. 2.9. This would not be possible in a finite system and it is in this sense
that we can say the anomaly exists only in a continuum quantum field theory.

More formally, the quantum theory is defined through its partition function

𝑍[𝐴] = ∫DΨDΨ 𝑒𝑆gauged chiral[𝐴]; (2.64)

if the classical action 𝑆gauged chiral[𝐴] is invariant under chiral transformations, then the
anomaly must be due to the transform of the measureDΨDΨ. Appendix B shows that
in the quantum theory the path integral measure transforms under a chiral transform
𝛿Ψ = 𝑖𝜆(𝑥)𝛾5Ψ goes as

DΨDΨ → DΨDΨ exp(𝑖 ∫ d2𝑥 𝜆(𝑥) 𝜕𝜇𝐽𝜇
𝐴). (2.65)

Under the anomaly the axial current, given by

𝐽𝜇
𝐴 = 𝑖𝑒 Ψ𝛾𝜇𝛾5Ψ, (2.66)

is not conserved
𝜕𝜇𝐽𝜇

𝐴 = 𝑒𝐹01
𝜋 . (2.67)

Together this allows the definition of the anomalous action

𝑆anom = 𝑒
𝜋 ∫ d2𝑥 𝜆(𝑥) 𝐹01. (2.68)
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This is a 1+1 dimensional equivalent of the Adler–Bell–Jackiw (ABJ, or chiral) anomaly
(Adler, 1969; Bell and Jackiw, 1969), which was originally discovered by computing the
triangle diagrams of a free fermion in 3+1 dimensions. This massless theory classically
has an axial symmetry but the massive counterpart does not — the non-conservation
of the global axial symmetry is proportional to the mass 𝑚. However ABJ found that
there exists an anomaly term due to these triangle diagrams which does not disappear
for massless fermions.

One could choose a regularisation scheme which instead preserves the axial sym-
metry but breaks the vector symmetry, but we choose not to do this because we intend
to identify the vector symmetry with the physical 𝑈(1) of electromagnetism (by cou-
pling to 𝐴𝜇, its vector potential). Of course it is therefore possible to gauge the axial
symmetry and break the vector symmetry with an anomaly, but this theory is not of
interest here since we are seeking a theory that preserves electromagnetism.

In components 𝐹01 = 𝐸 and 𝐽0
𝐴 = 𝜌𝐴, therefore (for spatially constant variations)

the anomaly (2.63) is reproduced from the non-conservation equation (B.25).
We have reviewed theNielson–Ninomiya theoremwhich shows that chiral fermions

are not classically allowed in 1D because they must be accompanied by an opposite-
chirality partner. However in the presence of anEMfieldwe showed the chiral anomaly
leads to non-conservation of the axial current and a buildup of electric charge.

2.2.3 Anomaly Inflow

Previously we found that the Chern–Simons action on a manifold with boundaries has
a fatal gauge anomaly, and stated that this forbids the consistent definition of a Chern–
Simons action on such manifolds. However this is not necessarily the case, and indeed
we will show that the chiral anomaly at the edge acts to cancel the gauge anomaly in
the bulk. The missing element of the previous discussion was the behaviour of the edge
modes; in this section we will show that there exist massless chiral fermions at the edge
of the Chern–Simons fluid which cannot be integrated out. These fermions suffer from
the chiral anomaly, and the gauge anomaly arises due to the ‘inflow’ of this. When the
system is considered as a whole, it can be understood consistently.

Recall Section 2.1.4 where we derived the Chern–Simons bulk effective theory
from the (UV) action

𝑆 = ∫ d3𝑥 Ψ(𝑖/𝜕 + /𝐴 + 𝑚)Ψ. (2.69)

We found that integrating out the massive fermions does not decouple the low-energy
spectrum (due to the topological Chern–Simons action which emerges at one-loop).
With a suitable Pauli–Villars regularisation, the effective action is the level-1 CS action
𝑆eff = 𝑆SC. On a manifold with boundaries, and under the gauge transform 𝛿𝐴 = d𝜆
the CS variation (2.10) has the anomaly (2.11)

𝛿𝑆anom = 𝑘
4𝜋 ∫

𝜕M
d𝜆 ∧ 𝐴. (2.70)

Generally the 1+1 dimensional boundary of the theory (2.69) supports gapless chiral
fermions which cannot be integrated out — if we do include their behaviour in our
theory then the gauge anomaly is cancelled and the theory is healthy.
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Figure .: Profile of the mass function which crosses zero at 𝑦 = 0. Here there
exist massless fermions, but in the bulk the fermion spectrum is gapped, allowing them
to be integrated out.

Indeed, it can be generally argued that in order to cancel the gauge anomaly, the
system must contain gapless chiral fermions (Witten, 2015). They must be gapless so
that they cannot be integrated out, and their chiral nature means that they are indeed
anomalous and could not exist in a purely 1+1 dimensional system. The boundary
theory hence cannot be consistently written down as a purely local theory on the edge
of the sample, and can only exist in conjunction with a Chern–Simons bulk and its
gauge anomaly (Maeda, 1996).

We can produce a simple model with this behaviour by localising the fermions in
(2.69) around 𝑥2 = 0 — this is achieved through tuning the mass to be dependent
on 𝑦 = 𝑥2 (Callan and Harvey, 1985). When 𝑚(𝑦) changes sign, it can be shown
that there must emerge a gapless fermion in 1 spatial dimension, as shown in Fig. 2.10
( Jackiw and Rebbi, 1976). The action written in terms of 𝑥 = (𝑡, 𝜎) and 𝑦 is

𝑆 = ∫ d2𝑥 ∫ d𝑦 Ψ(𝑥, 𝑦)(𝑖/𝜕 + /𝐴 + 𝑖𝛾5𝜕𝑦 + 𝑚(𝑦))Ψ(𝑥, 𝑦), (2.71)

where we have chosen a representation of the 2+1 Clifford algebra with the extra matrix
given by the chirality operator 𝛾5 = 𝛾2 of the 1+1 dimensional algebra. This has the
equation of motion

[𝑖/𝜕 + 𝑖𝛾5𝜕𝑦 + 𝑚(𝑦)] Ψ(𝑥, 𝑦) = 0, (2.72)

and we may find bound states of Ψ when 𝐸 < 𝑀. These states are necessarily gapless
and exist at 𝑦 = 0. In the chiral representation Ψ = (𝜓+, 𝜓−), the equation of motion
implies

𝑖 [𝜕𝑦𝜓+ + (𝜕𝑡 + 𝜕𝜎) 𝜓−] = −𝑚(𝑦)𝜓+ (2.73)

𝑖 [(𝜕𝑡 − 𝜕𝜎) 𝜓+ − 𝜕𝑦𝜓−] = −𝑚(𝑦)𝜓−. (2.74)

There is only one gapless normalisable solution at the edge:

Ψ(𝑥, 𝑦) = (𝜓+(𝑥, 𝑦)
𝜓−(𝑥, 𝑦)) = 𝑒− ∫𝑦

−∞d𝑦′𝑚(𝑦′) (𝜒+(𝑥)
0 ) (2.75)
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which is an emergent massless chiral fermion ‘zero mode’ localised at 𝑚(𝑦) = 0 which
satisfies (𝜕𝑡 − 𝜕𝜎) 𝜒+(𝑥) = 0.

The action for these 1+1 dimensional fermion zero modes has a chiral anomaly
given by (2.68), since it inherits the interaction with the gauge field 𝐴 through its
embedding in 2+1 dimensional space. The edge’s axial-current nonconservation is given
by

𝜕𝜇𝐽𝜇
𝐴 = 𝑒𝐹01

2𝜋 , (2.76)

We showed before in Eq. 2.63 that this implies the accumulation of edge charge at a
rate ̇𝜌edge = 𝑒𝐸/𝜋 . Note that the factor of a half arises because 𝜒+ is a Weyl and not a
Dirac fermion. The gauge anomaly (2.11) can be expressed as the fact that the current

𝐽𝜇
gauge = 𝑒

4𝜋 𝜀𝜇𝜈𝜌𝐹𝜈𝜌 (2.77)

is conserved within the bulk but not on the edge (Dunne, 1999). This gauge nonin-
variance leads to an accumulation of charge at a rate given by the 𝑦-component of the
current

𝐽2
gauge = 𝑒𝐹01

2𝜋 , (2.78)

which explains the source of charge accumulation in the chiral edge fermion sector, as
depicted in Fig. 2.11. Indeed in both theories, the nonconservation of a classically-
conserved current is due to anomalies, but they cancel through the general process of
anomaly cancellation. In the quantum Hall context it not only renders our theory well
defined on a finite system with edges (of obvious relevance to experimental realisations
of the phase), but the properties of the anomalous edge modes will further produce
interesting features of the QH phases.

At the level of actions, the anomalies will also explicitly cancel. The chiral fermion’s
anomaly is

𝛿𝑆A = 1
2𝜋 ∫ d2𝑥 𝜆(𝑥)𝐹01 (2.79)

under chiral transformations. Note that the factor of a half arises because 𝜒+ is a Weyl
and not a Dirac fermion. Evaluating the bulk’s gauge anomaly (2.70) of the fermion
theory which manifests as an integral over this 𝑦 = 0 boundary (Elitzur et al., 1989),
and integrating by parts gives

𝛿𝑆gauge = − 1
4𝜋 ∫ 𝜆(𝑥) d𝐴 = − 1

4𝜋 ∫ 𝜆(𝑥)𝐹𝜇𝜈𝜀𝜇𝜈 d𝑥0 ∧ d𝑥1 (2.80)

= − 1
2𝜋 ∫ 𝜆(𝑥)𝐹01 d2𝑥 , (2.81)

and hence this term is cancelled by the chiral anomaly of the fermion zero modes

𝛿𝑆gauge + 𝛿𝑆A = 0. (2.82)

Since the failure of gauge invariance is quantised in 𝑘 and must be equal to the
chiral anomaly, then indeed the chiral number 𝑛+ − 𝑛− = 𝑘 must too be quantised.
This leads to the quantised edge conduction that Laughlin predicted.
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Figure .: Cancellation of the bulk anomaly current and the time-dependent edge
current.

2.3 Chern–SimonsTheory of the FQHE

2.3.1 Statistical Gauge Field

The Chern–Simons action can also be used to describe the fractional quantum Hall
effect, and indeed this will be the arena in which the action is most powerful. However
in order to describe the FQHE by using the Chern–Simons action we must violate
some of the assumptions developed for the IQHE. Specifically the level 𝑘 must be
made non-integer, which naïvely appears to violate the requirement of quantised level
imposed by gauge considerations. Surprisingly it is possible to use massive ‘topological’
fields to change the effective level of the background CS term when they are integrated
out (Zhang et al., 1989). The emergent degrees of freedom which have this topological
property take the form of a statistical gauge field, 𝑎, which is a dynamical field of the the-
ory arising from the collective behaviour of the full UV theory of interacting fermions.
We will develop the framework which shows that when this field is coupled to matter
fields, it attaches flux to them and acts to change their statistics. The effective action
which includes the gauge field behaviour is given

𝑒𝑖𝑆[𝑎,𝐴] = ∫D(fields) 𝑒𝑖𝑆UV[fields,𝑎;𝐴] (2.83)

Indeed, it is the presence of strong interactions which leads to the emergence of such
a gauge field; Lopez and Fradkin (1991) show that the theory of particles interacting
under a strong 2-point interaction 𝑉(|x𝑖 − x𝑗|) is equivalent to a theory with a new
‘statistical’ gauge field with a level-𝑚 Chern–Simons term

𝑚 𝑆CS[𝑎] = 𝑚
4𝜋 ∫ 𝑎 ∧ d𝑎 . (2.84)

The second ingredient needed is for the statistical gauge field to be charged under the
background 𝑈(1) of electromagnetism. The term which achieves this is the ‘BF term’
(Horowitz, 1989), given

𝑆BF[𝑎, 𝐴] = 1
2𝜋 ∫ 𝑎 ∧ d𝐴 . (2.85)

We have now motivated the following action which is proposed to describe the
fractionalQHEusing a dynamical statistical gauge field. This theory is derived through
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integrating out the UV degrees of freedom of the fermions to leave the effective theory

𝑆[𝑎, 𝐴] = ∫ [− 𝑚
4𝜋 𝑎 ∧ d𝑎 + 1

2𝜋 𝐴 ∧ d𝑎] . (2.86)

We will analyse this theory and show how the excitations of 𝑎 are charged under the
background EM field and are massive — these will be anyonic particles of the FQHE
which have fractional exchange statistics.

In order to gain further physical intuition for the 𝑎 gauge field combine it with a
Maxwell term normalised by the dimensionful scale [𝜇] = 1

∫ [ 𝑘
4𝜋 𝑎 ∧ 𝑓 − 1

𝜇𝑓 ∧ ⋆𝑓 ] (2.87)

which is called the Chern–Simons–Maxwell theory. Varying 𝛿𝑎, and defining 𝑓 = d𝑎,

𝑘
4𝜋 [𝛿𝑎 ∧ d𝑎 + 𝑎 ∧ d𝛿𝑎] − 2

𝜇𝛿 d𝑎 ∧ ⋆𝑓 = 0 ⟹ 𝑘
2𝜋 𝛿𝑎 ∧ 𝑓 + 2

𝜇𝛿𝑎 ∧ d ⋆ 𝑓 = 0
(2.88)

and using d†𝑓 = ⋆ d ⋆ 𝑓 gives the equation of motion

d ⋆ 𝑓 + 𝑘𝜇
4𝜋 𝑓 = 0 ⟹ d†𝑓 + 𝑘𝜇

4𝜋 ⋆𝑓 = 0 ⟺ 𝜕𝜇𝑓 𝜇𝜈 − 𝑘𝜇
4𝜋 𝜀𝜈𝜌𝜎 𝑓𝜌𝜎 = 0. (2.89)

The inclusion of the Chern–Simons action has modified the usual Maxwell equations
by giving the photon a mass. Combine the equations (2.89) for d ⋆ 𝑓 and ⋆ d ⋆ 𝑓 to get

d[d†𝑓 ] = ( 𝑘𝜇
4𝜋 )

2
𝑓 . (2.90)

To see this explicitly, trial the ansatz 𝑓 ∼ 𝑒𝑖𝑝𝑥 and evaluate the adjoint derivative using
the Laplacian Δ = d d† = −𝜕2 (when d𝑓 = 0) in

d d†𝑓 = Δ𝑓 = 𝑝2 𝑓 (2.91)

and therefore

𝑝2𝑓 = ( 𝑘𝜇
4𝜋 )

2
𝑓 (2.92)

which implies the spectrum has a gap

𝜔 = 𝑘𝜇/4𝜋. (2.93)

The Chern–Simons term has therefore endowed the 2+1 dimensional photon with a
‘topological mass’ 𝜔 through the addition of a topological and gauge invariant term,
rather than the typical 𝑎2

𝜇 term (Deser et al., 1982, 2000).
The limit 𝜇 → ∞ recovers the pure-CS effective action, showing that the topologi-

cal theory we were considering is the limit of the dynamical CSM theory with infinitely
heavy excitations. This limit recovers the pure CS action 𝑎 ∧ d𝑎 and shows that the
mass of the dynamical statistical gauge field is infinite, which will now allow it to be
integrated out.
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2.3.2 EffectiveTheory and the FQHE

In order to see how the FQHE is recovered from this theory, consider integrating out
the massive statistical gauge field to find an effective theory for just the background
field 𝐴

𝑒𝑖𝑆eff[𝐴] = ∫D𝑎 𝑒𝑖𝑆[𝑎;𝐴]. (2.94)

Let us calculate the tree-level effective theory in a non-compact space by using the
classical equations of motion for 𝑎. Vary 𝑆[𝑎; 𝐴] by 𝛿𝑎 to get the equation of motion
𝑚 d𝑎 = d𝐴. Defining 𝑓 = d𝑎 and 𝐹 = d𝐴 the equation of motion becomes

𝑓 = 1
𝑚𝐹 (2.95)

which is solved locally by 𝑎 = 𝐴/𝑚. Plugging into the action gives the tree-level
effective action

𝑆eff[𝐴] = 𝑆eff[𝐴/𝑚; 𝐴] = 1
4𝜋

1
𝑚 ∫ 𝐴 ∧ d𝐴 (2.96)

which is a fractional quantumHall state with filling factor 𝜈 = 1
𝑚 andHall conductivity

𝜈/2𝜋. Therefore the odd-𝑚 theories describe the Laughlin states.
Moreover, states with integer 𝑚 also describe QHE phases with bosonic Laughlin

states, as will be studied in detail later in the case of the 𝑚 = 2 state. Using the compos-
ite fermion (CF) picture — where the excitations are electrons bound to flux moving
in an effective background field — these integer 𝑚 states correspond to integer filling
of the CF Landau levels. In the CS description, the 𝑎 gauge field has quantised level 𝑚
and ‘BF coupling’ to the background gauge field 𝐴, and integrating it out recovers the
fractional charge of the anyons. Repeating this procedure, by coupling 𝑎 to a second
gauge field 𝑏, and integrating out each one in turn will produce the FQHE behaviour
with filling 𝜈 in the next level of the hierarchy. Appendix C performs an explicit cal-
culation using the Wen–Zee model, which is a generalisation of this hierarchy and can
be used to produce FQHE states of arbitrary filling fraction.

But is this theory a meaningful and gauge invariant description? On non-compact
spaces there is no problem, but on compact spaces only the action 𝑆[𝑎; 𝐴] describes a
properly gauge-invariant theory. Although locally this theory gives the correct descrip-
tion (i.e. it predicts the fractional Hall current), by integrating out 𝑎 we have missed
some important details of the topological character of the CS fluid when on a compact
space. Specifically, integrating out the gauge field using the classical equation of mo-
tion is not strictly possible with monopoles present — in this context we should revert
to the full action (2.86). Indeed we will later find that the topological nature of the
field is important in exactly this environment and even leads to surprising measurable
results about the ground state of the theory.

Now we can try to understand what the excitations of the statistical gauge field rep-
resent in the quantum Hall context; to (2.86) add an additional source for the emergent
gauge field 𝑗, and then rewrite the BF term as an EM-field source 𝐽

𝑆eff[𝑎𝜇, 𝐴𝜇] = ∫ [− 𝑚
4𝜋 𝑎 ∧ 𝑓 + 𝐴 ∧ ⋆𝐽 + 𝑎 ∧ ⋆𝑗] (2.97)
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where the EM-field current is
𝐽 = 1

2𝜋 ⋆ 𝑓 . (2.98)

Now the Dirac quantisation condition for the emergent field strength requires that the
flux integrated over a sphere be quantised. In the language of differential forms, this
states

𝑄mag(𝑆2) = ∫
𝑆2

⋆𝐽. (2.99)

The Hodge dual ⋆ takes the dual of the 1-form 𝐽 with respect to the full 3-dimensional
spacetime, so ⋆𝐽 is a 2-form which can be integrated over the spacelike manifold 𝑆2.
Using the current definition (2.98) in terms of the gauge field 𝑎, we can recast this
charge

𝑄mag(𝑆2) = 1
2𝜋 ∫

𝑆2
𝑓 . (2.100)

Expressing the field strength 2-form in coordinates on the sphere,

𝑓 = 1
2𝑓𝑖𝑗 d𝑥𝑖 ∧ d𝑥𝑗 = 1

2𝑓𝑖𝑗𝜀𝑖𝑗 d𝑥1 ∧ d𝑥2 , (2.101)

and so the charge in a background ‘magnetic field’ of the statistical gauge field 𝑓12 = 𝑏

𝑄mag(𝑆2) = 1
4𝜋 ∫

𝑆2
𝑓𝑖𝑗𝜀𝑖𝑗 d2x (2.102)

= 1
2𝜋 ∫

𝑆2
𝑏 d2x . (2.103)

This is the familiar expression for the number of units of magnetic flux (of the statistical
gauge field) enclosed by the surface, and so we can write 𝑛𝜙 = 𝑄(𝑆2) ∈ Z.

Variation by 𝛿𝑎 gives the dynamical gauge field equation of motion, which together
with the equation for 𝐽 relates the two gauge field currents

1
𝑚 ⋆ 𝑗 = 1

2𝜋 𝑓 ⟹ 𝐽 = 1
𝑚𝑗. (2.104)

The quantised units of current in the statistical gauge field are therefore fractional cur-
rents in the physical gauge field. This important feature is called flux attachment:
that the quantised charges of the dynamic statistical gauge field are fractional mag-
netic charges of the physical field. The equation (2.97) still requires that on a compact
space, the total physical magnetic charge is an integer, but the individual excitations
each carry fractional charge. Physically, this means the fractional excitations must be
created in multiples of 𝑚.

2.3.3 Flux Quantisation of the Statistical Gauge Field

Before, when working on a non-compact space we related the CS gauge fields using
𝑓 = 𝐹/𝑚 in (2.95), which involved integrating out

∫D𝑎 𝑒−𝑆[𝑎,𝐴] = 𝑒𝑆eff[𝑎on−shell(𝐴),𝐴]. (2.105)
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This quadratic integral was taken as being the on-shell classical solution of the equa-
tions of motion, however on compact spaces we expect that quantum and topological
effects may become important. Indeed, on such spaces the classical solution cannot be
globally well defined; consider a background flux which, although it is an integer, is
not a multiple of 𝑚 like

1
2𝜋 ∫

𝑆2
𝐹 = 𝑁𝜙 ∈ Z (2.106)

then the flux of the statistical gauge field is not well defined

1
2𝜋 ∫

𝑆2
𝑓 =

𝑁𝜙
𝑚 = 𝑛𝜙 ∉ Z. (2.107)

Instead, we should explicitly evaluate the path integral over 𝑎 (2.105), and here we
suggest a novel method of doing so. Following the method outlined in (Klebanov
et al., 2011), one may attempt to perform this integral by recasting it as a sum over the
eigenbasis of the Laplacian

∫D𝑎 → ∑
𝜆

𝑎(𝜆), (2.108)

where the eigenvalues are of the Laplacian satisfy

Δ𝑎(𝜆) = [d ⋆ d⋆ + ⋆ d ⋆ d]𝑎(𝜆) = −𝜆𝑎(𝜆). (2.109)

Using a Hodge decomposition for the field 𝑎,

𝑎 = 𝑏 + d𝜙 + ℎ, (2.110)

where d ⋆ 𝑏 = 0 is co-closed, and Δℎ = 0 is harmonic.
Using this method, we seek to evaluate partition function on 𝑆2 ×𝑆1, first consider-

ing a correctly quantised background satisfying 𝑛𝜙 = 𝑁𝜙/𝑚 ∈ Z. In this case, we may
take a simple background like 𝐴𝜏 = 𝑁𝜙 and confirm that the path integral recovers
the usual 𝑓 = 𝐹/𝑚 relation.

The on-shell classical approach has been shown to fail when the flux quantisation
condition is broken (i.e. when 𝑛𝜙 ∉ 𝑚Z). Usual saddle-point approaches to quantum
approximations for this path integral will fail, as one may not shift the integration field
by the classical solution which does not exist.

Taking an explicit non-trivial background of 𝐴𝜇 with charge that is not a multiple
of 𝑚 will allow for the evaluation of such a non-classical solution, and the resultant
path integral will teach us about the quantum behaviour of such a theory. It is an open
question what the result of such a calculation will be — whether the path integral will
be trivially zero or if it will encode some new behaviours. There is limited scope in this
thesis to explore this calculation in more detail, but this constitutes an interesting novel
research question which may be explored in the future.

2.4 Anyons & Topological Order
There remain some unanswered questions about the nature of the fractional CS fluid:
what are the properties of the anyon excitations, and in what sense is it a topological
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field theory? In response to the latter question, we may recall that the action was
independent of the metric which allowed it to be written as an integral of 3-form fields.
The requirements of topological QFTs are explained in depth by Atiyah (1988). There
is a much more profound result that observables only depend on the topology of the
backgroundmanifold which comes as a result of quantising the CS action (Elitzur et al.,
1989). In particular we will now work to discover that the ground state degeneracy of
the level-𝑚 CS theory will be 𝑚𝑔 on a genus-𝑔 manifold.

Consider amanifold with no boundaries, in particular the spatial torusM = 𝑇2×R.
Because there are non-contractible loops in this space, the gauge field 𝑎 is not solved
globally by only local gauge transformations (i.e. the connection is not exact). In this
case, the physical degrees of freedom are exactly the gauge field 𝑎, with action

𝑆 = 𝑚
4𝜋 ∫ d3𝑥 𝜀𝜇𝜈𝜌𝑎𝜇𝜕𝜈𝑎𝜌. (2.111)

Following Tong (2016); Fradkin (2020c), we can now canonically quantise this action
to find the following commutation relation

[𝑎1(x), 𝑎2(x′)] = 2𝜋𝑖
𝑚 𝛿(2)(x − x′). (2.112)

The spatial components of the gauge field along different cycles of the torus are there-
fore conjugate variables in the quantum theory.

Now let us try to create a gauge invariant observable: integrating these components
of the gauge field around a non-contractible loop Γ𝑖 (shown in Fig. 2.12(a)) defines the
operator

𝑤𝑖 = ∮
Γ𝑖

𝑎. (2.113)

Due to the canonical commutator of the gauge field components, these non-local op-
erators satisfy the algebra

[𝑤1, 𝑤2] = 2𝜋𝑖
𝑚 (2.114)

However this is not gauge invariant under large gauge transformations which have a
winding number around the loop, but the exponential of this is (since they are invariant
up to a factor of 2𝜋). These operators are the Abelian Wilson loops of the CS theory

𝑊𝑖 = exp(∮
Γ𝑖

𝑎), (2.115)

which are now shown to satisfy the algebra

𝑊1𝑊2 = 𝑒2𝜋𝑖/𝑚𝑊2𝑊1. (2.116)

We can now calculate the size of the Hilbert spaces of the theory: choose the vacuum
so that it is an eigenstate of the Wilson loop operator

𝑊1 |0⟩ = |0⟩ , (2.117)
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. The Chern–Simons Effective Action

Figure .: (a) The two non-contractible loops on a torus. (b) The winding pro-
cedure 𝑊1𝑊2𝑊−1

1 𝑊−1
2 interpreted as the path of anyons on the torus; the result is

topologically equivalent to simply looping one anyon around another.

with eigenvalue 1. Next use the algebra to show this implies

𝑊1𝑊2 |0⟩ = 𝑒2𝑖𝜋/𝑚𝑊2𝑊1 |0⟩ = 𝑒2𝑖𝜋/𝑚𝑊2 |0⟩ , (2.118)

or 𝑊2 |0⟩ has eigenvalue 𝑒−2𝑖𝜋/𝑚 under 𝑊1. In fact there are 𝑚 distinguishable vacuum
states given

𝑊1𝑊𝑘
2 |0⟩ = 𝑒−2𝑖𝜋 𝑘/𝑚𝑊2 |0⟩ (2.119)

with 𝑘 = 0, … , 𝑚 − 1. Because these states all have the same energy, the ground state
|0⟩ has an 𝑚-fold degeneracy on the torus. Generalising this to a genus-𝑔 manifold,
one finds that the degeneracy is 𝑚𝑔. The unique ground state on a spatial sphere can
be interpreted as being because the space is simply connected.

The CS action has truly led to a topological quantum field theory: we have found
an important observable — the ground state degeneracy — is totally determined by
the topology of the manifold. This result is independent of paths Γ𝑖 used to define the
Wilson loop operators. All that mattered for this derivation was the existence of 𝑔 + 1
distinguishable cycles on a genus 𝑔 manifold, and the canonical quantisation of the CS
term immediately told us their commutation relations (Wen, 1989).

This degeneracy is robust against disorder and even particle interactions — in a
sense it completely categorises the phase. This naturally introduces the notion of a
topological phase: one which is defined not by the symmetry breaking measured by a
local order parameter, but instead by a global property such as ground state degeneracy
(Wen, 1990a). More recent work has found that generally such topologically ordered
phases are also characterised by an intrinsic ‘topological entanglement entropy’, which
signifies that states arbitrarily far away in the sample are entangled. This produces a
constant contribution to the entropy of phase which only depends upon the topology
of the background manifold, and does not scale with system or boundary size. It acts as
another non-local measure of order which can be used to classify a system as topological
(Kitaev and Preskill, 2006; Levin and Wen, 2006).

We can interpret the Wilson lines as physically inserting charged 𝑎 excitations into
the theory and carrying them along the path Γ𝑖. Now let us consider the action of
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Figure .: (a) The comparison of worldlines of direct propagation and exchange of
anyons and their antiparticles (b) The self-loop diagram.

generating one particle and taking it along the combined path Γ2 then Γ1, which is
performed by the operator 𝑊1𝑊2. Creating a partner particle and taking it on the
loop in the inverse direction is generated by the operator 𝑊−1

1 𝑊−1
2 . Performing both

actions at once gives a braiding operation

(𝑊1𝑊2)(𝑊−1
1 𝑊−1

2 ) = 𝑒2𝑖𝜋/𝑚, (2.120)

which was evaluated using (2.116). Unknotting the combined paths from around the
torus, the Aharonov–Bohm phase contribution of the braided Wilson lines is identical
to simply braiding one line around another. In the interpretation of the Wilson lines as
fractionally charged excitations of the gauge field, then we have shown that they have
a non-integer statistical phase 𝛿 = 𝜋/𝑚 — this is an anyon (Wilczek, 1982; Wilczek
and Zee, 1983).

In fact amuchmore general statement can bemade about the amplitudes of TQFTs
which shows how deeply this notion of topology is ingrained in these field theories. The
amplitudes of Wilson loops in TQFTs only depend upon the topology of the knotted
loops, which in this sense identifies two knots if they can be deformed into each other
without passing one line through another. Mathematically such knots are characterised
by knot invariants which measure the way which loops are intertwined using geometry.
These invariants define an algorithm which produces an algebraic expression given a
knot such that knots with the same topology produce equivalent invariants. In the
interpretation of the Wilson lines as worldlines of anyons, the quantum amplitude of
the corresponding process is simply given by a knot invariant (Witten, 1989).

Fig. 2.13(a) shows the worldlines of two particles when they are either exchanged
or not. The particles are created in pair-production events, then reconnected with their
antiparticle counterpart (which is also exchanged) in order to define closed loops. The
exchange event of both particles and antiparticles therefore corresponds to linking the
two closed worldlines of the particles in this picture. Alternatively, one may consider
looping one particle around another, and receive the same result. Calling one of these
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loops 𝛾, its amplitude is

⟨𝑊[𝛾]⟩ = exp[− 𝑖
2 ∫ d3𝑥 ∫ d3𝑦 𝐽𝜇(𝑥)𝐺𝜇𝜈(𝑥 − 𝑦)𝐽𝜈(𝑦)], (2.121)

where 𝐺𝜇𝜈(𝑥 − 𝑦) = ⟨𝑎𝜇(𝑥)𝑎𝜈(𝑦)⟩ is the correlator of the gauge field. The source
𝐽𝜇(𝑥) = 𝛿(4)(𝑥𝜇 − 𝑧𝜇(𝜆)) where 𝑧𝜇(𝜆) is a suitable parameterisation of the loop. Fol-
lowing Witten (1989) and Fradkin (2020c), one can show 𝐽𝜇 = 𝜀𝜇𝜈𝜌𝜕𝜈𝑏𝜌(𝑥) where
𝜕𝜇𝑏𝜇(𝑥) = 0 in Lorenz gauge. Using Stokes’ theorem one can then express the ampli-
tude as

⟨𝑊[𝛾]⟩ = exp[−𝑖𝜋
𝑚 ∮

𝛾
d𝑥𝜇 𝑏𝜇(𝑥)] = exp[−𝑖𝜋

𝑚 ∫
Σ

d𝑆𝜇 𝐽𝜇(𝑥)], (2.122)

which simply counts the number of times the Wilson line punctures the surface Σ
which is bounded by 𝛾. Call this integer the linking number 𝑛𝛾, then the amplitude is
simply

⟨𝑊[𝛾]⟩ = 𝑒𝑖𝜋𝑛𝛾/𝑚. (2.123)

The linking number measures the number of times the surface is punctured by another
Wilson line — it cannot be perturbed by any small amount but can only change when
two Wilson loops are linked or unlinked. This accordingly represents a topological
invariant, and provides the relation between the two diagrams in Fig. 2.13a

𝑊[linked] = 𝑒𝑖𝜋/𝑚𝑊[unlinked], (2.124)

which is the calculation of the exchange phase of the two anyons and their antiparticles.
This amazing result shows that all observables of TQFTs are determined solely

by the knotting structure, and not on details such as the speed of particles on their
respective paths or how close they approach.

One can moreover show that these particles with fractional statistics also have frac-
tional spin, which satisfies the generalised spin-statistics theorem (Dunne et al., 1989).
This forms a unitary representation of the Poincaré algebra in 2+1 dimensions (which
is not true in higher dimension), and the link between spin and statistics truly holds
(Dunne, 1999). In fact the generalised spin-statistics theorem can be calculated using
the theory of knot invariants: the quantum amplitude for a particle spinning on its axis
is encoded in the diagram of a line with a single loop shape in it, as in Fig. 2.13b.
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Bosonisation of the Boundary Excitations 3

3.1 1+1 Dimensional Bosonisation

In this section we will aim to more thoroughly describe the chiral fermions which live
on the boundary of the quantum Hall fluid. In the previous chapter, the discussion of
the boundary first arose in a rather theoretical analysis of gauge invariance on differ-
ent manifolds. However when applying the CS action to quantum Hall systems this
regime is of utmost importance — indeed all physical quantum Hall samples contain
a spacelike boundary, and some of the most interesting observable behaviours of these
systems are properties of the edge states.

In order to study these edges we will exploit the chiral anomaly, which when studied
in detail will lead to an interesting bosonisation duality wherein the fermionic excitations
are mapped onto a bosonic particle. The anomalous current-current commutators due
to chiral symmetry non-conservation will lead us to identify bosonic fields with the
currents, forming the basis of the duality.

At first sight itmay seem problematic that theremay exist a duality between fermionic
and bosonic degrees of freedom, but in 1+1 dimensions there is no real distinction be-
tween the statistics of these particles. In fact, in 1 spatial dimension the concept of
statistics does not exist, since it is not possible to exchange two particles without mov-
ing them over each other. Because of this feature, we may develop a useful procedure
called bosonisation which will provide a useful perspective when quantising fermions
on the quantum Hall edge, and indeed even become a core part of the discussion of
the conformal boundary.

Bosonisation was developed and applied to models introduced by Luttinger (1963)
and Tomonaga (1950) which describe strongly-interacting spinless fermions in 1+1
dimensions (see Voit (1995) for a review of the bosonisation of spin-half fermions). The
former theory describes a fermionic system filled up to the Fermi level 𝑘𝐹, where the
dispersion is linear. This was solved exactly by Mattis and Lieb (1965) who showed that
the 1D model’s behaviour is given in terms of a bosonic field representing excitations
about the Fermi level.

3.1.1 Luttinger Liquid

The Luttinger model is resolved in terms of left- and right-moving Ψ = (𝜓+, 𝜓−)
fermions on each branch of the Fermi surface (Luttinger, 1963). The free kinetic
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Hamiltonian has equal dispersion velocities, as written in (2.57),

𝐻0 = 𝑣 ∫
𝐿

0
d𝜎 Ψ†(𝜎)𝜎𝑧𝜕𝜎Ψ(𝜎) = 𝑣 ∫

𝐿

0
d𝜎 [𝜓+(𝜎)∗𝜕𝜎𝜓+(𝜎) − 𝜓−(𝜎)∗𝜕𝜎𝜓−(𝜎)] .

(3.1)
Moving to momentum space (in a finite system),

𝜓±(𝜎) = 1
√𝐿

∑
𝑘

𝑒−𝑖𝑘𝜎𝑎±,𝑘 (3.2)

then the Hamiltonian can be expressed as a momentum-mode sum

𝐻0 = 𝑣 ∑
𝑘

𝑘 (𝑎†
+,𝑘𝑎+,𝑘 − 𝑎†

−,𝑘𝑎−,𝑘) . (3.3)

where the chiral currents on each 𝑘 > 0 and −𝑘 < 0 branch of the Fermi surface are
defined as

J±(𝑘) = ∑
𝑝

𝑎†
±,𝑝+𝑘𝑎±,𝑘, J±(−𝑘) = ∑

𝑝
𝑎†

±,𝑝𝑎±,𝑘+𝑝. (3.4)

Now taking the commutator of the free Hamiltonian and the currents gives

[𝐻0,J±(𝑘)] = 𝑣𝑘 J±(𝑘). (3.5)

Rewrite the fermionic expression for 𝐻0 in terms of these bosonic currents (Chang,
2003)

𝐻0 = 2𝑣
𝐿 ∑

𝑘>0
(J+(𝑘)J+(−𝑘) + J−(−𝑘)J−(𝑘)) . (3.6)

Now let us clarify the role of these currents in forming the symmetry group of the Lut-
tinger theory. Classically, the model (3.1) has a vector and axial symmetry, generated
in the chiral basis by 1 and 𝜎𝑧 respectively. As discussed in Section 2.2.1, the theory
separately conserves the vector (2.59) and axial (2.60) charges. In the language of the
Luttinger model, these charges are J𝑉 = J+ + J− and J𝐴 = J+ − J−.

Wewill now show that the chiral currentsJ±(𝑘) obey the following bosonic algebra

[J+(−𝑘),J+(𝑘′)] = [J−(𝑘),J−(−𝑘′)] = 𝑘𝐿
2𝜋 𝛿(𝑘 − 𝑘′), (3.7)

[J+(𝑘),J−(𝑘′)] = 0. (3.8)

This bosonic algebra — with chiral current operators expressed as sums of pairs of
fermionic operators — can construct the full Hilbert space of the Luttinger liquid. The
only non-zero commutator is when 𝑘 = 𝑘′ in (3.7), which we will now verify explicitly
(Schulz, 1995):

[J+(−𝑘),J+(𝑘)] = ∑
𝑝

∑
𝑝′

[𝑎†
+,𝑝𝑎+,𝑘+𝑝, 𝑎†

+,𝑝+𝑘𝑎+,𝑘] = ∑
𝑝

(𝑛𝑝−𝑘 − 𝑛𝑝) (3.9)

where the number operator is 𝑛𝑝 = 𝑎†
+,𝑝𝑎+,𝑝. Using the fact that all momentum states

below 𝑘𝐹 are occupied in the ground state, this sum (3.9) can be evaluated through its
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vacuum expectation. Regulate this sum with a cutoff function 𝑤(𝑘) such that 𝑤(𝑘) = 1
for 𝑘 ≤ 𝑘𝐹 and 𝑤(𝑘) → 0 as 𝑘 → ∞ (Hansson et al., 2017). Then the sum over 𝑝
converges and the expectation value of Eq. (3.9) in the Dirac vacuum simply counts
the number of momentum states between 𝑝 − 𝑘 and 𝑝:

⟨0| [J+(−𝑘),J+(𝑘)] |0⟩ = 𝐿𝑘
2𝜋 . (3.10)

Importantly, the current algebra (3.7) is called the 𝑈(1) Kac–Moody algebra, and is
a central part of our discussion of the edge theory as a conformal field theory (CFT).
This UV-perspective (which explicitly considers a theory of all fermion modes with a
given prescribed regulator), shows explicitly how the theory which contains the full
quantum-mechanical treatment of the Dirac vacuum leads to the anomalous current
commutator. Due to the expression for the Hamiltonian in terms of the currents (3.6),
the non-trivial commutation of the opposing-chirality currents reveals that the axial
charge is not conserved, since [J𝐴, 𝐻0] ≠ 0.

In this sense, the Kac–Moody algebra is said to represent an anomaly of the classical
chiral symmetry, and it fundamentally arises because of the Dirac sea vacuum — but
indeed this is also what made possible the chiral anomaly in our discussion of the Dirac
sea with an applied electric field. Recall in this prior example (Section. 2.2.2) the
two branches of the Dirac sea could exchange charge when all momenta changed by
Δ𝑝 = 𝑒𝐸Δ𝑡, only because each branch had an infinite number of negative energy states.

We have now successfully shown that the fundamental excitations of this fermionic
theory are bosonic and rewritten 𝐻0 in this basis. Calling on work by Overhauser
(1965) we can state that these bosons construct a complete basis of eigenstates, and
hence the Hilbert spaces of the fermionic and bosonic theories are fully equivalent.

An important additional analysis is that of the effect of interactions: consider a
inter-particle potential 𝑉(𝜎) which scatters left- and right-moving fermions:

𝐻𝐼 = 2𝜆 ∬
𝐿

0
d𝜎 d𝜎 ′ 𝜓+(𝜎)†𝜓+(𝜎)𝑉(𝜎 − 𝜎 ′)𝜓−(𝜎 ′)†𝜓−(𝜎 ′). (3.11)

The interaction term can be added more simply in momentum-space, noting that 𝑉𝑘
is the Fourier transform of the 2-particle potential

𝐻𝐼 = 2𝜆 ∑
𝑘

𝑉𝑘 J+(𝑘)J−(−𝑘). (3.12)

Combining these, and ignoring the 𝑘 = 0 modes, we get

𝐻 = 𝐻0+𝐻𝐼 = 2
𝐿 ∑

𝑘>0
[𝑣 (J+(𝑘)J+(−𝑘) + J−(−𝑘)J−(𝑘)) + 𝜆𝑉𝑘 J+(𝑘)J−(−𝑘)] .

(3.13)
which have a linear dispersion about the Fermi point. A full treatment of the 𝑘 = 0
zero-mode is done by (Haldane, 1979, 1981), but here we follow this derivation while
setting 𝑉0 = 0.

Appendix D explicitly diagonalises the interacting Hamiltonian (3.6) in this ‘UV
perspective’ (meaning the perspective which considers all momentum modes of 𝐻 and
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. Bosonisation of the Boundary Excitations

is regulated with a cutoff ). The important result which comes from this is that the
chiral currents can be represented by a scalar field

J±(𝜎) = 1
2𝜋 𝜕𝜎𝜑±(𝜎). (3.14)

3.1.2 Schwinger Terms

We will now develop a more formal field theory method for quantising these fermionic
theories which will show that the anomalous commutator is a more general feature of
continuumQFTs. These general ‘Schwinger terms’, which look like non-zeromomentum-
mode correlators [J (𝑝),J (𝑞)] ∼ 𝑝𝛿(𝑝 + 𝑞) that are proportional to momentum, are
the source of the important Kac–Moody algebra in the bosonised excitations. Under-
standing different representations of this algebra will then allow us to interpret different
possible edge excitations.

The Schwinger terms are commutators which are equal to derivatives of the Dirac
operator and indicate the presence of an anomaly in the theory (Schwinger, 1959, 1951;
Jackiw). In this present case, the current algebra will contain a Schwinger term, which
is due to the chiral anomaly. As mentioned, the bosonisation procedure was first in-
vestigated by Tomonaga (1950) and later developed by Mattis and Lieb (1965) and
Luther and Peschel (1974).

When looking at eigenvalues of the free Luttinger Hamiltonian 𝐻0, given (3.1),
the Schwinger terms — and hence the presence of bosonic excitations in representa-
tions of the Kac–Moody algebra — arise because the system has a filled Dirac sea
(Fradkin, 2013). Consider two different ground states of the theory: the empty vac-
uum |0⟩, and the filled Dirac sea which is occupied up to the band crossing ∣Dirac⟩,
shown in Fig. 3.1. The Hamiltonian 𝐻0 normal-ordered with respect to a vacuum
∣Dirac⟩ is defined such that the Dirac sea vacuum has zero energy: ∶𝐻0 ∶ ∣Dirac⟩ = 0.
This permits the decomposition of 𝐻0 into its normal-ordered form and an infinite
vacuum energy contribution

𝐻0 = ∶𝐻0 ∶ +𝐸𝐹 ∣Dirac⟩ ⟨Dirac∣ (3.15)

where 𝐻0 ∣Dirac⟩ = 𝐸𝐹 ∣Dirac⟩ is the eigenvalue which depends on the vacuum. The
zero of charge is also defined relative to the vacuum, so we expect commutators of
current operators will depend on the relative definition we use.

The next step is to develop the current algebra of the Luttinger theory, where we
are interested in the charge density and current operators 𝜌 and 𝑗. Both have zero eigen-
values in the empty state |0⟩ as they contain no charges and therefore these operators
are automatically normal-ordered with respect to this vacuum. To normal-order the
operators with respect to the filled Dirac sea will take some careful analysis, and indeed
this will be the source of the anomalous Schwinger terms.

These charge and current operators are defined by

𝜌(𝑥) = ∶𝜓†
+(𝑥)𝜓+(𝑥) + 𝜓†

−(𝑥)𝜓−(𝑥) ∶ (3.16)
𝑗(𝑥) = 𝑣 ∶𝜓†

+(𝑥)𝜓+(𝑥) − 𝜓†
−(𝑥)𝜓−(𝑥) ∶ . (3.17)
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3.1. 1+1 Dimensional Bosonisation

Figure .: Two vacua of the relativistic fermion model: the empty vacuum |0⟩ and
the Dirac vacuum filled up to zero energy ∣Dirac⟩.

Defining left and right components of the current J±(𝑥) = ∶𝜓†
±(𝑥)𝜓±(𝑥) ∶. Therefore

we can package into a covariant vector 𝐽𝜇

(𝐽0(𝜎)
𝐽1(𝜎)) = ( 𝜌(𝜎)

𝑗(𝜎)/𝑣) = (J+ + J−
J+ − J−

) . (3.18)

This is simpler with a transform into lightcone coordinates 𝑥 = (𝑡, 𝜎) → 𝑥′ = (𝑥+, 𝑥−)
defined through

𝑥± = 𝑣𝑡 ± 𝜎. (3.19)

In these coordinates, 𝜕𝜇𝐽𝜇 = 0 implies 𝜕±J± = 0. This says that the number of left-
and right-movers are separately conserved. Being more careful, the current must be
defined through the following point-splitting limit (Affleck, 1986)

J (𝜎)± = lim
𝜖→0

∶ 𝜓†
±(𝜎 − 𝜖)𝜓±(𝜎 + 𝜖) ∶ . (3.20)

Now evaluate the current commutator

[J (𝜎)±,J (𝜎 ′)±] = lim
𝜖→0

[∶𝜓†
±(𝜎 − 𝜖)𝜓±(𝜎 + 𝜖)∶, ∶𝜓†

±(𝜎 ′ − 𝜖)𝜓±(𝜎 ′ + 𝜖)∶]
(3.21)

= lim
𝜖→0

[𝛿(𝜎 − 𝜎 ′ + 𝜖) − 𝛿(𝜎 ′ − 𝜎 + 𝜖)] 𝜓†
±(𝜎 − 𝜖)𝜓±(𝜎 + 𝜖)

(3.22)

where we used the fermion anticommutator {𝜓†
𝛼(𝜎), 𝜓𝛼′(𝜎 ′)} = 𝛿𝛼𝛼′𝛿(𝜎 − 𝜎 ′). This

expression is non-zero when we normal-order with respect to the filled Dirac sea; split
the second term into

𝜓†
±(𝜎−𝜖)𝜓±(𝜎+𝜖) = ∶𝜓†

±(𝜎−𝜖)𝜓±(𝜎+𝜖)∶ + ⟨Dirac∣ 𝜓†
±(𝜎−𝜖)𝜓±(𝜎+𝜖) ∣Dirac⟩ ,

(3.23)
identically in the free theory. When inserted into (3.22), the normal-ordered expec-
tation value vanishes in the 𝜖 → 0 limit, and after substituting the momentum space
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. Bosonisation of the Boundary Excitations

expression (and 𝑝, 𝑞 ≥ 0 with ± signs in the exponent to agree with (3.2)) we are left
with the following

⟨Dirac∣ 𝜓†
±(𝜎 − 𝜖)𝜓±(𝜎 + 𝜖) ∣Dirac⟩ = lim

𝜖→0

1
𝐿 ∑

𝑝,𝑞≥0
⟨Dirac∣ 𝑒±𝑖𝑝(𝜎−𝜖)𝑎†

±,𝑝 𝑒∓𝑖𝑞(𝜎+𝜖)𝑎±,𝑞 ∣Dirac⟩

(3.24)

= lim
𝜖→0

1
𝐿 ∑

𝑝≥0
𝑒∓2𝑖𝜖𝑝. (3.25)

Now use 𝑝 = 2𝜋𝑛/𝐿 and analytically continue 𝜖 → 𝜖 − 𝑖𝜂 to make the geometric
series converge

lim
𝜖→0

⟨Dirac∣ 𝜓†
±(𝜎 − 𝜖)𝜓±(𝜎 + 𝜖) ∣Dirac⟩ = lim

𝜂→0±

1
𝐿

∞
∑
𝑛=0

𝑒∓2(𝑖𝜖−𝜂)(2𝜋𝑛/𝐿) = ∓ 𝑖
4𝜋𝜖 .

(3.26)
Combining the above, the current algebra becomes

[J (𝜎)±,J (𝜎 ′)±] = ∓ lim
𝜖→0

[𝛿(𝜎 − 𝜎 ′ + 𝜖) − 𝛿(𝜎 ′ − 𝜎 + 𝜖)] 𝑖
4𝜋𝜖 (3.27)

= ∓ 𝑖
2𝜋 𝜕𝜎𝛿(𝜎 − 𝜎 ′) (3.28)

or in terms of Lorentz components 𝐽(𝜎) = (𝜌(𝜎)𝑣, 𝑗(𝜎)), we use (3.18) to get

[J+,J+] = 1
2[𝐽0, 𝐽1] = 1

2𝑣[𝜌, 𝑗] (3.29)

and hence
[𝜌(𝜎), 𝑗(𝜎 ′)] = −𝑖𝑣

𝜋 𝜕𝜎𝛿(𝜎 − 𝜎 ′) (3.30)

where other commutators are zero. Hence the equal time density-current commutator
becomes non-zero if these currents and densities are normal-ordered with respect to
the filled Dirac sea.

The chiral anomaly arises in the Luttinger theory through the same mechanism as
in the Dirac model discussed before, where the filled Dirac sea provides a mechanism
for the non-conservation of the axial charge (Ambjørn et al., 1983). We have shown
how the Schwinger terms arise due to the filled Dirac sea, and indeed the appearance
of Schwinger terms in the current algebra is fundamentally due to the presence of the
anomaly in the theory. Adam et al. (1993) present a review of the relation between
the Schwinger terms and the chiral anomaly in 1+1 dimensions, including a discussion
of how the anomalous Schwinger terms come from axial symmetry-violating ‘seagull’
diagrams (Jackiw; Gross and Jackiw, 1969).

3.1.3 Boson Duality

Now we claim that the above theory is dual to a bosonic theory described by a free
scalar boson 𝜑. This process of bosonisation emerges from this Kac–Moody algebra
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3.1. 1+1 Dimensional Bosonisation

we derived for the ‘currents’ J±. The currents are defined in terms of products of the
fermion operators which occupy the system and are therefore bosonic (which should
be clear from the form of their commutator above). We will aim to relate the current
algebra to the canonical algebra of the free field, given

[𝜑(𝜎), 𝜛(𝜎 ′)] = 𝑖𝛿(𝜎 − 𝜎 ′). (3.31)

To demonstrate the equivalence, let us examine the particle’s action

𝑆 = ∫ d2𝑥 1
2(𝜕𝜑)2. (3.32)

This free theory has a topological current

̃𝐽𝜇 = 1
√𝜋 𝜀𝜇𝜈𝜕𝜈𝜑 (3.33)

which is conserved 𝜕𝜇 ̃𝐽𝜇 = 0 by antisymmetry of 𝜀. Using the expressions (3.18) we
can define the current

J±(𝜎) = ∓ 1
2√𝜋 𝜕∓𝜑 = 1

2 [ ̃𝐽0 ± ̃𝐽1] (3.34)

which we now aim to identify with the bosonised current (3.20) of the free fermion
theory 𝐻0. Let us demonstrate this in several steps

• Firstly, let us identify the commutators of the boson theory (3.31) with the cur-
rent Kac–Moody algebra.
Taking the derivative with respect to 𝜎 acts on the first term and gives

[𝜕𝜎𝜑(𝜎), 𝜛(𝜎 ′)] = 𝑖𝜕𝜎𝛿(𝜎 − 𝜎 ′). (3.35)

Identifying these terms with ̃𝐽𝜇 components using (3.33) and the conjugate mo-
mentum 𝜛(𝜎) = 𝜕0𝜑 gives

𝜋[ ̃𝐽0(𝜎), ̃𝐽1(𝜎 ′)] = −𝑖𝜕𝜎𝛿(𝜎 − 𝜎 ′). (3.36)

Moreover, in terms ofJ±(𝜎) (by inverting (3.34)) the current algebra reproduces

[J (𝜎)±,J (𝜎 ′)±] = ∓ 𝑖
2𝜋 𝜕𝜎𝛿(𝜎 − 𝜎 ′) (3.37)

which is indeed the current algebra (3.28) of the fermionic theory.

• The current is conserved 𝜕𝜇 ̃𝐽𝜇 = 0 which implies in lightcone coordinates 𝜕±J± =
0 which was the conservation equation for the bosonised 𝐻0 theory.

• There is an additional classically conserved axial current of the fermionic theory
𝐽𝜇
𝐴 = 𝜓𝛾𝜇𝛾5𝜓. Thus this is dual to the current ̃𝐽𝜇

𝐴 = 𝜕𝜇𝜑 which is conserved
on-shell.
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. Bosonisation of the Boundary Excitations

• Finally we must identify the stress-energy tensors; the free bosonic action (3.32)
has the following Hamiltonian, which can be written in the ‘Sugawara form’ in
terms of chiral currents

𝐻 = 1
2 ∫ d2𝑥 [𝜛2 + (𝜕𝜎𝜑)2] = 𝜋

2 ∫ d2𝑥 [ ̃𝐽0(𝜎)2 + ̃𝐽1(𝜎)2] (3.38)

= 𝜋 ∫ d2𝑥 [J+(𝜎)2 + J−(𝜎)2] . (3.39)

Now calculating the Hamiltonian of the fermionic theory, we find in lightcone
coordinates

H = 1
2𝑖 ∶𝜓†

+𝜕+𝜓+ + 𝜓†
−𝜕−𝜓− ∶= T+ + T−, (3.40)

where, using the same point-splitting procedure as before, wemay evaluate (Cole-
man et al., 1969)

T±(𝜎) = 𝜋 lim
𝜖±→0

J±(𝑥± − 𝜖±)J±(𝑥± + 𝜖±) + const. (3.41)

Thus the Hamiltonian of the fermionic theory (3.1) is in agreement with (3.39)
(Haldane, 1981). One can use the same point-splitting method to evaluate the
other components of the stress tensor.

A specific treatment of the interacting theory is included in Appendix D, where we
find that the only effect of interactions is to renormalise the Fermi velocity.

This procedure has formed a duality between a fermionic theory with a Dirac vac-
uum and a free bosonic theory. Importantly, this duality preserves all the physical
observables of the original theory, and so one can calculate (for example) correlation
functions in the free bosonic theory and achieve the correct results for the fermion
model. The Dirac theory was the prototypical model of the chiral anomaly to which
we have referred several times (Fradkin, 2020a). Now we will reproduce the anomaly
in the dual boson theory. First, couple the fermion’s charge 𝐽𝜇 to a gauge field

Δ𝑆 = 𝐽𝜇𝐴𝜇. (3.42)

Using the dual current ̃𝐽𝜇 = 1
√𝜋 𝜀𝜇𝜈𝜕𝜈𝜑 we get the dual action

Δ𝑆 = 1
√𝜋 𝜀𝜇𝜈𝜕𝜈𝜑𝐴𝜇 (3.43)

which modifies the scalar equation of motion to generate the axial anomaly (expressed
as non-conservation of the axial current 𝐽𝜇

𝐴)

𝜕𝜇𝑗5𝜇 = 𝜕2𝜑 = 1
√𝜋 𝜀𝜇𝜈𝜕𝜈𝐴𝜇. (3.44)

Taking the 1+1 dimensional system to have a periodic spatial coordinate 𝜃 which
ranges from 0 to 2𝜋, we will find a topological argument for the quantisation of charge.
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The boson’s charge is defined through the zero spacetime component of the dual co-
variant current

̃𝐽𝜇 = 1
2𝜋 𝜀𝜇𝜈𝜕𝜈𝜑 ⟹ ̃𝐽 = ( 𝜌

𝑗/𝑣) . (3.45)

The total charge of the field is hence given

𝑄 = ∫
2𝜋

0
d𝜃 𝜌(𝑡, 𝜃) = 1

2𝜋 [𝜑(2𝜋) − 𝜑(0)] = 𝑛 (3.46)

where 𝑛 must be an integer because the theory is dual to a fermion theory with an inte-
ger number of charges. This implies the periodic boundary conditions for the compact
boson

𝜑(2𝜋) − 𝜑(0) = 2𝜋𝑛. (3.47)

The physical observables of a theory with compact bosons are the vertex operators, given
through the exponentials of the bosonic fields

𝑉𝑛(𝑥) =∶ 𝑒𝑖𝑛 𝜑(𝑥) ∶, (3.48)

where the normal-ordering is needed in the quantum duality. In accordance with the
results of Luther and Peschel (1974) (briefly presented in Appendix D), these vertex
operators should be identified with the fermions of the original Dirac theory (Man-
delstam, 1975). The original works which uncovered this duality in the high-energy
physics community showed how the fermion maps onto a ‘soliton’ in the dual theory:
a kink in the field which propagates without changing shape.

One can then construct a ‘duality dictionary’ which provides a simple form for
the fermion mass term 𝜓𝜓 → 1

2𝜋 ∶ cos(2√𝜋 𝜑) ∶ and axial mass term 𝑖𝜓𝛾5𝜓 →∶
sin(2√𝜋 𝜑)∶. The massive Dirac theory therefore maps onto the Sine–Gordon model

𝜓(𝑖/𝜕 − 𝑚)𝜓 → 1
2(𝜕𝜑)2 − 𝑚

2𝜋 ∶ cos(2√𝜋 𝜑) ∶ . (3.49)

The duality can be extended to describe an interacting theory, called themassiveThirring
(1958) model with interactions given by (𝜓𝛾𝜇𝜓)2, by changing the coefficient of the
boson kinetic term (Coleman, 1975).

3.2 Stone Excitations of Edge
Now let us use this bosonisation procedure to describe the chiral excitations on the
integer QHE edge. In order to use the bosonisation procedure, we must note that
there is a difference between the Luttinger model and the theory of the QHE edge:
the edge theory only has one chirality of fermion which maps onto a chiral boson.
When studying the edge as a CFT, the nature of the embedding of this chiral boson
in a non-chiral theory will be explained, and fortunately the theory happily factorises
into two separate chiral sectors.

Now let us develop a theory of the chiral fermions at the QHE edge (Stone, 1991).
Consider a QHE sample which is periodic in 𝑦, and where the electrons are confined
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Figure .: The setup of the periodic boundary, and confining 𝑥 potential. The system
has geometry 𝐿𝑥 × 𝐿𝑦.

to a strip in the 𝑥 direction by a potential 𝑉(𝑥), shown in Fig. 3.2. In the system
without a boundary in 𝑥 (taking 𝐿𝑥 → ∞) in linear gauge, the Hamiltonian becomes
degenerate in the quantum number 𝑚 which represents the position of the wavefunc-
tion in the 𝑥 direction. Adding a confining potential will give the spectrum a quadratic
𝑚2 dependence around the edges; as the Landau level is occupied, first the bulk states
will fill and then the states around the boundaries will be filled later. Although this is
the typical behaviour of a Fermi surface this phenomenon is in real space — called the
quantum Hall droplet.

Consider now filling the inside of the droplet by setting the Fermi level at an ap-
propriate value (Fig. 3.3). We can always approximate the confining potential at the
boundary with 𝑉(𝑥) = 𝐸edge𝑥 + ⋯, and hence the electron eigenstates are shifted
𝜔(𝑘) = 𝐸edge𝑘/𝐵 at the droplet surface (with momentum of edge excitations in the
periodic 𝑦 direction). Semi-classically these describe skipping orbits along the edge
with Fermi velocity 𝑣 = 𝐸edge/𝐵 (Halperin, 1982). The sign of the velocity depends
entirely on the sign of the electric field at that boundary 𝐸edge, and necessarily gives
opposing edges oppositely pointed velocities.

The excitations about the Fermi level are gapless and have a linear dispersion; they
are also chiral, and each chirality is localised at opposite ends of the sample. Now
to bosonise this theory we should focus on the model close to the Fermi level, and
note its similarity to the Dirac theory: there are two chiral branches which are well
approximated by a filled Dirac sea for 𝐸 < 𝐸𝐹. Of course as one looks away from the
immediate vicinity of the edge of the droplet, the dispersion will deviate from linearity
and the vacuum is a Fermi sea with a finite charge. However we seek a description for
only low energies, where the Dirac approximation will suffice.

To quantify the currents carried by the edge excitations, define the charge operator
JΛ, which is the charge density Ψ†Ψ integrated over a window Λ ≪ 𝐿𝑥 of the edge,

J(𝑦) = ∫
Λ

−Λ
d𝑥 Ψ†(𝑥, 𝑦)Ψ(𝑥, 𝑦). (3.50)
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Figure .: The quantum number 𝑚 labels the 𝑥 position of states, which are filled
up to the Fermi level. Excitations are about the edge and have an approximately linear
dispersion.

In the linear gauge 𝐴𝑦 = 𝐵𝑥 the field operator is given

Ψ(𝑥, 𝑦) = √
𝐵

𝜋𝐿𝑦
∑
𝑛

𝑎𝑛𝑒𝑖𝑘𝑛𝑦𝑒−𝐵(𝑥−𝑘𝑛/𝐵)2/2 (3.51)

where 𝑘𝑛 = 2𝜋𝑛/𝐿𝑦. Hence in the limit where the cutoff length Λ is much greater
than the Gaussian width one can evaluate the current carried by the edge at 𝑥 = 0

J (𝑦) = ∑
𝑛

𝑒−𝑖𝑘𝑛𝑦−𝑘2
𝑛/4𝐵 ∑

𝑚
𝑎†

𝑚+𝑛𝑎𝑚. (3.52)

This is wholly reminiscent of the Luttinger charge density J𝑛 defined in Eq. 3.4, with
the addition of a Gaussian factor which localises the charge around the droplet edge.
Moreover, there is only one chirality of fermion included in this sum, which suggests
that the edge theory can be identified with a chiral Luttinger theory and J (𝑦) with its
current J+(𝑦). The chiral Luttinger model of the droplet edge has only one chirality
of fermion in the Dirac operator Ψ = Ψ+ = (𝜓+, 0), and the theory therefore has the
Hamiltonian

𝐻 = 𝑣 ∫ d𝑦 𝜓+(𝑦)(−𝑖𝜕𝑦)𝜓+(𝑦). (3.53)

In terms of this chiral boundary fermion, the current is J (𝑦) =∶𝜓†
+(𝑦)𝜓+(𝑦) ∶ and so

𝐻 can be written in the Sugawara form with one chirality

𝐻 = 𝑣𝜋 ∫ d𝑦J (𝑦)2. (3.54)

This theory is well defined with the same Dirac sea vacuum as the Luttinger model,
and hence inherits a Schwinger term in its current commutator, as for Eq. (3.27),

[J (𝑦),J (𝑦′)] = − 𝑖
2𝜋 𝜕𝑦𝛿(𝑦 − 𝑦′). (3.55)
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Now the currents J (𝑦) can be used to explicitly generate an excitation along the
boundary of the quantum Hall fluid. Define the unitary operator

𝑈[𝜃(𝑦)] = exp(+𝑖 ∫ d𝑦 𝜃(𝑦)J (𝑦)), (3.56)

which generates an excitation charge profile 𝜃(𝑦) along the periodic boundary. In the
Heisenberg picture, under the isomorphism defined by 𝑈, the current transforms as

𝑈[𝜃(𝑦)]J (𝑦) 𝑈†[𝜃(𝑦)] = J (𝑦) + 1
2𝜋 𝜕𝑦𝜃(𝑦) (3.57)

using the anomalous commutator (3.55). The vacuum state of the quantum Hall fluid
∣Dirac⟩ has a zero Fermi level and uniform charge profile at the boundary. Add excita-
tions with the profile 𝜃(𝑦) using 𝑈[𝜃(𝑦)] to give the excited state

∣𝜃(𝑦)⟩ = 𝑈[𝜃(𝑦)] ∣Dirac⟩ (3.58)

which has current profile

J (𝑦) ∣𝜃(𝑦)⟩ = 1
2𝜋 𝜕𝑦𝜃(𝑦) ∣Dirac⟩ . (3.59)

Note that we used the fact that the current density is normal-ordered with respect to
∣Dirac⟩.

Physically, these waves correspond to ripples on the surface of the quantum Hall
fluid. The change in charge density at the left/right (±) edge is 𝛿𝑛 = 𝜕𝑦𝜃(𝑦)/2𝜋 which
is due to a change in occupation of the real-space ‘band’ above the Fermi level. The
Fermi level correspondingly shifts up by the amount 𝛿𝐸𝐹 = ±𝑣𝜕𝑦𝜃(𝑦)/𝐿𝑦. Because
of the linear dispersion, an increase in the Fermi level causes a corresponding shift in
the surface position like ∼ 𝜕𝑦𝜃(𝑦).

Due to the linear dispersion around the Fermi point, we expect all low-energy
excitations to propagate with the same group velocity. This can be formalised quantum-
mechanically by time-evolving the Heisenberg-picture current operator 𝑈[𝜃(𝑦)] =
exp[𝐺(𝜃)]
𝑒−𝑖𝐻𝑡𝑒𝐺(𝜃)𝑒−𝑖𝐻𝑡 = exp(𝑒−𝑖𝐻𝑡 𝐺(𝜃) 𝑒+𝑖𝐻𝑡) = exp(𝐺(𝜃) + 𝑖𝑡[𝐺(𝜃), 𝐻] + ⋯) (3.60)

using the fact that 𝑒−𝑖𝐻𝑡 is unitary. Now evaluate the commutator [𝐺, 𝐻] with 𝐻 given
(3.54)

[𝐺(𝜃), 𝐻] = 𝜋𝑖 𝑣 ∫ d𝑦 d𝑦′ [𝜃(𝑦)J (𝑦),J (𝑦′)2] = 𝜋𝑖 𝑣 ∫ d𝑦 d𝑦′ 2J (𝑦′) 𝜃(𝑦) [J (𝑦),J (𝑦′)]
(3.61)

and using the commutator (3.55) and then integrating by parts gives

[𝐺(𝜃), 𝐻] = 𝑣 ∫ d𝑦 d𝑦′ 𝑡(𝑦)J (𝑦)𝜕𝑦𝛿(𝑦 − 𝑦′) = −𝑣 ∫ d𝑦 𝜕𝑦𝜃(𝑦). (3.62)

Resumming the Taylor expansion shows the wave-like time evolution

𝑒−𝑖𝐻𝑡𝑈[𝜃(𝑦)]𝑒−𝑖𝐻𝑡 = exp[𝑖 ∫ d𝑦 (𝜃(𝑦) − 𝑡𝑣𝜕𝑦𝜃(𝑦) + ⋯)J (𝑦)] = 𝑈[𝜃(𝑦 − 𝑣𝑡)]
(3.63)

to leading order. Note tha this may be performed to all orders using the BCH identity.
As expected, this describes the rigid evolution of the density fluctuation profile, as in
Fig. 3.4.
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3.3. FQHE Boundary Excitations

Figure .: Propagation of edge mode profile 𝜃(𝑦) along the 𝑦 coordinate at the
edges.

3.3 FQHEBoundary Excitations

3.3.1 FQHEBoundary Anomaly

Wewill now consider the boundary theory of the FQHE; in a similar story to its integer
counterpart, the fractional CS action has a gauge anomaly when placed on a compact
manifold with boundaries which leads to a gapless edge excitation (Laughlin, 1981;
Halperin, 1982). However a difference in the calculation arises due to the presence of
a dynamical gauge field which will have an interesting interaction with the edge modes.

Previously we use the fact that the gauge anomaly generally seeks a cancellation —
which may be provided by the axial anomaly of a chiral fermion — to derive the physics
of the quantum Hall edge. This is indeed applicable to the fractional model, but differs
from the historical route that the literature took. In this section we will reproduce this
result by instead fixing the gauge degrees of freedom on the edge and showing that there
emerge physical degrees of freedom which describe the same chiral fermion. Different
ways of dealing with the bulk’s gauge theory reliably yield the same physical picture.
This new method will provide us with a motivating bosonised description which is
appealing for the later application of conformal field theory techniques.

Following the methods of Hansson and Viefers (2000), we will construct the edge
theory by requiring that the anomaly of the edge theorymust cancel the gauge-noninvariant
terms at the boundary. The description of the edge mode will lead to a profound under-
standing of this edge mode, and indeed many general arguments can be made which
specify its gapless nature (Wen, 1990b, 1991, 1995). Once again, there will emerge a
chiral fermion at the edge of the quantum Hall droplet which we can bosonise to get a
similar Luttinger liquid description.

Recall that the FQHE action (2.86) is controlled by the level-𝑚 CS term

𝑚
4𝜋 ∫

M
𝑎 ∧ d𝑎 . (3.64)

Using the general results of Section 2.1.2, the gauge anomaly of the dynamical statisti-
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. Bosonisation of the Boundary Excitations

cal gauge field is given by (Elitzur et al., 1989)

𝛿𝑆anom = 𝑚
4𝜋 ∫

𝜕M
𝑎 ∧ 𝛿𝑎 (3.65)

Take 𝛿𝑎 to be a gauge transform 𝛿𝑎 = d𝜆. Then place the system on the manifold
M = Disk × 𝑅, and using integration by parts and Stokes’ theorem we get an integral
over its boundary 𝑆1 × 𝑅,

𝛿𝑆anom = − 𝑚
4𝜋 ∫

𝑆1×𝑅
𝜆 d𝑎 = − 𝑚

4𝜋 ∫
𝑆1×𝑅

𝜆(𝑡, 𝜃) 𝜀𝑟𝜈𝜌𝜕𝜈𝑎𝜌 d𝜃 ∧ d𝑡 . (3.66)

To get 𝛿𝑆anom = 0 we must take the gauge transformations to be zero 𝜆(𝑡, 𝜃) = 0 on
the boundary, which causes dynamical gauge degrees of freedom on the boundary to
become physical.

The dynamics of these degrees of freedom are found by taking the temporal gauge
𝑎𝑡 = 0 and 𝑎 = 𝑎𝑖 d𝑥𝑖, and applying it to the gauge field in the bulk. The bulk action
then becomes

𝑆 = 𝑚
4𝜋 ∫ 𝑎 ∧ d𝑎 = 𝑚

4𝜋 ∫ 𝑎𝑗 𝜕𝑡𝑎𝑖 d𝑡 ∧ d𝑥𝑖 ∧ d𝑥𝑗 . (3.67)

The equation of motion d𝑎 = 0 (𝑎 is closed) in this gauge implies we can write 𝑎 = d𝜑
(𝑎 is exact) globally, and so the (non-zero) spatial components are given 𝑎𝑖 = 𝜕𝑖𝜑. There
is a boundary at 𝑟 = 1 and so there is a finite boundary action which comes from its
integration by parts

𝑆 = 𝑚
4𝜋 ∫

𝑟=1
𝜕𝑡𝜑 𝜕𝜃𝜑 d𝑡 ∧ d𝜃 . (3.68)

This is the action of a free scalar field which evolves on the circular boundary of the
disk. To recap: the condition that the gauge transforms are zero on the boundarymeans
the statistical gauge field becomes physical here. Next, the gauge fixing allowed us to
represent the physical degrees of freedom of this field with a scalar 𝜑. We have now
shown that the only contribution of 𝑎 to the action in this gauge is through a boundary
action which describes a 1+1 dimensional scalar 𝜑. We must next use a clever trick
which involves changing coordinates to find the behaviour of the field 𝜑 and therefore
the gauge field 𝑎 at the boundary.

A generalisation of this temporal gauge choice, which will be of particular use for
discussing boundary dynamics, is the axial gauge condition

𝑎𝑡 − 𝑣𝑎𝜃 = 0. (3.69)

Now perform a coordinate transform

(𝑡′, 𝜃′, 𝑦′) = (𝑡, 𝜃 − 𝑣𝑡, 𝑟) (3.70)

such that the original temporal gauge 𝑎𝑡 = 0 implies the axial gauge (3.69) in the new
primed coordinates 𝑎𝑡′ −𝑣𝑎𝜃′ = 0. This next step exploits the fact that the CS action is
gauge invariant — thus the temporal gauge in one set of coordinates implies the axial
gauge in another set of coordinates. Use this to transform the action (3.68) written in
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terms of a 𝜑 degree of freedom. This holds in the new coordinates, so dropping the
primes we may write

𝑆CS[𝑎] = 𝑚
4𝜋 ∫

𝑟=1
(𝜕𝑡 + 𝑣𝜕𝜃)𝜑 𝜕𝜃𝜑 d𝑡 ∧ d𝜃 . (3.71)

This is the Floreanini–Jackiw action of a free scalar field in 1+1 dimensions, and its
quantisation is a subtle process due to the first-order nature of the action in time deriva-
tives (Floreanini and Jackiw, 1987). Defining a new boundary field 𝜌 = 𝜕𝜃𝜑/2𝜋 we
get the equation of motion

𝜕𝑡𝜌 + 𝑣𝜕𝜃𝜌 = 0 (3.72)

which has chiral wavelike solutions 𝜌 = 𝜌(𝜃−𝑣𝑡). This therefore presents our bosonised
excitation of the fractional QH edge: the field 𝜌 is a completely chiral scalar which rep-
resents the excitations of the underlying fermionic electrons which cause the emergent
statistical gauge field.

This result holds even in the presence of interactions, which we have ignored thus
far; impurities or electron-electron interactions which could cause backscattering are
forbidden, as only one chirality of edgemode is supported by the theory in themagnetic
field and therefore there are no opposite-chirality states for the backscattered scalars
to move to. Forward-scattering is permitted, but as was seen for the Luttinger liquid,
their only effect is to renormalise the Fermi velocity of the chiral modes (Fisher and
Glazman, 1996).

The physical gauge field enters the fractional CS action (2.86) as 𝐴 ∧ ⋆𝐽 where
⋆𝐽 = d𝑎 /2𝜋. Choose the physical gauge where 𝐴 = 𝐴(𝑡, 𝜃) and 𝐴𝑟 = 0 (recall
d𝐴 = 0 on shell)

∫
M

𝐴 ∧ ⋆𝐽 = 1
2𝜋 ∫

M
𝐴 ∧ d𝑎 = 1

2𝜋 ∫
M

d (𝐴 ∧ 𝑎) = 1
2𝜋 ∫

𝑆1×𝑅
𝐴 ∧ 𝑎 (3.73)

then using 𝑎𝑡 = 0 and 𝑎 = d𝜑

∫
M

𝐴 ∧ ⋆𝐽 = 1
2𝜋 ∫

𝑟=1
𝜀𝑟𝜈𝜌𝐴𝜈𝑎𝜌 d𝜃 ∧ d𝑡 = 1

2𝜋 ∫
𝑟=1

𝐴𝑡 𝑎𝜃 d𝜃 ∧ d𝑡 . (3.74)

Again generalise this by transforming coordinates and combine with (3.71) to get

𝑆edge[𝜑] = ∫
𝑟=1

[ 𝑚
4𝜋 (𝜕𝑡 + 𝑣𝜕𝜃)𝜑 + 1

2𝜋 (𝐴𝑡 − 𝑣𝐴𝜃)] 𝜕𝜃𝜑 d𝜃 ∧ d𝑡 . (3.75)

Its edge current is defined through

𝜌(𝜃, 𝑡) =
𝛿𝑆edge

𝛿𝐴𝑡
= 1

2𝜋 𝜕𝜃𝜑, 𝑗(𝜃, 𝑡) =
𝛿𝑆edge

𝛿𝐴𝜃
= − 𝑣

2𝜋 𝜕𝜃𝜑, (3.76)

which confirms that 𝜌(𝜃, 𝑡) is the boundary EM charge density, and 𝑗(𝜃, 𝑡) = −𝑣𝜌(𝜃, 𝑡)
is its edge current which is clearly chiral. The equations of motion for the action (3.75)
are

(𝜕𝑡 + 𝑣𝜕𝜎)𝜌(𝜎) = − 𝑚
2𝜋 𝐸. (3.77)
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When 𝑚 = 1 this reproduces the chiral anomaly derived from the domain-wall fermion
model of the IQHE, but this result extends the previous calculation and is valid for all
Laughlin states with odd-integer 𝑚. We have now shown, following Wen (1991), that
the gauge anomaly of the fractional QHE at the boundary describes a theory of a
chiral fermion. As in the integer case, this anomaly must be cancelled by a physical
chiral fermion residing on the boundary of the sample.

We reiterate that even in the fractional QHE when the gauge field is dynamical,
the appearance of a chiral fermion at the quantum Hall edge is totally general and is
a result of the chiral anomaly. Cappelli et al. (1992) even derive a conformal chiral
fermion action directly from a simple model of electrons in Landau levels — without
using aChern–Simons effective theory. This processmakes a direct connectionwith the
underlying physics of the QHE. Bosonising this model gives the standard Floreanini–
Jackiw action.

Because this theory is defined in terms of a periodic coordinate, using the same
argument as before, we can prove the compact-nature of the boson, and the resulting
quantisation of charge (3.46).

3.3.2 HydrodynamicTheory of Edge States

Let us now attempt to quantise the boundary theory (3.75) with zero sources 𝐴𝑡 =
𝐴𝜃 = 0. For the Laughlin states recall that the conductivity is 𝜈 = 1

𝑚 , so first substitute
𝑚 in the action and next rescale the disk to have circumference 𝐿 and use coordinate
𝜎 = 𝜃𝐿:

𝑆edge[𝜑] = 1
4𝜋𝜈 ∫ d𝜎 d𝑡 (𝜕𝑡 + 𝑣𝜕𝜎)𝜑 𝜕𝜎𝜑 (3.78)

= 𝛼 ∫ d𝜎 d𝑡 𝜑′ ̇𝜑 + 𝑣𝜑′2 (3.79)

with 𝛼 = (4𝜋𝜈)−1. This theory is difficult to quantise because it is first order in time
derivatives — here we follow the method developed by Faddeev and Jackiw (1988). In
such systems the ‘conjugate momentum’ 𝜛 = 𝜕L/𝜕𝜑 is not a physical momentum,
and indeed for the Floreanini–Jackiw this is dependant only on spatial derivatives of
the field 𝜛 = 𝛼𝜑′. The Hamiltonian of this theory takes the form of a potential (which
is independent of time derivatives)

H = 𝜛 ̇𝜑 − L = 𝑣𝛼𝜑′2. (3.80)

Hence this Lagrangian can be written in terms of a combined variable 𝜉 = (𝜑, 𝜛) =
(𝜑, 𝛼𝜑′)

L = 𝛼𝜑′ ̇𝜑 + 𝑣𝛼𝜑′2 = 1
2𝜉𝑖 𝜀𝑖𝑗 ̇𝜉𝑗 + 𝑉(𝜑) (3.81)

where the potential 𝑉 is written explicitly. The canonical commutator is therefore given
by

[𝜉𝑖(𝜎), 𝜉𝑗(𝜎 ′)] = − 𝑖
2𝜀𝑖𝑗𝛿(𝜎 − 𝜎 ′) (3.82)
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and hence
[𝜑(𝜎), 𝜕𝜎′𝜑(𝜎 ′)] = −(2𝜋𝜈)𝑖𝛿(𝜎 − 𝜎 ′). (3.83)

In terms of the field 𝜌(𝜎) = 𝜕𝜎𝜑(𝜎)/2𝜋 we get the following commutators through
differentiating and integrating

[𝜑(𝜎), 𝜑(𝜎 ′)] = 𝜋𝑖𝜈 sign(𝜎 − 𝜎 ′) (3.84)
[𝜑(𝜎), 𝜌(𝜎 ′)] = −𝑖𝜈𝛿(𝜎 − 𝜎 ′) (3.85)

[𝜌(𝜎), 𝜌(𝜎 ′)] = − 𝑖𝜈
2𝜋 𝜕𝜎𝛿(𝜎 − 𝜎 ′). (3.86)

In fact, in Floreanini and Jackiw (1987), Eq. (3.86) is derived directly from an ac-
tion written in terms of 𝜌. This is the important Kac–Moody algebra which naturally
emerges when we quantise the bosonised form of the chiral Luttinger theory (Wen,
1990b).

Now moving to momentum space

𝜌(𝑥) = 1
√𝐿

∑
𝑛

𝑒2𝑖𝜋𝑛/𝐿𝜌𝑛 (3.87)

we can express the Hamiltonian (3.80) as

𝐻 = 𝜋𝑣
𝜈 ∫ d𝜎 = 𝜋𝑣

𝜈 ∑
𝑛

𝜌𝑛𝜌−𝑛 = 2𝜋𝑣
𝜈 ∑

𝑘>0
𝜌𝑘𝜌−𝑘. (3.88)

In this language the 𝜌-𝜌 commutator (3.86) makes explicit the Kac–Moody structure
(Wen, 1995)

[𝜌𝑝, 𝜌𝑞] = 𝜈
2𝜋 𝑝 𝛿𝑝+𝑞 (3.89)

and

[𝐻, 𝜌𝑝] = 𝑣𝜌𝑝. (3.90)

Even though it is not explicit in this derivation, this result is indeed dependent on
the Schwinger term from the quantised Dirac sea; this is because the bosonised descrip-
tion only exists as a consequence of the stable ground state containing infinite particles.
The duality we derived in Section 3.1.3 is an important result which undergirds this
line of thinking (the bosonic theory has a different action because the Luttinger liquid
has two chiralities). This result can be obtained by counting states inside the Fermi
surface in the UV picture, as was done in Section 3.1.1. The appendix of Hansson
et al. (2017) contains a comparison of the UV method with our method wich uses an
effective IR description of bosonised currents about the vacuum. Edge operators living
in the Kac–Moody algebra (which only has one chiral species) are a general feature of
FQH states. Because the bulk system is described by a Chern–Simons theory with a
gauge anomaly, the edge system has gapless excitations which are representations of
the Kac–Moody algebra (Wen, 1992).
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The bosonised field has a logarithmic correlator ⟨𝜑(𝜎, 𝑡)𝜑(0, 0)⟩ ∼ log(𝜎 − 𝑣𝑡)
so that it satisfies the equation of motion (integral of Eq. 3.72)

(𝜕𝑡 + 𝑣𝜕𝜎) ⟨𝜑(𝜎, 𝑡)𝜑(0, 0)⟩ = 0. (3.91)

Using Wick’s theorem in the quantum theory the correlator is

⟨𝜑(𝜎, 𝑡)𝜑(0, 0)⟩ = −𝜈 log(𝜎 − 𝑣𝑡), (3.92)

which is a correlator of the chiral compact boson. The normalisation of 𝜈 arises the
propagator is the inverse of the kinetic operator in the action (3.79), and this can be
traced through the normalisation of the Kac–Moody algebra too.

3.3.3 Charge Excitations

The excitations 𝜌 correspond to ripples — or phonons — on the surface of the quantum
Hall droplet. We can introduce a different form of charged excitation which corre-
sponds to adding an electron to the edge.

Represent the edge-electron by an operator Ψ†
elec; this must have a localised charge

equal to 1, which is calculated from the commutator with the charge density 𝐽0(𝜎) =
𝜌(𝜎)

[𝜌(𝜎), Ψ†
elec(𝜎 ′)] = Ψ†

elec(𝜎)𝛿(𝜎 − 𝜎 ′). (3.93)

We can work in a representation of this operator in the chiral boson theory; introduce
a family of operators labelled 𝛾,

Ψ𝛾(𝜎) = ∶exp(𝑖𝛾𝜑(𝜎)/√𝜈)∶ = ∶exp(𝑖𝛾𝜙(𝜎))∶, (3.94)

where we defined the renormalised field

𝜙(𝜎) = 𝜑(𝜎)/√𝜈. (3.95)

In this representation, the 𝜈 factor in the commutators (3.84–3.86) are absorbed into
the field definitions, and the correlator (3.92) is

⟨𝜙(𝜎, 𝑡)𝜙(0, 0)⟩ = − log(𝜎 − 𝑣𝑡). (3.96)

Furthermore, the current operator changes normalisation 𝐽(𝜎) = (√𝜈/2𝜋)𝜕𝜎𝜙(𝜎).
These electrons Ψelec must anticommute

{Ψelec(𝜎), Ψelec(𝜎 ′)} = 0; (3.97)

using the BCH formula we see

∶ 𝑒𝐴 ∶ ∶ 𝑒𝐵 ∶ = 𝑒[𝐴,𝐵] ∶ 𝑒𝐵 ∶ ∶ 𝑒𝐴 ∶ (3.98)

(which holds when the commutator [𝐴, 𝐵] commutes with 𝐴, 𝐵). Consider now two
particles with general label 𝛾; exchanging two of them gives the following phase

Ψ𝛾(𝜎)Ψ𝛾(𝜎 ′) = 𝑒−𝛾2[𝜙(𝜎),𝜙(𝜎′)]Ψ𝛾(𝜎 ′)Ψ𝛾(𝜎) = 𝑒±𝑖𝜋 𝛾2Ψ𝛾(𝜎 ′)Ψ𝛾(𝜎), (3.99)
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where we used the commutator (3.84) in terms of the new 𝜙(𝜎) field. This expression
is fermionic if 𝛾2 = 𝑚 is an odd integer. Now explicitly we can evaluate the physical
charge of the fermion field Ψ𝛾 using the chain-rule property of the brackets and (3.85)

[√𝜈𝜕𝜎𝜙(𝜎), Ψ†
𝛾(𝜎 ′)] = √𝜈[𝜕𝜎𝜙(𝜎), 𝑖𝛾𝜙(𝜎)] ∶𝑒𝑖𝛾𝜙(𝜎) ∶ (3.100)

= √𝜈𝛾 Ψ†
𝛾(𝜎)𝛿(𝜎 − 𝜎 ′). (3.101)

Requiring this is compatible with the definition (3.94) implies that 𝜈𝛾2 = 1 and to-
gether with the constraint from the exchange phase calculation we get 𝜈 = 𝑚−1. Re-
markably, this is the Laughlin condition for the filling fraction, and so we find that
Laughlin edge theories necessarily have electron-like particles in their edge spectrum!
For other filling fractions (𝑚 not necessarily an odd integer) this particle can still be
present, but the edge description is complicated by many branches of gapless bosonic
excitations at the edge (Wen, 1990b). Explicitly in this representation

Ψelec(𝜎) = Ψ√𝑚(𝜎) = ∶𝑒𝑖√𝑚𝜙(𝜎) ∶ . (3.102)

From the logarithmic form of the bosonic charge correlator (3.96) and the defi-
nition of the electrons (3.102) we can evaluate the electron-electron correlator on the
boundary

𝐺elec(𝜎, 𝑡) = ⟨𝑇Ψ†
elec(𝜎, 𝑡)Ψelec(0, 0)⟩ = exp[𝑚 ⟨𝜙(𝜎, 𝑡)𝜙(0, 0)⟩] = 1

(𝜎 − 𝑣𝑡)𝑚 .
(3.103)

This physical correlation function of an observable operator is a power-law function;
such functions are scale invariant, and associated with a gapless quantum critical point.
This invariance under scale shouldmotivate the discussion presented in the next chapter,
where this scale invariance is seen to be only a part of a larger ‘conformal group’.

The fundamental charged excitation of the system is not an electron, but a ‘vortex’
quasiparticle with fractional 1

𝑚 charge. We can define such an operator as

Ψvor(𝜎) = Ψ1(𝜎) =∶𝑒𝑖𝜙(𝜎)/√𝑚 ∶, (3.104)

and its fractional charge is identified through its commutator

[𝜌(𝜎), Ψ†
vor(𝜎 ′)] = 1

𝑚Ψ†
vor(𝜎)𝛿(𝜎 − 𝜎 ′). (3.105)

Their correlation function is

𝐺vor(𝜎, 𝑡) = ⟨𝑇Ψ†
vor(𝜎, 𝑡)Ψvor(0, 0)⟩ = exp[𝑚−1 ⟨𝜙(𝜎, 𝑡)𝜙(0, 0)⟩] = 1

(𝜎 − 𝑣𝑡)1/𝑚 .
(3.106)

The quasiparticle has a branch-cut singularity of order 1
𝑚 and therefore is not single-

valued on the 𝜎-𝑡 surface. Under a monodromy, or a loop of one particle around the
other in this space, the state changes by a non-trivial phase. Repeating the exchange-
phase calculation using the BCH identity (3.98) shows the vortices have statistical
phase 𝛿 = 𝜋/𝑚.

63



. Bosonisation of the Boundary Excitations

As we saw in Section 2.4, the fundamental excitations of the fractional quantum
Hall system are vortices with fractional 1

𝑚 charge and non-trivial braiding statistics.
These could be produced or destroyed only when a single electron splits or fuses into
groups of 𝑚 bulk anyons. The fractionally-charged edge excitations are a non-trivial
superposition of the bulk anyons, which due to the gapless nature of the edge may even
be massless.
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4.1 Conformal FieldTheory
In this thesis thus far we have investigated the bulk and boundary theories of the integer
and fractional quantum Hall effects. The bulk was described by a topological gauge
theory — the Chern–Simons action — which has a gauge anomaly at the boundary.
We showed that this anomaly necessarily gives rise to a chiral fermion at the edge,
which was then bosonised in order to quantise.

Now we will aim to bridge the gap between the degrees of freedom of these two
theories: we will relate the fermionic and anyonic excitations in the bulk and the bound-
ary in this chapter by forming a correspondence between the two quantum theories. In
a fantastic result, the two theories will be shown to be different representations of the
same conformal field theory (simply using different Lorentzian/Euclidian signatures).
This will connect with the work of Witten (1989) which draws a more complex duality
between the bulk and boundary in non-Abelian Chern–Simons theories, which repre-
sent a type of quantum Hall state that we have not met yet with non-commutative
anyon braiding properties.

4.1.1 Conformal Group in 𝑑 Dimensions

CFTs are quantum field theories with additional ‘conformal’ symmetries. We will now
introduce the fundamentals of conformal symmetry, and then apply it to 1+1 dimen-
sional systems, in order to apply it to the quantum Hall edge.

The general 𝑑-dimensional local Weyl group is defined as the group of transforma-
tions which only vary the scale of the metric,

𝑔𝜇𝜈(𝑥) → 𝑔′
𝜇𝜈(𝑥′) = 𝑒2𝜎(𝑥)𝑔𝜇𝜈(𝑥). (4.1)

The conformal group is then the group of coordinate transformations 𝑥 → 𝑥′ which
rescale the metric as in (4.1), a restriction which reduces the group of allowed scaling
functions 𝜎(𝑥).

Clearly the Poincarè group 𝑆𝑂(1, 𝑑 − 1) is a subgroup which leaves 𝑔𝜇𝜈(𝑥) in-
variant (Di Francesco et al., 1997; Wiseman, 2020). The additional generators in the
conformal group are the dilatation 𝐷 and the special conformal transform 𝐾𝜇. Firstly,
the dilatation acts to rescale the coordinates

𝑥𝜇 → 𝜆𝑥𝜇, (4.2)

and functions rescale as
𝐷𝑓 (𝑥) = 𝑖𝑥𝜇𝜕𝜇𝑓 (𝑥), (4.3)
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and obeys
[𝑀𝛼𝛽, 𝐷] = 0, [𝑃𝜇, 𝐷] = 𝑖𝑃𝜇, (4.4)

where 𝑀𝛼𝛽 and 𝑃𝜇 = 𝑖𝜕𝜇 generate Lorentz transforms and translations, respectively.
However fields which are called ‘quasi-primary’ scale with the dilatation as

Φ(𝑥) → Φ′(𝑥) = 𝜆∆Φ(𝜆𝑥), (4.5)

where Δ is the field’s scaling dimension. The generator on the field therefore satisfies

[𝐷, Φ(𝑥)] = 𝑖(Δ + 𝑥𝜇𝜕𝜇)Φ(𝑥). (4.6)

The special conformal transform is defined through

𝐾𝜇𝑓 (𝑥) = 𝑖(2𝑥𝜇𝑥𝜈𝜕𝜈 − 𝑥2𝜕𝜇)𝑓 (𝑥), (4.7)

and together the commutators of all generators show that the conformal group is iso-
morphic to 𝑆𝑂(2, 𝑁).

Focusing on a subset of this algebra, we can identify how the 𝐾𝜇, 𝑃𝜇 fields act as
raising and lowering operators of with respect to 𝐷:

[𝐷, 𝐾𝜇] = +𝑖𝐾𝜇, [𝐷, 𝑃𝜇] = −𝑖𝑃𝜇. (4.8)

This action increases or decreases the scaling dimension Δ by 1; the lowest-weight
state of 𝐷 is known as the primary operator, and its descendents are generated with
𝑃𝜇. These descendents are made up of derivatives of the operator, and so if Ψ(0) is a
primary operator then due to its Taylor expansion, the whole field is a primary field.

The scaling of a correlation function of 𝑁 primary fields is entirely fixed by the
conformal symmetry. Under dilatations this correlator transforms as

⟨Φ1(𝑥1) ⋯ Φ𝑁(𝑥𝑁)⟩ → 𝜆∆1+⋯+∆𝑁 ⟨Φ1(𝜆𝑥1) ⋯ Φ𝑁(𝜆𝑥𝑁)⟩ . (4.9)

Poincaré invariance means the two-point correlator is only a function of 𝑥 − 𝑦, and so
when the fields have the same scaling dimension the scaling under conformal dilatation
allows us to fix the functional form to be

⟨Φ(𝑥)Φ(𝑦)⟩ = 𝑐
(𝑥 − 𝑦)2∆ . (4.10)

Furthermore, it is important to note that the transformation under the special con-
formal symmetry implies that the correlator is zero if the scaling dimensions differ
(Polyakov, 1974). Consequently, correlation functions of primary fields with different
scaling dimensions are zero.

4.1.2 Conformal Group in 2 Dimensions

Field theories in two dimensions have the special property that the coordinate 𝑥 =
(𝑥0, 𝑥1) can be written as a complex coordinate 𝑧, with the real and imaginary degrees
of freedom representing the two dimensions.
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These theories are special because their operators can be written as functions over
the complex plane, but because there exists an infinite number of transformations which
map the complex plane onto itself, we must therefore be careful when defining which
transformations define the conformal group (Di Francesco et al., 1997). We will now
show that the group of conformal transformations in 𝑑 = 2 is the group of functions
which are holomorphic in the complex representation of the coordinates.

Under coordinate transformations 𝑥𝜇 → 𝑥𝜇 +𝑒𝜇, the (Minkowski) metric changes
as

𝜂𝜇𝜈 → 𝜂𝜇𝜈 + 𝜕𝜇𝑒𝜈 + 𝜕𝜈𝑒𝜇. (4.11)

The conformal group means the metric must only differ by a scale 𝛿𝜂𝜇𝜈 = 2𝜎𝜂𝜇𝜈 and
so (Belavin et al., 1984; Ginsparg, 1988)

𝜕𝜇𝑒𝜈 + 𝜕𝜈𝑒𝜇 = 𝑑
2𝜕𝜌𝑒𝜌𝜂𝜇𝜈 (4.12)

which, where 𝑑 = 2, is equivalent to the Cauchy–Riemann equations

𝜕0𝑒1 = −𝜕1𝑒0, 𝜕0𝑒0 = +𝜕1𝑒1. (4.13)

These are solved with complex holomorphic and antiholomorphic transformations

𝑒(𝑧) = 𝑒0 + 𝑖𝑒1 (4.14)
𝑒(𝑧) = 𝑒0 − 𝑖𝑒1, (4.15)

in terms of the corresponding complex coordinates 𝑧 = 𝜎 + 𝑖𝑡 and 𝑧 = 𝜎 − 𝑖𝑡. Note
that in performing this definition we have Wick rotated into Euclidian signature. The
complex coordinates therefore transform as 𝑧 → 𝑧+𝑒 and 𝑧 → 𝑧+𝑒 under infinitesimal
diffeomorphisms. Conformal transformations are therefore just holomorphic transfor-
mations on the complex plane 𝑧 → 𝑧′(𝑧) = 𝑧 + 𝑒(𝑧) (and its complex conjugate
equation). This is the group that preserves angles on the complex plane.

In our chiral field theory these will naturally be represented by right- and left-
moving variables (like lightcone coordinates under a Wick rotation). General gapless
1+1-dimensional models have a conformal symmetry, and the two chiralities decouple.
Let us focus on the chiral (or holomorphic) states, as these are relevant for the bosonised
FQHE theory we have developed.

The generators of these transformations on the complex plane are classically

ℓ𝑛 = −𝑧𝑛+1𝜕𝑧, (4.16)

ℓ𝑛 = −𝑧𝑛+1𝜕𝑧. (4.17)

These generators live in the Witt algebra

[ℓ𝑛, ℓ𝑚] = (𝑛 − 𝑚)ℓ𝑛+𝑚 (4.18)

[ℓ𝑛, ℓ𝑚] = (𝑛 − 𝑚)ℓ𝑛+𝑚 (4.19)

[ℓ𝑛, ℓ𝑚] = 0, (4.20)
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and form irreducible representations of the conformal algebra labelled by integer 𝑛.
This infinite dimensional group is larger than the conformal group we aimed to de-
scribe; the global conformal group is generated by ℓ0, ℓ1, ℓ−1. Explicitly, ℓ−1 = −𝜕𝑧
generates translations and ℓ1 = −𝑧2𝜕𝑧 generates special conformal transformations.
The combinations ℓ0 + ℓ0 and 𝑖(ℓ0 − ℓ0) generate dilatations and rotations, respec-
tively.

These two (anti)holomorphic algebras are independent (in the sense that they have
a trivial cross-commutator), and so we can truly consider the conformal action as being
dependent on 𝑧 and 𝑧 seperately. The physical space of solutions is on the ‘real sheet’
where 𝑧 = 𝑧∗.

Given a field with scaling dimension Δ and spin 𝑠 we can define the (anti)holomorphic
conformal weight (or conformal dimension) ℎ (ℎ) as

ℎ = 1
2(Δ + 𝑠), ℎ = 1

2(Δ − 𝑠). (4.21)

These weights are the eigenvalues of ℓ0 and ℓ0, and so because dilatations and rotations
are generated by ℓ0 + ℓ0 and 𝑖(ℓ0 − ℓ0) the eigenvalues are conformal dimension Δ =
ℎ + ℎ and spin 𝑠 = ℎ − ℎ. Under a conformal transform 𝑧′ = 𝑤(𝑧) a quasi-primary
field transforms as

Φ′(𝑧′, 𝑧′) = [d𝑤
d𝑧 ]

−ℎ
[d𝑤

d𝑧 ]
−ℎ

Φ(𝑧, 𝑧). (4.22)

For now, assume the holomorphic and antiholomorphic components separate so that
we can write the holomorphic primary field is Φ(𝑧). It therefore transforms only under
the variable 𝑧 → 𝑤(𝑧) as

Φ′(𝑤) = [d𝑤
d𝑧 ]

−ℎ
Φ(𝑧), (4.23)

and the equivalent for the anti-holomorphic primary Φ(𝑧).

4.1.3 Operator Product Expansion

In two dimensions the notion of an operator product expansion (OPE) is a powerful
tool for calculating general correlation functions (Năstase, 2015; Cardy, 2008). The
correlation function of two fields is singular as their points are moved together, and the
scaling of this function can be expressed as a Laurent series. The singular behaviour
when field operators are brought together must hold on the operator level too — this
is what the OPE describes. It defines the leading divergence as two holomorphic op-
erators approach, defined in terms of the ‘conformal data’ tensor 𝐶𝑘

𝑖𝑗(𝑧 − 𝑤)

lim𝑧→𝑤 Φ𝑖(𝑧)Φ𝑗(𝑤) = 𝐶𝑖𝑗𝑘(𝑧 − 𝑤)Φ𝑘(𝑤). (4.24)

When this operator relation is applied to general fields, the right hand side can contain
primary and descendent fields, the latter of which contain higher scaling dimensions.
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When applied to primary field, the leading contribution to the singularity therefore
does not contain descendent fields.

For massless holomorphic theories the form of the OPE simplifies to

lim𝑧→𝑤 Φ𝑖(𝑧)Φ𝑗(𝑤) =
𝑐𝑖𝑗𝑘

(𝑧 − 𝑤)ℎ𝑖+ℎ𝑗−ℎ𝑘
Φ𝑘(𝑤). (4.25)

Now this recovers the constraint on the two-point function that we found in higher-
dimension

⟨Φ𝑖(𝑧𝑖)Φ𝑗(𝑧𝑗)⟩ = 1
|𝑧𝑖 − 𝑧𝑗|2ℎ𝑖

(4.26)

and gives the more general reduction relation

⟨Φ𝑖(𝑧𝑖)Φ𝑗(𝑧𝑗) ⋯⟩ =
𝑐𝑖𝑗𝑘

|𝑧𝑖 − 𝑧𝑗|2ℎ𝑖
⟨Φ𝑗 (

𝑧𝑖 + 𝑧𝑗
2 ) ⋯⟩ (4.27)

A general correlation function can be expressed in terms of ‘conformal blocks’ (Belavin
et al., 1984)

⟨Φ𝑖(𝑧𝑖, 𝑧𝑖) ⋯⟩ = ∑
𝑝

∣F𝑝(𝑧𝑖, ⋯)∣
2

. (4.28)

Each block is a product of a holomorphic function F𝑝 and its antiholomorphic conju-
gate. This expresses that the general correlation function is a sum of blocks, which are
linearly independent functions (labelled 𝑝) which span a vector space.

The stress tensor in any field theory is a symmetric divergence-free rank-2 tensor
𝑇𝜇𝜈 which generates local coordinate transforms. The dilatation current can be ex-
pressed in terms of this tensor 𝑗𝜇 = 𝑇𝜇𝜈𝑥𝜈, and its conservation in a general CFT
implies that the stress tensor is traceless 𝑇𝜇

𝜇 = 0. Indeed this is an important result,
for a classically scale-invariant theory has no defining energy scale Λ. For this to be
true, the stress tensor cannot define a natural scale through its trace. In this sense, the
traceless condition of the stress tensor is an important prerequisite for classical confor-
mal invariance.

This is possible to represent the stress tensor in holomorphic coordinates (𝑧, 𝑧)
(Ginsparg, 1988),

𝑇𝑧𝑧 = 1
4 (𝑇00 − 2𝑖𝑇01 − 𝑇11) , (4.29)

plus 𝑇𝑧𝑧 = 𝑇𝑧𝑧 and 𝑇𝑧𝑧 = 0. The conservation law simplifies this, and imposes pure
(anti)holomorphic dependence:

𝜕𝑇𝑧𝑧(𝑧, 𝑧) = 0, 𝜕𝑇(𝑧, 𝑧) = 0. (4.30)

Writing this concisely, we will use the notation 𝑇(𝑧) = 𝑇𝑧𝑧(𝑧) and 𝑇(𝑧) = 𝑇𝑧𝑧(𝑧).
This allows us to formalise the notion of a primary field: these are operators which

have an OPE with the stress-energy tensor which is a double-pole

lim𝑧→𝑤 𝑇(𝑧)Φ(𝑤, 𝑤) = ℎ
(𝑧 − 𝑤)2 Φ(𝑤, 𝑤) + 1

(𝑧 − 𝑤)𝜕Φ(𝑤, 𝑤) + ⋯ . (4.31)
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Because 𝑇(𝑧) generates conformal transformations, this OPE defines the scaling be-
haviour of the field; in particular we will now show that the ℎ which appears in (4.31)
is the conformal dimension of Φ(𝑤, 𝑤) (Tong, 2009).

The field transforms under infinitesimal rescaling 𝑤 = 𝑧 + 𝜖(𝑧) as (4.23). This
diffeomorphism generates an infinitesimal change in the field

Φ(𝑤(𝑧)) = [1 − ℎ𝜖′(𝑧) + ⋯] Φ(𝑧). (4.32)

Expressing as a variation at the point 𝑧 using Φ(𝑤(𝑧)) = Φ(𝑧) + 𝜖(𝑧)𝜕Φ(𝑧) + ⋯
gives

𝛿Φ(𝑧) = −ℎ𝜖′(𝑧)Φ(𝑧) − 𝜖(𝑧)𝜕Φ(𝑧). (4.33)

Take the limit 𝑧 → 𝑤 where the derivative can be written 𝜖′(𝑧) = [𝜖(𝑧) − 𝜖(𝑤)]/(𝑧 −
𝑤) and so

𝛿Φ(𝑧) = −ℎ𝜖(𝑧)Φ(𝑧) − 𝜖(𝑧)𝜕Φ(𝑧). (4.34)

The conformal Ward identity expresses the variation of an operator O(𝑧) under a sym-
metry transformation J (𝑧) and is given as a residue

𝛿O(𝑧, 𝑧) = − Res [J (𝑤)O(𝑧, 𝑧)] . (4.35)

In our case, we are considering variations 𝛿𝑧 = 𝜖(𝑧) and so J (𝑧) = 𝜖(𝑧)𝑇(𝑧). Using
the primary field’s OPE with the stress tensor (4.31) we get

𝛿Φ(𝑧, 𝑧) = − Res [𝜖(𝑤) 𝑇(𝑧)O(𝑧, 𝑧)] = − Res [𝜖(𝑤) (ℎ Φ(𝑧, 𝑧)
(𝑤 − 𝑧)2 + 𝜕Φ(𝑧, 𝑧)

(𝑤 − 𝑧) + ⋯)] .
(4.36)

Taylor expanding 𝜖(𝑤) = 𝜖(𝑧) + (𝑤 − 𝑧)𝜖′(𝑧) + ⋯ gives a residue to the first term
in this expression and we recover exactly (4.34), which is the infinitesimal form of the
primary scaling transform

Φ(𝑧) → [d𝑤
d𝑧 ]

−ℎ
Φ(𝑧). (4.37)

Consequently we may identify ℎ with the scaling dimension of the primary field.

4.1.4 Conformal Anomaly

The conformal anomaly breaks the conformal invariance of the system by introducing
an energy scale Λ. We will now show that this arises because the OPE of stress-energy
tensor receives an additional higher-order pole which renders it non-primary. Consider
the OPE of the stress tensor with itself (Itzykson and Drouffe, 1989)

lim𝑧→𝑤 𝑇(𝑧)𝑇(𝑤) = 𝑐/2
(𝑧 − 𝑤)4 + 2

(𝑧 − 𝑤)2 𝑇(𝑤) + 1
(𝑧 − 𝑤)𝜕𝑇(𝑤) + ⋯ , (4.38)

which has a term proportional to the central charge 𝑐 which renders the field non-
primary. This constant arises whenever there are particle-contents in the theory, and
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it roughly counts the number of degrees of freedom in the theory. Therefore all non-
trivial CFTs are generally expected to have a conformal anomaly quantified by a central
extension 𝑐, as can be shown manually by calculating the 𝑇𝑇 OPE for free fermions or
bosons. Given this OPE we may calculate its non-primary scaling

𝑇(𝑧) → 𝑇′(𝑤) = [𝑤′(𝑧)]2𝑇(𝑧) + 𝑐
12𝑆(𝑧, 𝑤), (4.39)

where 𝑆(𝑧, 𝑤) is a non-trivial function of the two coordinates called the Schwartzian
derivative.

As stated in (Fradkin, 2020b), this directly implies the emergence of an anomalous
Schwinger term of the stress tensor commutator, and consequently the non-vanishing
correlator

⟨𝑇(𝑧)𝑇(𝑤)⟩ = 𝑐/2
(𝑧 − 𝑤)4 . (4.40)

Just as the chiral anomaly led to the central extension of the current algebra (which
was the Kac–Moody term, proportional to 𝑘), the conformal anomaly imbues the Witt
algebra with a central extension to give the Virasoro algebra (Goddard and Olive, 1986).
In the quantisation of a two-dimensional CFT, the de Witt generators instead live in
two copies of the Virasoro algebra, given

[ℓ𝑛, ℓ𝑚] = (𝑛 − 𝑚)ℓ𝑛+𝑚 + 𝑐
12𝑚(𝑚2 − 1)𝛿𝑚,−𝑚. (4.41)

We stated before that the traceless nature of the stress energy tensor is responsible
for the classical conformal invariance, so we should expect there to arise a quantum
energy scale proportional to the central charge 𝑐 in the presence of an anomaly.

In fact, in free space 𝑇𝜇𝜈 is always traceless, but by putting the theory on a weakly
curved background the quantum theory can violate conformal invariance by depending
on the new energy scale governed by this weak curvature. The scale which emerges is

Λ = ⟨𝑇𝜇
𝜇⟩ = 𝑐 𝑅

12, (4.42)

where 𝑅 is the Ricci curvature of the background.

4.2 QuantumHall Correspondence

4.2.1 Motivation

Let us now explain why the edge action derived previously is a conformal field theory,
as well as motivating why general quantum Hall edges are CFT’s. This will lead us to
discussing a general and powerful correspondence between QH bulk states and confor-
mal field theories. The end result of this duality is that one may predict wavefunctions
of physical quantum Hall states simply by understanding their edge theory (Hansson
et al., 2017).

The chiral anomaly generally implies that there must exist gapless chiral fermions at
the edge. The explicit emergence of such states was demonstrated at theChern–Simons
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edge (Wen, 1991, 1990b, 1992), but this result can be explicitly derived independently
of this effective-theory apparatus by considering the dynamics of confined electrons in
Landau levels (Cappelli et al., 1992). It is shown that there universally exists chiral
fermions at the quantum Hall edge which are described by a conformal field theory.

The actions describing these systems can all be described as quantum critical systems
because they exist at a fine-tuned point in parameter space which is scale invariant
(Fradkin, 2013). Such a system naturally arises at a second-order phase transition,
where the system is described by only one characteristic length scale which diverges.
Indeed in the general parameter space of a field theory work by Zamolodchikov (1986);
Ludwig and Cardy (1987) even show how, at the different fixed points (described by
CFTs) of the phase diagram, the central charges 𝑐 are related. The renormalisation
group flow (into the IR) induces a flow in parameter space which must reduce the
value of 𝑐 which — in a sense — links the different CFTs.

In terms of renormalisation group flow, the phase transition is a fixed point of
dilatation and is therefore scale invariant. For 2-dimensional classical (Gross and Wess,
1970) and quantum (Polchinski, 1988) field theories this implies conformal invariance.

The Mermin–Wagner theorem states that in 1+1 dimensions there can be no spon-
taneous symmetry breaking of a continuous group (Mermin and Wagner, 1966; Cole-
man, 1973). Expressed in terms of quantum observables, this theorem requires that all
correlation functions must not decay more quickly than a power law in distance.

Because we are interested in the quantum Hall edge theory at zero temperature,
the power-law fluctuations at the critical point of the phase transition are necessarily
quantum-mechanical. These distinctions from classical Landau theory are why one
can call the Luttinger theory a quantum critical phase. Recall the correlator of electron
operators is a power-law (3.103), which saturates the bound defined by the Mermin–
Wagner theorem. Indeed, one can even explicitly formulate a scale transform for the
edge theory which is a classical symmetry of the action: transforming the fields Ψ →
𝑒ℓ/2Ψ and coordinates 𝑥𝜇 → 𝑒ℓ𝑥𝜇 (so that 𝜕𝜇 → 𝑒−ℓ𝜕𝜇) leaves the Luttinger action
invariant. Sachdev (2011) shows that the Luttinger theory can be defined as a single
point on an extended phase diagram for all temperature 𝑇 > 0 and filling away from the
band-crossing 𝜇 ≠ 0. At zero temperature, order parameters and charge fluctuations
diverge as the Fermi level is restored to zero 𝜇 → 0. Hence the Luttinger phase at
𝑇 = 0 and 𝜇 = 0 is a quantum critical point of this phase diagram.

Further evidence that such theories should be conformal is that the bulk topological
theory must be gapped, with dynamics having much lower energy than the energy of
massive excitations. In this regime there are no physical energy scales of the system,
which is a hint that tr 𝑇𝜇𝜈 = 0 and the system is classically conformal.

In physical quantum Hall systems, the disorder inherent to physical samples and
experiments could break this argument by introducing an energy scale. The chiral
anomaly is responsible for the emergence of the chiral fermion at the edge, and the
resulting action is anomalous in the sense that it cannot be written in terms of local
operators at the edge. Therefore our arguments for a CFT are robust against disorder
because edge perturbations due to dust and disorder must be local, and cannot remove
the non-local and topological chiral fermion edge theory. The topological nature of the
anomaly is said to protect the edge states against disorder, and the state is said to have
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4.2. Quantum Hall Correspondence

topological order (Wen, 1989).

4.2.2 Chiral Boson

Conformal field theories are a ubiquitous tool used for describing scale invariant sys-
tems which exist at a critical point — it is no surprise that we have just been able to
argue that the chiral edge state fermions are a CFT. We also know that the edge’s
degrees of freedom can be described by a chiral boson, which we also expect to be
generally conformally invariant. We can now use our CFT formalism to analyse the
simple case of a free boson.

Consider the free boson in 1 + 1-dimensions, which is a conformal field theory.
We will find that a chiral boson appears in the holomorphic sector, which justifies us
considering this sector as a CFT on its own. In holomorphic coordinates the achiral
CFT action is

𝑆FB = 1
2𝜋 ∫ d2𝑥 𝜕Φ𝜕Φ. (4.43)

The equation of motion is 𝜕𝜕Φ(𝑧, 𝑧) = 0 with a solution that decouples left- and
right-moving fields

Φ(𝑧, 𝑧) = 1
2 (𝜙(𝑧) + 𝜙(𝑧)) . (4.44)

In terms of the chiral fields, the action is simply (1/8𝜋)𝜕𝜙𝜕𝜙. Evaluated by function-
ally differentiating the path integral and solving a differential equation, the two-point
correlation function of the free theory is

⟨Φ(𝑧, 𝑧)Φ(𝑤, 𝑤)⟩ = −1
4 log |𝑤 − 𝑧|2. (4.45)

Splitting this into its two components log |𝑤 − 𝑧|2 = log(𝑤 − 𝑧) + log(𝑤 − 𝑧) shows
explicitly the chiral contribution to the propagator by both the fields 𝜙 and 𝜙. Focusing
on the holomorphic part, the correlator is the same as the chiral correlation function
(3.92) we calculated for the edge boson of the quantum Hall effect

⟨𝜙(𝑧)𝜙(𝑤)⟩ = − log(𝑤 − 𝑧). (4.46)

Taking derivatives of this chiral field, we notice its correlator is

⟨𝜕𝜙(𝑧)𝜕𝜙(𝑤)⟩ = − 1
(𝑤 − 𝑧)2 , (4.47)

which appears to be a conformal field theory with an operator product expansion given
by (4.27). This implies the conformal field is 𝜕𝜙(𝑧) and not 𝜙(𝑧). Indeed, calculating
the stress tensor that 𝜕𝜙 transforms with conformal dimension ℎ = 1 (Ginsparg, 1988).

The holomorphic stress tensor of this theory is

𝑇(𝑧) = −2𝜕Φ𝜕Φ = −1
2𝜕𝜙𝜕𝜙. (4.48)
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In the quantum theory, this operator should be normal-ordered ∶ 𝜕𝜙𝜕𝜙 ∶ in order to
subtract infinities from its expectation values. We can explicitly demonstrate that 𝜕𝜙
is a primary field and find its conformal dimension by evaluating its OPE with 𝑇(𝑧).
This is

𝑇(𝑧)𝜕𝜙(𝑤) = −1
2 ∶𝜕𝜙𝜕𝜙∶ 𝜕𝜙. (4.49)

The LHS of this expression is time-ordered, and the right contains normal-ordered
elements. Using Wick’s theorem (detailed in Di Francesco et al. (1997)) the RHS will
evaluate to a sum of all contractions, each given by (4.47). Retaining only the divergent
pole this is

𝑇(𝑧)𝜕𝜙(𝑤) = 𝜕𝜙
(𝑤 − 𝑧)2 + 𝜕2𝜙

(𝑤 − 𝑧) + ⋯ (4.50)

which shows 𝜕𝜙(𝑧) is a primary operator of the CFT with ℎ = 1.
Taking the system to have periodic coordinates (by placing the complex coordi-

nates on a torus) we can explicitly evaluate the partition function of the free boson.
Here we see that the partition function factorises into two sectors: its holomorphic
and antihomomorphic components 𝑍 = 𝑍𝑙 × 𝑍𝑟 (Cardy, 1986). The chiral theory’s
Hilbert space forms a closed subspace of the full theory, and this is the basis for why
we may hope to use this model to describe the chiral edge modes of the QHE. Theories
of the quantum Hall edge which include chiral fermions not only contain a conformal
anomaly, but also a Lorentz anomaly. This means that the conformal holomorphic and
antiholomorphic charges 𝑐 and 𝑐 may be different. In our case specifically 𝑐 = 0 when
the theory has only a chiral (and not antichiral) sector.

This primary operator 𝜕𝜙 generates the chiral subalgebra, which is related to the
edge action derived for the FQHE droplet. More concretely, Read (2009) shows that
the general edge theory is a local, unitary chiral CFT by defining valid Virasoro opera-
tors in terms of well-defined charges on the edge. Even more explicitly, see (Fuentealba
et al., 2019) for the explicit construction of this algebra for the Floreanini–Jackiw ac-
tion.

The surprising result that is the focus of this Chapter is that the edge CFT also
totally describes universal properties of the bulk theory. This is possible because of
the topological nature of the quantum Hall phases. These systems have long-range
topological order which leads to robust features like the ground state degeneracy (on a
closed system with non-trivial topology). Such results are independent of microscopic
details. There exist robust global observables defined through Wilson loops which
are ‘topological invariants’ in these systems, and indeed these operators will be key in
formalising the bulk-boundary correspondence.

From another perspective, the form of the Laughlin wavefunction suggests that
the quantum Hall system is related to a CFT: the wavefunction can be expressed as a
purely holomorphic function of the coordinates in a way reminiscent of correlators of
primary CFT operators. Furthermore, more complex wavefunctions of QHE phases
— including of non-Abelian phases — all have a wavefunction description in terms of
conformal blocks.
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Indeed, in a remarkable result Moore and Read (1991) showed that a conformal
field theory approach to the quantum Hall edge is able to recover the full wavefunc-
tion of the quantum Hall bulk through its high-order correlation functions. Now it is
thought that all QHE phases have an equivalent CFT description, which has success-
fully been used to predict the form of wavefunctions.

4.2.3 Vertex Operators & Fusion Rules

Let us again consider a chiral field with correlator ⟨𝜙(𝑥)𝜙(𝑦)⟩ = − log(𝑥 − 𝑦). Be-
cause the conformal dimension of the derivative 𝜕𝜙 is 1, the conformal dimension of
the chiral field 𝜙 is zero. Therefore we can generate the series of ‘vertex operators’ from
𝜙 (Hansson et al., 2017), given

V𝛼(𝑥) =∶exp(𝑖𝛼𝜙(𝑥)) ∶, (4.51)

without introducing a scale. These are called Fubini–Venazeano operators in their ap-
plications in string theory (Fubini and Veneziano, 1969; Fubini et al., 1969), and in the
landscape of the quantum Hall effect they represent operators which generate physical
(quasi)particle excitations (Fubini, 1991; Fubini and Lutken, 1991). We can calculate
the conformal dimension of the vertex operators (Ginsparg, 1988) by calculating their
OPE with the stress tensor. Evaluating with Wick’s theorem gives

𝑇(𝑧)V𝛼(𝑤) = −1
2 ∶𝜕𝜙(𝑧)𝜕𝜙(𝑧) ∶ ∶ 𝑒𝑖𝛼𝜙(𝑤) ∶ (4.52)

= −1
2(𝑖𝛼 ⟨𝜕𝜙(𝑤) 𝜙(𝑧)⟩)2 ∶ 𝑒𝑖𝛼𝜙(𝑤) ∶ −𝑖𝛼𝜕𝜙(𝑧) ⟨𝜕𝜙(𝑧) 𝜙(𝑤)⟩ ∶𝑒𝑖𝛼𝜙(𝑤) ∶

(4.53)

= 𝛼2/2
(𝑧 − 𝑤)2V𝛼(𝑤) + 1

(𝑧 − 𝑤)𝜕V𝛼(𝑤) (4.54)

and hence it is a primary field with conformal dimension ℎ = 𝛼2/2.
The operator product expansion of two vertex operators as they are brought together

gives their ‘fusion rules’, written generically as

V𝛼 × V𝛽 = 𝑁 𝜌
𝛼𝛽 V𝜌. (4.55)

This can be evaluated explicitly for the Abelian case of a free chiral theory that we are
focused on. Using the identity relating normal-ordered products

∶ 𝑒𝐴 ∶ ∶ 𝑒𝐵 ∶=∶𝑒𝐴+𝐵 ∶ 𝑒⟨𝐴𝐵⟩, (4.56)

allows us to evaluate the product, using the logarithmic ⟨𝜙𝜙⟩ correlator (Di Francesco
et al., 1997)

V𝛼(𝑧)V𝛽(𝑤) = |𝑧 − 𝑤|2𝛼𝛽V𝛼+𝛽(𝑤) + ⋯ . (4.57)

This demonstrates the simple fusion rule in this case: fusing two quasiparticles together
gives a new particle with combined charge V𝛼+𝛽.
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Note that we will need to consider a compactified boson 𝜙, which acts like an
angular coordinate 𝜙 = 𝜙 + 2𝜋√𝑚. Note that this periodicity relation arises when
we compactify the boson with a radius 𝑅 = √𝑚. In this case the vertex operators
remain single-valued if 𝛼 = 𝑛/𝑅 = 𝑛/√𝑚 with integer 𝑛. We saw before that the
boson was naturally compactified when we placed it on a periodic system, and this
result produced a quantised total charge of the system. The effect of compactifying
the chiral field will be important in restricting the extended algebra to contain a finite
number of (equivalence classes of ) vertex operators (which are distinguishable up to
the number of electrons) (Hansson et al., 2017).

Recall that in the edge CFT generated by the electrons, the chiral Kac–Moody
algebra is proportional to a level 𝑚. Importantly, this level is guaranteed to be a rational
number, as was found when deriving FQHE states. The vertex operator V𝛼(𝑥) has the
same form as the charged excitations of the edge states in (3.94). In this formalism,
the field V𝑚 was the electron with charge 1, and V1 was the quasihole with charge 1/𝑚
(Fradkin, 2013). Because 𝑚 = 𝑝/𝑞 is rational, the fusion of an integer number 𝑞 of
quasiparticle vertex operators will generate a state containing only electrons.

Next, we require that all primary fields V𝑛 are local with respect to the electron
operator V𝑚, meaning looping V𝑛 around the electron does not pick up any phase.
This loop is called a monodromy, as calculated in Section 1.3, and involves taking the
closed path in 1+1 dimensions (which involves a closed path in time). The monodromy
of two vertex operatorsV𝑛,V𝑛′ has statistical phase exp(2𝜋𝑖 𝑛𝑛′/𝑚) and vanishes for all
𝑛 only when 𝑛′ = 𝑚. Therefore all operators are local with respect to the electron (but
not necessarily each other). We can extend the Kac–Moody algebra by looking for its
representations which are also physical states and are local with respect to the electron.
Next, all fields which only differ by one or more electrons can be considered physically
equivalent in the sense that these electron trivially interact with the electron which
defines the extended algebra. Furthermore, because there exists an integer number
𝑞 of quasiholes which combine to give an electron, we can restrict our algebra to be
𝑛 = 1 ⋯ 𝑞 − 1. This implies the physical subalgebra of vertex operators has a finite
number of (distinguishable) representations, and it generates a rational conformal field
theory (RCFT) (Moore and Read, 1991).

The full RCFT derived from the free boson has both holomorphic and antiholo-
morphic vertex operators, but it is a general property that one can define a purely holo-
morphic subalgebra (generated by V1) (Moore and Seiberg, 1988; Moore and Read,
1991). This chiral algebra is fully consistent when considered on its own (as it contains
its own holomorphic stress tensor and identity), and this is the algebra which will be
applied to the quantum Hall effect. This is since the QHE edge is purely chiral, and it
demands a description in terms of purely holomorphic vertex operators.

For the simple FQHE state 𝑚 ∈ Z, the RCFT fusion rule is

V𝑛 × V𝑛′ = V𝑛+𝑛′ mod 𝑚. (4.58)

The quasiparticles are in representations of the level-𝑚 Kac–Moody algebra, which
is what restricts the allowed vertex representations. Therefore we call this state the
𝑈(1)𝑚 compactified chiral boson RCFT with 𝑚 different primary vertex operators in
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representations of KM. Each operator V𝑛 has conformal dimension

ℎ𝑛 = 𝑛2

2𝑚. (4.59)

Because the theory is chiral, the conjugate scaling dimension is ℎ = 0, and the spin
of the particle is simply given by 𝑠 = ℎ. The fundamental quasiparticle V1 therefore
has spin 𝑠 = 1/2𝑚, and the electron V𝑚 has spin 𝑚/2 which is bosonic/fermionic
for even/odd 𝑚 (Hansson et al., 2017). As expected, it is therefore fermionic in the
Laughlin state with odd 𝑚.

4.2.4 Correspondence

This formalism now allows us to detail the correspondence between the edge CFT and
the bulk Chern–Simons theory; first let us follow the operator-map laid out by Witten
(1989). The gauge-invariant observables of the bulk effective theory are Wilson loop
operators 𝑊𝑛[Γ] defined over a closed loop Γ. To recap: these represent heavy anyon-
particle insertions which are moved around a closed cycle, and their expectation value
measures the phase accumulated. This is written in terms of the emergent gauge field
𝑎 and an integer 𝑛 (which labels a representation of the 𝑈(1) group) as

𝑊𝑛[Γ] = 𝑃 exp(𝑖𝑛 ∮
Γ

𝑎). (4.60)

In Section 3.3.1 where we derived the boundary theory, the physical (temporal) gauge
constraint was equivalent to considering ‘pure gauge’ configurations 𝑎 = d𝜙 (an exact
connection). This would imply 𝑊𝑛[Γ] is zero over bulk cycles, however in a theory
with a boundary we can terminate the path Γ(𝑥, 𝑦) on the edge at points 𝑥, 𝑦, as shown
in Fig. 4.1. Evaluating the Wilson line shows that it is the correlation functions of
level-𝑛 vertex operators

⟨𝑊𝑛[Γ(𝑥, 𝑦)]⟩ = ⟨𝑇𝑒−𝑖𝑛𝜙(𝑥)𝑒𝑖𝑛𝜙(𝑦)⟩ = ⟨𝑇V†
𝑛(𝑥)V𝑛(𝑦)⟩ . (4.61)

These operators have a charge 𝑛/𝑚 and conformal scaling dimension 𝑛2/2𝑚.
As was found for the vertex operators, there are only 𝑚 distinguishable Wilson

loop operators, where 𝑚 here is the level of the Chern–Simons theory. Witten (1989)
lays out a deep correspondence between 2+1 dimensional Chern–Simons theories and
operators in rational CFTs. The topological nature of CS theories, meaning that the
observables are only dependent upon global properties of the manifold, are generally
responsible for the conformal properties of the dual edge excitations.

But because of the general covariance of the Chern–Simons theories, ‘slicing’ the
theory in different ways will give the same result. Instead of slicing the theory to get
a 1+1 dimensional dynamical theory of the edge, we can take a spacelike slice (at fixed
time) to get a 2+0 dimensional theory which describes the wavefunction of the bulk.
The previous correspondence (4.61) allows us to think of the operator V𝑛(𝑥) creating a
particle on the boundary, and then drawing it through the bulk of the 2+1 dimensional
CS theory along the path Γ. Taking a slice at 𝑡 after the creation event, the path of the
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Figure .: Taking an edge excitation on a path Γ through the bulk and terminating
it on the boundary.

Wilson line Γ will puncture the spacelike slice; Witten quantises the CS theory on this
Euclidian 2+0 dimensional slice in the presence of these Wilson lines which pierce the
spacelike surface. The space of solutions of the CS theory is the space of conformal
blocks in a 1+1 dimensional CFT which motivates the identification of the quantum
theory of Wilson lines 𝑊𝑛 (in a given representation 𝑛) with correlation functions of
primary vertex operators on the edge CFT (Witten, 1989).

Using this method, onemay even recover the bulk wavefunction at a given constant-
time slice at 𝑡0. Choose the representation of the boundary vertex operators so that they
represent electron creation operators, then the Wilson lines Γ(𝑡) represent the path of
these electrons after they are pulled into the bulk. The spatial slice has the geometry
of a disk, which will be punctured by a number of ‘electron’ Wilson lines which were
produced before 𝑡0. In order to identify the coordinates of the boundary with those on
the slice, we must choose a ‘conformal mapping’ which is an analytic mapping of the
Lorentzian edge coordinates 𝑥 = (𝑡, 𝜎) to the Euclidian slice coordinates Γ = (𝜎, 𝜂)
(where 𝜂 is the radial and 𝜂 the azimuthal coordinate). Using the complex representa-
tion of the edge coordinate 𝑧 = 𝜎 + 𝑖𝑡, the conformal mapping is

𝑤 = 𝑒𝑖𝑧𝑒−𝑡0 = 𝑒𝑡−𝑡0𝑒𝑖𝜎 , (4.62)

where the complex coordinate system on the disk is 𝑤 = 𝜂𝑒𝑖𝜎 . In a sense, this defines a
choice of the path Γ𝑖 of each electron created at the boundary in order to simply relate
the complex coordinates 𝑧 and 𝑤, as shown in Fig. 4.2.

Let us now explicitly recover the Laughlin wavefunction from correlation functions
of the 𝜈 = 1

𝑚 edge RCFT (Moore and Read, 1991). Choose the primary field V𝑚(𝑧)
as the electron of the theory, which will be used to generate this wavefunction. The
previous discussion motivates the identification of the expectation value of V𝑚 inser-
tions at the boundary points 𝑧𝑖 with the Wilson lines puncturing the spatial disk at 𝑤𝑖
(defined through the conformal mapping). Evaluating the correlation function of the
edge CFT we find

⟨𝑊𝑚(𝑤1) ⋯ 𝑊𝑚(𝑤𝑁)⟩ = ⟨V𝑚(𝑧1) ⋯V𝑚(𝑧𝑁)⟩ = exp⎛⎜⎜
⎝

−𝑚
𝑁

∑
𝑖<𝑗

⟨𝜙(𝑧𝑖)𝜙(𝑧𝑗)⟩⎞⎟⎟
⎠

.

(4.63)

78



4.2. Quantum Hall Correspondence

Figure .: The path of a boundary excitation defines a conformal map between the
boundary and a spacelike slice.

This expression is evaluated using Wick’s theorem applied to free chiral bosons, and
then taking the correlator ⟨𝜙(𝑧)𝜙(𝑤)⟩ = − log(𝑧 − 𝑤) gives the wavefunction on the
spatial slice

Ψ(𝑤1, … , 𝑤𝑁) = ∏
𝑖<𝑗

(𝑤𝑖 − 𝑤𝑗)𝑚. (4.64)

However evaluating (4.63) violated the neutrality condition imposed on conformal field
theories: the total scaling dimension of primary fields in a correlation function must be
zero. Inserting a background neutralising charge density to the system allows us to re-
gain a meaningful expression for the wavefunction by cancelling this scaling dimension.
Define the background charge operator

Obg = exp(−𝑖𝜌𝑚√𝑚 ∫ d2𝑧 𝜙(𝑧)), (4.65)

which defined a constant areal charge density of a fractionally filled Landau level 𝜌𝑚 =
𝐵/2𝜋𝑚 = 1/2𝜋𝑚𝑙2𝐵 (Hansson et al., 2009). The wavefunction is finally recovered

Ψ(𝑤1, … , 𝑤𝑁) = ⟨V𝑚(𝑤1) ⋯V𝑚(𝑤𝑁)Obg⟩ = ∏
𝑖<𝑗

(𝑤𝑖 −𝑤𝑗)𝑚𝑒− ∑𝑖 |𝑤𝑖|2/4𝑙2𝐵 . (4.66)

This incredible result has used the conformal mapping to evaluate the wavefunction on
the spatial slice by using correlation functions of the vertex operators (which create the
electrons in the system) at the boundary. The full Laughlin wavefunction is therefore
simply a many-body correlation function of an edge CFT.

Excited states containing quasiparticles may even be included in the wavefunction
through this procedure: simply inserting a CFT operator V1( ̃𝑧𝑖) creates a quasihole
in the Laughlin system (Hansson et al., 2017), and dragging it through the bulk to
puncture the spatial slice inserts it into the Laughlin wavefunction

Ψ(𝑤̃; 𝑤1, … , 𝑤𝑁) = ⟨V1( ̃𝑧)V𝑚(𝑧1) ⋯V𝑚(𝑧𝑁)Obg⟩ (4.67)

= ∏
𝑖

(𝑤𝑖 − 𝑤̃) ∏
𝑖<𝑗

(𝑤𝑖 − 𝑤𝑗)𝑚𝑒− ∑𝑖 |𝑤𝑖|2/4𝑙2𝐵−|𝑤̃|2/4𝑙2𝐵 . (4.68)
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This fractionally charged edge operator therefore created an anyon in the bulk! Adding
a second one allows us to more clearly see its braiding statistics appearing:

Ψ(𝑤̃1, 𝑤̃2; 𝑤1, … , 𝑤𝑁) = ⟨V1(𝑤̃1)V1(𝑤̃2)V𝑚(𝑤1) ⋯V𝑚(𝑤𝑁)Obg⟩ (4.69)

= (𝑤̃1 − 𝑤̃2)1/𝑚 ∏
𝑖

(𝑤𝑖 − 𝑤̃1)(𝑤𝑖 − 𝑤̃2) ∏
𝑖<𝑗

(𝑤𝑖 − 𝑤𝑗)𝑚𝑒− ∑𝑖 |𝑤𝑖|2/4𝑙2𝐵−(|𝑤̃1|+|𝑤̃2|)2/4𝑙2𝐵 .

(4.70)

There is now a further non-analytic term which is responsible for the relative fractional
statistics (recall Section 1.3). The concept of operator fusion at the edge implied that
as we take V1(𝑧1) and V2(𝑧2) to the same point, they will behave as a fused operator
V2. This phenomenon is reproduced in the Laughlin wavefunction when the electron-
quasihole interaction term approaches

∏
𝑖

(𝑤𝑖 − 𝑤̃1)(𝑤𝑖 − 𝑤̃2) → ∏
𝑖

(𝑤𝑖 − 𝑤̃)2 (4.71)

as 𝑤̃1,2 → 𝑤̃.
This conformal mapping between coordinates on the boundary and on the spatial

slice allowed us to evaluate the constant-time CS wavefunction through correlation
functions of the edge CFT. This result is not purely dependent upon the coordinate
mapping we chose, however; by using a ‘holomorphic quantisation’ of the bulk CS
action, it is possible to identify the bulk wavefunctions with the edge’s partition function
(Moore and Read, 1991; Eliashvili, 1996).

4.3 Non-Abelian QuantumHall Systems

So far we have considered only Abelian fractional quantum Hall states, represented
by the level-𝑚 Chern–Simons action. However there is a whole class of interesting
theories that our discussion has thus far omitted: promoting the gauge group of the
emergent gauge field 𝑎 to be 𝑆𝑈(𝑁)𝑘 (at level 𝑘) we can engineer a quantum Hall phase
with non-Abelian particles.

In fact, there are many observations which suggest the physics of quantum Hall
plateaus above the lowest Landau level are governed by non-Abelian statistics (Eisen-
stein et al., 2002; Xia et al., 2004). In particular, it is suggested that the 𝜈 = 5

2 level is an
example of such a phase which hosts non-Abelian anyons (Moore and Read, 1991; Gre-
iter et al., 1992). These non-Abelian CS theories are applicable more broadly in con-
densed matter: there are proposed non-Abelian vortex excitations in strontium ruthen-
ate superconducting atomic layers (Das Sarma et al., 2006) and superfluid helium-3,
for example.

There has been a strong experimental interest in realising this phase and attempt-
ing to measure the non-Abelian quasiparticles in such phases (Bonderson et al., 2006;
Stern and Halperin, 2006) because control over them would allow for the advent of
a new field: topological quantum computation (Das Sarma et al., 2005). The feature
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limiting progress of quantum computation over the last few decades has been the intol-
erance of entangled quibits to decoherence and environmental noise. The use of topo-
logical phases in quantum computation provides an exciting notion — since generally
these phases have ground states which are only dependent upon global properties of
the system, the computer can be made resillient against local perturbations. The use of
non-Abelian anyonic excitations of the FQHE has been proposed as such a method of
fault-tolerant computation and data-encoding (Kitaev, 2003) (see (Nayak et al., 2008)
for a review).

It has been suggested that the 𝜈 = 5
2 FQHE state lies in the non-Abelian class

of 𝑆𝑈(2)2 (although it may also be described by a Wen–Zee 𝐾-matrix state, and ex-
perimental work is currently seeking to determine its nature). All amplitudes for pro-
cesses which loop and knot a set of anyon worldlines in this 𝑆𝑈(2)2 theory (with their
antiparticles) is given by the Kauffmann knot invariant (Simon, 2016). The calcula-
tion of the Kauffman knot invariant is exponentially hard in the number of crossings,
but a quantum computer made from this FQHE state would be able to calculate it
in constant time simply by braiding the anyons into a given knot structure, and then
measuring the amplitude of annihilation. The ability to perform this calculation of the
Kauffmann invariant allows the system to generally perform any quantum computa-
tion (Freedman, Kitaev, and Wang, 2002). Control over quantum Hall anyons with
this level of precision is years away, but harnessing the power of these systems would
prove an astonishing new development in the field of quantum computation.

The non-Abelian CS action is similar to the familiar Abelian case except with an
additional term to ensure gauge invariance

𝑆CS[𝐴] = 𝑘
4𝜋 ∫

M
tr[𝐴 ∧ d𝐴 + 2

3𝐴 ∧ 𝐴 ∧ 𝐴]. (4.72)

The theory is invariant under 𝑆𝑈(𝑁)𝑘 gauge transformations, given

𝐴 → 𝑔𝐴𝑔−1 + 𝑔(d𝑔−1), (4.73)

with 𝑔 ∈ 𝑆𝑈(𝑁). This is only gauge invariant on compact spaces when 𝑘 ∈ Z. Simi-
larly to before, quantising this action on amanifold with boundaries leads to an anomaly
at the edge, which is now a level-𝑘 WZW chiral CFT theory, due to Wess and Zumino
(1971); Witten (1983)

𝑆CS[𝐴] = 𝑘
4𝜋 ∫

𝜕M
tr[d𝑔 ∧ ⋆d𝑔−1]+ 𝑘

12𝜋 ∫
M

tr[(𝑔−1 d𝑔) ∧ (𝑔−1 d𝑔) ∧ (𝑔−1 d𝑔)],
(4.74)

which only depends on the value of the field 𝑔 at the boundary edge (Nayak et al.,
2008).

This action also arises through the bosonisation of fermions with a non-Abelian
symmetry (Witten, 1984), once again demonstrating that there are chiral fermion ex-
citations which will appear at the quantum Hall edge. Moreover, it was shown that at
this value of the WZW coupling constant, the theory is conformally invariant (Knizh-
nik and Zamolodchikov, 1984) as expected generally of the quantum Hall edge. The
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chiral anomaly of the boundary fermions leads to a non-Abelian 𝑆𝑈(𝑁)𝑘 Kac–Moody
current algebra, and the matter content of the theory also leads to a conformal anomaly.

A non-Abelian CS action can be derived as an effective theory of a set of 𝑁 ‘par-
tons’, which are fermions which transform under the 𝑆𝑈(𝑁) symmetry group (Wen,
1999). Integrating out the fermions and taking the IR limit of the gauge field derives
an effective theory which has non-Abelian excitations, since other terms are irrelevant
and vanish. In particular, integrating out the fermions with two filled Landau levels
generates the 𝑆𝑈(2)2 state which may describe the 𝜈 = 5/2 FQHE state. Alterna-
tively, one may derive the bulk theory by considering the inverse of the anomaly inflow
argument (Hansson et al., 2017). If we wish to describe the 𝜈 = 1 state with bosonic
edge excitations, it can be argued that these must live in a chiral 𝑆𝑈(2)2 Kac–Moody
algebra. The fermionic dual theory will be generated by the corresponding WZW the-
ory. Now crucially, in order to generate this chiral anomaly, the bulk must be described
by a 𝑆𝑈(2)2 CS theory (Fradkin et al., 1998).

The fermionic vertex operators in the non-Abelian boundary theory (such as the
WZW theory) obey the general fusion rules given (4.55). Indeed the simple case where
two operators fused to form only one product is unique to Abelian theories and is
generally not the result of non-Abelian CFTs. For example, in an 𝑆𝑈(2)𝑘 theory the
vertex operators live in the spin algebra with a highest weight state labelled by a ‘spin’
𝑠 = 𝑘/2. The fusion rules are therefore simply the Clebsch–Gordan decomposition of
the spin group with V𝑛 living in the module 𝑛 = 2𝑠 + 1, i.e.

V2 × V2 = V1 + V3. (4.75)

The general 𝑆𝑈(𝑁)𝑘 fusion rules are given by the Young tableaux tensor product rules.
The space of constants 𝑁 𝜌

𝛼𝛽 which define the relative fraction of each of these
possible states in the fusion define a Hilbert space of possible fusion results. In this
𝑆𝑈(2)2 case for example, the 4-point correlator of quasiparticles will have two inde-
pendent components

Ψ(𝑤̃1, 𝑤̃2) = ⟨V1(0)V1(𝑤̃1)V1(𝑤̃2)V1(1)⟩ (4.76)
= 𝑎+Ψ+(𝑤̃1, 𝑤̃2) + 𝑎−Ψ−(𝑤̃1, 𝑤̃2). (4.77)

In fact the general high-point correlation function can be decomposed into conformal
blocks Ψ𝛼 which span a degenerate vector space (Moore and Seiberg, 1988, 1989),

Ψ(𝑤̃1, … , 𝑤1, … ) = ⟨V1(𝑤̃1) ⋯V𝑚(𝑤1) ⋯⟩ (4.78)
= ∑

𝛼
𝑐𝛼Ψ𝛼(𝑤̃1, … , 𝑤1, … ). (4.79)

The non-Abelian nature of the state arises when the quasiholes are taken to loop around
each other in a braid. In this circumstance, after the quasiholes have been returned to
the same positions, the wavefunction has varied after the coefficients change

𝑐𝛼 → 𝑈[braid] 𝛽
𝛼 𝑐𝛽. (4.80)
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Thematrix 𝑈[braid] is called themonodromymatrix and causes the non-Abelian statis-
tics of the quasiholes (Moore and Read, 1991).

Recalling the quantisation of the Chern–Simons action in Section 2.4, we will now
follow the work of Witten (1989) who quantised and exactly solved the non-Abelian
model. In this work, he draws a fascinating link between the non-Abelian CS theory
and the WZW edge theory. The added feature of this duality is the non-trivial nature
of fusion; canonically quantising the CS theory on a spatial slice which is penetrated by
Wilson lines gives the same Hilbert space as the set of conformal blocks of the WZW
theory (Williams, 2019).

Thus the non-Abelian generalisation of the bulk-boundary correspondence has
been achieved: the correlation functions of all conformal edge theories can be exactly
mapped to the bulk theory of Wilson lines and therefore reproduce the wavefunction.
This program has been successful in describing more complex quantum Hall states
which include multiple gauge or auxilliary fields in terms of the edge chiral RCFTs
(Fradkin et al., 1998, 2001). The use of CFT tools allows for the computation of
wavefunctions of a great number of quantum Hall states, and indeed other states with
intrinsic topological order.

Moreover, in the context of the non-Abelian quantum Hall effect the braiding of
edge excitations are dual to physically braiding the non-Abelian anyons. Their braiding
properties are defined by the monodromy matrix of the edge CFT.
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Particle-Vortex Duality in the FQHE 5

5.1 Dualities in Quantum FieldTheory
Our study of the quantum Hall effect has so far led us to use several dualities — let us
briefly reflect on how they have been used to highlight their relevance. In 1+1 dimen-
sions we used bosonisation dualities to reformulate fermionic edge theories in terms of
bosonic degrees of freedom. This duality allowed the edge to be canonically quantised
in a fashion which allowed us to describe it as a conformal theory. Finally a duality
was drawn up between the boundary correlation functions and the bulk wavefunction
using an analysis of Wilson lines in the bulk.

There are still many unanswered questions of the FQHE theory which we will
now develop tools to better understand: Can we formulate a theory wherein the bulk
electron excitations are first-class particles? How does bosonisation apply in higher
dimensions? And are there any properties of even-filling 𝑚 FQHE states which we
can describe using field theory?

In order to do this, we will need to develop tools of particle-vortex duality in 2+1
dimensions. In 2-spatial dimensional field theories there are two categories of ‘particles’
which can be described. The first category is what one usually refers to as a particle:
local field excitations which are momentum-eigenstates. The second category is that of
‘vortices’ which are solitonic solutions to the field equations which are topological field
configurations that connect multiple vacuums. They are topological objects and are
categorised by integer winding numbers, so they cannot be described in perturbation
theory. We will find that quasiholes are naturally particle-like particles, and dualising
the theory of the fractional QHE will provide a theory of quasiholes as vortices but
with the electrons as true particles.

The dualising process will involve changing the statistics of particles, a process
which connects this story to bosonisation in higher than 1+1 dimensions. As is usual
in the process of added-dimensionality, the correspondences can not be made as rigor-
ously as before, but we can still make convincing arguments by analysing such theories
in tractable limits. We will later propose a bosonisation duality which equates the path
integrals of a fermionic and bosonic theory. This duality has only recently been discov-
ered, and has led to a surge of recent work which aims to propose a consistent theory
of the half-filled Landau level — for a review see (Senthil et al., 2018; Turner, 2019).

The 𝜈 = 1/2 filling fractional quantum Hall state has been the centre of recent
work in the field of quantum Hall physics, and indeed will be the focus of the end of
this Chapter. This is not a gapped state, and so does not exhibit the FQHE, but it has
interesting fermionic quasiparticles which are expected to be CFs. We will introduce
the Halperin–Lee–Reed theory of the composite fermion for this state, and then we
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. Particle-Vortex Duality in the FQHE

will discuss how recent work has shown that the Dirac fermion may be a better model.

5.1.1 Photon – Compact Scalar Duality

The first duality we will consider will be a reformulation of a simple photon in 2+1
dimensions, where we will show that the ‘dual photon’ is simply a compact scalar. The
path integral of the free photon theory 𝑎 is

𝑍 = ∫D𝑎 𝑒𝑖𝑆[𝑎], 𝑆[𝑎] = − 1
4𝑔2 ∫ 𝑓 ∧ ⋆𝑓 , (5.1)

where 𝑓 = d𝑎. Its equation of motion is d ⋆ 𝑓 = 0 and the Bianchi identity is triv-
ially d𝑓 = 0. This path integral only depends upon 𝑓 and so we can replace D𝑎 with
D𝑓 𝛿𝐹[d𝑓 ] as the path-integral measure, where the functional-Dirac delta functional
imposes the Bianchi identity. Now using the standard representation of the Dirac func-
tional in terms of Nakanishi–Lautrup field 𝜎 (which acts as a Lagrange-multiplier in
the derivation of the equations of motion), the path integral becomes

𝑍 = ∫D𝜎D𝑓 exp [𝑖 ∫ (− 1
𝑔2 𝑓 ∧ ⋆𝑓 + 1

2𝜋 𝜎 d𝑓 )] . (5.2)

The equations of motion are

𝑓 = − 𝑔2

2𝜋 ⋆ d𝜎 , (5.3)

d𝜎 = 0. (5.4)

We therefore recover d𝑓 = 0 (which now comes from the d𝜎 = 0 equation of motion)
and d ⋆ 𝑓 = 0 (which follows trivially from Bianchi). The roles of the equation of
motion and Bianchi identity have been reversed in this duality.

Because 𝑓 appears quadratically in the action it can be integrated out (at tree-level
using the classical equation of motion) to give an action in terms of 𝜎 , the ‘dual photon’:

𝑍 = ∫D𝜎 exp [𝑖 𝑔2

4𝜋 ∫ d𝜎 ∧ ⋆ d𝜎] . (5.5)

This action has a global 𝑈(1)topo symmetry with the current

𝐽topo = −𝑔2

𝜋 d𝜎 (5.6)

which acts by shifting 𝜎 → 𝜎 + const.
Thus we have provided a duality of this 2+1 dimensional photon theory by writ-

ing the same theory in terms of a different point of view: the one-form theory of 2+1
dimensional electromagnetism is dual to a zero-form theory of a scalar. This new for-
mulation even highlighted that there is a global topological 𝑈(1) symmetry, which
was obfuscated in the original writing-down of the theory. Similar dualities exist in
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higher dimensions too; in the familiar case of 3+1 dimensional Maxwell a general elec-
tromagnetic duality transform (Montonen and Olive, 1977) relates 1-form theory to
another 1-form theory with the role of the electric and magnetic fields reversed (hence
the general name of “electric-magnetic duality”) (Turner, 2019). Moreover, the equiv-
alent of this compact boson duality in 3+1 dimensions is a map from a scalar (with a
shift symmetry) to a 3-form field strength.

5.1.2 XYModel

Thenext duality we will consider is our first example of a particle-vortex duality (Peskin,
1978). One side of this duality is the familiar XY model, which will later be related to
the Abelian Higgs model. Firstly, the XY model is a theory of a complex scalar 𝜙 with
the action

𝑆XY = ∫ d3𝑥 [|𝜕𝜙|2 − 𝑚2|𝜙|2 − 𝜆|𝜙|4] , (5.7)

which has a global 𝑈(1)XY symmetry generated by the current

𝐽𝜇
XY = 𝑖 (𝜙∗𝜕𝜇𝜙 − 𝜙𝜕𝜇𝜙∗) . (5.8)

This has two distinct phases

• 𝑚2 > 0:
The vacuum is 𝜙 = 0 and the excitations are 𝜙 with mass 𝑚. The global 𝑈(1)XY
symmetry remains unbroken. The excitations are massive particles 𝜙.

• 𝑚2 < 0:
The system undergoes spontaneous symmetry breaking of the 𝑈(1)XY group and
𝜙 receives a vacuum expectation value |𝜙|2 = 𝑣2 = 𝑚2/𝜆. Expanding around
the vacuum, the field is given

𝜙 = (𝑣 + 𝜌)𝑒𝑖𝜎 . (5.9)

Expanding the action in this form gives a kinetic term (𝜕𝜌)2 + (𝜕𝜎)2, but the
expansion of the potential 𝑉(|𝜙|) = 𝑉(𝑣 + 𝜌) is independent of the phase 𝜎 .
Therefore 𝜌 is massive and 𝜎 is the massless Goldstone field.
Because the field must be single-valued, the field 𝜎 must be unchanged up to a
2𝜋𝑛 difference under a closed loop. We can define a topological winding number
for this field

𝑛 = 1
2𝜋 ∮

C
d𝜎 = 1

2𝜋 ∮
C
d𝑥𝑖 𝜕𝑖𝜎. (5.10)

Vortices of the theory are topological defects which have non-zero winding num-
ber, when the loop C encloses its core (Tong, 2016).
Let us construct an example vortex solution to understand some features of their
dynamics. The XY Hamiltonian with constant 𝜌 is

𝐻vor = 1
2 ∫ d2x |𝜕𝑖𝜎|2. (5.11)
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Figure .: Vortex field gradient 𝜕𝑖𝜎 shown in blue; the ‘core’ of the vortex is shaded
out.

Now take the example vortex solution with winding number 𝑛 (in polar coordi-
nates)

d𝜎 = 𝑛
𝑟2 d𝜃 (5.12)

as shown in Fig. 5.1. This solution is valid outside of the ‘core’ of the vortex —
at some short distance around the core there is spontaneous symmetry breaking.
This short distance acts as a regulator, which is needed since the field configu-
ration would be divergent if extended to the origin. The distance scale of this
core size is determined by the equation of motion of the XY theory, and we will
only consider the behaviour of the field configuration at scales 𝑟0 greater than
the core size.

Evaluating the energy of an isolated vortex involves a radial integral from 𝑟0 to
𝑅, where these are short- and long-distance cutoffs, respectively. The energy is
given

𝐸vor = 𝜋𝑛2 log( 𝑅
𝑟0

), (5.13)

which is logarithmically divergent in 𝑅/𝑟0, and quadratic in winding number 𝑛
(Tong, 2017).

Now to develop a model of interacting vortices, we must use a method which
relates the field 𝜎 to an effective ‘electric field’ 𝐸𝑖 = 𝜀𝑖𝑗𝜕𝑗𝜎 = −𝜕𝑖𝜒. In this
language, the system energy is

𝐻vor = 1
2 ∫ d2x𝐸𝑖𝐸𝑖 = −1

2 ∫ d2x𝜒𝜕𝑖𝐸𝑖. (5.14)

Evaluating the divergence of the electric field shows that vortices are point sources
𝜕𝑖𝐸𝑖 = 2𝜋𝑛𝛿(2)(x − x𝑖), and so solving this gives the ‘potential’ in terms of the

88



5.1. Dualities in Quantum Field Theory

𝑚2

𝜆

Free FP

WF FP

Figure .: Wilson–Fisher FP of the RG flows in the XY model. Adapted from
(Turner, 2019).

pairwise radius 𝑟𝑖 = |x − x𝑖|,

𝜒 = −𝑛 log(𝑟𝑖/𝑟0) + const, (5.15)

which is again defined in terms of the short-distance cutoff 𝑟0 which represents
the size of the vortex core. The energy is therefore

𝐻vor = 𝜋 ∑
𝑖<𝑗

𝑛𝑖𝑛𝑗 log(𝑟𝑖𝑗/𝑟0) + const, (5.16)

which shows the logarithmic interactions are attractive for vortex-antivortex pairs
(when 𝑛𝑖,𝑗 have opposite signs).

In-between the phases there is a second-order phase transition which lives in the uni-
versality class of the Wilson–Fisher (WF) critical point. A schematic of the RG flow
of the system is shown in Fig. 5.2, which demonstrates that the WF fixed point does
not lie exactly at 𝑚2 = 0 but in fact is slightly away from it; this will not matter for our
analysis but it is worthmentioning that the crossover between the broken and unbroken
phases lies slightly away from zero.

The correspondence will be drawn by identifying a corresponding critical point in
the dual theory, and then tuning the same relevant operators to both sides of the theory
one may follow the same RG flow away from the critical point. In the XY model, such
a relevant operator is 𝜙2 which flows the theory away from the WF fixed point along
the red line. We also have dual currents at our disposal, and we will use this to add new
CS couplings to the theories.

5.1.3 Abelian HiggsModel

Consider the theory of a complex scalar field with a local 𝑈(1)gauge gauge symmetry

𝑆AH = ∫ d3𝑥 [− 1
4𝑔2 𝑓 2

𝜇𝜈 + |𝐷𝜙|2 − 𝑚̃2|𝜙|2 − 𝜆̃|𝜙|4] , (5.17)

where 𝜙 has charge 𝑔 under the gauge group: 𝐷𝜇𝜙 = 𝜕𝜇𝜙 + 𝑖𝑔𝑎𝜇𝜙, and 𝑓 is the field
strength of the connection 𝑎.
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Calling on our prior analysis of the photon, we can dualise the Maxwell sector and
write it in terms of a dual scalar 𝜎 . This local theory in 2+1 dimensions has a global
‘topological’ 𝑈(1)topo symmetry, which motivates us to identify this phase with the
𝑚2 < 0 phase of the XY model. The charge of this global group, written in terms of
the original gauge field is ⋆ d𝑎 (Tong, 2018). Explicitly in components

𝐽𝜇
topo = −𝑔2

𝜋 𝜕𝜇𝜎 = 1
4𝜋 𝜀𝜇𝜈𝜌𝑓𝜈𝜌, (5.18)

and the conserved charge is

𝑄topo = 1
2𝜋 ∫ d2x 𝑓12 = 1

2𝜋 ∫ d2x𝐵. (5.19)

Operators charged under this current are monopole operators M = 𝑒𝑖𝑄topo𝜎 , which
transformM → exp(𝑖𝑄topo𝜃)M. Now consider in detail the two phases of the theory:

• 𝑚̃2 > 0 Coulomb phase:
The 𝜙 is a massive field with vacuum 𝜙 = 0 and so the 𝑈(1)gauge symmetry
is unbroken. The vacuum therefore contains a massless photon field 𝜎 which
spontaneously breaks the 𝜎 → 𝜎 + const symmetry; the Coulomb phase breaks
the global 𝑈(1)topo symmetry and has the photon as its Goldstone (Kovner et al.,
1991). For this reason we will aim to identify the Coulomb phase of the Abelian
Higgs model with the global-symmetry-broken 𝑚2 < 0 phase of the XY model.
The identification of the photon as the Goldstone as a broken symmetry may
seem like an unfamiliar identification. The discussion of higher-form symmetry
allows this result to be generalised to higher dimensions (Kalb and Ramond,
1974; Savit, 1977). For example, in 3+1 dimensions there is a corresponding
1-form symmetry instead of the global 0-form symmetry of 𝜎 translations. The
Goldstone bosons in this higher dimensional setting are Wilson line operators,
and in general higher dimensions they can be higher-dimensional topological
defects like branes (Gaiotto et al., 2015).
If we are to recover all properties of the global-symmetry-broken XY phase, then
we expect to findmassive excitations which are logarithmically confined. We find
that particle excitations in this model have such behaviour. Let us examine the
Abelian Higgs action (5.17) by taking the limit 𝑚̃2 ≫ 1 ≫ 𝑔2 and 𝜆̃ ∼ 1; here
the action is approximately

𝑆 = ∫ d3𝑥 [− 1
4𝑔2 𝑓 2

𝜇𝜈 + |𝜕𝜙|2 − 𝑎𝜇 (𝜙∗𝜕𝜇𝜙 − 𝜙𝜕𝜇𝜙∗) − 𝑚̃2|𝜙|2] . (5.20)

The scalar field is quadratic in this action which allows it to be integrated out,
giving a sourced Maxwell action, where the scalar field acts as a source of EM
excitations

𝑆 = ∫ d3𝑥 [− 1
4𝑔2 𝑓 2

𝜇𝜈 + 𝑎𝜇𝑗𝜇] , 𝑗𝜇 = 2𝑖𝑔 𝜙∗𝜕𝜇𝜙. (5.21)
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The current-current interaction in 2+1 dimensions is a logarithmic Coulomb
potential; to see this we can find the Green’s function of the Maxwell equation
d ⋆ 𝐹 = 0

∇2𝐴0(x) = 𝑄𝛿(x) (5.22)

which in 2+1 dimensions has logarithmic polar solutions 𝐴0(𝑟) = 𝑄 log(𝑟/𝑟0).
This form holds in the quantum model too (Zee, 2010)

𝑊[𝑗] = −1
2 ∫ d3𝑘

(2𝜋)3
|𝑗(𝑘)|2

𝑘2 + 𝑖𝜖
, (5.23)

and given two delta-function point sources of unit charge the interaction energy
is given by the 2-dimensional integral over space

𝐸 = − ∫ d2k
(2𝜋)2

𝑒−𝑖k⋅r

k2 + 𝑖𝜖
(5.24)

which scales logarithmically in distance 𝐸 = 𝑄 log 𝑟 + const. Hence we have
shown that particle-like excitations in the theory have a logarithmic interaction
Coulomb potential in the Abelian Higgs model.

• 𝑚̃2 < 0 Higgs phase:
In the Higgs phase the scalar field 𝜙 gains a vacuum expectation value and there-
fore gauge symmetry is broken. The Higgs mechanism gives the photon mass;
explicitly, the expansion of |𝐷𝜇𝜙|2 around the ground state 𝜙 = (𝑣 + 𝜌)𝑒𝑖𝜎 is

|𝐷𝜇𝜙|2 = (𝜕𝜇𝜌)2 + 𝑣2 (𝜕𝜇𝜎 + 𝑒𝑎𝜇)
2

+ ⋯ (5.25)

Under local gauge transformations 𝑔𝑎𝜇 → 𝑔𝑎𝜇 − 𝜕𝜇𝜃 the field transforms 𝜙 →
𝑒𝑖𝜃𝜙, and thus the combination 𝑏𝜇 = 𝑎𝜇+𝑔−1𝜕𝜇𝜎 is gauge invariant. Rewriting
the action in terms of 𝑏 leaves 𝐹[𝑎] = 𝐹[𝑏] unchanged since 𝑎 and 𝑏 differ by a
gauge transformation. Therefore the expansion of the covariant derivative (5.25)
simply becomes

|𝐷𝜇𝜙|2 = (𝜕𝜇𝜌)2 + 𝑣2𝑔2𝑏2 + ⋯ (5.26)

which gives the gauge field a mass 𝑚𝑏 = 𝑔𝑣 and the Goldstone field of the
ungauged model is removed from the spectrum altogether. In gauging the XY
model, the vector boson 𝑎𝜇 gains mass as it ‘eats’ the Goldstone 𝜎 .
There exist massive excitations in the theory, which we described by the modified
gauge field 𝑏𝜇. We will now aim to show that local excitations in this field are
necessarily vortices in 𝜎 , which is the phase of 𝜙. Take a field configuration in the
Higgs phase at fixed 𝜌 = 𝑣, so 𝜙 = 𝑣𝑒𝑖𝜎 . The Hamiltonian of the configuration
is

𝐻vor = 1
2 ∫ d2x |𝐷𝑖𝜙|2 = 𝑔2

2 ∫ d2x |𝑏𝑖𝜙|2 = 𝑔2𝑣2

2 ∫ d2x (𝑏𝑖)2. (5.27)
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. Particle-Vortex Duality in the FQHE

In the XY model with only a global symmetry, the energy density scales with
radius 𝜕𝑖𝜙 → 0 as 𝑟−2 and the spatial integral was logarithmically divergent.
This result meant pairs of vortices are confined. In contrast, in the gauged model,
since 𝑏𝑖 is the physical field, taking 𝑔𝑎𝑖 → −𝜕𝑖𝜎 as 𝑟 → ∞ allows us to take
𝑏𝑖 → 0 faster than 𝑟−2 and hence the energy of the vortex solution is convergent
and finite (Zee, 2010).
Generally, the localised and charged massive excitations in 𝑏 must involve wind-
ing of 𝜎 . These are calledNielson–Olesen vortices of 𝜎 and are dually monopoles
of the 𝑈(1)topo field (Nielsen and Olesen, 1973). First, note that these vortex
solutions are charged under 𝑈(1)topo with

𝑄topo = 1
2𝜋 ∫ d2𝑥 𝑓12 = 1

2𝜋 ∮ d𝑥𝑖 𝑎𝑖. (5.28)

This can be interpreted as the magnetic charge of 𝑏 excitations, and hence these
are monopoles. Now using 𝑔𝑎𝑖 → −𝜕𝑖𝜎 as 𝑟 → ∞, enclose the vortex in a loop
at infinity such that

𝑛 = 1
2𝜋 ∮ d𝑥𝑖 𝜕𝑖𝜎 → −𝑔

2𝜋 ∮ d𝑥𝑖 𝑎𝑖 = −𝑔𝑄topo. (5.29)

This implies that monopole operators of the 𝑏 field must induce a vortex by
winding the (unphysical) 𝜎 field. However in the vacuum where there are no
monopoles, the system preserves the 𝑈(1)topo symmetry. We may therefore
identify this phase and its unbroken global symmetry with the 𝑚2 > 0 phase
of the XY model; for this phase too has massive excitations which are non-
confining. In the duality between these phases, the XY model’s particles become
the Abelian Higgs model’s gauged vortices.

At 𝑚̃2 = 0 there is also a phase transition in this model, which we postulate to be in the
same Wilson–Fisher class as the XY model. This has been proven on the lattice (Banks
et al., 1977) and numerical evidence which shows equal critical exponents supports this
(Dasgupta and Halperin, 1981).

5.1.4 XY – Abelian Higgs Duality

Let us summarise the duality between the phases of these two models by requiring
dual phases have the same global symmetry breaking scheme (Turner, 2019). In the
Abelian Higgs model the local symmetry is broken when 𝑚̃2 < 0, however this is the
phase where the local symmetry is preserved in the vacuum. It is important that these
features are not confused when constructing the duality. Firstly the unbroken phase of
the XY model is dual to the Higgs phase of the Abelian Higgs model, as shown in the
table below

Phase Global Symmetry Massive field Gapped excitation
XY 𝑚2 > 0 Unbroken 𝑈(1)XY Massive 𝜙 𝜙 particle

Abelian Higgs 𝑚̃2 < 0 Unbroken 𝑈(1)topo Massive 𝑏 𝜎 vortex / 𝑏 monopole
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Both phases preserve the global 𝑈(1) group and in the Abelian Higgs model the Higgs
mechanism gives the photon 𝑏 mass. The interesting feature of the duality is that the 𝜙
particle-like excitations are shown to be dual to 𝜎 Nielson–Olesen vortices of the AH
model.

The broken phase of the XY model is dual to the Coulomb phase of the Abelian
Higgs model, as shown in the following table

Phase Global Symmetry Goldstone Confining excitation
XY 𝑚2 < 0 Broken 𝑈(1)XY Scalar 𝜎 𝜎 vortices

Abelian Higgs 𝑚̃2 > 0 Broken 𝑈(1)topo Dual photon 𝜎 𝜙 particle

Both phases are characterised by a global symmetry breaking, and an emergent Gold-
stone mode. In the XY model, vortices of this Goldstone mode are dual to particle-like
excitations of the 𝜙-field. Both of these excitations are confining: the vortices because
of their divergent self-energies, and the 𝜙-excitations of the AH model because they
are charged under the unbroken 𝑈(1)gauge field and the Coulomb potential in 2+1
dimensions is confining.

The duality between the two theories equates the currents of the global symmetries
𝐽XY ↔ 𝐽topo, and it equates the phases with opposite masses 𝑚2 ↔ −𝑚𝑚̃2. Alterna-
tively, this implies that the dual relevant operators which drive the system away from
the Wilson–Fisher fixed point under RG flow are |𝜙|2 ↔ −|𝜙|2 in the XY/AH models
respectively (Turner, 2019). We may therefore identify the RG flow of the two dia-
grams if we swap the sign of their mass coefficients. Addition of these dual relevant
operators to their respective theories will push the theories along the same RG flow.
Assuming such a mean-field description is correct along the whole RG flow, one may
identify the fixed points at the end of these flows.

An equivalent representation of this duality which will be useful for the application
to quantum Hall systems can be derived by coupling these theories to a background
gauge field 𝐴. A suitable gauge field-current coupling is found in the term 𝐴 ∧ ⋆𝐽global.
Coupling the gauge field to the current of the global 𝑈(1) charge preserves the duality
because these currents are themselves dual. For the XY action this gives

𝑆XY[𝜙; 𝐴] = ∫ d3𝑥 |𝜕𝜙|2 − 𝑉(𝜙) + 𝐴 ∧ ⋆𝐽XY. (5.30)

Using 𝐽XY = 𝑖𝑒(𝜙 d𝜙∗ − 𝜙∗ d𝜙), up to O(𝑒) this can be written

𝑆XY[𝜙; 𝐴] = ∫ d3𝑥 |(𝜕𝜇 − 𝑖𝑒𝐴𝜇)𝜙|2 − 𝑉(𝜙) + ⋯ . (5.31)

Its partition function is

𝑍XY[𝐴] = ∫D𝜙D𝐴 𝑒𝑖𝑆XY[𝜙;𝐴]. (5.32)

Now the dual theory to (5.30) must be formed by coupling to the dual topological
current 𝐽topo = (1/2𝜋) ⋆ d𝑎 to give

𝑆AH[𝜙, 𝑎; 𝐴] = ∫ d3𝑥 [− 1
4𝑔2 𝑓 2

𝜇𝜈 + |𝐷𝜙|2 + 1
2𝜋 𝐴 ∧ d𝑎 − 𝑉(𝜙)] , (5.33)
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Its partition function is

𝑍AH[𝐴] = ∫D𝜙D𝑎D𝑏 𝑒𝑖𝑆AH[𝜙,𝑎;𝐴], (5.34)

and the duality can be written

𝑍XY[𝐴] = 𝑍AH[𝐴]. (5.35)

5.2 Vortices in the Zhang–Hansson–KivelsonModel
Now this formalism can be directly used to develop a duality for the fractional quantum
Hall system. We will compare the nature of the quasihole excitations in the two the-
ories, and show that their dual representations are indeed particles and vortices. The
construction of a new model will link with the ‘ZHK’ model of the FQHE, which
provided a Ginzburg–Landau description of the phase.

This result will be based on the duality (5.35), where we will now promote 𝐴 to
be a dynamical gauge field 𝑏, and deform each action with a marginal level-𝑚 Chern–
Simons kinetic term. This level will make connection with the FQHE level when
applied to the XY model, and the dual theory will give us an alternative theory to work
with. Beginning with the XY model (5.33) this transformation gives,

𝑆XY[𝜙, 𝑏] = ∫ d3𝑥 [|(𝜕 − 𝑖𝑒𝑏)𝜙|2 − 𝑚
4𝜋 𝑏 ∧ d𝑏 − 𝑉(𝜙) + ⋯] . (5.36)

The Chern–Simons term looks like the action for a statistical gauge field 𝑏 at CS level
𝑚. In fact, the particles 𝜙 are charged under this dynamical field with a coupling given
by 𝑒/𝑚 (by inspection of the 𝑒 𝑏𝜙 gauged derivative and the canonically normalised
CS term). One can also find that the (Nielson–Olesen) vortices of this field 𝜙 have
a charge 𝑒 and are electrons. Explicitly now, its partition function involves the path
integral over all 𝑏

𝑍XY = ∫D𝜙D𝑏 𝑒𝑖𝑆XY[𝜙;𝑏]. (5.37)

The dual theory to (5.36) must be formed by introducing the same (marginal) level-
𝑚 CS couplings to the Abelian Higgs model:

𝑆AH[𝜙, 𝑎, 𝑏] = ∫ d3𝑥 [− 1
4𝑔2 𝑓 2

𝜇𝜈 + |𝐷𝜙|2 − 𝑚
4𝜋 𝑏 ∧ d𝑏 + 1

2𝜋 𝑏 ∧ d𝑎 − 𝑉(𝜙)] .

(5.38)
Its partition function is

𝑍AH = ∫D𝜙D𝑎D𝑏 𝑒𝑖𝑆AH[𝜙,𝑎,𝑏], (5.39)

and integrating out 𝑏 gives the following action

𝑆AH[𝜙, 𝑎] = ∫ d3𝑥 [|(𝜕 − 𝑖𝑒𝑎)𝜙|2 − 1
4𝜋𝑚𝑎 ∧ d𝑎 − 𝑉(𝜙) + ⋯] , (5.40)
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where now
𝑍AH = ∫D𝜙D𝑎 𝑒𝑖𝑆AH[𝜙,𝑎]. (5.41)

Its vortices (which are dual to the particles of the original theory) are quasiholes. This
can be see by evaluating the charge of the vortices (Zhang, 1992): the charge density
in the theory is given

𝜌(𝑥) = 𝛿𝑆
𝛿𝑎0

= − 𝑒
𝑚𝜀𝑖𝑗𝜕𝑖𝑎𝑗. (5.42)

Because the flux of 𝑎𝑖 around the loop must be quantised (take the lowest-order vortex
excitation with one unit), the excess charge is

𝑄vor = ∫ d2x 𝛿𝜌(x) = − 𝑒
𝑚, (5.43)

which has the charge of a quasihole.
This relativistic field Φ in (5.40) has particle and antiparticle excitations with charge

±𝑒 which are electrons and holes. Taking the non-relativistic limit of this action, as
outlined in (Nastase and Rojas, 2016), gives the Jackiw–Pi action ( Jackiw and Pi, 1990,
1992)

𝑆AH[𝜙, 𝑎] = ∫ d3𝑥 [𝑖Φ∗(𝜕0 − 𝑖𝑒𝑎0)Φ − 1
2𝑀|𝜕𝑖Φ − 𝑖𝑒𝑎𝑖Φ|2 − 1

4𝜋𝑚𝑎 ∧ d𝑎 − 𝑉(Φ) + ⋯] .
(5.44)

The resulting action has only particle-like electron excitations. This non-relativistic
limit is performed by turning on a mass for the scalar — which gaps the spectrum
— and then breaking Lorentz invariance by adding a chemical potential term 𝑎0. It
is instructive to note that the duality of the non-relativistic models can be separately
formulated in the context of superfluids (Fisher and Lee, 1989).

An interesting feature of this model is that the physical excitations are electron-
like, despite the field Φ being bosonic. How can this be possible? The critical feature
is the inclusion of the dynamical gauge field: the scalar coupling to a CS gauge field
acts to couple flux of the magnetic field to each particle, which transmutes its statistics
(Wilczek and Zee, 1983).

The equation of motion of the gauge field 𝑎0 shows that

1
2𝜋 𝑏 = −𝑚|Φ|2, (5.45)

where 𝑏 = 𝑓12 = 𝜀0𝑖𝑗𝜕𝑖𝑎𝑗 is the magnetic field strength of the dynamic gauge field 𝑎.
Eq. 5.45 implies that the local magnetic field depends upon the particle distribution,
and is localised at excitations of the boson — this process is called flux attachment. We
therefore call these Φ particles ‘composite bosons’, since they are constituted of a boson
and 𝑚 units of flux. For the Laughlin states 𝑚 is odd; since the particle-like excitations
of Φ have 𝑚 fractional units of 𝑎-charge attached to them, they will have fermionic
braiding statistics. This is despite Φ obeying commutation relations — due to the flux
attachment, the composite bosons have changed their statistics!
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The non-relativistic Lagrangian (5.44), derived as the dual theory of the Chern–
Simons effective description of quasiholes, is the effective field theory derived byZhang,
Hansson, andKivelson (1989) from amicroscopicHamiltonian (called theZHKmodel).
In this model, the composite bosons are the electronic excitations of the FQHE. This
formulation is particularly useful because it allows one to define a order parameter for
the FQHE state (Girvin and MacDonald, 1987). The FQHE state is identified by
algebraic ‘off-diagonal long-range order’ in the electrons. The FQHE phase is charac-
terised by the non-vanishing of the correlator ⟨Φ†(𝑥)Φ(𝑦)⟩ → 𝜌0, when the operators
Φ(𝑥) are separated to infinity. This order parameter allows for the construction of a
Ginzburg–Landau theory of the FQHE in analogy with superfluid states (Read, 1989).
This theory was discovered before the Chern–Simons description and is able to describe
the phenomenology of the FQHE.

5.3 Composite Fermions

5.3.1 Halperin–Lee–ReedTheory

Now we will investigate a field theory of the fractional quantum Hall system which
is written in terms of a fermionic field. This will allow us to develop a field theory of
composite fermions (CFs) called the Halperin–Lee–Reed (HLR) theory. This model
is particularly suited to the description of the half-filled Landau level, which is a theory
that has gained strong interest in recent years.

We begin with a non-relativistic theory of interacting electrons coupled to an ex-
ternal gauge field 𝐴,

𝑆e[𝜓e] = ∫ d3𝑥 [𝑖𝜓†
e (𝜕0 − 𝑖𝐴0) 𝜓e − 1

2𝑀|(𝜕𝑖 − 𝑖𝐴𝑖)𝜓e|2 + (interactions)] .
(5.46)

To transform this into a theory of composite fermions, we must change the statis-
tics of the electron field. This can be done by coupling the action to a dynamical
Chern–Simons gauge field 𝑎. Therefore the resultant CF action, called theHLR theory
(Halperin, Lee, and Read, 1993), is

𝑆CF[𝜓] = ∫ d3𝑥 ⎡
⎢
⎣
𝑖𝜓† (𝜕0 − 𝑖𝐴0 + 𝑖𝑎0) 𝜓 − 1

2𝑀|(𝜕𝑖 − 𝑖𝐴𝑖 + 𝑖𝑎𝑖)𝜓|2

+ 1
2

1
4𝜋 𝑎 ∧ d𝑎 + (interactions)⎤

⎥
⎦
. (5.47)

The changing of statistics is achieved through ‘flux attachment’, wherein the CS cou-
pling pairs each electron with lines of magnetic flux to produce the composite fermions
(Lopez and Fradkin, 1991). A technical problem with this HLR theory is due to the
1
2 level of the CS term. This leads to a gauge anomaly on closed manifolds and renders
the theory non-gauge invariant here.
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Figure .: Flux attachment to electrons in HLR theory creates composite fermions
which move in a zero effective magnetic field.

The local magnetic field can be evaluated using the 𝑎0 equation of motion (as was
done in the ZHK model)

2𝜓†𝜓 = d𝑎
2𝜋 . (5.48)

Now the magnetic field is 𝑏 = (d𝑎)0 = 𝑓12 and write the fermion density 𝜌CF = 𝜓†𝜓,
so

𝑏
2𝜋 = 2𝜌CF. (5.49)

The flux of the dynamic field depends on the local density of the CF field 𝜌CF, which is
localised around excitations. Each CF carries two units of flux, which does not change
the statistics of the particle, as shown in Fig. 5.3. Because of the difference of sign in
the action, the effective magnetic field in the sample is 𝐵∗ = 𝐵 − 𝑏, and at the mean
field level, we see

𝐵∗ = 𝐵 − ⟨𝑏⟩ = 𝐵 − 4𝜋𝜌CF. (5.50)

This reproduces the result (1.40) which relates the electron and CF filling fractions.
A particularly intriguing phase of the FQHE is the 𝜈 = 1

2 state, which has some
very unique features. Firstly, because the lowest Landau level is half full, the composite
fermion density is 𝐵/4𝜋 and therefore they move in an effective zero magnetic field.
The spectrum is hence gapless at this filling fraction, and indeed there is no quantum
Hall plateau seen here.

This unique FQHE phase has a Fermi surface which has allowed easy analysis in
experiments; the HLR theory is both extremely accurate and predictive for work done
in the lab. For example, Willett et al. (1990) find the expected Fermi liquid behaviour
at 𝜈 = 1/2 and were able to measure the Fermi surface with Shubnikov–de Haas oscil-
lations in conductivity. Away from half-filling there is a small effective magnetic field,
and other works have found particle resonances which have the correct semiclassical
behaviour to be CFs moving in much larger orbits than the electrons (Goldman et al.,
1994; Kang et al., 1993). The CF effective mass has also been measured using this
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process (Willett et al., 1995). See Willett (1997) for a review of experimental tests of
this remarkably robust theory.

However there is a shortcoming of the HLR theory, which was for a long time
dismissed as a technicality: it is not particle-hole (PH) symmetric. This symmetry
is well-defined in the limit of the theory with only the lowest Landau level projected
out, where it exchanges all electrons for holes and therefore swaps the filling fraction
𝜈 → 1 − 𝜈 (Girvin, 1984).

More specifically, taking the electron mass to zero means the cyclotron energy goes
to infinity; taking this limit with the strength of electron-electron interactions held
fixed acts to project out all higher Landau levels. In this context, one expects there to
be an exact PH symmetry which reflects about 𝜈 = 1

2 . To formalise this symmetry, the
natural representation for the particle-hole symmetry is an (anti-Hermitian) operator
PH with the following action:

PH ∶ ∣full⟩ → ∣empty⟩ (5.51)
PH ∶ 𝑐†

k → 𝑐k. (5.52)

This swaps the occupation of states to generate the 𝜈 → 1 − 𝜈 transform, and acts on
fermions to exchange particles for holes. This is a good attempt, but it is in fact not a
consistent PH symmetry away from the lowest Landau level limit in the HLR theory.

In fact, it is generally not possible to find a discrete antiunitary symmetry of the
HLR theory which can be identified with PH symmetry. The Chern–Simons coupling
in (5.47) does not allow for attaching flux to holes — it only allows coupling to CFs —
which must couple to both excitations in order to respect the symmetry. This manifestly
violates particle-hole symmetry. Kivelson et al. (1997) show that the particle-hole
symmetry is incompatible with the Fermi liquid interpretation of the HLR composite
fermions. It could be possible that there is spontaneous breaking of the PH symmetry,
but numerical evidence suggests against this for the half-filled LLL (Rezayi and Hal-
dane, 2000), although it has been suggested as a mechanism for the 𝜈 = 5

2 state. There
has been speculation that the HLR theory has an emergent PH symmetry in the in-
frared, but recent evidence shows that it is not possible to recover fully PH-symmetric
correlation functions from the theory (Wang et al., 2017; Nguyen et al., 2018). Mod-
ern work has even highlighted that the density of electrons and composite fermions
can differ, producing an acute contradiction with the HLR theory (Kamburov et al.,
2014).

Despite the astounding successes of the HLR theory, evidence suggests we must
seek an alternative which is capable of containing a particle-hole symmetry. Having
been contemplated for over two decades, PH has now been realised to be a critical
feature of a theory needed to replace the HLR model — signalling a way forward in
the field.

5.3.2 Dirac Composite Fermion

A groundbreaking recent work provided a potential answer which will turn out to have
remarkable roots in particle-vortex duality. Son (2015) has provided an alternative
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theory of the half-filled lowest Landau level, wherein the composite fermion is a Dirac
spinor. Let us first write down the theory of a Dirac particle localised on a plane,
interacting with a background gauge field 𝐴 defined through the bulk. This setup is
reminiscent of the fermion zero-mode described in Section 2.2.3, and we can indeed
think of Ψ𝑒 as a massless zero-mode localised on a domain wall. The action of these
electrons is

𝑆Dirac[Ψ; 𝐴] = ∫ d3𝑥 𝑖Ψ𝑒(/𝜕 − 𝑖 /𝐴)Ψ𝑒 − 1
2

1
4𝜋 𝐴 ∧ d𝐴 − 1

4𝑒2 ∫ d4𝑥 𝐹2
𝜇𝜈. (5.53)

Hypothesise a relativistic dual theory which we call QED3, constituted of CF fermions
𝜓 coupled to a dynamical gauge field 𝑎

𝑆QED3
[𝜓, 𝑎; 𝐴] = ∫ d3𝑥 𝑖𝜓(/𝜕−𝑖/𝑎)𝜓+1

2
1

2𝜋 𝑎∧d𝐴−1
2

1
4𝜋 𝐴∧d𝐴+⋯− 1

4𝑒2 ∫ d4𝑥 𝐹2
𝜇𝜈.

(5.54)
The suppressed terms include interactions and a possible Maxwell (kinetic) term for the
𝑎 emergent gauge field. The absense of a Chern–Simons term for 𝑎 is a distinguishing
feature from the HLR theory of classical CFs, which is necessary for the particle-hole
symmetry to be present in this new model. The dynamical gauge field is charged under
the background Maxwell field using a BF coupling.

This 2+1 dimensional relativistic duality is assumed to hold at zero external mag-
netic field, but we will call on the analysis of Sec. 2.1.5 in order to justify how the
application of an external magnetic field affects the dual theory. The duality provides
a simple prediction: if we identify the Dirac theory with a fundamental description
of electrons localised to a plane in the FQHE system, then the duality immediately
gives the theory of composite fermions. The behaviour away from zero external field is
critical to making this duality relevant to the quantum Hall effect.

This sort of domain wall fermion appears in the different context of 3 (spatial)
dimensional topological insulators (TIs): the surface of which contain similar gapless
Dirac fermions coupled to a background gauge field. These states are not intrinsically
topological in the same way as the QHE (for example, they don’t have the same long-
range entanglement), but the gapless edge modes are protected by a group of discrete
symmetries.

The prototypical example of such models is due to Fu, Kane, and Mele (2007),
which has states localised on the 2-dimensional surface which are gapless and ‘topolog-
ically protected’, meaning a mass cannot be introduced without breaking its T symme-
try. The proposal by Son (2015) has spurred other authors to propose the same duality
can be applied to understand the surface Dirac fermion coupled to an emergent gauge
field acts as a dual description for the topological suface states (Wang and Senthil, 2015;
Metlitski and Vishwanath, 2016).

Recall that the principal downfall of the HLR theory of the half-filled LLL was
that it contained no (discrete antiunitary) symmetry operators which could be iden-
tified with particle-hole symmetry. Indeed the construction manifestly violated PH
symmetry by only coupling flux to particles and not holes. Our fundamental Dirac
theory (5.53) is naturally endowed with the time reversal symmetry T which acts on
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the Dirac spinors as T ∶ Ψ(𝑡, x) → −𝑖𝜎2Ψ(−𝑡, x) and leaves the action invariant.
The time reversal and charge conjugation operators act differently on the dual QED3
spinors as

T ∶ 𝜓(𝑡, x) → 𝜎3𝜓∗(−𝑡, x), (5.55)
C ∶ 𝜓(𝑡, x) → 𝜎1𝜓∗(𝑡, x). (5.56)

Our dual theory QED3 therefore contains a dual of this symmetry which we may
identify as the PH symmetry PH = C × T which acts on the CFs as

PH ∶ 𝜓(𝑡, x) → −𝑖𝜎2𝜓(−𝑡, x). (5.57)

Importantly, this symmetry does not exchange particles for holes, but simply inverts
the momentum of the Dirac particle p → −p (through the time-inversion of the Dirac
spinor), and mixes the components. A fermion mass term 𝑚𝜓𝜓 is not invariant under
this symmetry, and should therefore be excluded.

Likewise, more detailed analysis of the transform of the gauge fields 𝑎 and 𝐴 shows
that they transform under this new PH symmetry as

PH ∶ 𝑎0(𝑡, x) → 𝑎0(−𝑡, x) PH ∶ 𝐴0(𝑡, x) → −𝐴0(−𝑡, x), (5.58)
PH ∶ 𝑎𝑖(𝑡, x) → −𝑎𝑖(−𝑡, x) PH ∶ 𝐴𝑖(𝑡, x) → 𝐴𝑖(−𝑡, x). (5.59)

It is now clear that the dynamic CS term 𝑎 ∧ d𝑎 also violates the PH symmetry and
may not be included in this theory.

The coupling of (5.54) to the external gauge field 𝐴 appears as 𝐴 ∧ ⋆𝐽EM, where
the EM current is explicitly

𝐽EM = 1
2𝜋 ⋆ (d𝑎 − d𝐴) . (5.60)

The EM charge density is therefore determined by the emergent field strength 𝑏 =
(d𝑎)0 and 𝐵 = (d𝐴)0 by

𝜌EM = 1
2𝜋 (𝑏 − 𝐵) = 𝐵∗

2𝜋 , (5.61)

where 𝐵∗ is the effective magnetic field strength. The EM charge filling of the Dirac
cone is therefore set by the effective magnetic field. Alternatively, one can say that de-
viations from charge neutrality of the Dirac theory corresponds to applying an effective
magnetic field 𝐵∗ to the composite Fermion theory, splitting its spectrum into Landau
levels; see Fig. 5.4(a).

The equation of motion for 𝑎0 show that the CF density is fixed in terms of the
external magnetic field

𝜌CF = 𝜓†𝜓 = 𝐵
2𝜋 . (5.62)

Note that in this QED3 theory, the role of the applied magnetic field and the effective
magnetic field are reversed compared to the HLR theory of CFs (5.48): in this case the
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Figure .: (a) Deviation of charge density causes an effective magnetic field 𝐵∗

which splits the CF spectrum into Landau levels. (b) An external magnetic field 𝐵
causes an increase in 𝜌CF and therefore CFs to occupy higher Landau levels.

CF density is set by the external field 𝐵 and not 𝐵∗ as in the HLR theory. Similarly, the
physical charge density of the theory is set by the effective field 𝐵∗ and not the applied
field 𝐵.

This result is critical to understanding the duality away from zero external field.
Application of a magnetic field 𝐵 to the fundamental Dirac theory causes an increase
in the CF density of the dual theory, as shown in Fig. 5.4(b) Son (2018). This reversal
of roles of the fields, compared to the Dirac theory, is another sign that the QED3
theory is a dual theory, since bosonic particle-vortex duality has this effect.

How can we relate these charge density expressions 𝜌EM and 𝜌CF to the respective
particles’ filling factors? In the HLR theory this calculation (1.40) implied the frac-
tional CF states were simply integer QH states of the composite fermion. However
to achieve this result for the Dirac theory, we must acknowledge a difference between
charge densities defined using relativistic and non-relativistic models. Namely, the
Fermi sea of occupied states in the relativistic theory contribute to the conductivity
through their uniform charge density −𝐵/4𝜋 (Son, 2015). This result was also found
in Section 2.1.5, where the Dirac ladder vacuum of virtual fermions contributed an
extra 1

2 to the conductivity, compared to the non-relativistic model. Accounting for
this shift, we find the relation between the filling fractions is

𝜈EM = 𝜈Dirac + 1
2. (5.63)

Explicitly in our model

𝜈EM = 𝜌EM
𝐵/2𝜋 + 1

2 = −𝐵∗

𝐵 + 1
2, (5.64)

𝜈CF = 𝜌EM
𝐵∗/2𝜋 + 1

2 = 𝐵
𝐵∗ + 1

2. (5.65)

This implies the Jain sequence states of electrons 𝜈Jain = 𝑛
2𝑛+1 are dual to the half-

integer tower of CF states 𝜈CF = 𝑛 + 1
2 . In a remarkable result, the particle-hole sym-
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. Particle-Vortex Duality in the FQHE

metry of the theory guarantees that the PH conjugate-Jain state sequence 𝜈Jain PH =
1 − 𝜈Jain = 𝑛+1

2𝑛+1 is simply given by the PH conjugate sequence of the dual theory
𝜈CFPH = −(𝑛 + 1

2).
Beyond reproducing the Jain sequence there is a slew of recent works which pro-

vide evidence for the composite Dirac fermion model. Firstly, we naturally find that
correlation functions of the model are particle-hole symmetric (Nguyen et al., 2018),
which agrees with the experimental work presented in Section 5.3.1 and has now been
established with renewed precision (Pan et al., 2020). Moreover, numerical work us-
ing density matrix renormalisation group (DMRG) simulations strongly affirms the
notion that a Fermi liquid of a Dirac CFs appears at the half-filled LLL (Geraedts
et al., 2015).

5.4 Composite Fermion Duality

5.4.1 2+1D Bosonisation

The Dirac CF model was based on the Dirac–QED3 duality, which we extended to
finite magnetic fields by showing that the external field 𝐵 simply changes the occupa-
tion of Dirac CFs. We will now work to prove the duality between these two theories
through equating their partition functions

𝑍QED3
[𝐴] = 𝑍Dirac[𝐴] (5.66)

when the theories approach corresponding critical points. The actions (5.53, 5.54) can
be written in minimal forms to make clearer the duality which we hope to prove:

∫DΨ𝑒 exp(𝑖 ∫ d3𝑥 𝑖Ψ𝑒(/𝜕 − 𝑖 /𝐴)Ψ𝑒)

= ∫D𝑎D𝜓 exp(𝑖 ∫ d3𝑥 𝜓(𝑖/𝜕 + /𝑎)𝜓 + 1
2

1
2𝜋 𝑎 ∧ d𝐴). (5.67)

It has recently been shown that this CF duality, the XY-Abelian Higgs duality,
and indeed many others, can be derived from a single ‘seed duality’ (Karch and Tong,
2016). This duality explicitly defines an equality (at the level of the partition function)
of a theory of fermions and a theory of a 𝑈(1) gauged scalar (Polyakov, 1988), which
has been understood for some time but only recently used to produce boson-boson and
fermion-fermion dualities which can be applied to the composite fermion.

In the non-relativistic context, we developed the notion of flux attachment to un-
derstand the statistical transmutation induced by a gauge field coupling to a scalar
(Wilczek and Zee, 1983). However a different picture is needed for relativistic the-
ories, and this seed duality provides the correct framework to describe this process.

Writing a general action of scalar 2+1 dimensional bosons 𝜙 in a background of
gauge field 𝐴 as

𝑆scalar[𝜙; 𝐴] = ∫ d3𝑥 |(𝜕𝜇 − 𝑖𝐴𝜇)𝜙|2 + ⋯ , (5.68)

where the additional terms include |𝜙|2, |𝜙|4 deformations. As before, the duality will
hold at gapless critical theories, which means the scalar sector will be either at the
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Wilson–Fisher fixed point, or at the free theory point. Choice of fixed point will deter-
mine the nature of scalar excitations, and the nature of excitations in the dual theory.
The fermion action is

𝑆fermion[𝜓; 𝐴] = ∫ d3𝑥 𝑖𝜓(/𝜕 − 𝑖 /𝐴)𝜓 + ⋯ , (5.69)

where again the deformations determine the phase of the theory. The details of this
will be discussed below when the duality between the phases of the seed duality are
more formally equated.

In this language, the seed duality can be written (Fradkin and Schaposnik, 1994;
Aharony, 2015):

∫D𝜓 exp(𝑖 ∫ d3𝑥Lfermion[𝜓; 𝐴] − 1
2

1
4𝜋 𝐴 ∧ d𝐴)

= ∫D𝜙D𝑎 exp(𝑖 ∫ d3𝑥Lscalar[𝜙; 𝑎] + 1
4𝜋 𝑎 ∧ d𝑎 + 1

2𝜋 𝑎 ∧ d𝐴). (5.70)

This describes the duality between a fermion interacting with a background gauge field
𝐴, and a scalar which is charged under a dynamical gauge field 𝑎. The scalar action
contains a ‘BF’ term 𝑎 ∧ d𝐴 which couples the dynamical gauge field to the back-
ground field. Focusing on the left hand side of the duality, the second term is a half-
quantised Chern–Simons term for the background field 1

2𝑆CS[𝐴], as seen in the HLR
theory which is not gauge invariant and produces a gauge anomaly on a closed mani-
fold. However the fermion theory has the same anomaly when it is integrated out, so
the anomalies cancel and this theory is consistent.

More concisely, this seed duality can be written

𝑍fermion[𝐴]𝑒− 1
2 𝑆CS[𝐴] = 𝑍scalar+flux[𝐴]. (5.71)

We can recover an equation which is reminiscent of the non-relativistic flux attachment
identities by taking the equation of motion of 𝑎0 at zero background flux 𝐴 = 0,

𝜌𝜙 = |𝜙|2 = − 𝑓12
2𝜋 . (5.72)

This attaches one unit of flux to the boson, and therefore we can predict the excitations
will be fermionic.

We can consider the duality at 𝐴 = 0 to get a sense of what form the excitations
of the gauged boson theory take (Dunne, 1999). In this case the theory resembles
the Abelian Higgs model, except the kinetic term for the gauge field is of Chern–
Simons form and not Maxwell (K. Paul and Khare, 1987; Jatkar and Khare, 1990).
This distinction, and the effect of (5.72), is to give the Nielson–Olesen vortices an
intrinsic angular momentum

𝐽 =
𝑘𝑄topo

2 (5.73)
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proportional to the Chern–Simons level 𝑘. In the fermion theory defined here, we are
considering the level-1 CS theory, and so excitations have half-integer spin and there-
fore fermionic statistics (Wu and Yang, 1976). This result demonstrates explicitly that
there is one unit of flux attachment to vortex excitations and motivates why the duality
(5.70) could be expected to hold: both theories have fermionic excitations. A more
motivated proof of the duality of these two field theories is offered in Appendix E, and
it is separately supported by numerical works on the lattice (Karthik and Narayanan,
2016).

Moreover, the 𝑘 = 0 fermion theory (simply removing the CS term) is exactly the
Abelian Higgs model Lfermion[𝜙]. Eq. 5.73 confirms that in this theory the Nielson–
Olesen vortices have zero spin and therefore bosonic statistics, which are needed for
them to be dual to the XY model’s particle-like excitations.

Having demonstrated flux attachment to scalars producing a fermion, let us now
investigate how (5.70) implies a seperate gauged-fermion to boson duality. This gives
us a way of prescribing a ‘bosonisation’ procedure in 2+1 dimensions which allows
fermionic path integrals to be equated to path integrals over gauge fields and bosons.

The first step is related to the procedure of formulating the ZHK particle-vortex
duality from the XY-Abelian Higgs duality in Section 5.2. Called the ‘ST procedure’
by Witten (2003), in the case of Eq. 5.70 this involves the following steps: (1) promote
the background field 𝐴 to be a dynamical field and (2) couple it to a new background
gauge field 𝐵 with a BF term. Renaming variables 𝐴 → 𝑏 and 𝐵 → 𝐴 this combined
operation takes

𝑍[𝐴] → 𝑍′[𝐴] = ∫D𝑏 𝑍[𝑏] exp(− 1
2𝜋 𝑖 ∫ d3𝑥 𝑏 ∧ d𝐴). (5.74)

Therefore the action changes as

𝑆[𝜙, … ; 𝐴] → 𝑆′[𝑏, 𝜙, … ; 𝐴] = 𝑆[𝜙, … ; 𝑏] − 1
2𝜋 𝑖 ∫ d3𝑥 𝑏 ∧ d𝐴 . (5.75)

Note that we took the coefficient of the BF term 1
2𝜋 𝑖 ∫ d3𝑥 𝑏 ∧ d𝐴 to be −1; because

of flux quantisation conditions ∫ d𝑎 , ∫ d𝐴 ∈ 2𝜋Z, the term is only gauge invariant for
integer BF coupling.

Let us perform this procedure to both sides of (5.70) to generate a new duality;
first perform the ST transform on the left side of this identity to yield

𝑍fermion[𝐴]𝑒− 1
2 𝑆CS[𝐴] → ∫D𝑏D𝜓 exp(𝑖 ∫ d3𝑥Lfermion[𝜓; 𝑏] − 1

2
1

4𝜋 𝑏 ∧ d𝑏 − 1
2𝜋 𝑏 ∧ d𝐴).
(5.76)

The 𝛿𝑏0 equation of motion gives the fermion’s relativistic flux attachment formula (on
a d𝐴 = 0 background)

𝜌𝜓 = 𝜓†𝜓 = 1
2

𝑓12
2𝜋 , (5.77)

where 𝑓 = d𝑏. This attaches two units of flux to the fermions and therefore leaves their
statistics unchanged. Performing the same transformation on the right hand side of
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(5.70) gives

𝑍′
scalar+flux[𝐴] = ∫D𝑎D𝑏D𝜙 exp(𝑖 ∫ d3𝑥Lscalar[𝜙; 𝑎] + 1

4𝜋 𝑎 ∧ d𝑎 + 1
2𝜋 𝑎 ∧ d𝑏 − 1

2𝜋 𝑏 ∧ d𝐴).
(5.78)

The field 𝑏 appears linearly in the action; its variation constrains d𝑎 = d𝐴 so integrating
it out sets 𝑏 = 0 and fixes 𝑎 = 𝐴

𝑍′
scalar+flux[𝐴] = ∫D𝜙 exp(𝑖 ∫ d3𝑥Lscalar[𝜙; 𝐴] + 1

4𝜋 𝐴 ∧ d𝐴). (5.79)

Together Eqns. 5.76 and 5.79 are dual

∫D𝑏D𝜓 exp(𝑖 ∫ d3𝑥Lfermion[𝜓; 𝑏] − 1
2

1
4𝜋 𝑏 ∧ d𝑏 − 1

2𝜋 𝑏 ∧ d𝐴)

= ∫D𝜙 exp(𝑖 ∫ d3𝑥Lscalar[𝜙; 𝐴] + 1
4𝜋 𝐴 ∧ d𝐴), (5.80)

which is schematically

𝑍fermion+flux[𝐴] = 𝑍scalar[𝐴]𝑒𝑖𝑆CS[𝐴]. (5.81)

Finally, another set of dualities can be generated directly from Eqns. 5.70 and 5.80
by taking their time reversal. The action is invariant under this symmetry, except the
Chern–Simons and BF terms which are odd. For 2+1 dimensional theories this time
reversal is the same action as parity inversion. The ability to time-reverse a duality will
be a key ingredient in generating the fermion-fermion duality and expanding the web
of dualities beyond. Explicitly, the time reversal of the seed duality (5.70), which relates
a fermion to a scalar+flux, is

∫D𝜓 exp(𝑖 ∫ d3𝑥Lfermion[𝜓; 𝐴] + 1
2

1
4𝜋 𝐴 ∧ d𝐴)

= ∫D𝜙D𝑎 exp(𝑖 ∫ d3𝑥Lscalar[𝜙; 𝑎] − 1
4𝜋 𝑎 ∧ d𝑎 − 1

2𝜋 𝑎 ∧ d𝐴). (5.82)

Similarly, the time reversal of the fermion+flux to scalar duality (5.80) is

∫D𝑏D𝜓 exp(𝑖 ∫ d3𝑥Lfermion[𝜓; 𝑏] + 1
2

1
4𝜋 𝑏 ∧ d𝑏 + 1

2𝜋 𝑏 ∧ d𝐴)

= ∫D𝜙 exp(𝑖 ∫ d3𝑥Lscalar[𝜙; 𝐴] − 1
4𝜋 𝐴 ∧ d𝐴). (5.83)

5.4.2 Fermionic Particle-Vortex Duality

Using the tools we have so far—ST operation, time reversal, integrating out dynamical
fields, and dividing by the 𝐴 ∧ d𝐴 CS term — we can finally prove the Dirac-QED3
duality. Before that, we may first reproduce the original bosonic particle-vortex duality
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using the results we have derived thus far. Using the fermion+flux to scalar duality
derived from the seed duality (5.81), divide by the external field’s Chern–Simons action
𝑒𝑖𝑆CS[𝐴] to give

𝑍fermion+flux[𝐴]𝑒−𝑖𝑆CS[𝐴] = 𝑍scalar[𝐴]. (5.84)

Again perform the ST transform, with a BF coupling of +1 to transform this duality.
The right hand side becomes a theory we will call scalar QED3

𝑍scalarQED3
[𝐴] = 𝑍′

scalar[𝐴] = ∫D𝑏D𝜙 exp(𝑖 ∫ d3𝑥Lscalar[𝜙; 𝑏] + 1
2𝜋 𝑏 ∧ d𝐴).

(5.85)
The left hand side of this duality becomes

𝑍fermion+flux[𝐴]𝑒−𝑖𝑆CS[𝐴] →

∫D𝑎D𝑏D𝜓 exp(𝑖 ∫ d3𝑥Lfermion[𝜓; 𝑏] − 1
2

1
4𝜋 𝑏 ∧ d𝑏 − 1

2𝜋 𝑏 ∧ d𝑎 − 1
4𝜋 𝑎 ∧ d𝑎 + 1

2𝜋 𝑎 ∧ d𝐴).

(5.86)

Integrating out 𝑎 using the equation of motion

d𝑎 = d𝐴 − d𝑏 (5.87)

and substituting 𝑎 = 𝐴 − 𝑏 gives

∫D𝑏D𝜓 exp(𝑖 ∫ d3𝑥Lfermion[𝜓; 𝑏] − 1
2

1
4𝜋 𝑏 ∧ d𝑏 − 1

2𝜋 𝑏 ∧ d𝐴 + 1
4𝜋 𝐴 ∧ d𝐴).

(5.88)
Now the first three terms in this action are the time reversed fermion+flux to scalar
duality (5.83); substituting this duality cancels the final 𝐴 ∧ d𝐴 term giving the purely
boson-to-boson duality, and equating to Eq. 5.85

∫D𝜙 exp(𝑖 ∫ d3𝑥Lscalar[𝜙; 𝐴]) = ∫D𝑏D𝜙 exp(𝑖 ∫ d3𝑥Lscalar[𝜙; 𝑏] + 1
2𝜋 𝑏 ∧ d𝐴).

(5.89)
Schematically this states

𝑍scalar[𝐴] = 𝑍scalarQED[𝐴], (5.90)

which is the original bosonic particle-vortex duality (5.35).

Starting by dividing through the seed duality (5.71)

𝑍fermion[𝐴] = 𝑍scalar+flux[𝐴]𝑒
1
2 𝑆CS[𝐴]. (5.91)

Similarly to (5.76), we perform the ST operation on the left hand side (which is now
without a CS term) and use the BF coupling +1/2. We call the resulting theory QED3,

𝑍QED3
[𝐴] = 𝑍′

fermion[𝐴] = ∫D𝑏D𝜓 exp(𝑖 ∫ d3𝑥Lfermion[𝜓; 𝑏] + 1
2

1
2𝜋 𝑏 ∧ d𝐴).

(5.92)
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Because of the non-integral BF coupling, we must impose the more restrictive back-
ground flux quantisation condition

∫
𝑆2

d𝐴
2𝜋 = 2Z. (5.93)

This technicality is trivial to impose on the background gauge field 𝐴 because we have
total control over its value, however promoting it to be dynamical may pose an issue.
The solution is that the new connection 𝑏 is not a 𝑈(1) gauge connection but a Spin𝑐
connection which is consistent with this quantisation condition (Seiberg et al., 2016).

The right hand side of (5.91) becomes

𝑍scalar+flux[𝐴]𝑒
1
2 𝑆CS[𝐴] →

∫D𝑎D𝑏D𝜙 exp(𝑖 ∫ d3𝑥Lscalar[𝜙; 𝑎] + 1
4𝜋 𝑎 ∧ d𝑎 + 1

2
1

4𝜋 𝑏 ∧ d𝑏 + 1
2

1
2𝜋 𝑏 ∧ d𝐴).

(5.94)

Integrating out 𝑏 using the equation of motion

d𝑏 = −(2 d𝑎 + d𝐴) (5.95)

and substituting 𝑏 = −(2𝑎 + 𝐴) gives

∫D𝑎D𝜙 exp(𝑖 ∫ d3𝑥Lscalar[𝜙; 𝑎] − 1
4𝜋 𝑎 ∧ d𝑎 − 1

2𝜋 𝑎 ∧ d𝐴 − 1
2

1
4𝜋 𝐴 ∧ d𝐴).

(5.96)
Now note that the time reversed seed duality (5.83) multiplied through by 𝑒

1
2 𝑆CS[𝐴] is

equal to (5.96). Therefore, recalling that this expression (5.96) is dual to (5.92), we find

∫D𝜓 exp(𝑖 ∫ d3𝑥Lfermion[𝜓; 𝐴]) = ∫D𝑏D𝜓 exp(𝑖 ∫ d3𝑥Lfermion[𝜓; 𝑏] + 1
2

1
2𝜋 𝑏 ∧ d𝐴)
(5.97)

or
𝑍fermion[𝐴] = 𝑍QED3

[𝐴]. (5.98)

This completes the derivation of the fermion-to-fermion duality, derived from the
seed duality, which forms the foundation of the interpretation of the Dirac composite
fermion model.
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This dissertation has provided a review of the use of the Chern–Simons action in de-
scribing both the integer and fractional quantum Hall effects. This is the effective
theory of a system of electrons in 2+1 dimensions, split into Landau levels by a strong
magnetic field.

The tools of topology, quantum field theory (including knowlege of anomalies, ef-
fective theories, vortices, etc.), conformal field theory, and dualities — which have been
developed in the works cited by this thesis — have provided a much deeper understand-
ing of the quantum Hall system.

The Chern–Simons action was first motivated by renormalisation group arguments,
providing grounds for the universality of this phase in quantum 2+1 dimensional sys-
tems. The action was specifically derived in the zero magnetic field case before more
recent work was studied which were used to derive the same general form of the ac-
tion in the case where the background 𝐵 ≠ 0. The universality of the Chern–Simons
action as an effective theory in such a scenario was upheld: we indeed found that the
same action arose in this different context. In the calculation of integrating out massive
fermions, the effect of the background field was to change the Hilbert space of states
accessible to intermediate virtual photons. The Dirac spectrum was split into a tower
of Landau levels which extended to negative infinity, and the Dirac sea was replaced by
a filled sea of negative Landau levels, and a half-filled zero level. Compared to a non-
relativistic model without such a ‘Dirac ladder’ of negative energy states, the relativistic
model contributes 1

2 to the CS level.
The fractional quantum Hall effect is characterised by an emergent and dynamic

𝑈(1) gauge field, which endows it with a significantly richer structure than its integer
counterpart. Excitations of this statistical gauge field were shown to be very massive
particles, and its quantisation in the presence ofWilson lines clearly presented how frac-
tional statistics arise in this model. In contrast with the earlier analysis of the Laughlin
wavefunction, this perspective gave a much deeper understanding of the topological
nature of the phase and how anyonic braiding could be generalised to non-Abelian
theories.

This dissertation included a discussion of a novel proposal to deal with the incom-
patibility inherent in the flux quantisation of the two gauge fields of the FQHE. We
reviewed a novel approach to integrating out 1-form gauge fields in 3 dimensions, and
outlined the steps needed to use this calculation to evaluate the partition function for
classically forbidden charge-flux configurations. Evaluation of this path integral holds
promise to clarify the incompatibility of the EM and statistical gauge field’s flux quan-
tisation conditions. The common understanding in the literature is that the only phys-
ical solutions are ones which contain 𝑚 units of statistical flux for every unit of EM
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flux, which implies a picture where anyons can only be produced by EM excitations
in groups of 𝑚. Any non-trivial behaviour of the path integral which allow for more
exotic behaviours would be a fascinating route of further study.

Next, the role of the chiral anomaly played a central role in our discussion of the
conformal edge. The Nielson–Ninomiya theorem forbids chiral fermions from existing
in a purely 1+1 dimensional theory, but we observed how they naturally emerged from
the quantum Hall boundary. This was solved when we described it as being a fermion
zero mode at the boundary of a Chern–Simons theory, and showed how the chiral
anomaly was cancelled by the anomaly inflow of the bulk’s gauge anomaly. In the
setting of the fractional QHE, the edge anomaly could be understood by imposing a
gauge constraint on the statistical gauge field. This promoted some degrees of freedom
to become dynamical, and we explicitly got to see how its quantisation led to a chiral
fermion emerging in this context as well.

The 1+1 dimensional bosonisation duality was used to quantise this edge fermion
as a chiral Luttinger liquid, and in this process the formalism of Schwinger terms had
to be used. We drew the connection between these terms and the chiral anomaly,
and showed that this bosonised theory’s excitations necessarily obey the Kac–Moody
algebra.

The study of two dimensional phases of matter arising in condensed matter systems
remains the focus of an active and diverse research community. Topological phases
have a unique connection to dimensionality, and the field of quantum materials offers
abundant scope to customise these systems.

We have seen many times throughout this dissertation how 2+1 dimensional sys-
tems are unique and lead to distinctive physics. Firstly, anyons are exclusive to two
spatial dimensions, a fact which can be motivated by noticing how braiding one par-
ticle around another is only a well-defined topological operation in this context (in
higher dimensions one may lift the loop out of the plane to close the loop). For this
reason, the action of braiding may not return the state to itself, permitting so-called
non-Abelian statistics. In the picture we have formulated in Chapter 2, this looping
ties a knot in the worldlines of the two particles, and for the special topological field
theories we focus on, this is categorised by a knot invariant which fully determines the
amplitude of the braiding process.

Moreover, 2+1 dimensions were special because, given a gauge field 𝐴, we could
define an identically conserved topological current 𝐽. This was used at several points,
most notably to construct the CS action as the unique three-form marginal operator
in 2+1 dimensions. Later in the story of dualities, the global symmetry associated
with this current (in the Abelian Higgs model) was able to be identified with a global
symmetry of the XY model, forming the basis of our first particle-vortex duality. Such
dualities are not possible to formulate in higher dimensions, and the programme of
applying these dualities to the QHE which followed relied upon these unique non-
perturbative tools.

The anomaly cancellation of the bulk by a chiral anomaly at the edge is also only
possible (for physical systems) in 2+1 dimensions. The chiral anomaly is responsible
for the presence of robust gapless edge modes, but it only exists in even dimensional
boundary spacetimes (such as 1+1, 3+1, etc.). Although the same physics emerges on
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the boundary of a 4+1 dimensional spacetime, this situation is not relevant for any
physical experiments that one could easily imagine.

Therefore such topological phases — characterised by such an anomaly at their
boundary — can only exist in odd dimensions. In order to reproduce such protected
gapless edge modes in different dimensions requires more engineering, but is still pos-
sible. Topological insulators in 3+1 dimensions have recently been proposed, and are
capable of hosting surface Dirac cones and even surface Weyl fermions. However these
phases do not possess the long-range entanglement which classifies intrinsic topologi-
cal phases, but rather the edge fermions are protected more loosely by a set of discrete
symmetries of the bulk. These 3+1 systems have interesting properties driven by the
chiral anomaly too, but it is still not possible to derive holography in such a system.

There is recent progress in the application of relativistic field theories to derive
condensed matter phenomena. Notably Kaplan and Sen (2020) present a relativistic
𝑈(1) × 𝑈(1) gauge theory containing three species of fermions, which reproduces
the fractional QHE in the IR (i.e. it recovers the CS effective action with fractional
level after integrating out the fermions and one of the gauge fields). This model also
describes the quantum spin Hall effect, wherein the Hall current does not transport
charge, but instead spins (Kane and Mele, 2005).

This work draws an interesting connection with the study of of chiral gauge theo-
ries using domain-wall fermions; the tool of constructing anomalous theories by local-
ising fermions in higher dimensions along a lower-dimensional surface was first used
to describe this spin Hall effect. This effect was noticed before it gained traction in con-
densed matter: using this localisation method one may construct a gauge theory where
the bulk current associated with the gauge anomaly does not carry a charge under the
global group, but instead lives in a non-trivial representation of some other ‘flavour
group’ (Kaplan, 1992). In the language of the QHE, the Hall current is therefore not
electrically charged, but through choosing the flavours of the chiral fermion to be the
spins, this clearly describes the quantum spin Hall effect. Furthermore, the emergence
of Majorana zero modes were first introduced in the context of Lattice supersymmetry
(Kaplan and Schmaltz, 2000) through such a localisation argument. Now these modes
are subject to widespread interest in condensed matter, particularly their emergence in
superconducting topological nanowires due to their ability to act as the non-Abelian
anyons needed for topological quantum computation (Sarma et al., 2015).

In the bulk, topological order arose as a ground state degeneracy which depends
on the topology of the manifold. We briefly commented on how more recent work
has highlighted the long-range entanglement of topological phases as being another
defining feature of topological order. We should now highlight that the study of the
entanglement entropy has been pioneered in other topological models like the toric
code or Kagome spin liquids ( Jiang et al., 2012), and the generalisation to the entan-
glement spectrum by Li and Haldane (2008) in the case of the non-Abelian FQHE.
These techniques provide numerically accessible measures of topological order and are
now considered an indispensable tool in the study of general topological phases.

The deep structure of the 2+1 dimensional TQFT formed the foundation of the
bulk-boundary correspondence. After arguing that the boundary boson theory had
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. Discussion & Conclusion

a conformal symmetry group, we identified the vertex operators which were shown to
form a RCFT algebra through their fusion properties. In the description of the Laugh-
lin state, the level-1 operator was the quasihole operator, and at level-𝑚 the excitation
was an electron. The rational nature of this algebra and Abelian fusion rules were de-
rived using the OPE of these vertex operators using a simple chiral boson theory.

We then considered a conformal mapping which inserts operators on the boundary
and takes them on a path along a Wilson line in the bulk. The evaluation of correla-
tion functions of vertex functions at the 1+1 dimensional boundary could recover the
Laughlin wavefunction on a 2+0 dimensional bulk slice. This suggests a duality which
is simple to understand for the Laughlin case, but its generalisation is possible: the
Hilbert space of the Wilson lines at some constant-time surface is exactly the Hilbert
space of conformal blocks of the boundary theory. These blocks are the spaces of pos-
sible fusion pathways between non-Abelian conformal boundary operators.

This conjectured general correspondence is lauded as a method of predicting novel
QHE phases, and has been successfully applied to the Moore–Read, Read–Rezayi, and
many more states (Moore and Read, 1991; Read and Rezayi, 1999).

The demonstration of such a duality involved inserting a macroscopic number of
vertex operators on the edge and drawing them along a path through the bulk which
defines a conformal map. This nicely recovered the Laughlin wavefunction, although
the duality is expected to hold more generally too. Instead of inserting the electrons at
the edge at some finite time, consider the 𝑡 = −∞ slice as the initial boundary condi-
tion. Threading a flux 𝐵 through this state will naturally set the number of electrons in
the system at this initial time, and evolving the system under its unitary time evolution
will recover the same Laughlin wavefunction at a later time slice.

In this sense it does not matter on which boundary we choose to define the bound-
ary conditions — the TQFT/CFT duality will hold up whatever we choose. Indeed,
the system should also be independent of the mapping we choose to relate the coor-
dinates of the edge and the slice. Different coordinates will not recover exactly the
Laughlin wavefunction, but it will represent the same physical system. The new corre-
lation function will be related to the Laughlin wavefunction through the symmetry of
the state.

Bulk–boundary correspondences are a hot topic in string theory and cosmology,
particularly centred around the study of the proposed anti-de Sitter space to conformal
field theory (AdS/CFT) correspondence. There is also a field of theoreticians who are
interested in forming dualities between emergent conformal field theories of condensed
matter to gravitational theories (AdS/CMT correspondence), with work particularly
focused around tensor models (such as the SYK model) (Rosenhaus, 2019) and around
superconductors (Hartnoll et al., 2008). The excitement around these proposals have
spurred an intense and rapid development of this work over the space of only a decade—
perhaps motivated by the tantalising possibility of experimental realisation (Danshita
et al., 2017).

There has therefore naturally been much study of the use of the AdS/CFT cor-
respondence to form dual gravitational descriptions of the quantum Hall effect. A
specific work by Keski-Vakkuri and Kraus (2008) draws a parallel between the ZHK
model of the quantum Hall anyons to a model of a superconductor, and leverages the
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framework of the AdS/CFT correspondence in that context to propose a AdS/QHE
correspondence.

The final chapter of this dissertation focused upon the description of particle-vortex
dualities in the quantum Hall system. These dualities have been known in their most
basic form since the late ’70s, but only recently has it been realised that these are im-
plied by a different ‘bosonisation duality’, which equates theories of a Wilson–Fisher
scalar plus a dynamic flux to a theory of a free fermion. In our discussion of the ZHK
model it became clear how the Chern–Simons term attaches flux to scalars and may
change their statistics. This result, generalised to the relativistic case, forms the foun-
dation of the bosonisation duality. This proposed duality represents a novel extension
of bosonisation, which has previously been derived only in 1+1 dimensions.

This work explicitly follows the recent literature and derives a particle-vortex duality
between two fermion models from the seed bosonisation duality, which was the crucial
ingredient needed by Son to write down the Dirac composite fermion theory of the
half-filled Landau level. The merits of this discovery were discussed extensively, and
we particularly highlighted how particle-hole symmetry can be used to make the case
for this novel theory over the HLR model. We also showed that applying a background
magnetic field upholds the duality, and simply corresponds to changing the filling of
the composite fermions. The calculation of conductivities was however adjusted in the
usual way by the presence of the Dirac ladder vacuum.

The Dirac CF model and the duality which underpins it has a deep connection
to the physics of topological insulators in 3 spatial dimensions (Alicea, 2015). There
has long been evidence of some form of connection between the half-filled Landau
level and TIs (Ludwig et al., 1994), but more recent work which constructed gapped
surface states of a TI which are similar to the Moore–Read FQHE phase has refo-
cused interest (Bonderson et al., 2013). Now, as stated in the body of Chapter 5, Son’s
duality of the Dirac composite fermion provides a framework to understand this con-
nection (Wang and Senthil, 2015; Metlitski and Vishwanath, 2016). The work which
followed this has made fascinating connections to other aspects of condensed matter
theory — even deriving connections between topological insulators to topological su-
perconductors (Murugan and Nastase, 2017) and quantum spin liquids (Wang and
Senthil, 2016).

Furthermore, the bosonisation duality itself has a history in the high-energy the-
ory community. There has been interest in dualising Chern–Simons theories since
the ’90s: starting with dualities of supersymmetric theories (Intriligator and Seiberg,
1996; Aharony et al., 1997) which satisfy numerous consistency checks, including ex-
act calculation of partition functions and operator dimensions, and the convergence
of the theories in the large-N limit. One may then break supersymmetry to arrive
at TQFT dualities by introducing masses to scalars of the theory, a procedure which
results in the ‘level-rank’ dualities of CS theories (including motivation for our seed
duality) (Aharony, 2015).

The recent profound addition from the literature is the use of this seed duality to
produce a fermionic particle-vortex duality, as previously detailed in this work. Sim-
ilarly, through introducing other deformations to both sides of the duality, one may
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generate a ‘duality web’ containing an unlimited number of new dualities which can be
constructed from combining different species of fermions and different charges of the
gauge fields (Seiberg et al., 2016; Karch et al., 2017).

The extension of bosonisation to 2+1 dimensions provides a rare and valued non-
perturbative tool which may be applied to typically intractable regimes of gauge the-
ories. One such case is the strong coupling regime of the 2+1 dimensional Thirring
model, which has now been successfully bosonised for the first time (Santos et al.,
2020). This duality extends the seed duality in a familiar way (by introducing defor-
mations), and one must therefore be careful to check the result still holds. It stands
up in certain tractable limits, and the new UV fixed point of the 2+1 dimensional
Thirring model which is predicted by this duality is consistent with other works (Gies
and Janssen, 2010).

This work has inspired proofs of the bosonisation duality which take diverse ap-
proaches: including recalling the historical supersymmetry-breaking scheme (Kachru
et al., 2016) to a more modern ‘quantum wires’ formalism (Mross et al., 2016). In this
process, one of the theory’s 2+1 dimensions are discretised on a lattice such that the
resultant problem becomes a set of 2 dimensional ones. Regular 2 dimensional boson-
isation is then leveraged to demonstrate the duality. Indeed this wires formalism has
been applied to the 2+1 dimensional Thirring model and verified the correspondence in
that case (Hernaski and Gomes, 2018). Most recently however, the duality was shown
by equating the partition functions of both theories on a fully 3 dimensional lattice
(Chen et al., 2018).

The quantum Hall effect is a cornerstone of condensed matter physics which re-
mains at the forefront of research. It provides a very real bridge between the exotic
theory of modern high-energy physics to the details of experiment. This work has
brought into focus the connections between effective theories, topology, bosonisation,
conformal field theories, and the dualities, and applied them to this system of electrons
in a magnetic field.
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Fundamentals Appendix A

Berry Phase

Consider a Hamiltonian which depends on a set of external parameters 𝐻(𝜆⃗); variation
of the parameters 𝜆𝑖(𝑡) will lead to an evolution of the eigenstates by the adiabatic
theorem ∣𝑝ℎ𝑖(𝑡)⟩ = 𝑈(𝑡) ∣𝑛, 𝜆⃗(𝑡)⟩. Under a closed loop, we must return to the same
state up to a phase,

∣𝑛, 𝜆⃗(0)⟩ → 𝑒𝑖𝛾dyn+𝑖𝛾 ∣𝑛, 𝜆⃗(0)⟩ (A.1)
where 𝛾 is the topological Berry phase, and the dynamical phase depends on the path
taken 𝛾dyn = − ∫𝑡

0 𝐸(𝑡′) d𝑡′.
The Berry phase (for a given 𝑛) can be written in terms of a Berry connection using

the time-dependent Schrödinger equation (Berry, 1984; Witten, 2015),

d𝛾 = 𝛾̇ d𝑡 = 𝑖 ̇𝜆⃗ ⋅ ⃗𝐴(𝜆) d𝑡 , (A.2)
⃗𝐴(𝜆) = 𝑖 ⟨𝑛(𝜆⃗)∣ ∇⃗𝜆 ∣𝑛(𝜆⃗)⟩ . (A.3)

Hence integrating over a closed curve gives (in terms of the one-form over parameter
space 𝐴 = d𝛾)

𝛾 = ∮ d𝜆⃗ ⋅ ⃗𝐴(𝜆) = ∮ 𝐴. (A.4)

To draw an analogy with a more familiar physical system, this Berry phase 𝛾 would be
the same as the Arhanov–Bohm (AB) phase, if the vector ⃗𝐴 were a real vector potential.
This new phase has many of the same properties as the AB phase, but the connection
is a one-form defined over parameter space and not real space. The flux of this fictional
gauge field is the Berry curvature, given 𝐹 = d𝐴, which is equivalent to the field
strength in the EM analogy.

One can create a monopole of such a Berry curvature which — just as for the AB
effect — leads to a phase being acquired when a particle is taken on a closed loop,
proportional to the subtended flux. The expression for the Berry (or AB) phase is
equal to the expectation value of the Wilson operator moving in an Abelian ‘geometric’
gauge field with connection 𝐴(𝜆⃗). In accordance with gauge invariance of the Wilson
loop observable, the phase is indeed invariant under gauge transform in ∣𝑛, 𝜆⃗⟩ which is
equivalent to 𝐴𝑖 → 𝐴𝑖 + d𝜒𝑖.

This motivates defining a Berry curvature 𝐹 = d𝐴 which is itself gauge invariant.
Using Stoke’s theorem for any surface S such that C = 𝜕S and expressing the surface
element as d𝑆𝑖 we derive the expression for the Berry phase

𝛾 = ∮
C

𝐴 = ∮
C

𝐴𝑖 d𝜆𝑖 = ∫
S

𝐹𝑖 d𝑆𝑖 . (A.5)
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Written in terms of states, using (A.2), the Berry curvature is

⃗𝐹 = 𝑖∇⃗𝜆 × ⟨𝑛(𝜆⃗)∣ ∇⃗𝜆 ∣𝑛(𝜆⃗)⟩ . (A.6)

This flux is sourced by a ‘monopole’ in parameter space, which we can show must be
quantised using the AB setup. Consider passing a particle around a total flux

𝑄 = 1
2𝜋 ∫

S
𝐹𝑖 d𝑆𝑖 , (A.7)

then the Berry phase picked up along a closed loop is 𝑒2𝜋𝑖𝑄. For the monopole to be
physical it cannot affect any observables, so 𝑄 must be quantised. This is called the
Dirac quantisation condition. A useful expression for the Berry curvature is found by
expanding on a basis of states, this gives in components

𝐹𝑖 = − Im 𝜀𝑖𝑗𝑘 ∑
𝑚≠𝑛

⟨𝑛| 𝜕𝑗𝐻 |𝑚⟩ ⟨𝑛| 𝜕𝑘𝐻 |𝑛⟩
[𝐸𝑛 − 𝐸𝑚]2 . (A.8)

Differential Geometry

We will now introduce the necessary language of differential forms which will be used
extensively in this dissertation (Nakahara, 2003). A 𝑝-form simply lives in the subspace
of (0, 𝑝)-tensors that are fully antisymmetric on indices. We call the space of 𝑝-forms
Ω𝑝. Almost trivial examples of such forms are zero-forms, which are scalar functions,
and one-forms, which are simply covector functions. Expressing the general one-form
in a coordinate basis, wemay write 𝐴 = 𝐴𝜇 d𝑥𝜇 . Using this basis makes the construction
of forms particularly simple to understand.

Introduce the Cartan wedge product, which is the antisymmetrised tensor product
of basis elements

d𝑥𝜇 ∧ d𝑥𝜈 = d𝑥𝜇 ⊗ d𝑥𝜈 − d𝑥𝜈 ⊗ d𝑥𝜇 . (A.9)

The general Cartan product of 𝑝 basis elements forms a basis for Ω𝑝, the general 𝑝-
forms:

𝜔 = 1
𝑝!𝜔𝜇1⋯𝜇𝑝

d𝑥𝜇1 ∧ ⋯ ∧ d𝑥𝜇𝑝 . (A.10)

The Cartan product therefore forms a product on the space of forms ∧ ∶ Ω𝑝 × Ω𝑞 →
Ω𝑝+𝑞, for example

𝜔 ∧ 𝜒 = 1
𝑝!𝑞!𝜔𝜇1⋯𝜇𝑝

𝜒𝜇1⋯𝜇𝑞
d𝑥𝜇1 ∧ ⋯ ∧ d𝑥𝜇𝑝+𝑞 , (A.11)

= 1
(𝑝 + 𝑞)!(𝜔 ∧ 𝜒)𝜇1⋯𝜇𝑝+𝑞

d𝑥𝜇1 ∧ ⋯ ∧ d𝑥𝜇𝑝+𝑞 (A.12)

and so we may identify the components

(𝜔 ∧ 𝜒)𝜇1⋯𝜇𝑝+𝑞
= (𝑝 + 𝑞)!

𝑝!𝑞! 𝜔𝜇1⋯𝜇𝑝
𝜒𝜇1⋯𝜇𝑞

. (A.13)
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This product has a graded commutivity 𝜔∧𝜒 = (−1)𝑝𝑞𝜒∧𝜔, and satisfies 𝜔∧𝜔 = 0.
The product is only defined when 𝑝+𝑞 ≤ 𝑚, where 𝑚 is the dimension of the manifold.

We may now define the exterior derivative d ∶ 𝜔𝑝 → Ω𝑝+1 which is defined
through its action as a differential operator. For example, on a one-form it acts like

d𝐴 = d𝐴𝜇 ∧ d𝑥𝜇 = 𝜕𝜈𝐴𝜇 d𝑥𝜈 ∧ d𝑥𝜇 . (A.14)

On a general form it acts like

d𝜔 = 1
𝑝!(𝜕𝜇𝜔𝜇1⋯𝜇𝑝

) d𝑥𝜇 ∧ d𝑥𝜇1 ∧ ⋯ ∧ d𝑥𝜇𝑝 . (A.15)

It satisfies a graded Leibniz rule and it is nilpotent, so d2 = 0.
A top-form is a 𝑚-form on an 𝑚 dimensional manifold M. A volume form 𝑣 is

a nowhere-vanishing top form on M, which can be integrated over the manifold to
provide a measure of its volume

vol = ∫
M

𝑣. (A.16)

In the familiar coordinate basis, there is a natural volume form on a Lorentizian man-
ifold defined using the determinant of the metric and the totally antisymmetric Levi–
Civita symbol

vol = ∫
M

𝑣𝜇1⋯𝜇𝑚
d𝑥𝜇1 ∧ ⋯ ∧ d𝑥𝜇𝑚 (A.17)

= ∫
M

√− det 𝑔𝜇𝜈(𝑥)𝜀𝜇1⋯𝜇𝑚
d𝑥𝜇1 ∧ ⋯ ∧ d𝑥𝜇𝑚 . (A.18)

We may generally integrate any top-form over the manifold, which can be evaluated
explicitly in the coordinate basis. We will also use Stokes’ theorem, which relates the
integral over an exact form (which is the exterior derivative of lower-rank form) to an
integral of the lower-rank form over the boundary 𝜕M,

∫
M

d𝜔 = ∫
𝜕M

𝜔. (A.19)

The Hodge dual ⋆𝜔 of a form defines a map ⋆ ∶ 𝜔𝑝 → 𝜔𝑚−𝑝, which can be taken
in components by dualising with the volume form

(⋆𝜔)𝜇𝑝+1⋯𝜇𝑚
= 1

𝑝!𝑣𝜇1⋯𝜇𝑚
𝜔𝜇1⋯𝜇𝑝 . (A.20)

Importantly, the Hodge dual of any scalar function is proportional to the volume form,
and the square of the Hodge dual operator is proportional to the identity

⋆2 𝜔 = (−1)𝑚(𝑝+1)+1𝜔. (A.21)

One may also define the adjoint derivative d† ∶ Ω𝑝 → Ω𝑝−1, through d†𝜔 =
(−1)𝑚(𝑝+1)+1 ⋆d ⋆ 𝜔. Importantly, on one forms 𝑤, this acts as a divergence operator

d†𝑤 = −𝜕𝜇𝑤𝜇. (A.22)
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The Laplacian may also be defined in this language:

Δ = d ⋆ d⋆ − ⋆ d ⋆ d , (A.23)

which acts on closed forms (d𝑤 = 0) as

Δ𝑤 = −𝜕2𝑤. (A.24)

Quantum FieldTheory

We will now briefly introduce some of the tools of QFT which will be used in this work.
Theories are defined by an action 𝑆[𝜙, 𝜓, … ] as a functional of sole set of bosonic and
fermionic fields. This action is minimised on the classical solution

𝛿𝑆[𝜙(𝑥)] = ∫ d𝑑𝑦 𝛿𝑆
𝛿𝜙(𝑥)𝛿𝜙(𝑦) = 0, ⟹ 𝛿𝜙(𝑥)

𝛿𝜙(𝑦) = 0, (A.25)

which implies the classical equations of motion.
Under a general variation 𝛿𝜙, the action will also vary by total-derivative terms

𝛿𝑆 = ∫ d𝑑𝑦 𝛿𝑆
𝛿𝜙(𝑥)𝜙(𝑦)𝛿𝜙(𝑦) + ∫ d𝑑𝑦 𝜕𝜇𝐽𝜇. (A.26)

If 𝛿𝜙 generates an internal symmetry of the action, then the bulk term is automatically
zero, but for the boundary term to also be zero then it must be conserved 𝜕𝜇𝐽𝜇 = 0.
This is the conserved current associated with the symmetry operation.

The quantum theory is defined by the path integral of the sourced action (Srednicki,
2007)

𝑍[𝐽] = ∫D𝜙 exp(𝑖𝑆[𝜙] + 𝑖 ∫ d𝑑𝑥 𝐽(𝑥)𝜙(𝑥)). (A.27)

The connected correlation functions are generated through

exp(𝑖𝑊[𝐽]) = 𝑍[𝐽]
𝑍[0] (A.28)

by taking functional derivatives

⟨𝜙(𝑥1) ⋯ 𝜙(𝑥𝑁)⟩ = 𝛿𝑁 exp(𝑖𝑊[𝐽])
𝛿𝐽(𝑥1) ⋯ 𝛿𝐽(𝑥𝑁) . (A.29)

Writing the classical solution as 𝜓 one may perform a loop expansion in the action
by expanding around this path 𝜙 = 𝜓 + 𝜒. Performing a Legendre transform of the
action to turn it into a function of the new variable, we find the quantum effective
action which has the following loop expansion

Γ[𝜙] = 𝑆[𝜙] + Γ(1)[𝜙] + ⋯ , (A.30)

where 𝑆[𝜙] is the classical (or tree-level action). Calculating derivatives of exp(𝑖Λ[𝜙])
will calculate the 1-point irreducible correlation functions, which includes all interact-
ing diagrams which contribute to the amplitude. The term Γ(1) includes contributions
from one-loop diagrams, and will act to renormalise the potential of the action 𝑉(𝜙).
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At one-loop order we need the expansion of the action around a minimum

𝑆[𝜓] = 𝑆[𝜓] + 1
2 ∫ d𝑑𝑥 ∫ d𝑑𝑦 𝜒(𝑥) 𝛿2𝑆

𝛿𝜙(𝑥)𝛿𝜙(𝑦)𝜒(𝑦) + ⋯ , (A.31)

which gives the following expression for the 1-loop quantum effective action

𝑒𝑖Γ(1)[𝜙] =
∫D𝜒 exp( 𝑖

2 d𝑑𝑥 𝜒[𝜕2 − 𝑚2 + 𝑖𝜖 − 𝑉″(𝜙)]𝜒)
∫D𝜒 exp( 𝑖

2 d𝑑𝑥 𝜒[𝜕2 − 𝑚2 + 𝑖𝜖]𝜒)
. (A.32)

Evaluating this bosonic Gaussian integral gives the effective action at 1-loop

𝑒𝑖Γ(1)[𝜙] =
√
√√
⎷

det(𝜕2 − 𝑚2 + 𝑖𝜖 − 𝑉″(𝜙))
det(𝜕2 − 𝑚2 + 𝑖𝜖)

, (A.33)

which may be written

Γ(1)[𝜙] = 𝑖
2 tr log [1 − (𝜕2 − 𝑚2 + 𝑖𝜖)−1𝑉″(𝜙)] , (A.34)

which is amenable to perturbative expansion in powers of the coupling of the potential.
Generally this one-loop action will be divergent, and we must employ a regularisa-

tion scheme to separate and then manage the divergent component from a finite term.
In systems with odd dimension, like the 2+1 dimensional cases we focus on, the tools of
‘dimensional regularisation’ are not so helpful. This is because this scheme tracks only
logarithmic divergences and their contribution to the renormalisation of parameters.
However in odd dimensions one often comes across linear divergences, which have no
sub-leading logarithmic components. We will instead use the Paili–Villars regulator
which involves adding massive unphysical particles and integrating them out, through
a process described later.

One may also write down path integrals of fermions 𝜓 using Grassmann numbers,
which are classical numbers which anticommute (as expected for the fermion). The
symmetry properties of the theory may be derived in the same way, and a similar ex-
pression for the one-loop effective action can be obtained — this is done explicitly in
the main body.

Fermions in Lower Dimensions

There are more differences when doing QFT in 2+1 dimensions: most notably the
Dirac matrices obey different relations. Choose the chiral basis of 2×2 Dirac matrices,
which can be written in terms of the Pauli matrices

𝛾0 = −𝑖𝜎𝑦, 𝛾1 = 𝜎𝑥, 𝛾2 = 𝜎𝑧. (A.35)

These satisfy (𝛾0)† = −𝛾0 and (𝛾𝑖)† = 𝛾𝑖 and live in the Clifford algebra. Fur-
thermore they satisfy the following identities — crucially the trace of odd numbers of
matrices does not vanish

tr(𝛾𝜇𝛾𝜈) = 2𝑔𝜇𝜈, tr(𝛾𝜇𝛾𝜈𝛾𝜌) = −2𝜀𝜇𝜈𝜌. (A.36)
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In this basis one may also define the chirality operator 𝛾5 = 𝜎𝑧 which is used for the
construction of

We will also briefly work with 1+1 dimensional QFT (notably in the next Ap-
pendix); the only relation which will be important is the generalisation of the standard
chiral trace identity (from 𝑑 = 4) which is in 𝑑 = 2

tr(𝛾𝜇𝛾𝜈𝛾5) = −2𝑖𝜀𝜇𝜈. (A.37)

EffectiveTheories and Renormalisation Group

The act of including 𝜙 interactions in some renormalisation scheme will adjust the
potential of the scalar and make it dependent upon some energy scale 𝜇. Since the
physical observables like mass must not depend upon this scale, the couplings which
appear in the action will be forced to take up 𝜇-dependence.

The behaviour of this dependence can be predicted using crude dimensional argu-
ments: the coupling constants of dimension-𝑁 operators O𝑁 have dimension [𝜆𝑁] =
𝑑 − 𝑁 will scale as 𝜇𝑑−𝑁 . Taking the limit 𝜇 → 0 will manifest the behaviour of the
coupling at low energies, and clearly it will only be relevant (or increasing) in this IR
regime when 𝑁 < 𝑑. Operators with 𝑁 > 𝑑 are termed irrelevant in the IR, but grow
in the UV. In between live marginal operators which scale logarithmically and their
behaviour depend on details of loop calculations.

The renormalisation of a theory can be specified by integrating out high-energy
degrees of freedom; the removal of these modes acts to ‘renormalise’ the coupling con-
stants of a theory, generating a flow in the space of coupling constants. Fixed points
under the renormalisation group are points where integrating out high-momentum
modes does not modify the constants of the theory, and they are scale invariant with
power-law correlation functions. The action of irrelevant operators under the renormal-
isation group flow is to drive the system towards a fixed point, and relevant operators
move the theory away from one.

Suppose we have a theory with multiple degrees of freedom with a hierarchy of
masses: there are heavy and light particles in the theory. Dividing the functional in-
tegral’s measure into an integral over all heavy and light degrees of freedom (relative
to a scale Λ) and then ‘integrating out’ the heavy degrees of freedom will produce an
effective theory which is valid at energy scales 𝐸 ≪ Λ. Any heavy particles with masses
𝑚 > Λ will be removed from the spectrum entirely, and heavy-light interactions will
generate a tower of couplings which renormalise the light degrees of freedom. This ef-
fect is encoded in the Wilsonian effective action, defined in terms of the path integral
(in analogy with the connected generating functional 𝑊[𝐽]) by

𝑒𝑖𝑆eff[𝜙light] =
∫D𝜙heavy 𝑒𝑖𝑆[𝜙light,𝜙heavy]

∫D𝜙heavy 𝑒𝑖𝑆[0,𝜙heavy]
. (A.38)

Such a Wilsonian action 𝑖𝑆eff[𝜙light] includes a tower of irrelevant operators, but by
repeatedly integrating out the high-energy degrees of freedom of the light-mass fields
one may approach the IR limit of the theory where only the relevant (or marginal)
Wilsonian operators dominate the physics (Burgess, 2007).
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1+1D Chiral Anomaly Appendix B

This Appendix will derive the chiral anomaly of the chiral fermion theory, following
the methods of Fujikawa (1979) but specialised to the case of 1+1 dimensions. The
action for the fermion is

𝑆 = ∫ d2𝑥 𝜓(𝑖 /𝐷)𝜓, (B.1)

where the covariant derivative in components is 𝐷𝜇 = 𝜕𝜇 − 𝑖𝑒𝐴𝜇. This is classically
invariant under the vector and axial tranformations

Vector ∶ 𝜓(𝑥) → 𝑒𝑖𝑒𝜆(𝑥)𝜓 (B.2)

Axial ∶ 𝜓(𝑥) → 𝑒𝑖𝑒𝛾5𝜆(𝑥)𝜓. (B.3)

Because of the corresponding transform of the vector potential 𝐴𝜇 → 𝐴𝜇 −𝑖𝜕𝜇𝜆(𝑥)/𝑒,
the vector transform is seen to be the gauge transform of the theory. Under a general
field variation which is a symmetry, the only variation of the action is a boundary term

𝛿𝑆 = ∫ d2𝑥 𝜕𝜇(𝑖𝜓𝛾𝜇𝛿𝜓), (B.4)

where the term in brackets defines the current of the symmetry. Specifically for the
axial symmetry, the current is

𝐽𝜇
𝐴 = 𝜓𝛾𝜇𝛾5𝜓, (B.5)

which is seen to be conserved classically 𝜕𝜇𝐽𝜇
𝐴 = 0.

The aim of this Appendix is to formalise how the quantum theory may violate
this current conservation using the path integral formalism. Given that the action is
explicitly invariant, the non-conservation must arise from the functional path integral
measure. Under the axial field transformation 𝜓 → 𝜓′ = 𝜓 + 𝛿𝜓, the fermionic
measure changes by a Jacobian

D𝜓D𝜓 → D𝜓
′
D𝜓′ = J −2D𝜓D𝜓. (B.6)

In order to evaluate this Jacobian of the functional measure, we must expand the
fermionic fields in terms of a bosonic eigenbasis 𝜙𝑛 with Grassmann coefficients

𝜓 = ∑
𝑛

𝛼𝑛𝜙𝑛 (B.7)

𝜓 = ∑
𝑛

𝛽𝑛𝜙†
𝑛. (B.8)

The eigenvalue equation satisfied is (𝑖 /𝐷)𝜙𝑛 = 𝜆𝑛𝜙𝑛. The measure in this basis is

D𝜓 = ∑
𝑛

d𝛼𝑛 , (B.9)
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B. +D Chiral Anomaly

and since the variation of one component of the measure is under one power of the
Jacobian,

D𝜓 → D𝜓′ = ∑
𝑛

d𝛼′
𝑛 = ∑

𝑛𝑚
J𝑛𝑚 d𝛼𝑚 , (B.10)

we may hope to evaluate the Jacobian.
Evaluating the following integral over the transformed field 𝜓′ and a dual basis

vector 𝜙†
𝑚 gives

∫ d2𝑥 𝜙†
𝑚𝜓′ = ∑

𝑛
∫ d2𝑥 𝜙†

𝑚 [𝛼′
𝑛𝜙𝑛] (B.11)

= ∑
𝑛

∫ d2𝑥 𝜙†
𝑚 [𝛼𝑛𝜙𝑛 + 𝑖𝜆𝛾5𝛼𝑛𝜙𝑛] . (B.12)

Using the natural completeness relation ∫ d2𝑥 𝜙†
𝑚𝜙𝑚 = 𝛿𝑛𝑚 we find

∫ d2𝑥 𝜙†
𝑚𝜓′ = 𝛼′

𝑚 = ∑
𝑛

(𝛿𝑛𝑚 + 𝐶𝑛𝑚)𝛼𝑛, (B.13)

where the matrix in the parentheses is the infinitessimal form of the Jacobian. This
allows us to evaluate its determinant — explicitly using the definition of 𝐶𝑛𝑚 from
(B.12) we get

logJ = log det(1 + 𝐶) = tr 𝐶 = 𝑖 ∫ d2𝑥 𝜆(𝑥) [∑
𝑛

𝜙†
𝑛𝛾5𝜙𝑛] . (B.14)

Now focusing on the sum in the brackets, regulating this expression by using the fact
that the high momentum mode square-eigenvalues are very negative (𝜆2

𝑛 → −∞ as
𝑛 → ∞). We will modulate this regulator with a mass 𝑀 that gets taken to infinity,
and then express this using the operator 𝑖 /𝐷 as follows

sum = lim
𝑀→∞

∑
𝑛

𝜙†
𝑛𝛾5𝜙𝑛 exp[𝜆2

𝑛/𝑀2] = lim
𝑀→∞

∑
𝑛

𝜙†
𝑛𝛾5 exp[(𝑖 /𝐷)2/𝑀2]𝜙𝑛 (B.15)

= lim
𝑀→∞

⟨𝑥| 𝛾5 exp[(𝑖 /𝐷)2/𝑀2] |𝑥⟩ . (B.16)

This square Dirac operator can be simplified to be written as

(𝑖 /𝐷)2 = −𝐷2 + 𝑒
2𝑆𝜇𝜈𝐹𝜇𝜈, (B.17)

where 𝐷2 = 𝐷𝜇𝐷𝜇, 𝑆𝜇𝜈 = −1
2[𝛾𝜇, 𝛾𝜈] lives in the spinor representation of the

Poincarè algebra, and 𝐹𝜇𝜈 is the field strength tensor. Using the action of the operator

− 𝐷2 |𝑥⟩ = ∫ d2𝑘
(2𝜋)2 (−𝑘2) |𝑥⟩ (B.18)

on the position basis, we may express the sum as

sum = lim
𝑀→∞

tr[𝛾5 exp( 𝑒
2𝑆𝜇𝜈𝐹𝜇𝜈/𝑀2)] ∫ d2𝑘

(2𝜋)2 𝑒−𝑘2/𝑀2 . (B.19)
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Now evaluating the trace using tr[𝛾5𝑆𝜇𝜈] = (−2𝑖)𝜀𝜇𝜈, and the integral is 𝑖𝑀2/4𝜋;
the sum is

sum = − 𝑒
4𝜋 𝜀𝜇𝜈𝐹𝜇𝜈 = − 𝑒

2𝜋 𝐹01. (B.20)

The Jacobian is now written

logJ = −𝑖 ∫ d2𝑥 𝜆(𝑥) 𝑒
2𝜋 𝐹01, (B.21)

and therefore the variation of the full measure is

logJ −2 = 𝑖 ∫ d2𝑥 𝜆(𝑥) 𝑒
𝜋 𝐹01 = 𝑖𝑆anom (B.22)

and the measure changes
D𝜓D𝜓 → D𝜓D𝜓𝑒𝑖𝑆anom , (B.23)

which looks like an anomalous addition to the action. Explicitly, written in terms of
the chiral current,

D𝜓D𝜓 → DΨDΨ exp(𝑖 ∫ d2𝑥 𝜆(𝑥) 𝜕𝜇𝐽𝜇
𝐴). (B.24)

which is not conserved in the quantum theory, but obeys

𝜕𝜇𝐽𝜇
𝐴 = 𝑒𝐹01

𝜋 . (B.25)
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The Wen–Zee Model & Hierarchy States
Appendix C

So far we have described the series of states 1/𝑚, of which the odd-𝑚 states are ex-
perimentally realised. A further hierarchy of fractional quantum Hall states can be
constructed by including 𝜅 additional gauge fields in the model due to Wen and Zee
(1992a,b)

𝑆 = ∫ [−
𝐾𝑖𝑗
4𝜋 𝑎𝑖 ∧ d𝑎𝑗 + 𝑡𝑖

2𝜋 𝐴 ∧ d𝑎𝑖] . (C.1)

The additional gauge fields 𝑎𝑖 are coupled by the 𝜅 × 𝜅 matrix 𝐾, and the charge vector
𝑡 specifies the physical EM current 𝐽 = ⋆(𝑡𝑖 d𝑎𝑖). In general the filling fraction is

𝑘 = 𝑡𝑖(𝐾−1)𝑖𝑗𝑡𝑗. (C.2)

We can demonstrate that generating the Jain series 𝜈 = 𝑛/(2𝑛+1) from a combination
of two forms 𝑎, 𝑏 given by

𝐾 = ( 𝑚 −1
−1 𝑛 ) , 𝑡 = (1

1) (C.3)

gives the action

𝑆[𝑎, 𝑏; 𝐴] = 1
4𝜋 ∫ [−𝑚𝑎 ∧ d𝑎 + 2𝐴 ∧ d𝑎 + (2𝑎 − 𝑛𝑏 + 2𝐴) ∧ d𝑏] (C.4)

Manually integrate out 𝑏 by finding its equation of motion by varying 𝛿𝑏

− 𝑛𝛿 (𝑏 ∧ d𝑏) + 2(𝐴 + 𝑎) ∧ d𝛿𝑏 = 0 ⟹ 𝑛 d𝑏 = d𝐴 + d𝑎 (C.5)

which is solved locally to give 𝑏 = 𝑛−1(𝐴 + 𝑎). Place 𝑏 on-shell by substituting into
the effective action

𝑆[𝑎; 𝐴] = 1
4𝜋 ∫ [−𝑚𝑎 ∧ d𝑎 + 2𝐴 ∧ d𝑎 + 𝑛−1 (𝐴 + 𝑎) ∧ (d𝐴 + d𝑎)] (C.6)

= 1
4𝜋 ∫ [𝑛−1𝐴 ∧ d𝐴 − (𝑚 − 𝑛−1)𝑎 ∧ d𝑎 + 2(1 + 𝑛−1)𝐴 ∧ d𝑎] . (C.7)

The latter two terms of (C.7) are the same as (2.86) with different coefficients. Inte-
grating out 𝑎 this time gives (1 + 𝑛−1)𝐴 = (𝑚 − 𝑛−1)𝑎 and so

𝑆[𝐴] = 1
4𝜋 ∫ 𝐴 ∧ d𝐴 [𝑛−1 + (1 + 𝑛−1)2

𝑚 − 𝑛−1 ] = 1
4𝜋 ∫ 𝐴 ∧ d𝐴 [𝑚 + 𝑛 + 2

𝑚𝑛 − 1 ] (C.8)
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which is a CS action with filling fraction 𝜈 = (𝑚 + 𝑛 + 2)/(𝑚𝑛 − 1). Choosing
appropriate coefficients 𝑛 = 𝑛(𝑚) gives the Jain series 𝜈𝑚 = 𝑚/(2𝑚 + 1) that we
wanted to describe.

This explicit example elucidates how the general Wen–Zee actions can describe
general hierarchy states: integrating out each field generates a new set of (fractional)
couplings for the rest. In this way we are able to generate arbitrary filling fraction, in-
cluding the so-called hierarchy states (Blok and Wen, 1990). Another important series
that the Wen–Zee theory is capable of reproducing is the particle-hole inverted part-
ner of the Laughlin states. Particle-hole symmetry, when we consider only the lowest
Landau level, acts to exchange filled states for unfilled ones and thus the filling fraction
changes 𝜈 → 1 − 𝜈. Consider the charge vector 𝑡 = (1, 1)𝑇 and 𝐾 = diag(1, −𝑚)
with odd 𝑚, which give a Hall conductivity

𝜎 = 1 − 1
𝑚. (C.9)

These are the conductivities of the PH-inverted Laughlin states, which form the series
2/3, 5/7, … .

This construction is similar to the construction of branes in string theory (Susskind,
2001; Belhaj et al., 2015), and this has evenmotivated work which produces a fractional
quantum Hall effect in string theory models (Bergman, 2004).
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Diagonalising the Luttinger Hamiltonian
Appendix D

Diagonalising the UVTheory

To diagonalise the interacting theory, perform a Bogoliubov transformation generated
by the Hermitian operator

𝑆 = 2𝜋𝑖
𝐿 ∑

𝑘>0

𝜑𝑝
𝑝 J+(𝑝)J−(−𝑝), (D.1)

where we defined a real even function 𝜑𝑝. This is fully determined by requiring that
the unitary operator 𝑈 = exp(𝑖𝑆) diagonalises 𝐻𝐼 in the form given in (3.13) (Mattis
and Lieb, 1965). First note 𝑈†𝐻0𝑈 = 𝐻0, and that

𝑈†J±(𝑝)𝑈 = J±(𝑝) cosh 𝜑𝑝 + J∓(𝑝) sinh 𝜑𝑝 (D.2)

which conserves the commutation relations (3.7), (3.8). Choose tanh 2𝜑𝑘 = −𝜆𝑉𝑘/𝜋𝑣
to diagonalise 𝐻𝐼 and which produces

𝐻 = 2𝜋
𝐿 ∑

𝑘>0
sech 2𝜑𝑘 [J+(𝑘)J+(−𝑘) + J−(−𝑘)J−(𝑘)] . (D.3)

One can recover canonical commutation relations from (3.7), (3.8) by defining the
canonical raising operators

𝑐†
±𝑘 = √ 2𝜋

𝐿 ∣𝑘∣J±(𝑘). (D.4)

Transforming (D.3) into the canonical form

𝐻 = ∑
𝑘>0

𝜔𝑘 ̃𝑐†
𝑘 ̃𝑐𝑘, 𝜔𝑘 = ∣𝑘∣ sech 2𝜑𝑘 = ∣𝑘∣ √𝑣2 − 𝜆2𝑉2

𝑘 . (D.5)

which elucidates the spectrum of the bosonic excitations.
There exists a representation of the fermion excitations in terms of these J±(𝜎)

bosonic ones; Luther and Peschel (1974) finds the form

𝜓±(𝜎) = 1
√2𝜋𝑎

𝑒𝑖𝑘𝐹𝜎+𝑖𝜑±(𝜎), 𝜑±(𝜎) = −2𝜋𝑖
𝐿 ∑

𝑘>0
[J±(−𝑘)𝑒𝑖𝑘𝜎 − J±(𝑘)𝑒−𝑖𝑘𝜎]

(D.6)
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which is defined in terms of the 𝜑(𝜎) field used in the Bogoliubov transform, and a
short-distance cutoff 𝑎. Inverting this to get J± in real space, and take the continuum
(𝑎 → 0) limit to recover

J±(𝜎) = 1
𝐿 ∑

𝑘>0
[J±(−𝑘)𝑒𝑖𝑘𝜎 + J±(𝑘)𝑒−𝑖𝑘𝜎] → 1

2𝜋 𝜕𝜎𝜑±(𝜎). (D.7)

Diagonalising the IRTheory

In the interacting Luttinger theory we must add an interparticle interaciton potential,
called 𝑉𝑘 in (3.12); alternatively move the Hamiltonian (3.39) into momentum space

J±(𝑘) = ∫
𝐿

0
d𝜎 J±(𝜎)𝑒∓𝑖𝑘𝜎 (D.8)

with 𝑘𝑛 = 2𝜋𝑛/𝐿. Hence

𝐻0 = 𝜋𝑣
𝐿 ∑

𝑘
(J+(𝑘)J+(−𝑘) + J−(𝑘)J−(−𝑘)) . (D.9)

Adding the interaction Hamiltonian with two terms, which represent forward (𝑔4) and
backward (𝑔2) scattering (Degiovanni et al., 1998)

𝐻int = 𝜋
𝐿 ∑

𝑘
2𝑔2J+(𝑘)K−(𝑘) + 𝑔4 [J+(𝑘)J+(−𝑘) + J−(𝑘)J−(−𝑘)] . (D.10)

As before, a Bogoliubov transformation diagonalises the full Hamiltonian given

tanh 2𝜑 = − 𝑔2
𝑣 + 𝑔4

, and (G+
G−

) = ( cosh 𝜑 − sinh 𝜑
− sinh 𝜑 cosh 𝜑 ) (J+

J−
) . (D.11)

This diagonalises the Hamiltonian back to the same form as the free theory

𝐻 = 𝜋
𝐿 ∑

𝑘
(G+(𝑘)G+(−𝑘) + G−(𝑘)G−(−𝑘)) . (D.12)

The velocity is renormalised 𝑣 → 𝑣𝑆 and currents are

J±(𝑘) = 𝛼−1/2G±(𝑘) ⟹ (𝜌(𝜎)
𝑗(𝜎)) = ( 𝛼−1/2 [G+(𝜎) + G+(𝜎)]

𝛼−1/2𝑣𝑆 [G+(𝜎) − G+(𝜎)]) (D.13)

where

𝛼 = 𝑒−2𝜑 = √
𝑣 + 𝑔2 + 𝑔4
𝑣 − 𝑔2 + 𝑔4

, (D.14)

𝑣𝑆 = √(𝑣 + 𝑔4)2 − 𝑔2. (D.15)

The Hamiltonian of the new theory is now equivalent to the original under these trans-
formations

𝐻 = 𝜋𝑣𝑆 ∫ d2𝜎 [G+(𝜎)2 + G−(𝜎)2] . (D.16)
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Deriving the Seed Duality Appendix E

The ‘seed’ bosonisation duality which formed the core of deriving particle-vortex dual-
ity has a derivation proposed by Seiberg, Senthil, Wang, and Witten (2016). Although
this result does not constitute a proof, it is an interesting result which strongly moti-
vates the result, and is based upon only a few assumptions. Let us begin by reciting the
bosonsation duality:

∫D𝜓 exp(𝑖 ∫ d3𝑥Lfermion[𝜓; 𝐴] − 1
2

1
4𝜋 𝐴 ∧ d𝐴)

= ∫D𝜙D𝑎 exp(𝑖 ∫ d3𝑥Lscalar[𝜙; 𝑎] + 1
4𝜋 𝑎 ∧ d𝑎 + 1

2𝜋 𝑎 ∧ d𝐴), (E.1)

where Lfermion[𝜓; 𝐴] and Lsalar[𝜙; 𝑎] are defined at corresponding fixed points. The
derivation will proceed as follows: a parent field theory will be written down, and
then its various phases discussed in limits which make it amenable. Next, a symmetry-
breaking transition will be induced by introducing monopole operators which break its
global symmetry. Finally, we will hypothesise that there is a unique fixed point of this
transition and equate the field theories at limiting points on the phase-transition line.

The proposed parent field theory contains a global a gauged interacting scalar 𝜙, a
gauged free fermion 𝜒, a dynamic gauge field 𝑎, and a background gauge field 𝐴:

𝑆[𝜒, 𝜙, 𝑎; 𝐴] = ∫ d3𝑥 [𝜒 (𝑖/𝜕 + 𝑚 + /𝐴 + /𝑎) 𝜒 + |(𝜕𝜇 − 𝑖𝑎𝜇)𝜙|2 − 𝑉(|𝜙|2) − 1
4𝑓 2

𝜇𝜈] .
(E.2)

The scalar has charge 1 under the dynamic gauge field 𝑎, and the fermion 𝜒 also has
a charge 1 under the background field. The equations of motion show that there are
two global charges: 𝑈(1)𝐴 given by 𝐽𝜇

𝐴 = 𝑖𝜒𝛾𝜇𝜒 associated with the conservation of
fermion number and 𝑈(1)𝑎, the topological charge 𝐽𝑎 = ⋆ d𝑎.

From our previous discussion of the abelian Higgs model in Section 5.1.3, we know
the scalar sector should have two distinct phases when ⟨𝜙⟩ = 0 and ⟨𝜙⟩ = 𝑣 ≠ 0 in the
vacuum. Again let us call these phases the Coulomb and Higgs phases of the theory.
The coupling to a fermion will provide additional structure to the model.

First consider theHiggs phase. Expanding around the vacuumwith 𝜙 = (𝑣+𝜌)𝑒𝑖𝜎 ,
the Higgs mechanism gives the gauge boson 𝑎 a mass and removes a (massless) degree
of scalar freedom 𝜎 from the theory. The resultant theory, taking the result of the
covariant derivative expansion in the Abelian Higgs model (5.26), is

∫D𝑎D𝜒D𝜌 exp[𝑖 ∫ d3𝑥 𝜒 (𝑖/𝜕 + 𝑚 + /𝐴 + /𝑎) 𝜒 − 1
4𝑓 2

𝜇𝜈 + 𝑣2𝑎2 + (𝜕𝜇𝜌)2 + 𝑚̃𝜌2 + ⋯].
(E.3)
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Here, the scalar mass is 𝑚̃ = 𝑉″(𝜌)|𝜌=0 and the ‘⋯’ contains higher-order operators
from the expansion of the potential. These induce interactions, many of which will be
irrelevant in the UV of the 2+1-dimensional theory. Explicitly, this theory contains a
Higgsed massive boson 𝑎 and a massive real scalar — choose a regime where we can
integrate out 𝑎. This can be explicitly performed at tree-level using the equation of
motion (−𝜕2 + 2𝑣2)𝑎𝜇 = 𝑖𝐽𝜇

𝐴 (in Coulomb gauge 𝜕𝜇𝑎𝜇 = 0) to give

∫D𝜒D𝜌 exp[∫ d3𝑥 𝜒 (/𝜕 + 𝑚 + /𝐴) 𝜒 − 1
4𝑣4 (𝜒𝛾𝜇𝜒)2 + 𝜌(−𝜕2 + 𝑚̃)𝜌 + ⋯],

(E.4)
which is themassiveThirringmodel (Thirring, 1958) and a scalar. See discussion of this
duality in (Kondo, 1995). Note that 𝐴 is non-dynamical and therefore the excitations
of this phase are completely gapped due to the Higgs mechanism of 𝑎.

Taking the Higgs mass 𝑣 → ∞ when 𝑎 is integrated out removes the interaction
term and recovers a free-fermion effective theory. This result is a general feature of
effective field theories called decoupling, where in this case the fermion loses its 𝑎-
mediated interactions if the 𝑎 particle being integrated out is infinitely massive. Next,
the massive scalar will not be important here so assume 𝑚̃ ≫ 𝑚 and integrate it out,
to give the tree-level effective action

𝑆Higgs[𝜒; 𝐴] = ∫ d3𝑥 [𝜒 (𝑖/𝜕 + 𝑚 + /𝐴) 𝜒] . (E.5)

Expanding the scalar around the zero-vacuum of the Coulomb phase means that
there is no symmetry breaking and no Higgs mechanism. The photon remains gapless
and the scalar is described by the action Lscalar[𝜙; 𝑎],

𝑆Coulomb[𝜒, 𝜙, 𝑎; 𝐴] = ∫ d3𝑥 [𝜒 (𝑖/𝜕 + 𝑚 + /𝐴 + /𝑎) 𝜒 − 1
4𝑓 2

𝜇𝜈 + Lscalar[𝜙; 𝑎]] .
(E.6)

This phase has the possibility of gapless 𝑎-excitations, but this could be broken by quan-
tum corrections due to interactions with 𝜒.

The final step is to integrate out the fermion of both of these theories to give the
one-loop effective action. This can be done explicitly for the Coulomb phase (E.6),
and the Higgs phase (E.5) in the limiting case 𝑣 → ∞ where it becomes free. This
calculation is identical to the result of Section 2.1.4 where the fermionic path integral
gives a topological half-quantised Chern–Simons term which depends on the sign of
the fermion mass 𝑚 (2.36).

We have the freedom to add a CS term to the original action (E.5) so that the
resulting induced CS terms are integer-quantised. The new action is

𝑆′
Higgs[𝜒; 𝐴] = ∫ d3𝑥 [𝜒 (𝑖/𝜕 + 𝑚 + /𝐴) 𝜒 − 1

2
1

4𝜋 𝐴 ∧ d𝐴] . (E.7)

The fermionic path integral therefore gives a trivial theory when 𝑚 > 0, and the action

𝑆𝑚<0
Higgs[𝐴] = − 1

4𝜋 ∫ d3𝑥 𝐴 ∧ d𝐴 . (E.8)
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when 𝑚 < 0. This result only holds when the fermion mass is nonzero 𝑚 ≠ 0; then
both of these phases are gapped because of the Higgs mechanism.

Now focusing on the Coulomb phase, and taking heed of the previous result, we
must similarly introduce the CS term to this theory

𝑆′
Coulomb[𝜒, 𝜙, 𝑎; 𝐴] = ∫ d3𝑥 ⎡

⎢
⎣
𝜒 (𝑖/𝜕 + 𝑚 + /𝐴 + /𝑎) 𝜒 − 1

4𝑓 2
𝜇𝜈 + Lscalar[𝜙; 𝑎]

− 1
2

1
4𝜋 (𝐴 + 𝑎) ∧ d(𝐴 + 𝑎) + 1

4𝜋 𝐴 ∧ d𝐴 ⎤
⎥
⎦
. (E.9)

The resulting integral gives for 𝑚 > 0

𝑆𝑚>0
Coulomb[𝜒, 𝜙, 𝑎; 𝐴] = ∫ d3𝑥 [Lscalar[𝜙; 𝑎] − 1

4𝑓 2
𝜇𝜈 + 1

4𝜋 𝐴 ∧ d𝐴] , (E.10)

which is gapless (and the dual photon is the Goldstone mode, as before). For 𝑚 < 0

𝑆𝑚<0
Coulomb[𝜒, 𝜙, 𝑎; 𝐴] = ∫ d3𝑥 [Lscalar[𝜙; 𝑎] − 1

4𝑓 2
𝜇𝜈 − 1

4𝜋 𝑎 ∧ d𝑎 − 1
2𝜋 𝐴 ∧ d𝑎] .

(E.11)
The phase diagram is depicted in the following table, and only the 𝑚 < 0 Coulomb
phase has gapless excitations.

𝑚 < 0 𝑚 > 0
𝑣 = ∞ No excitations No excitations
Higgs Induced 𝐴 ∧ d𝐴
𝑣 = 0 Gapped 𝜙 Gapped 𝜙

Coulomb Gapped 𝑎 from induced (𝐴 + 𝑎) ∧ d(𝐴 + 𝑎) Gapless 𝑎

Now let us introduce monopole operators to the theory, which will explicitly break
the 𝑈(1)𝑎 symmetry. The immediate consequence of breaking this is that the massless
goldstone mode of the gapless theory is gapped-out and the theory because the SSB
procedure can no-longer occur. Analysing the theory in the limits 𝑣 = 0, ∞ and 𝑚 < 0,
𝑚 > 0 in the presence of monopole operators shows that all phases except 𝑚 < 0, 𝑣 →
∞ preserve the 𝑈(1)𝐴 group. All points of the phase diagram are insulating, but this
limit forms a quantum hall insulator state. Now assume that the three ‘trivial’ states
are identical (in the presence of monopoles), then one generally expects there to be a
finite-𝑣 transition between the two states for 𝑚 < 0, as shown in Fig. E.1.

By universality different points on the phase transition are equivalent; therefore
taking two limits (as prescribed on Fig. E.1) which approach different ends of the
transition line, we may derive two dual field theories. For the first limit we remain in
the Coulomb sector, and simply take 𝑚 → −∞; using Eq. E.11 this gives

𝑆𝑚<0
Coulomb[𝜒, 𝜙, 𝑎; 𝐴] = ∫ d3𝑥 [Lscalar[𝜙; 𝑎] − 1

4𝜋 𝑎 ∧ d𝑎 − 1
2𝜋 𝐴 ∧ d𝑎] . (E.12)
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Figure E.: Phase transition.

Next, the dual theory is obtained by the 𝑣 → ∞ Higgs action (E.7) when 𝑚 = 0, given
by

𝑆′
Higgs[𝜒; 𝐴] = ∫ d3𝑥 [𝜒 (𝑖/𝜕 + /𝐴) 𝜒 − 1

2
1

4𝜋 𝐴 ∧ d𝐴] (E.13)

= ∫ d3𝑥 [Lfermion[𝜒; 𝐴] − 1
2

1
4𝜋 𝐴 ∧ d𝐴] . (E.14)

This result motivates the duality in Eq. E.1.
The quantum numbers of the monopole operators in different theories are impor-

tant to understand to formalise the operator dictionary between the two phases (Seiberg
et al., 2016). Details about the operator matching and evaluation of spin are presented
by Turner (2019), and further details about the vortices in these types of models are
given in (Horvathy, 2007).
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