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Abstract. This paper provides an introduction to modified gravity. Firstly, we review the
current best fit model of cosmology (ACDM model) and present the cosmological constant
problem. As opposed to having a cosmological constant to account for dark energy, we
motivate an alternative solution which is modifying Einstein’s theory of general relativity
(GR). We review GR to provide a basis to study modified theories of gravity. We will then
introduce F(R) gravity by first deriving the field equations. From this, we will look at F'(R)
gravity in metric formalism. Then we will show how this theory can be mapped to a scalar
tensor theory, the consequences this can pose, and the potential mechanisms that can be used
to save it. Finally, we introduce massive gravity as another way to modify GR. We outline the
history of massive gravity from Fierz-Pauli massive gravity to the construction of the unique
non-linear theory of massive gravity (dRGT), named after the authors de Rham, Gabadadze
and Tolley.
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1 Introduction

Theories of modified gravity aim to address in part or full some of the current issues facing
the ACDM model. These theories can take any form of modification to general relativity.
The main goal of these theories is to provide a theory that performs in line with GR over
small distances for astronomical masses (where GR cosmology shows success) [1], and that
neatly describes large scale observations such as the universal acceleration. This can be tricky
to achieve but interesting methods like screening mechanisms can be employed to hide these
modifications on solar system scales to satisfy experimental data [2].

Whether they can achieve this or not, these theories provide interesting ways of thinking
about general relativity and can give a deeper understanding of the theory. By pulling apart
and fiddling with the model it is easier to understand how those pieces work.

There are quite a few ways to modify gravity, and so this paper will only focus on two
main examples. One method will look at finding invariant higher orders of the Ricci scalar in
the action in F(R) gravity [3]. The other will look to modify the massless tensor field of GR
by giving it mass in massive gravity [4].

Section 1 introduces general relativity and the field equations that govern it. We then
provides a brief history of the ACDM model; the current most widely accepted model of
cosmology. We discuss the main issues with the ACDM model, in particular the issues with the
cosmological constants use in dark energy. We then provide motivation for studying modified
theories of gravity to solve these the problem of dark energy. Furthermore, modified gravity
can also be used to explain dark matter. Section 2 studies general relativity in more detail,
preparing for its modification in later chapters. We give a derivation of the field equations
from the action. After this, we will look into linearising GR, how gauge transformations can be
used to simplify the theory, and a solution for a generic source coupled with Einstein’s theory.
From the linearisation, the degrees of freedom of the theory are counted and used to describe
GR as a massless spin-2 field theory. The non-linear extensions are also discussed. Section 3
introduces F'(R) gravity by modifying the Einstein-Hilbert action in GR and deriving the field
equations. By manipulating the action we present the theory as a scalar tensor theory akin
to Brans-Dicke. Brans-Dicke has a problem at being heavily constrained in the solar-system,
meaning the theory basically looks like GR. This results in the theory not being interesting
for dark energy purposes. Section 4 presents massive gravity by introducing the Fierz-Pauli
action motivated from linearised GR. It then shows how the degrees of freedom are found and
confirm the expectation of 5 degrees of freedom expected from a massive spin-2 field theory.
Solutions for the massless limit of Fierz-Pauli theory and GR are then looked at for a static
source. The name of the issue that causes a discrepancy in physical observation between these
two theories is the vDVZ discontinuity. We derive the reason for the discontinuity utilising
the Stiickelberg trick and briefly mention how to solve the problem by extending Fierz-Pauli
massive gravity to a non-linear theory.

In this report we will work with a (— + ++) metric signature.

1.1 General Relativity

General relativity is widely considered to be the correct theory of gravity for large masses
at solar system scales. It accurately predicts the orbits of planets in the solar system and
still continues to stand many rigorous astrophysical tests today. One of the main assumptions
made by the current model of cosmology (the ACDM model) is that general relativity describes
gravitational interactions in our universe



The theory of GR considers how the curvature of spacetime affects the motion of matter
and how the presence of matter affect the curvature of spacetime [5|. This motivates the
Einstein-Hilbert action which contains curvature and matter terms that look like

_ 1 4, _ 4 ;
o= mﬂa/d TV=g(2R =) +/d Lt [gpurs V'), (1.1)

where the constant 1/16mG can be obtained by comparing the classical limit of the theory with
Newtonian gravity. A is the cosmological constant allowed by the symmetries of the theory.
The Ly is the Lagrangian density that describes matter and energy (radiation, baryons, dark
matter) inside the universe whose motion is described by the fields ¥

Applying the principal of least action to the action in eq (1.1) results in the Einstein
field equations that define how the metric (curvature) relates to the enegy-momentum tensor
(matter). The Einstein field equations are

8rGTH = GM + Agh”. 1.2
g

Here, the Einstein tensor G*¥ contains the information of the curvature from the metric g"
and the energy-momentum tensor T4 contains information on the matter in the model. This
will be explored more deeply in Section 2

1.2 A History of the Cosmological Model

For this review it is important to look at the cosmological constant as it is a key cause of
the issues with the current cosmological model. In this section we will look at the history of
our current cosmological model and the part that the cosmological constant has played in it’s
creation.

Einstein found great success with his theory of general relativity and by 1916 he had
consolidated his four papers on the subject into "The Foundation of the General Theory of
Relativity" [6]. In 1917 Einstein looked to create a cosmological model based on GR [7].
Before the observational evidence provided by Hubble in 1929 [8] he assumed a closed static
universe to satisfy Mach’s principle; that local physical laws are determined by the large-scale
structure of the universe . The metric of this universe took the form

ds2 = —dt2 + R2 Sin2(7‘/R)dQQ2 (13)

to describe a homogeneous, isotropic, and static universe. The R represents the curvature
radius of the 3-dimensional space, and r is the spacial distance from the origin. He discovered
this metric was not in fact a solution to his Field equations, and so the introduction of a
cosmological constant was required for GR to be compatible with a static, homogeneous and
isotropic universe. This positive constant was used as an ad-hoc fix to counter the attractive
pull that gravity would have on matter, causing the universe to collapse in on itself.

The next step beyond Einstein’s model would be to generalise it to allow the curvature
radius R a time dependence. This still maintains homogeneity and isotropy on a constant ¢
slice but abandons the assumption of a static universe. Friedmann in 1922, 1924 [9, 10] and
Lemaitre in 1927 [11] independently discovered solutions to Einstein’s field equations for a
positive, zero and negative curvature universe. Depending on the form of the expansion rate,
the universe could expand or contract. This resolved the issue of a collapsing universe without
the need of the cosmological constant. The observational evidence provided by Hubble in the
late 1920s showed that the universe was in fact expanding. With the theory of an expanding



universe, along with the observational evidence gave rise to the Big Bang cosmological model.
This brought into question the cosmological constant and Einstein’s model.

In the 1930s, Robertson [12-15] and Walker [16, 17| showed independently of each other
that there are only three types of metric that satisfy each of the three scenarios. In a spheri-
cally symmetric coordinate system they take the form

ds* = —dt* + a(t)* [ + r2dw2] (1.4)

1 — kr?

where k = £1,0. For k = 1, the ¢ = const slices are positively curved hyper-surfaces, for
k = 0 they are flat, and ¥ = —1 has negative curvature. The function a(¢), known as the
scale factor, describes the relative change in the size of the universe with time. It is taken
to be unitary at the time of measurement a(t = 0) = ap = 1. This metric is known as the
Friedmann-Lemaitre-Robertson-Walker (FLRW) metric.

Over the years more observations caused the cosmological constants necessity to fall in
and out of favour [18]. In the 1980s, one prevalent issue with the cosmological model was the
horizon problem; regions of space that should have no causal contact share similarities. If
the universe began with the slightest difference in temperature in different regions, by now
there should not be such isotropy in the cosmic microwave background radiation (CMBR);
the relic radiation left over from the early stages of the universe. This could be explained
by a universe with an acceleration phase (inflation), that would cause regions previously in
causal contact to move outside of this range [19]. The arguments for an inflationary epoch
and observational results from CMBR provided reason to believe the universe was flat [20].

Now by applying the metric in eq (1.4) to the Einstein field equations in eq (1.2) one
can derive the Friedman equation

2 p Ak

H —87rG3+3—a2. (1.5)
where the Hubble parameter is defined by the rate of change in scale factor H := a/a. The
A was initially not present in the equation as previously mentioned. But the matter density
p =~ 9x 107%"kg/m?> of the universe is not enough alone to achieve a flat universe k = 0
for the observed Hubble parameter at the time Hy := H(0) ~ 70(km/s)/Mpc. So a vacuum
energy provided by the cosmological constant A was needed to make up the shortfall for this.
By late 1990s, observational results strengthened the case for dark energy in the cosmo-
logical model. Some of these included measurements of the Luminosity distance of type la
supernovae [21]. More recent estimates put the cosmological equation of state (ratio between
the pressure and energy density of the dark energy fluid) to be w ~ —1.0614_'8:822 [22]. Another
observational piece of evidence for dark energy comes from measuring CMBR anisotropies [23]

with Sloan Sky Survey measurements [24] which found w = —0.99 £ 0.11.

1.3 The ACDM Model

The ACDM model is the most widely accepted cosmological model. It follows a universe that
begins with inflation, enters a hot radiation epoch, then next follows a matter (Baryonic and
Dark Matter) epoch and finally a dark energy dominated epoch at late times. It is the balance
of these components that contribute to the energy density in the universe that describes the
ACDM model of today. To see this balance, the Friedmann equation can be rewritten in
terms of the separate components, scaled so they sum to 1.



We start by assuming matter is a perfect fluid that has cosmological symmetry (isotropic
and homogeneous) and by using conservation of energy (V#T),, = 0), the FLRW metric can
be used to show that

) a
p+3-p(l+wi) =0, (1.6)
where w; is defined through a perfect fluid P = w;p. A wy; = 0 defines cold matter (P = 0),
wr = 1/3 defines radiation pressure (P = 1/3p) and a wy = —1 the vacuum pressure
(P = —p). The solution to this equation can be written in terms of present time (¢ = t¢) as
ap 3(1+w;)
pi = Pz‘,o(;) ; (1.7)

where the ag,pp integration constants are their respective values at present time. The energy
density in the Friedmann equation eq (1.5) can then be separated into cold matter and
radiation parts using eq (1.7). The cosmological constant term is given by the vacuum energy
part as it is a constant in eq (1.7). By defining the vacuum energy pp := % and the
contribution from the curvature py o = %;—g Friedmann equation can be written as

8rG aq 2 aq 3 ag 4

H? = == <PA + pk,o(*> + pM,o(*) + PR,O(*) : (1.8)
a a a

In order to contain k it is useful to start by considering a flat universe with zero Cosmological

Constant A. The Friedman equation eq (1.5) and more specifically the Hubble Constant at
present time (Hy := H(tp)) can then defined through the critical density

3
= ——H. 1.9
By making use of the density parameter, defined by
O = 0 (1.10)

Pe

the Friedmann equation of eq (1.8) can be rewritten as

H\? ap\ 2 ap\ 3 ao\ 4
<> — <QA+Qk<O) + (%) +r(2) ) (1.11)
Hy a a a
It is easy to see from this equation how there will be an era in which each term is domi-

nant in the universal expansion. For present time ¢ = ¢y this equation gives the percentage
contributions to our universe

1=0p+ Q%+ Qp + Qg. (1.12)

The exact shape of the universe is still a matter of debate in physical cosmology, but
experimental data from various independent sources studying the CMBR from WMAP [23],
BOOMERanG [20], and the Planck telescope [25] confirm that the universe is flat. So the
contribution from the curvature can effectively be ignored: || << 1.

Data from the CMB that shows radiation density is past its epoch i.e |Q,| << 1. This
means we have we have Qs + Q24 = 1. By studying the CMBR we can obtain best-fit values
where Q3 ~ 0.3 and Q5 ~ 0.7. One of the more recent studies obtains for a flat ACDM
cosmology, found €2, = 0.295+0.034 and a constant dark-energy equation of state parameter
w = —1.018 + 0.057 [26].

The fact that these results come from widely different observational experiments and
yet have a great concordance with one another gave ACDM the name concordance model.



1.4 Problems with the ACDM model

The fact that the ACDM model is able to constantly provide success with cosmological ob-
servations should make it a satisfying model. The big issue with it is in the energy density
contributions. It predicts around 70% of the universe is dominated by dark energy; an un-
known component that exerts a negative pressure to provide universal acceleration. This is
still something that has yet to be observed by any experiment. The same goes for dark matter
which provides the next biggest contribution of around 25%, dominating Baryonic matter by
about 85%. This model suggests we have only ever directly observed the matter that makes
up less then 5% of the universe. Even though these components have yet to be detected, it
does not imply the model is inaccurate.

This may change our whole view on the composition of our universe, but this can just
be seen as observational evidence that suggests this models validity. On the other hand, an
absence of evidence does not always prove evidence of absence. This may be somewhat a
case of history repeating itself. When Newtonian gravity was discovered no one knew that
it was the weak field limit of some more complex theory (GR). In the 19th century, French
mathematician Urbain Le Verrier hypothesized that peculiarities in Mercury’s orbit were the
result of a dark planet, which he named "Vulcan". A number of searches were made for Vulcan,
but despite occasional claimed observations, no such planet was ever confirmed. Peculiarities
in Mercury’s orbit are now explained by Einstein’s theory of general relativity [27]. It could
be that the current most accepted model of cosmology covers up a more fundamental theory
that describes our universe. While speculative, it feels compelling to assume that GR is the
limit of some more complex gravity theory that we do not know.

One of the real issues with the ACDM model is that we do not have a fundamental view
on how these components interact. For example, we know how 5% of the matter we see in
the standard model interact, and how photons from the CMB interact. It is hard to accept
a model that fundamentally we know so little about just because it works.

Some of the more direct issues focus around the cosmological constant itself. One of the
most well known is the cosmological coincidence problem. It notes that extreme fine tuning in
initial conditions would be necessary for both the special events of matter-vacuum equality:
Qur ~ Qp and the formation of large scale structures happen roughly at the same time today.
But this may be as much of an issue as any other fine tuned constant in physical models e.g.
the strength of the strong nuclear force. An argument can be made that the statistical prob-
ability of these events occurring together are in fact reasonable [28|. If planetary formation
occurred in most other eras they would be unable to sustain life in the first place. So our
existence could be thought of as a solution to this.

One of the biggest problems in the ACDM model is the eponymous cosmological constant
problem or vacuum catastrophe [29]. The model uses A for the purpose of another source
term (g, A) in the field equations of general relativity. In QFT, the vacuum-state |0) provides
the ground state. This typically would be empty but virtual particles produced by quantum
fluctuations gives rise to a non-zero vacuum energy. These theories are built with Lorentz
invariance and so the vacuum energy should provide a contribution to the stress-energy tensor
given by

T;}gc = <O| T,ull |0> =< Pvac > Guv- (113)

This is a quantum expectation value and although GR is a classical field theory it should be
present in the stress energy tensor as it can emerge through classical observations like the



Casimir effect. It is reasonable to set the cut-off limit of QFT to the Planck energy

hC5 1/2
E, = <G> ~ 101GeV, (1.14)

where we have specifically reintroduced ¢, and £ for clarity. By treating these virtual particles
as a set of harmonic oscillators the vacuum energy can be witten as

E 11 hoo[emer hooy
Pvac = V = V ; §hwk ~ 271'263/0 w’dw = 87T203wmax. (1.15)

This means that using the plank energy as the cut-off (E}, = hwmqz), the vacuum energy of
QFT is roughly

phlank 101 erg /em?. (1.16)

These theoretical predictions are widely different of the observational evidence for the value of
a cosmological constant which puts A < 107°6¢m ™2 and so provides a vacuum energy density
of

pA .~ 10 %rg/em?, (1.17)

With over 120 orders of magnitude difference this truly is a vacuum catastrophe. Even the
electroweak scale ~ 100 GeV cutoff will have a vacuum energy; pZV ~ 10%6erg/cm3, almost
60 orders of magnitude difference. This means that the gravitational strength of the vacuum
is much weaker then predicted by QFT.

1.5 Modified Gravity

Instead of using the cosmological constant for dark energy to provide the solution to the
universal acceleration, we could look to the left hand side of the Einstein equations and
modify gravity. Since we have only tested GR in our universe we do not necessarily know
how gravity might work at universal scales. Dark matter is required to explain rotation curves
of galaxies; why stars rotation speed does not tend to vary with distance from the center.
Though this is not discussed in this review, modified gravity theories have been used to
explain dark matter; massive graviton geons, bimetric gravity, and even Modified Newtonian
dynamics (MOND) [30-32]. We will focus on the applications of modified gravity theories to
tackle the problem of dark energy.

This report will try and show how these modified gravity theories may be used to take
on the cosmological constant problem and provide answers for late time acceleration of the
universe. The initial criteria for a successful theory of modified gravity would be to replicate
the results of GR around a micrometer to solar system scales, with gravitational interactions
weakening at universal scales to account for acceleration. In this paper we look at two theories
that try and achieve this; massive gravity which modifies the graviton to be massive and F'(R)
which modifies the action to higher orders of curvature invariants.

2 General Relativity

General relativity provides a geometrical interpretation of gravity. It replaces the Newtonian
concepts of force fields that require action at a distance for a field defined by the curvature
of a spacetime manifold M (with Lorentzian signature), whose source is the energy of matter
and radiation.



This chapter will look at the main features of general relativity. More specifically; how
it can be motivated and the path to its solutions. It will also cover how perturbation theory
(linearised gravity) can be applied to provide solutions and a deeper understanding of GR.

2.1 The Einstein-Hilbert Action

Like most field theories, general relativity starts with an action. The theory is defined by
the curvature of the spacetime which restricts the action to inherently depend on the metric
field tensor g,,; which describes the geometrical structure of a spacetime manifold. A first
step would be to consider that the metric tensor will be second order in the action as most
physical theories. By applying the insights of Einstein from the equivalence principle and
general covariance, the action can be derived. The action is formed from the Ricci scalar
which is the simplest curvature invariant that can be written. The Ricci scalar is written in
terms of derivatives of the metric by

v v v A A
R=g¢"Ru = g"" Rl ypp = g" (@;F,‘ju — 017, + FZ)\F/U’ - sz//\rpu) ) (2.1)
where I' is the Christoffel connection and is given by
1
FZV = §gp>\ (a,ug/\u + 8ugu)\ - 8)\9;11/) (22)

The Ricci scalar forms the main body of the action which is defined by equation (1.1).
The first step in recovering the field equations of eq (1.2) uses the variation of the action
with respect to the metric tensor (g, — guv + 69, ), this takes the form

1

08 = TonG

/ d*z (5(v/—g)(R — 2) + /—g0R) + 6Sus, (2.3)

where S}/ is the action of the matter fields from the lagrangian density L. By factoring out
the variation in d¢g"” from each term the field equations can be retrieved. In order to achieve
this, the variation of the determinant 6(,/—g) can be written as

5(V=9) = ~ 5V =85 (2.4

The Christoffel connection is simply

1
6(Fp/,w) = igp)\(vuég)\u + vl/(sgu/\ - v/\5.g,ul/)- (25)

The Ricci scalar can be written as the tensor R = g, R'”, so that the scalar variation can
be given by
OR = R.,69" + 9" 6 R, (2.6)

The Ricci tensor d R, variation can be written as
g""OR,, = g“”(V,,éFzV — Vpéfzy)

1
= §guugp>\ (vv(vpég/\u =+ Vuégpk - V,\égpu) - vp(vuég)\u + vu(sgu)\ - V)\dg,uu))

1
= 9 ((Vyvpégpv + .gp)\D(SgpA - vuv)\ég/\u) - (vpvu(;gpu + vau5gup - guuméguu))

= g, 0g"" =V, V. 69" .
(2.7)



which in the action integral can be transformed into a surface term via integration by parts
and Stokes theorem. By requiring that the metric and its first derivative vanish on the
boundary, the last term will vanish in the integral. The stress-energy tensor can be defined
as

2 0Sum
V=g égh’
along with equations (2.5) and (2.6), the metric variation can be factored out of the action
(2.3) so that

T = — (2.8)

1
68 = /d%\/ < " (R —2A) + 2R™) — 2TW> 5G- (2.9)

34w G(

By minimising the action (45 = 0), the field equation are recovered
1
8TGTH = RM — S Rg™ + Ag™". (2.10)
The Einstein tensor, defined by
1
G = R" — _Rg" (2.11)
can be used to shorten the expression to eq (1.2).

2.2 Linearised Gravity

To perform tests of GR experimentally, the Einstein field equations must be simplified.
Birkhoff’s theorem gives justification to treat gravity in the weak-field limit as a perturbation
around Minkowski space. The metric tensor g,,, can be written as

Juv Nuv ;;\1/ - (212)
:’]’,uy—i—huy‘i‘huy 9

where 7, is the background Minkowski metric and hf}y, hff,yv y hyw << 1 are small perturba-
tions. hy,, is split up into a perturbation from gravitational waves (hij ) and a background
from the cosmological constant (hﬁy). When using linearised analysis, all expressions raise
and lower indices using the background metric 7,,. This paper will only look at linear order

in the variation h for analysis.

2.2.1 Curvature and Einstein

To recover the linearised field equations one can start with the action in eq (1.1) and work
through the derivation or more easily start with the field equation in eq (1.2) and find each
component in terms of eq (2.24). For the latter, the only components required are R, and
R. A good starting point is to linearise the metric connection

1
FPMV = inp)\ (huk,u + h)\p,,u - h,ul/,>\+) + O(h2) )
(2.13)

1
= 5 (h‘pV7N + hp;L,y - h;“/’p) + O(h2) 3



where the notation for partial derivatives are shortened by d,hu, = hyu,. The Ricci tensor
in terms of the connection

R,u,z/ = Fp,u,z/,p - Fp,up,y + F)\,Lwrpu)\ - F)\,u,prpu)n (214)

when linearised to first order, the last two terms which are O(h?) will be dropped. The Ricci
tensor linearised will be given by

Ry =T p = 1" up0 + O(hQ)

1
=5 (hpww +hPuwp — hW’pp =W o — B v + hup’py) +O(h?)
(2.15)

1
=5 (hpl/,up - h.U'V“Op —hf o + huﬂ’pu) +O(h?)
1
P (W p — Oy — B + hyp?,) + O(B?)
where the last row uses h = h”, and O = 070, for shorthand. Finally, by taking the trace,
the scalar will be

R e nMVR,U,Z/
1
= 5 (W p = Oh = Th + W) + O(h?) (2.16)
=, — Oh+ O(h?).

With eq (2.15) and (2.16) the Einstein tensor of eq (2.11) can be linearised to first order

1
Guu = Ruu - iRg,uV

1 (2.17)
=3 (=0Ohu + 120 o+ B o = b + 0 0Oh — nw hPF p)
So that the field equations will be of the form
1
87GT, = 3 (=Ohpw + B2y pu + 12 oy — b + 100 — 0 hPE ) (2.18)

with the cc absorbed into the energy tensor. It is easy to see in this form that the mass-energy
tensor is a conserved quantity 0#T),,, = 0 under spacetime translation symmetry. This form
can be simplified by substituting for the trace-reversed metric perturbation

1
hyw = by — §h17#,,. (2.19)
In this form, the linearised Einstein tensor will look like

1 - _ _ _
Gu = 3 (h/; ou 10— Ohyy — NP 11p) - (2.20)

2.2.2 Gauge Transformations

This derivation has looked at perturbations from Minkowski due to infinitesimal changes of
spacetime. These perturbations can also be from changes in the coordinate system. This is
because changes in the coordinate system will not effect the measurable quantities (gauge

~10 -



invariance). Before solving eq (2.20) for the metric perturbation, it is important to show how
infintesimal coordinate changes (gauge transformations) will look.
The coordinate systems z# and z/ are separated by a element &, defined by

't =gk + M (aY), (2.21)

the elements are small so that [¢# | << 1. The derivatives of each coordinate system will be

=0 +E, (2.22a)
ox?
oo = On = &+ 0((0€)%), (2.22b)

where eq 2.22b is found by expanding &#(z¥) about . The metric relation between the two
coordinate systems is given by

; 0z Oz
9uv = 57 a7 9o
g dx), Oz, P

2.23
= (- €,)(8 € )gp + OL(26)) 229
= 9uv — fu,u - &,u,u + O((ag)Q) .
By reintroducing the metric perturbation the relation becomes
h;w = h,uzz - fzz,p, - é:,u,z/ + O((8§)2> (2'24)
or in terms of the trace reversed metric perturbation
- 1
h!,, =h_ — ~hn.
pr = M = I (2.25)

= B,uy — & — Suw t nuufp,p + O((ag)Z) :

This equation shows how the metric perturbation varies under a gauge transformation. Gauge
conditions can be imposed on the metric tensor to simplify the work needed to solve Einstein’s
equations. Four conditions can be imposed on the metric by the degrees of freedom the
coordinate system has. These conditions must be such that there exists some £*(z") that
satisfies eq (2.25).

2.2.3 Harmonic Gauge
The most useful gauge condition to solve the linearised Einstein equations in the pure gravity

sector (without cc) is the Harmonic Gauge

R, = 0. (2.26)

)

It is easy to prove there exists some £ for this condition by looking at the divergence of eq
(2.25);

E/;w’y = B,uz/y - gu,uy - f,u,l/y + Nuw p,py + O((ag)z)

— By — 0 + O((06)?) (227

— 11 —



With the harmonic gauge condition (eq 2.26) the transformed (primed) system must be by a
perturbed by some &* that can satisfy

byt =0€, (2.28)

to first order. So for any function Euw there will always exist a perturbation £* that takes
the system into the harmonic gauge. With the system in the harmonic gauge, the linearised
Einstein tensor (eq 2.20) is simplified to

G = —%DBW +O(h?). (2.29)

It is important to note that these coordinates are not unique. There are many functions &
that bring the system into the harmonic gauge. A further condition can be applied from eq
(2.21) that functions &* must satisfy

O&x = 0. (2.30)

2.2.4 Generalised Solution
Given eq (2.29), the equations of motion in the harmonic gauge will be

1 1
STGT = = (55535 - Qnyynpkm> o (2.31)

It is interesting to study the propagator as it provides information on the probability ampli-
tude of the particle and whether its renormalisablility. The propagator will be defined by the
solution to

(6907 +6707) oW (z — 2').. (2.32)

1 1 1
~3 <555£‘D — 277W77p)‘D> D\ (:c;x') =5

It is possible to split the propagator up into a scalar part and a numerical part that contains
the tensor properties D,x\?7 = S,0,7"Dg(x — '), where the parts are defined by

1
Si” = 5 (5583 + 6567 — npan”)

(2.33)
ODg(z — 2') = =206 (z—2a') .
To isolate the field in eq (2.31), take the trace and substitute it back in to get
1
Ohyy = —87G | Ty — an,T (2.34)

The field and energy-momentum tensor can be substituted for their Fourier transform in
momentum space

. - 4, ~ )
_ / (;ZW])Z ezp.rth/w(p) = —STFG/ ((2171_]))4 i (Tul}(p) - ;UWT(p)) (2.35)

This will gives the solution in momentum space

iluy(p) = 8;—26! (T,uu(p) - ;TIWT(Z?)> (236)
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By taking the Fourier transform again, the solution is given by

= 87@3 / d'p e; <*W(p)—;myT(p)> (2.37)

With the general solution for A, a defined source 7),, is now required for integration to find
an exact solution.

It will be useful for later sections on Massive Gravity to look at a static, spherically
symmetric source of mass M so that the energy-momentum is

T (x') = M&SO6W (X)), TH(p) = 2w M8} 545 (po), (2.38)

with trace ~
T'(p) = —2mMd(po), (2.39)

with this source and using complex analysis(Cauchy’s theorem), the exact solution for the

field is given
d®p eP*  2GM
hoo(@ )—87TGM/ D =

> p? r
d3p ePx 2GM
hij(x) = 87GM / e~ = 5ij
r
by substituting the conventional Newtonian potentlal, <I)(7") = —GM/r the equations are

simply given by

hoo(r) = —2®(r)

hij(T) = —2(1)(7‘)5ij . (2'41)

2.2.5 A Gauge

In the case of a non vanishing cosmological constant, a better choice of gauge would be one
such that
Y = Ax”. (2.42)

In this case using eq (2.27), there must exist a &* such that
by — Azt = O, (2.43)

to first order. The solution roughly looks like

= /dm” (huv - ;Aa:“:c,,) , (2.44)

which is easy to see that there will always exist some &* that can move into the A gauge. In
this gauge, the linearised Einstein tensor (eq 2.20) becomes

1 -
G = =50 = Mgy + O(h?). (2.45)

In this case, the further condition that can be applied without leaving this gauge will be

Oet = Agh. (2.46)
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2.2.6 Degrees of Freedom

In order to build up to massive gravity, it is useful to look at linearised GR. The previous
sections have linearised the Einstein equations by expanding them in terms of the perturbation

Juv = M + h;uw

While this is the easiest way to arrive at the linearised equations of motion it is more beneficial
to start from the action. This is because the Lagrangian can give information on the degrees
of freedom and so the type of particle that carries GR. Starting with Einstein-Hilbert action
eq (1.1), O(h) terms in the R part of the action can be removed as surface terms. The eq
(2.16) provides R and the metric determinant is given by

h h%  hyh*
\/f_\/fn<1+2+8_ u4

) + O(h%) (2.47)

which is simplified by 1/—n = 1 for Minkowski space. By preemptively removing the below
second order terms, this will give an action of the form

1 1 14 14 12
e / d%[— 5 Op Py ORI + Oty O W — O, D, h
) 2 (2.48)
+ 50phd"h — A (2 — hm,h’“’) + (’)(hﬂ + Surlguw, 9] -

This can then be varied to obtain the same linearised equations of motion as derived from
above.

In this case the perturbations have been from a flat (Minkowski space) background 7,,,.
The field equations of the background are vacuum which sets 7}, = 0 this means that the
Sy term can be removed. The vacuum field equations

1
R, — ime + Anu, =0, (2.49)

can be traced to obtain equations

A= g, Ry, = %g’“’. (2.50)
Now that the field is moved to Minkowski space it will be invariant under Lorentz transforma-
tions. This means that it can be looked at in terms of QFT and classified as a particle with
properties like mass, and spin. It must be massless as there is no mass term in the action and
a boson as only long range forces can be described by them. This means that the particle
will have a spin of s = 0,1, 2, 3, etc. It is possible to obtain the spin from a Lagrangian. This
can be done by counting the degrees of freedom.

It is easier to take the Hamiltonian approach when counting degrees of freedom (dof)
as it allows us to identify constraints. The following discussion is taken without extensive
details on the analysis of gauge theories and their constraints. The reference [33] has a more
detailed look on gauge theory analysis.

The switch is made via a Legendre transform
oL

H= h“”aT -~ L. (2.51)
ny
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The next step would be to work out the canonical momenta m* = aMU But it is important
to note that two Lagrangians that may differ by a surface term, glvﬁng different canonical
momenta can have the same equations of motion. Thus by performing an integration by parts
on the time derivatives will change the canonical momenta. The best course of action would
be to constrain this freedom by removing the time derivatives of hgp and hg; [34]. This just

leaves a Legendre transform in spatial components only

H = hij— — L. 2.52
9 (2.52)
For the purpose of counting the degrees of freedom the cosmological constant will not have

any effect in counting, so it will be faster to work in the pure gravity sector, setting A = 0.
This will leave a conjugate momenta of the form

oL . .
Tij = —— = hij — hirdij — Oihjyos + 20khokdi; (2.53)
6hij
by taking the 7, components it can be rewritten as

. 1
hij =T — fﬂkkdij + 8(ih

5 (2.54)

)0

with this, and using partial integration on the spatial derivatives, the Lagrangian can then
be rewritten in terms of canonical momenta [34] as

L= ilijﬂ'ij —H+ 2h0i8jﬂ'z‘j + hoo(aiaihjj — 8,-8jhz~j), (2.55)
with the equation for the Hamiltonian shown to be

1 1 1 1
H= *TFQJ — 171’121 + §8khij8khij — &'hjkajhik + 8z~h,-j8jhkk — §aihjjaihkk. (2.56)

By looking at the reverse of eq (2.51) and the Lagrangian of eq (2.55), the hg, fields can be
thought of as Lagrange multipliers, giving the four constraints

X; = Bjmj = 0, Xy = (%(%hjj — Biajhij =0 (2.57)
The Poisson bracket for any combination of a,b = 1,2, 3,4 vanishes

, OXa(t,x) OXy(t,y)  OXo(t,x) OXp(t,y) |
01020000} = [ {aim ) D) O () ahij<x'>}‘0‘

This is particularly true on a surface where X, = 0 for all @ = 1,2, 3,4. This is a constraint
that holds true off-shell; a first class constraint. On top of this, the Poisson brackets with the
Hamiltonian are

s [ OH(®) OXultx)  OH(E) Ou(ty)) .
(010} = [ { G S ot Ty | = Ot 239)

(2.58)

and

{H(t),X(t, %)} = 0. (2.60)

~15 —



This means that on the surface where X, = 0 for all a = 1,2, 3, 4, these will vanish too. This
means that the Hamiltonian is first class and along with the constraints, makes this a first
class gauge system. The four conditions above provide the gauge invariances of the system.
The degrees of freedom can now be counted with these gauge conditions. The h;; and
m;; are symmetric 3 X 3 matrices in spatial dimensions, providing 12 degrees of freedom. The
four constraints of eq (2.57) reduce the space which the fields span to an eight-dimensional
surface. The four gauge invariances generated by the constraints reduce the system further to
a four dimensional hypersurface. This leaves four degrees of freedom in the phase space and
so two physical degrees of freedom i.e two polarisations along with their conjugate momenta.

2.2.7 Non-Linear Interactions

In section 2.2.2, gauge transformations were introduced as a way to simplify the linearised
Einstein equations through the Harmonic gauge in section 2.2.3 so that it was solvable, as
shown in section 2.2.4. This can be done as it does not change the underlying physics of the
system; that is to say it is gauge invariant. It can be shown that the linearised action of eq
(2.48) is invariant under these gauge transformations. In General Relativity this is known as
the general covariance of the theory; that the coordinates are a measuring device and should
not affect the fundamental physics of the system.

Alternatively, one can start by looking for an action of a symmetric field h,, on a flat
background field theory the most general quadratic theory. By requiring locality, Lorentz
invariance, and gauge invariance, the most general quadratic action that contains up to two
derivatives can only be eq (2.48). These properties not only provide linearised GR but can
fix non-linear. This can be seen by the higher order O(h?) terms in the field equations. The
importance of the requirement for gauge invariance to produce a non-linear theory becomes
apparent when considering massive gravity. In that case there will be no invariance and so a
non-linear theory cannot be constructed from it.

2.3 Lovelock and Birkhoff theorems

There are two important theorems that restrict the structure of General Relativity. These
theories help describe how gravity interacts in different systems. These theorems underpin
a lot of the acquired intuition on how gravity should function in different environments, and
what the resulting phenomenology should be. In alternative theories of gravity, however, the
theorems of General Relativity often fail, allowing new behaviours that would otherwise be
impossible. The next sections consider two important theorems of General Relativity.

2.3.1 Lovelock’s Theorem

The Einstein-Hilbert action is the most simple form of action constructed using g,,,. The most
general four dimensional Lagrangian that contains only the metric tensor and its derivatives
is

L = ay=gR—2\/=g+ Be""" R Ropor + 1V —g (32 — 4RLRY + Rz;’R”A> . (2.61)

where «, 3,7, A are constants [35]. The equation of motion of this can be found using the
second order Euler-Lagrange equation

oL d oL d? oL
_—— =0. 2.62
oGy dzP <agw7p> * dxpda? <agul«p/\> 0 (2:62)
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The third and fourth terms of eq (2.62) vanish in the Euler-Lagrange equation. The resulting
equation of motion is

1
« [R“” — ZQ“VR] + Ag"" =0, (2.63)

which is of the exact same form as the solution to the Einstein-Hilbert action of equation
(2.10) without the added energy term.

Lovelock’s theorem states that the Einstein Field equations are the only possible solution
to an action which contains up to second derivatives of the four-dimensional spacetime metric
gH¥. This theorem sets a good framework for alternate theories of gravity.

2.3.2 Birkhoff’s Theorem

Any spherically symmetric solution of the vacuum field equations will be static and asymptot-
ically flat. This theorem is difficult to apply to observations as complete spherical symmetry
and vacuums are theoretical. It can provide a good approximation for the behaviour of gravity
around large masses (Schwarzschild black hole). The asymptotic flatness means that in the
weak-field approximation of GR, the field can be treated as a perturbation from Minkowski
space. Without this theorem there is less justification to assume the weak-field approximation
as a perturbation around Minkowski space. Beyond GR, this theorem is not always true; even
far from the source the background curvature might not be asymptotically flat.

2.4 Tests of Gravity

In this section we will look at important observational tests that can be performed on theories
of gravity. For a theory of gravity to be considered, it must be able to work within the
constraints they set.

The first test is predicting the effect from gravitational lensing. The light from distant
stars will have a measurable deflection due to the mass of the Sun. A competitive gravitational
theory should be able to accurately predict this deflection. In general relativity, this deflection
angle o due to the suns mass M will be given by

2M
a= T(l + cos ¢), (2.64)
where b is the impact parameter and ¢ is the angle measured between the path of the photon
and the sun to the observer. In GR the angle predicted for a photon trajectory that just
touches the edge of the sun is a ~ 1.75”. The most rigorous observational tests on the angle
to date [36] give values

a = (0.99992 + 0.00023) x 1.75". (2.65)

Another prediction test is on the Shapiro time-delay effect. It instead considers the deflection
time or time dilation a photon would experience due to the suns gravitational field. In GR
this time will be given by

dr,
At = 4M1In ( ;;”) , (2.66)

where ro, 7, are the distances between observer and photon to the gravitating mass M. So
far, the best experiment measuring this [37| measured the effect to agree with GR by

At = (1.00001 £ 0.00001)Atgg. (2.67)

17 -



where dtgp is the time delay predicted by GR using the equation above. The other test which
was touched on earlier looks at the perihelion of Mercury. In Newtonian gravity of an orbiting
satellite will stay fixed unless other large bodies are introduced into the system to perturb the
orbit. This is what lead to the prediction of Vulcan from observations of the peculiar orbit
of Mercury before GR. In relativistic theories, the potential contributions from other planets
allows for this effect as they do not follow the 1/r? relationship due to perihelion precession.
In GR this precession will be given by

Aw = w, (2.68)

p

where M is the total mass of the gravitating mass with the orbiting mass and p is the semi-
latis rectum of orbit. For the perihelion of Mercury this value is predicted to be Aw ~ 42.98".
Observational experiments [38] put this value around Aw = 42.969 + 0.052.

3 Introduction to F(R)

There are several ways to modify general relativity. This can by done choosing at least one
of the following modifications: 1) By adding more fields including or instead of the metric
tensor (as well as giving it a mass), 2) Higher than second order derivatives of the metric, 3)
Higher than four dimensions, 4) Abandon Lorentz invariance, 5) Abandon locality.

In extended theories of gravity, additional fields can be added to the spin-2 field of GR.
This can include scalar, vector and tensor fields. For the theory to be valid, it must return to
general relativity at scales where experiments confirm GR at high confidence. This generally
involves choosing additional fields that weakly couple to the spin-2 field of GR. There are other
methods like the chameleon mechanism that can achieve this [39]. In section 2.3.1 Lovelock’s
theorem states that the Einstein Field equations are the only solution for an action with
up to second order derivatives of a four-dimensional metric. An obvious modification would
be to consider higher order derivatives. Another modification would be to consider higher
dimensions as well [40]. The last two are more extreme measures that will not be considered
in this review, see [35, 41] for more information on 4,5.

3.1 The F(R) Equations

When working on areas of unknown physics, it is always important to start with a simple
generalised model. One can explore the theory and is limitations by working on constraints.
This will help give motivation for using modified gravity to remedy the issues with the current
cosmological model.

F(R) theories that provide a good entrance to modified theories of gravity, with a
generalised structure to test on. It relaxes the condition that the Einstein-Hilbert action in
eq (1.1) must be linear in Ricci scalar R. This means that the curvature term (R — 2A) in
the action will be some function F(R) that will have the general form

F(R)=..+c R ?+c 1 R'—2A+ R+ cR* + ..., (3.1)

where the ¢; coefficients determine the particular model of F'(R) gravity. The same variation
method applied in section 2.1 can be applied to determine the field equations. Starting with
the action

1637G / d*av/=gF (R) + Swlgyw, V], (3.2)
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the variation with respect to the metric g,, will be

1

05 = 167G

/d%; (6(vV/=9)F(R) + V=gSF(R)) + 6Sum. (3.3)
The §F(R) term can be expanded using eq (2.6)

SF(R) = 6(R)F'(R)
= (Ruuéguy + g“”éR“y)F/(R) .

With eq (2.4) and eq (2.7) the variation in eq (3.4) can be written as

08 =

1 1
1620 /d4x\/—g <—2F(R)g/“, + RWF'(R) + 9w — VuVZ,F'(R)> ogh +0Su.

(3.5)
Minimising the action and using the identity for T},, from eq (2.8) yields the field equation

1
8nGTy = —§F(R)g,w + R, F'(R) + gOF'(R) — V,V,F'(R). (3.6)
This can be remodelled in terms of the Einstein field tensor by substituting terms

1 1 1
87G T = — 5 F(R)gyu+ R F'(R) = S F'(R) Ry + 5 F'(R) Ry + 9,0 OF (R) =V, Y, F'(R),

(3.7)
rearranging in terms of the field tensor
1 F(R)— F'(R)R
G = i |30 () : (RIE o OF(R) + Y,V F(R) + 87GT,, (3.8)

This can be considered a generalisation of the Einstein field equations for curvature R. In the
limit that F'(R) — R the theory returns to General Relativity. The central terms are fourth
order in the metric.

3.2 Mapping F(R) to Scalar Tensor Theories

Scalar fields are interesting for cosmology because they could be used to explain the interac-
tions described by dark energy. Instead of adding a Cosmological Constant to the action, a
scalar field can be added to mediate gravitational interaction along with the metric.

F(R) gravity is a simple modification to GR that generalises the curvature of the metric
tensor beyond first order. On initial inspection this extension does not look like any extra
fields are added. However, this theory can be related to a scalar—tensor theory known as
Brans-Dicke gravity, where the metric tensor is accompanied by a scalar field.

The F(R) action of eq (3.2) can be shown to be dynamically equivalent to the equation

1
167G

5= / =g [F0) + F 0 (R — )] + Sarlgpw ¥, (3.9)

where x is a newly introduced field yet to be determined. It is easy to see that the by variation
with respect to this newly introduced field and minimising the action leads to the equation

F"O)(R = x) =0. (3.10)
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This means that for regions where f”(x) # 0, the fields will be the same x = R. This reduces
the equation to the original F/(R) action. By a tactical redefinition of the field x to ¢ = f'(x)
and introducing a field potential defined by

V() = x() = F(x(¥)) (3.11)
the action can be rewritten as
1

—iorc | PIVEIOR = V) + Sulg, ¥ (3.12)

167G
This action is the same form as that of a general scalar tensor theory
_ 1 4. _v H
=1z / d'ay/=g [wR R w] + Satlgys V. (3.13)

for a vanishing coupling constant w = 0 and a redefinition of ¥ to absorb G. This type of
action is also known as Brans-Dicke (BD) theory which is discussed in section 3.3.

Solar system measurements on the coupling constant in eq for BD theory constrain it to
w > 40,000. Since F(R) theory is related to Brans-Dicke for w = 0 it implies that the theory
is incompatible with measurements. However, by tactical choices of F/(R) in the potential
V' it is possible to screen the field via the chameleon mechanism, avoiding the constraint on
w. This is because the effective mass is roughly the second derivative of the potential which
depends on F(R). Since it depends on the curvature scalar R, its mass can be large at small
scales (solar system) which makes the mediated force short range; removing the issues with
w. On large scales (cosmological) the mass can be small, making the force longer ranged to
explain cosmological interactions.

The general scalar tensor theory action of eq (3.13) is in the Jordan frame where a scalar
field multiplies the Ricci scalar and the scalar field does not interact with matter fields. By
using a conformal transformation of the metric and a field redefinition

87G
A2 = _
gul/ - A ((rb)g,uVu logq/) - 2 3 + 2&) ¢7 (314)
the equation can be moved to the Einstein frame
R 1 _
S= /d4xv -9 [M = 50u00"¢ — V(¢)] + Su[A%(6) G, V], (3.15)

where A%(¢) = exp (2 381% qb) [42]. In this frame it is easy to see that in the absence of

matter fields the theory is related conformally to GR with the presence of a scalar field in a
potential.

3.3 Brans-Dicke Gravity

Brans-Dicke gravity is an example of a scalar tensor theory of gravity [43]. A scalar tensor
theory of gravity is a theory in which, in the gravity sector, the force of gravity is mediated not
only by a tensor field, like in GR, but an extra scalar field also contributes to the gravitational
dynamics. We can consider a non-relativistic fluid 7 = —p in the action of eq (3.13). In
the non-relativistic regime we can consider the weak field approximation with perturbations
1 = g + ¢ in which the metric takes the form

ds? = — (14 20) di* + (1 — 2®) 6;;dasda;, (3.16)

—90 —



where V? = §;;0;0; and we have assumed the potentials time independence; ¥ = ¥(z;) and
® = &(z;). The perturbation will satisfy a Poisson equation of the form

(3 4+ 2w)V%p = —87Gp. (3.17)
The potentials are also related by

V(2 +¢) =8nGp

3.18
UV—-—d=0p. ( )

In this form it is easy to see how the introduced scalar field 1) modifies gravity in the weak
field limit. The Newtonian potential in the time and spatial components now differ by ¢.
The potentials can be written individually as Poisson equations of the form

V20 = 4xGup, ¥ = nd, (3.19)

where constants are given by
4+ 2w 1t w

3+20° 1T 2+ w
We can see from this equation that for large w that ¥ = & and we recover GR. So it is
already obvious we will require a large w to agree with our solar system measurements. From
our tests on GR [44], we have that |n — 1| = (2.1 & 2.3)™° which constrains w > 40, 000.
Once this constraint is placed on our model it successfully agrees with GR on solar system
measurements. The only issue is that it barely allows us to modify away from GR on other
scales.

= (3.20)

4 History of Massive Gravity

This section will detail dRGT massive gravity; the unique, non-linear theory of massive gravity
models. The Cascading DGP model is another interesting method that uses brane cosmology.
This model is not discussed in this paper but has plenty of resources that detail the method
[45-47].

As detailed in the introduction, the current model of cosmology has difficulties explaining
the late time acceleration of the universe. The approximate amount of matter observed to be
in our universe roughly coincides with a flat curvature. The consequence of this would be a
universe that expands forever at a slowing rate as gravity tries to pull it back. However, from
observations the universe has reached a crossing point where the deceleration of universal
expansion has been reversed and begun to instead accelerate. The AC DM model proposes
an undetected energy with unusual properties that dominates the universe. However, there
are more satisfying but challenging alternatives possible.

The idea behind massive gravity is to modify gravity by weakening the field strength
at universal scales to explain the acceleration. This would require the theory to have a
field potential like 1/r at solar system scales in order to maintain GR and it’s observational
successes at that level. As it reaches some crossover point, the strength would experience
an additional decay function. This might sound radical but is already a familiar presence in
particle physics.

In 1935 the only understood interactions of the atomic model were the electromagnetic
forces. At the atomic scale EM forces between protons should pull repel the atom apart.
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To balance the EM forces, an attractive force was required. By using Heisenberg’s ideas on
a short range force with Fermi’s of particle exchange, Hideki Yukawa was able to provide a
force that would preserve atomic structure.

By introducing a decay of the form e~ to a 1/r term, the potential strength decreases
even more rapidly with distance. Just like the photon in the EM force interaction, this force
also has an exchange particle. In this case the particle has a mass which relates to the
strength of the interaction; the lighter the mass, the weaker the interaction. This is also
a good illustration of how massive particles govern short ranged forces (Strong Nuclear and
Weak Nuclear) and massless particles long (EM and GR Gravity. The carrier of this attractive
nuclear force interaction was given the name meson.

The principle behind the Yukawa potential and its uses for gravity is that the strength
of interactions are linked to the mass of the particle. The mass essentially fixes the range the
interaction mediates. For a small mass the potential will look like 1/r for a large distance
r < 1/m. As it passes the threshold 7. = 1/m (Compton radius), the decay term kicks
in, rapidly weakening the 1/r term. This mechanic could be used to solve the acceleration
problem by setting this crossover point to the order of the Hubble radius today r. ~ H L

To see how this potential is acquired think of the Klein-Gordon equation; a relativistic
wave equation for a scalar field along with a source p.

(@ -m2)¢=p, (4.1)

By choosing a source of the form p = Gd(x) (since objects in the solar system generally don’t
change mass with time) where G is some constant and search for a static solution ¢ = ¢(x),
the equation becomes

(V2 —m?)¢ = Go(x). (4.2)
The field can be substituted for its Fourier transform and inverse
A3k ikx T
000 = [ e ™ol
) P ‘ (4.3)
o(k) = / (2W)3€_Zk'x¢(x).
This admits the solution o .
Bk) = — L (4.4)

(2m)3 k2 + m?’
By taking the Fourier transform and using contour analysis, the Yukawa potential is found

G efmr

4w o (45)

$(x) =

The aim of this section will be to look at the history of massive gravity and build up to one
of the most successful massive gravity models known as dRGT from its main proponents; de
Rham, Gabadadze and Tolley.

4.1 The Fierz-Pauli Action

Section 2 looked at the action of linearised General Relativity to see how it can be described
as an interaction theory of a massless helicity-2 field on a flat (Minkowski) background. The
modification that Massive Gravity makes to the action will be such to describe a massive
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spin-2 field on a flat background. This action was discovered in 1939 by Wolfgang Pauli and
Markus Fierz [4].
So on a flat background, this particle described by field A, have the action

1 1 1
S = / d'z [—Qaphwaﬂhﬂ" + Ol 0 ' — O W Oy + 5 0h0"h 5m? (hyuht — hQ)} :
(4.6)

On first inspection it is easy to see it is a small extension to the linearised GR action as
shown in eq (2.48), omitting the cc and mass terms to study pure gravity. This would make
sense for a theory that should return to GR when m = 0. The most obvious feature is
that this equation contains all possible combinations of O(h?) with up to two derivatives.
The Fierz-Pauli fine tuning fixes the mass terms to the same magnitude with —1 relative
difference in their coefficients. The most important feature of this action is that it describes a
spin-2 massive field only. Any changes to this would introduce new degrees of freedom (new
particles) or remove the properties of the spin-2 massive particle from the theory.

As before in section 2.2.6, the time derivative time components (7100 and ilo:‘) are removed
by integration by parts. While the hgg component still appears linearly after this process, the
ho; now appears quadratically with the introduction of the mass terms.

To see the importance of this, consider a more generalised mass term of the form

ahy W + Bh* = (a4 B)hgy — 2ahg; + ahl; — 2Bhoohii + Bh;. (4.7)

To make sure that hgy continues to remain linear in the action it will require a = —b. If this
was not true, there would be no constraint to remove a degree of freedom as shown in the
next section. If 8 = 0, then hgy; would appear linearly like the GR case, and would provide
at least three conditions. This would remove extra degrees of freedom that are required for a
massive spin-2 particle (5 degrees).

4.1.1 Degrees of Freedom

The linearised Einstein-Hilbert action was shown to contain two physical degrees of freedom
of a massless helicity-2 field in section 2.2.6. This section will show how this action contains 5
degrees of freedom of a massive spin-2 field. Since the mass term contains no time derivatives,
the conjugate momenta will also be the same as eq (4.8). More explicitly

ar . .
i = = hij — hikdij — Oihjyos + 20khokdij (4.8)

ij
which will give the same result when inverted
hij = mij — %Wkk(sij + 9iihjo- (4.9)
With the mass term the Lagrangian in terms of Hamiltonian and conjugate momenta will be
L = hijmi; — H +m2hd; + 2ho;0imi; + hoo(9;0;hy; — 0;0;hij — m*h2), (4.10)

with the Hamiltonian is given by

1 1 1 1 1
H = 571'12] — ZTFZ + iakhijakhij — &»hjké)jhik + 8Z~h,~j8jhkk — iaihjjaihkk + §m2<hijhij — h2).
(4.11)
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The Lagrangian still has hgg appear linearly and so it remains a Lagrange multiplier with the
constraint

X = &'aihjj — 8,‘8]‘}1,‘3‘ — mthi =0 (4.12)

In this case hg; now appears quadratically and so can no longer be represented by Lagrange
multipliers. It is still non-dynamical and so the quadratic term will lead to the algebraic

equation of motion

1
hOi == —Wﬁjmj. (413)

It prompts an introduction of another Hamiltonian of the form
U = H + 16' 0T (4.14
= W i T3 Ok Tk - . )
So that the hg; term can be contained in the Hamiltonian, leaving an action of the form
S = /d4$ |:i7lij77ij — Hl + mzhgz + 2h0i8j7r,-j + h()o(aiaihjj - 828]}1” - m2hz21) . (415)

The changes lead to a Hamiltonian that is not first class as the constraint is no longer
conserved. This can be seen by the Poisson bracket

{H’(t),X(t,X)} = %mzﬂn‘ + 0;05m;;, (4.16)

which does not vanish on the surface X = 0 as the condition in eq (4.12) cannot remove the
term. This means a secondary constraint is required for the bracket to vanish

X = {H'(t),X(t,x)} =0. (4.17)

The Poisson bracket between the two constraints no longer vanishes

{X(6,3),X(1,y)} = om*(x — ), (4.18)
and so no longer generate a gauge symmetry. This means that the four degrees of freedom
that where removed by the four gauge symmetries in the GR case are now returned. So in
total from the twelve degrees provided by h;; and 7;;, two constraints removing two degrees,
there are ten degrees of freedom of the phase space, and so five degrees of freedom of the
field; as is required for a massive spin-2 particle.

4.1.2 Non-Linear Interactions

Unlike the linearised action of GR, the Fierz-Pauli action is not gauge invariant and so the
field cannot transform under eq (2.24). This means that non-linear interactions cannot be
constructed from requiring gauge invariance in the same way as that discussed in section
2.2.7.

The previous section details how modifications of the linear action would produce varying
degrees of freedom of the theory. Modifying the action in any other way at the linear level
to retain it’s massive spin-2 property will produce another degree of freedom, that is known
as a ghost [48]; additional field(s) employed to retain gauge invariance. This means that
Fierz-Pauli is the only action free of any ghost for the theory. So to extend the theory to
higher orders only Fierz-Pauli action can be considered.
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4.2 Generalised Solution

This section will look at solutions to a fixed external symmetric source in the Fierz-Pauli
action. The action will take the form

1
S = / d*z [ = 0o Py OB + Oty O W — O, D, h
) . (4.19)
+ 50ph0°h — §m2 (huht™ — h?) + 87 Gh,, TH | .

The coupling strength (87 G) of the source is chosen in such a way to provide an equation of
motion of the same form as GR. By varying the action to obtain the equation

8nGT, = % [*th + 1Pupu + 1P oy = ho + B = s b + m? (hpw — nxwh)} )
(4.20)
which is indeed of similar form to eq (2.18) with the addition of the mass term. The mass term
means that the conservation equation 0#*T),, = 0 is no longer a condition. The conservation is
associated with spacetime translational symmetry no longer applies. This means that gauge
transformations cannot be automatically applied to simplify the equations of motion. The
condition now takes the form

167G
2

0 T = (9l — D). (4.21)

This can be used on eq (4.20) to get the equation

1
Oy — 0 Byh—m? (hy, — nuyh) = 167G [T,W + = (aPaMTup + 80, T, — nuyapaATPA)] ,

m

(4.22)
and by taking the trace
167G 2 A
h=-— a2 <T + Wﬁp&\Tﬂ ) . (4.23)
This can be put back into eq (4.23) to remove the h term to give
167G 1 2 A\
0"hyy = — > [8"TM —3 (81,T + W(?V@pa,\Tp >} . (4.24)

Now both eq (4.23) and eq (4.24), can be used to rewrite equations of motion in terms of the
energy-momentum tensor

1 1
(O —m?)h,, = — 167G {TW -3 <n,w - Wauay) T}
(4.25)
167G 1 2
s [aﬂaﬂTyp +0°0, Ty~ 5 <mw + mQa“ay) apaATpA] .

The equation of motion thus provides these three equations (4.23, 4.24, 4.25). However, they
are not independent as by tracing eq (4.25) and some manipulation will imply the other two.
This means that only this equation will be needed to find a solution for the field h,,.

It is a little tricky proceeding from this point on with the general case that includes
non-conserved sources. In the case of conserved sources 01}, = 0 the equation will reduce
to

(O —m?)hy = —167G [TW — % (n,w — Wlﬁauay> T} . (4.26)
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The field and energy-momentum tensor can be substituted for their Fourier counterparts so
that the equation becomes

d*p i dp [ 1 1 .
_ / (271)4(]92 1+ m ) D- h 167rG/ [ —3 (77,“, + mszpV> T(p)} ,
(4.27)
which simplifies to the solution of the field in momentum space
- 167G | - 1 1 ~
hyw (p) = 2+ m2 [T;w(p) —3 (mw + meuPu> T(P)} : (4.28)

Taking the Fourier transform again yields the solution in position space

d4p 1 ip.x 1 1
h;u/(cr) = 16wG W}m@ Tw/(p) - g Npw + Wp,upl/ T(p) . (429)

Now with the general solution for conserved sources 7T}, it is useful to look at explicit solutions
for a particular source. A simple and obvious choice would be a point source of the form

T (x') = MOYSO6P (X)), TH(p) = 2n M3} 54d(po),  T(p) = —2rMd(po), (4.30)

so that the general solution is reduced to

d3p e—t(Po-To—p.x) 0 <0 1 1

The next step involves contour integration using Cauchy’s integral theorem. Working this
out, the exact solution for the field will be

32nGM [ dPp ePx 8GM _,..
hoo(fE) = 3 p2 T+ m2 = 3 €
hyw () = (i 1671'GM e'PX 5. 1 PP
i() p2 +m2 \' Y 2
1 + mr 4+ m2r? 1 9 9
- 3T [ 5.3 dij — po (34 3mr + m r°)z;z;

(4.32)

4.3 The vDVZ Discontinuity

As already discussed, it is important that this new theory will comply with GR in the m — 0
limit. This can now be tested using the solutions of the field in a point source for GR in eq
(2.40) and for the Fierz-Pauli action eq (4.33).

It is useful to compare the two using the gravitational lensing that a test particle will
experience in the presence of the field h,,. If the field components can be represented as

hoo(r) = —26(r)
h“,,(r) = hOi(T‘) = 0 (433)
hij(r) = —=21(r)d;;
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for some potentials ¢(r) and ¥ (r) then the potential time component potential is given by
the Newtonian potential ¢(r) = ®(r). In the PPN formalism (r) represents how much space
curvature is produced by a unit rest mass [49].

If the field components can be related through this parameter like

hij(r)li=j _ ¢(r)

r) — = ’ 4.34
= Tty 00) .
and the time component is of the form ¢(r) = —k/r then the lensing angle « is given by the
equation
2k
a=""(147), (4.35)

for impact parameter b.
First, consider the solutions of GR and their relation to the Newtonian potential in eq

(2.41). Since the time and spatial components are the same, v = 1 for GR. This means

lensing will be given by

_4GM

==

Now consider the Fierz-Pauli solution of eq (4.33). This can be reduced for the task
of working out the lensing. While the Fierz-Pauli action is not gauge invariant, the source
energy-momentum tensor has been chosen in such a way to be conserved. This means that
a gauge transformation on the solution; eq (4.33) will be invariant. The # pupy term in the
general solution of eq (4.29) will not produce any observable changes to a test particle with a
conserved energy-momentum. It can therefore be removed in this case. This leaves a solution
of the form

a (4.36)

SGM
h — —mr
00() 3r ¢
4GM _ ..
hij(z) = — —e™™" 0y,
and in terms of the potentials
4GM 2GM
B(r) = o(r) = —Torte ™, y= -2, (4.38)
This means that in this case, v = 1/2 and so the angle will also be given by
4GM
a=— (4.39)

So the lensing angle will be the same in massive gravity as with GR. The problem with this
is that the Newtonian potential ®(r) is twice the size in the limit m — 0. By rescaling
G — 3/4G this can be remedied but there will now be a 25% error in the lensing angle.

This is unusual as there is no discontinuity present in the action as taking m — 0 returns
to GR. But the issue manifests itself in the the physical predictions from the solutions. The
mass is just a parameter and should not cause any conflict in the underlying physics between
the action and the solution. This issue was identified by both van Dam and Veltman [50],
and Zakharov [51] and so named the vDVZ discontinuity.

This reason this issue appears in the solutions is due to the degrees of freedom available
at m = 0. Previous sections have shown that the action of GR has two degrees of freedom
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while Fierz-Pauli has five. While GR is a gauge invariant, it looses this property outside
of m = 0 and so gains these degrees of freedom. This is the heart of the issue with this
discontinuity. The way forward to remediate will be to construct a new theory that does
display gauge-invariance while also maintaining the same physical results that the Fierz-Pauli
solutions provided.

4.4 The Stiickelburg Trick

The previous section has shown how the m — 0 limit of the Fierz-Pauli theory does not
match GR. This section will show how a new scalar field can be introduced to provide gauge
symmetry for the action without directly changing the theory behind it.

4.4.1 Massive Photon Test Case

Instead of jumping into the Fierz-Pauli action, this section will take some time to display
the trick on a simple case. Consider the case of a massive photon with field A, coupled to
a source j*. In this case the source does not have to be conserved. The action will take the
form

1 1
S = / d*z LFWFW - imQA“A“ + A, JH (4.40)
with the electromagnetic field tensor
Fu=0,A, — 0,A,. (4.41)

The theory returns to classical electromagnetism for m = 0 which contains 2 degrees of free-
dom from the photons transverse and longitudinal polarisation states; representing a massless
spin-1 particle. In this case the Lagrangian is invariant under gauge transformations

Ay = A, + 9 (4.42)

where A is an arbitrary scalar function of spacetime. As in the case for the graviton, the
introduction of mass breaks the symmetry. This leaves a theory describing three degrees
of freedom of a massive spin-1 particle. So once again the taking the limit m — 0 is not
continuous as a degree of freedom is lost in the process.

To fix this problem a trick is used [52]; a scalar field ¢ is introduced in the action so that
it maintains it’s dynamics while acquiring gauge invariance. The new field is added through
the original via the transformation

Ay — Ay + 0,0, (4.43)
which aims to replicate the form of the gauge transform. This is so that the EM term F),, F'*”

will be invariant under this transform (as this part is gauge invariant) but it will alter the
other terms in the action. This new action takes the form

1 1
S = / d*z [4F,WFW — §m2(AM +0,0)% + (A, + G#gb)J”] , (4.44)
By integrating by parts on the last term and removing the boundary term, the action is
1 1
S = /d4x {4FM,,F’“’ = me(AM + (9,@)2 + (A, + d)@M)J“] . (4.45)

2
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Now if a gauge transformation of eq (4.42) is performed on this new action, if the field
transforms as ¢ — ¢ — A then the action will be invariant, and so the desired gauge symmetry
has been achieved. Since this new field ¢ has been added simply as a trick, it can always be
fixed as ¢ = 0 to recover the original action.

This trick is a good display of the main concept of gauge theory. A gauge invariant system
is one with redundancies of the physical description. Any gauge theory can be reduced by
removing it’s degrees of freedom from the gauge symmetry, thus losing the symmetry. And
any non-gauge theory can have redundant fields added to induce a gauge symmetry, increasing
it’s degrees of freedom.

In the previous section the problem encountered was due to the theory chosen; the action
contained no gauge symmetry but when reduced to m — 0 it returned to GR with gauge
symmetry. This trick can now be applied to the action so that the action remains smooth in
the limit.

Before the limit can be taken in this example, ¢ must be normalised in the action by
taking ¢ — %gb The normalised action will therefore be given by

S = /d4

with symmetry under gauge transformations

, 1 1 2 1
F,, F* — 3 m? <Au + maugs) + (AM + m¢8”> JH (4.46)

Ay — Ay + 0, ¢ — ¢ —mA. (4.47)

This equation now has an issue when attempting to take the limit m — 0. The last term will
cause a divergence and so this trick cannot work for a non-conserved source.

Now assuming the source is conserved by 9,J" = 0, the last term can be removed. In
the limit action will tend to

S = / d*z { F, F* — ,3 GO + Ay TH (4.48)

with gauge symmetry of the form
Ay — Ay + 0. (4.49)

This new theory has comprised a massive vector field A,, with transverse and longitudinal
degrees of freedom. The field couples to a scalar field ¢ with one degree of freedom. In
the massless limit the degrees of freedom remain the same and the fields decouple from each
other. The requirement that the degrees of freedom and gauge invariance remain unchanged
in the limit is satisfied by this new theory.

4.4.2 Massive Gravity Case

The Stiiekelberg trick can be used to improve the theory of massive gravity developed in eq
(4.19). It is easier to contain the linearised GR terms in a separate Lagrangian so that the
action will look like

1
S = / d*z {LGR - 5m2 (huwh* — h?) + 87 Ghy TH | . (4.50)

Recall how the field h,, transforms under gauge transformations from eq (2.24). The lin-
earised action of GR in eq (2.48) was invariant and so had gauge symmetry. But just like
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the massive photon case, the mass terms break the symmetry of the Fierz-Pauli action in eq
(4.19). Just like before, the Stiiekelberg trick can be used by now introducing a vector field
A, via the transformation

hyw = hyw + 0, AL + 0, A, (4.51)

Since the trick introduces the field via a gauge transform, §Lgr = 0 due to it’s gauge invari-
ance. By using integration by parts, the mass and source terms will transform in the action
as

1 1
S:/%%Qm—fﬁwwwhwﬂ—fﬁﬂﬁw
(4.52)

—2m? (I, 0" — h,) A* — +87G (hyy — 24,0,) TH |,

where F),, is the EM field tensor, defined in eq (4.41). This new action will be invariant under
gauge transformations of the form

hyw = by + 0,80 + 0084, Ay — Ay =&, (4.53)

where &, is some element of the spacetime. The trick allows the user to fix the Stiieckelberg
field to A, = 0 at any time, recovering the original Fierz-Pauli action of eq (4.50). This means
that the two theories and their physical results are equivalent. By following the massive
photon case, the next logical step would be to rescale the field to normalise the action before
taking the limit. But in this case taking m — 0 for this action is still not smooth as it lead
to a loss of a degree of freedom. This is because it leaves a massless graviton h,, and photon
A, providing two degrees of freedom each; falling one degree short of the Fierz-Pauli action.
The previous section showed how an extra degree of freedom was added by introducing the
¢ field to bring the massless case of 2 dof up to the 3 dof of the massive case. Introducing
the field A, has only brought the massless case up from 2 dof to 4. So the trick must be used
again; now introducing a scalar field ¢ via the typical gauge transformation of EM as in eq
(4.47). Once again the EM tensor term will be invariant, leaving the mass and source terms
to transform (with some integration by parts) in the action as

1 1
S—/#%&m—fﬁwwwhm%—yﬁmﬁw

—2m? (hy, 0V — hoy,) A* — 2m? (h, 00" — hd,0") ¢ (4.54)

487G (B — 24,0, + 260,0,) T | .

This action is now invariant under the two gauge transformations

h,u,y — hp,l/ + 8;L£y + au§u7 Au — A;L - §,u

(4.55)
Ay — Ap+0uA, ¢ —P—mA. .

As in previous cases, fixing both ¢ = 0 and A, = 0 returns the Fierz-Pauli action; proving
the two theories equivalence. This theory can be still thought of as Fierz-Pauli with extra
redundancies in the form of gauge symmetries in the theory.

The kinetic term in the action are normalised by having no dependence on mass. This
can be achieved by redefining A, — %Auv as well as ¢ — #gb preemptively. With this, the

- 30 —



action will take the form
4 1 2 uv 2 1 %
S = d*x ;CGR—im (hIJ’Vh _h)_iF/“/F
—2m (hwﬁ” — h@u) AP — 2 (hw,(?“(?” — h(?“(?“) 10} (4.56)

2 2
+ 817G (hw — EAuav + m2</58u8,,> T’“’] ,
and contain gauge symmetries under

h/u/ — hpz/ + 6#51/ + 81/5;“ Au - A;L - mg,u

) (4.57)
Ay — Ay + 0ymA, b — d—m A .

As in the previous case, taking m — 0 for a non-conserved source will cause the introduce
fields to strongly couple to the divergence of the source. Assuming a conserved source, the
limit will become

1
S = / d'z [CGR = S Fu P =2 (0 0"0" — 1h0,0") ¢ + 87Chy T | . (4.58)

The next step is to check that this massless limit matches the five degrees of freedom of the
massive theory. The first step will be to separate the scalar-field tensor mixing term. This
can be done by redefining the field as

hyw = h;w + W (4.59)

for a scalar function w(x) that re-scales the metric (a conformal transformation). The lin-
earised Lagrangian of GR will transform as

Ler(h) = Lap(h') +2 <8Mw8“h’ — Owd, hM 4 g@uw8“w> (4.60)

so the action in eq (4.58) becomes

Sz/d4x

Lor(W)+2 [(%w&“h’ — Quwd, WM + 2@@%}

1
= 5 Ew F =2 (h},, 00" — 10, 0" — 3wd,O") ¢ (4.61)
+ 87 (h;w + W) TW] .

By setting the conformal function to the scalar field w = ¢ and by utilising integration by
parts, the cross terms in the action can be canceled providing a kinetic term for phi and
another coupled to the source. It is also nice to have the typical coefficients in front of the
kinetic terms for both the scalar and vector fields; so they can be rescaled via ¢ — %gf), and

A, — %A#. In this picture the action will look like

4 1 v 1 v 1 v
S = / d*z {EGR(h’) = FuF = 04609 + 87 ( ,, + T KA B
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and the gauge transformation symmetries now take the form

Wy = Wy + Opb + 00y, (463)
Ay — AL+ O ‘
From this point of view there is no mixing of fields and it is clear to see the degrees of freedom
in the system. The massles graviton h,, provides two degrees of freedom, a massless vector
A, with another two, and finally a scalar with one degree of freedom. So indeed the massless
limit of this theory does provide the same degrees of freedom as the massive.

This form also has the added benefit of neatly displaying the cause of the vDVZ discon-
tinuity in a single term. The very last term is a mixing between the introduced scalar field
and the trace of the stresss-energy tensor. Its introduction will observe no change when mea-
suring the effect of gravitational lensing since T" = 0 but it will alter the Newtonian potential
through this new potential term. In a sense the ¢T term is the vDVZ discontinuity.

4.5 Solution of vDVZ and dRGT Massive Gravity

The vDVZ discontinuity was solved by Arkady Vainshtein in 1972 [53]. His idea was to extend
linear Fierz-Pauli massive gravity to a fully non-linear theory of massive gravity, the result of
which allowed a smooth GR limit. For this theory we now generalise to curved spaces where
the background is now used as the background metric which is not necessarily Minkowski.
The perturbation is given by

Guv = 9;(31) + hy, (4.64)
(0)

where g,y the background metric. A typical non-linear theory takes the form,

- 16:rG/ <J—7gR—y/—g(0)im2U(g(0),h)), (4.65)

where U(g(?), h) is the most general potential given by

U(g(O) h) = Us(g (0) Jh) + Us(g (0),h)+U4(g(0),h)+
(99, ) = tr(h?) — tr(h)?,

(9@, h) = Cytr(h®) + Catr(h2)tr(h) + Cstr(h)?, (4.66)
(

g9 ) = Ditr(h*) + Dotr(B®)tr(h) + Dstr(h?)? + Datr(h?)tr(h)? + Dstr(h)*

)
)

S &S

where the trace is taken using the background metric ¢(©#* and we omit orders higher than
4. Since this is a generalisation of the linear theory, the equation reduces to Fierz-Pauli at
linear order.

To see the behaviour of this non-linear theory, we will look for static spherical solutions.
We introduce the following metric ansatz:

9O datda? = —dt* + dr? + 12, dO2 (4.67)

where we have considered the case of the background metric being Minkowski. To find a
static spherically symmetric solution, consider the dynamical metric ansatz

gudztdz” = —B(r)dt* + C(r)dr?* + A(r)r?, d0? (4.68)
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plugging into the equations of motion, which we omit here but arise from varying the action
in eq (4.65) with respect to g,,, we obtain for the t¢ component

ABC?m2r243 + (23(0 — 3)C2m2r? — 4VA2BC(C — rC")) A2

(4.69)
+2VA2BC (202 — 2r(3A" + rA")C + r*A'C") A+ CVA2BCr?*(A')? =0,
the rr component
4(B+rB")A* + (2r?A'B' — AB(C — rA"))A+ Br?A”? 224+ B —-3)m* _ 0. (4.70)

BC? VAZBC
and due to spherical symmetry both the #0 and ¢¢ components
—2B%C%*m?*rA* — 2B*C*(B + C — 3)m*rA3
— VA2BC (2C'B* + (rB'C' — 2C(B' + rB"))B + rCB") A? (4.71)
— BVA2BC (rCA'B' + BACA' —rC'A' + 2rCA")) A — B*CVA2BCrA” = 0.

To see the behaviour away from GR, we introduce expansions in the functions A, B, C of the
form

A(r) = Ag(r) + €A1 (r) + € A3(r) + O(€®)
B(r) = Bo(r) + eB1(r) + €2Bs(r) + O(e3) (4.72)
C(r) = Co(r) + eC1(r) + €2C3(r) + O(€3) .

Upon doing this, and solving each equation order by order we obtain,

Ay — 1= 2 GM <1—4GM +>

T 34am2r3 mird
SGM 1 GM
B —1=—— 1—————+... 4.
(r) 3 r ( 6 mArd + ) (4.73)
8 GM GM

where the preceding terms in each are from higher orders of the parameter €. The expansions
above are in terms of ry /r where

vy — <GM>1/5, (4.74)

is the Vainshtein radius. Beyond this radius is the region in which the solution is accurate. As
m — 0 this radius increases to infinity which causes the theory to break down. The potential
will feel different below the Vanshtein radius. This will be given by

M 1
o~ 8rGr’

¢~ \/78]7\FJGA2/27"3/2, r<<ry.
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where Aj is the cuttoff of the theory, given by A5 = (87Gm*)'/>This would mean that the
vDVZ discontinuity is caused by linear perturbations and a non-linear perturbation would
give a smooth massless limit.

Unfortunately, the generic non-linear theory given by the action in eq (4.65) suffers from
a ghost like pathology. It turns out, that generic non-linear theories of massive gravity have
1 extra propagating mode called the Boulware-Deser ghost. It was not until 2011 that the
Boulware-Deser ghost was exorcised by de Rham, Gabadadze and Tolley |54, 55| via a specific
construction of the non-linear potential for details see the aforementioned references.

We have outlined the construction of a consistent, non-linear theory of massive gravity
which propagates 5 degrees of freedom. This theory can be used to explain dark energy,
where the interaction potential contributes to the dark energy budget of the universe, and
self-accelerating solutions have been found [56].

5 Conclusions

In this paper we have discussed some of the ideas behind modifying gravity. We first took a
fundametnal look at general relativity as a helicity-2 massless field theory by linearising the
action. We then went on to look at F'(R) gravity which generalises the action to higher orders
of curvature invariants. We were then able to link this to a scalar-tensor theory known as
Brans-Dicke which is heavily constrained by solar system measurements. Finally, we looked
at the path followed for the theory of massive gravity; from a linear Fierz-Pauli action to
a non-linear interacting theory that could describe a massive spin-2 particle and smoothly
return to the massless case in the limit.

The cosmological constant problem, the identity of both dark energy and dark matter
are some of the biggest unsolved problems in modern day physics. Some physicists view
our fundamental understanding of gravity to be cause of these problems, and to reconcile
them, have taken up the task of modifying gravity. While this is a challenging task with
many pitfalls like ghost instabilities, it is also a rewarding endeavour, offering up interesting
solutions and new insights into the theory of gravity.

The success of modified gravity theories will be decided by their ability to stand up to our
current tests and predict future cosmological observations. With the advent of gravitational
wave astronomy, we are at the beginning of a whole new field of opportunities to test these
theories. The aim then is to be able to find and test solutions to these theories [57, 58|. Future
experiments such as LISA [59, 60] will be able shed light onto what theory is responsible for
the gravitational interactions in our universe.
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