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Abstract

In this dissertation, we discuss the black hole information paradox. We focus on the
recent development were the minimal quantum extremal surface prescription can be
applied to an evaporating black hole to recover the Page curve of the fine-grained
entropy of the Hawking radiation. This suggests that the black hole evaporation
process is unitary and conserves information. This procedure will also yield an en-
tanglement wedge of the radiation that reaches into the interior of the black hole
after the Page time. Moreover, we will show how one can explain these two results
by applying the AdS/CFT conjecture twice to a 2d JT gravity system with a black
hole, where the entanglement wedge of the radiation in the dual AdS3 naturally
accesses the interior of the black hole.
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Chapter 1

Introduction

The two pillars of fundamental physics are general relativity and quantum mechan-
ics, but both theories, as they stand now, don’t play well together. Thus, the holy
grail of modern physics is to unify the two into a theory of quantum gravity. Nev-
ertheless, the two theories tell us that our universe should be deterministic; if you
know the current state of the universe, you should in principle be able to not only
predict the entire future of the universe but also its past. We, therefore, run into a
problem when we consider universes that contain a black hole.

Hawking shocked the world in 1973 when he showed that some things can
escape a black hole, namely black body radiation. The black hole thus radiates as if
it was a black piece of coal with a very low temperature. The fine-grained entropy
of black body radiation is purely mixed; it doesn’t carry any information. This is a
big problem. Hawking’s calculation showed that if you throw your diary into a black
hole, the black hole will evaporate into radiation which contains no information.
Thus a person born after your diary has been thermally absorbed by the black hole
will never know that your diary ever existed. Thus, the law of determinism has been
violated, contradicting both general relativity and quantum mechanics.

For decades, Hawking stood by his calculation, arguing that black holes, in fact,
destroy information, and the problem has been a hot topic ever since. Today, it is
known as the black hole information paradox. And it stands as one of the biggest
mysteries in physics.

Entropy is closely linked to information; it tells us how much information we
lack. If we know exactly what the quantum mechanical state of an object is, the so-
called von Neumann entropy of that object is zero. This entropy is bounded above
by the closely related thermodynamic entropy.

Another way of saying that black holes destroy information is that black hole
evaporation breaks the unitarity of quantum mechanics. This property is important
since it tells us that the time evolution of the entire state of the universe must pre-
serve all information. Thus, if black holes destroy information, unitarity must be
violated, breaking one of the axioms of quantum mechanics. Don Page showed in
1993 coarsely how the von Neumann entropy of the Hawking radiation of an initial
pure black hole should behave, given that unitarity can not be violated. This en-
tropy describes the entanglement between the radiation and the black hole. It starts
at zero, rising linearly as more and more outgoing Hawking modes are created. But
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Chapter 1. Introduction

as the Hawking particles become more entangled with the black hole, there are no
more degrees of freedom left in the black hole for the radiation to be entangled with.
This happens at the so-called Page time. Thus, the new Hawking radiation, created
after the Page time, is entangled with the early-time radiation, effectively lowering
the von Neumann entropy. This is because two fully entangled particles have zero
entropy when considered together. This goes on until the black hole has evaporated
and the entropy is back to zero, as expected from unitarity. Thus, a unitary theory
should give a radiation entropy that resembles this entropy curve, also called the
Page curve, and such a theory came with the onset of holography.

In late 1997, the Argentinian physicist Juan Maldacena saw that there was a
hidden relationship between a certain string theory in AdS5 × S5 and a supersym-
metric Yang-Mills model in 4 dimensions. He conjectured that the two were exactly
equivalent descriptions, two sides of the same coin. The conjecture was later gener-
alized, and today it does not need string theory nor supersymmetry to be a consistent
theory. Today, the so-called AdS/CFT correspondence conjectures that any anti-de
Sitter (AdS) asymptotic spacetimes, no matter how complicated the dynamics of that
universe is, is equivalent to a conformal field theory (CFT) living on the conformal
boundary of the spacetime. Conformal field theories are quantum field theories were
scale doesn’t matter, and they are in most cases unitary.

The advent of the AdS/CFT conjecture shifted the general opinion on the black
hole information paradox towards the belief that; no, black holes do not destroy in-
formation. If an evaporating black hole in an AdS asymptotic universe is equivalent
to an unitary conformal field theory, then every process in the AdS universe must
also adhere to unitarity. Given that the AdS/CFT conjecture is true, the information
in an AdS asymptotic universe must be conserved, even when a black hole evapo-
rates. Therefore, somehow the Hawking radiation must contain information about
the interior of the black hole, namely everything the black hole has ever sucked in.

Black holes are essential for the AdS/CFT correspondence to hold true. Since
the AdS bulk is allowed one extra spatial dimension, it can seemingly hold more
degrees of freedom than the CFT dual, but black holes stop this from happening.
This is due to the entropy of a black hole being proportional to its area and not its
volume. The entropy is given by the Bekenstein formula

S =
A

4GN

, (1.1)

where A is the area of the event horizon. This entropy is thermodynamic, thus being
an upper bound on the von Neumann entropy of the quantum fields inside it. When
too much matter is stuck together, allowing many degrees of freedom in one region,
gravity creates a black hole, which effectively sets an upper bound on the entropy
and the degrees of freedom that can be contained by the event horizon. Thus, the
theory can be equivalently described by a theory with one dimension less.

With the AdS/CFT came the RT conjecture, relating the entanglement entropy
of a boundary region A with the minimal surface γA in the bulk which shares the
same boundary as A. The formula is simply

SA =
Area(γA)

4GN

. (1.2)
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Chapter 1. Introduction

Remarkably, this is the same equation as the Bekenstein entropy of a black hole,
except that γA is generally not the event horizon. If however the bulk only contains
an eternal black hole, and we let A span the whole CFT, the two surfaces coincide.
The surface also allows one to know which spatial region is encoded in a piece of the
boundary theory. This is called the entanglement wedge. The entanglement wedge
ofA is simply the bulk spatial region encapsulated by γA and the conformal boundary
itself A. All bulk operators in this region have well-defined boundary operators on
A.

The RT conjecture above can be generalized to include quantum effects, chang-
ing the name of the surface to a quantum extremal surface. This new prescription
can be applied to evaporating black holes successfully, which was done last year
independently by Penington [39] and Almheiri, Engelhardt, Marolf, and Maxfield
[6]. They discovered that before the Page time, the minimal extremal surface of the
Hawking radiation entropy vanishes, but after this time, there is a phase-transition,
creating a minimal extremal surface inside but close to the event horizon. This came
as a surprise since this means that then entanglement wedge of the radiation is dis-
connected, with one part being most of the interior of the black hole. This means
that information about most of the interior is encoded in the radiation after the Page
time. The fine-grained entropy of the Hawking radiation was also shown to replicate
the Page curve.

The astonishing fact of the development the past year is that the researchers
were able to derive these formulas using the effective field theory of gravity. Namely,
these results do not rely on any unknown details of the theory of quantum gravity,
like the UV completion of the theory. The effective gravity theory, where quantum
mechanics and gravity play well together, contains enough details to compute the
fine-grained entropy of the radiation. Hawking’s error was simply using the wrong
formula.

There doesn’t seem to be any intuitive reason for why the entanglement wedge
of the radiation is partly inside the interior of the black hole, but it follows the
spirit of the ER=EPR conjecture proposed by Maldacena and Susskind [34]. They
linked entanglement of two particles to the wormhole connecting two black holes
and conjectured that these two seemingly unrelated things are somewhat the same
thing.

This dissertation will focus on a recent paper by Almheiri, Mahajan, Maldacena,
and Zhao [7] which tried to show how the radiation reaches into the interior of the
black hole after the Page time in a similar fashion to the ER=EPR conjecture. The
authors proposed a system where there is a black hole in 2d JT gravity, which is a
modified theory of gravity. The matter is a CFT, thus, it is taken to have an AdS3 dual.
This system shows that the entanglement wedge of the radiation naturally ’accesses’
the interior of the black hole in the AdS3 even though it seems mysterious to an
inhabitant of the 2d universe. By applying the minimal extremal surface prescription
we will also show that the entropy of the radiation also follows the Page curve.

This dissertation will start with preliminaries such as explaining different types
of entropy and how the black hole paradox is linked to entanglement entropy. The
third chapter goes into the details of the AdS/CFT correspondence and how you can
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Chapter 1. Introduction

apply it to a black hole in an asymptotic AdS spacetime. The fourth chapter then
mentions how one can relate the entropy of the CFT to an extremal surface in the
AdS dual, namely the RT surface and its generalizations. We will here also apply
it to black holes to show that the entanglement entropy does indeed yield the Page
curve. This all builds up to the fifth chapter where the AdS/CFT conjecture is applied
in a so-called double-holography system. Here a 2d black hole made out of a CFT2

matter has a AdS3 dual which explains the Page curve by having an additional spatial
dimension. In the last chapter, we summarize our results.

We will in addition set the physical constants c = 1, ~ = 1, and kB = 1, but
Newton’s constant GN will be written explicitly. The sign convention for the flat
metric is the mostly-plus, ηµν = diag(−,+, ...,+).
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Chapter 2

Preliminaries

2.1 Entropy

Our first step will be to learn the different notions of entropy. We start by looking
at the density matrix. If we know the quantum state of a system |ψ〉 is pure at zero
temperature, then the density matrix is given as the outer product [35]

ρ = |ψ〉〈ψ|. (2.1)

One quick way to check if a state is pure is to calculate ρ2, since ρ2 = ρ if and only if
the state is pure. In time-dependent systems, the density matrix will generally evolve
over time and follow the von Neumann equation

i
∂ρ

∂t
=
[
Ĥ, ρ

]
, (2.2)

where Ĥ is the Hamiltonian of the system. If we know the density matrix ρ of the
quantum system, we can calculate the von Neumann entropy, also called the ’fine-
grained’ entropy, given as

S = −Tr (ρ ln ρ) . (2.3)

The von Neumann entropy will always obey S ≥ 0, where the zero is ensured if
and only if the quantum state is pure. The density matrix also allows us to find
observables of operators

〈A〉 = Tr
(
Âρ
)
. (2.4)

It is important to distinguish von Neumann entropy from the type of entropy most
undergraduates are familiar with, which is the thermodynamic entropy. It is practi-
cally impossible to know the quantum state of a gas in a box. Thus calculating the
von Neumann entropy is not practically achievable, but you do have a set of observ-
ables of the system. You can acquire the temperature and the volume of the gas, and
based on that you can find a ’coarse-grained’ entropy. The idea is that you find a
set of density matrices that yield the same set of macroscopic observables, and then
you pick the density matrix that maximizes the von Neumann entropy. This coarse-
grained entropy will then give you the thermodynamic entropy. This also ensures
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2.1. ENTROPY Chapter 2. Preliminaries

that the fine-grained entropy of the quantum system is always smaller than or equal
to the coarse-grained entropy.

The coarse-grained entropy, or thermodynamic entropy, will always be in a
mixed state when the temperature is non-zero. Thus, we can no longer write the
density matrix as Eq. (2.1). This is because the temperature mixes the different
possible eigenstates, and we can no longer assure that the system is in only one of
these. The density matrix can now be written as [35]

ρ =
e−βH

Z
, (2.5)

where β is the inverse temperature, H is the Hamiltonian of the system, and Z =
Tr e−βH is the partition function. In the limit T → 0, β → ∞, the system can
only enter the ground state, and with the assumption that the ground state is non-
degenerate, we get a pure state again. We also see that in the case T 6= 0, then
ρ2 6= ρ and so the state is mixed.

2.1.1 Entanglement Entropy

We now look at bipartite systems where the Hilbert space can be written as a tensor
product of two subsystems A and B, H = HA ⊗ HB [26, 29]. In a quantum field
theory, this can be realized by dividing the whole space into two regions A and B.
The example we are mostly going to be looking at later is where A is the black hole
and B is everything outside the event horizon, mainly the Hawking radiation. In
this case, the outside observer only have access to the density matrix in the region
B which can be found from the total, pure density matrix, ρtot = |ψ〉〈ψ|, by partially
tracing over states in A to get the reduced density matrix,

ρB = TrA(ρtot). (2.6)

Writing this explicitly in the language of bras and kets, this is equivalent to

〈b|ρB|b′〉 =
∑
a

(〈a| ⊗ 〈b|) ρtot (|a〉 ⊗ |b′〉) (2.7)

We now define the entanglement entropy of B as the von Neumann entropy of ρB,

SB = −TrBρB ln ρB. (2.8)

This entropy allows us to measure how entangled two subsystems are to each other.
We will in this dissertation use the three terms, von Neumann entropy, fine-grained
entropy, and entanglement entropy, interchangeably, but historically, entanglement
entropy was used only when dividing a pure state into two sub-regions. This is be-
cause dividing a thermal state into two pieces will give you both an entanglement
contribution and a thermal contribution to the entropy of either one of the subsys-
tems. By using Schmidt decomposition [26] we get some interesting properties for
the entanglement entropy.
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Chapter 2. Preliminaries 2.1. ENTROPY

• If the total system is pure, then the two entanglement entropies are the same,
SA = SB. Remember that a pure state has zero von Neumann entropy, thus, the
entanglement entropy is a result of only dividing the state into two parts. On
the other hand, if the system has a non-zero temperature, the total system can’t
be in a pure state, and we generally don’t get equal entanglement entropies,
SA 6= SB.

• Entanglement entropy adheres to strong subadditivity. Dividing the system
into three subsystems A, B, and C, we get the inequality

SABC + SB ≤ SAB + SBC . (2.9)

This yields a slightly weaker inequality

SAB ≤ SA + SB, (2.10)

which motivates a new definition: Mutual information,

IAB = SA + SB − SAB ≥ 0. (2.11)

Being strictly non-negative, this quantity is a measure of how quantum en-
tangled two systems are. If the two systems are unentangled, then simply
SAB = SA + SB.

As an example, we can look at a system where we can factorize the total density
matrix as ρ = ρA ⊗ ρB. Such a state is called a product state, and the reduced
density matrix of A is, as the notation suggests, simply TrB(ρ) = TrB (ρA ⊗ ρB) =
ρATrB (ρB) = ρA. In a product state the total entropy is simply the sum of the
entropy of the two reduced density matrices, S(ρ) = SA + SB, meaning there is no
entanglement, and the mutual information is zero.

Another example is the state

|ψ〉 =
1√
2

(| ↑↓〉 − | ↓↑〉) (2.12)

which is the spin-singlet (pure) state of two electrons. The density matrix is

ρ =
1

2
(| ↑↓〉〈↑↓ | − | ↑↓〉〈↓↑ | − | ↓↑〉〈↑↓ |+ | ↓↑〉〈↓↑ |) . (2.13)

And the reduced density matrix for one of the spins is ρA = 1
2

(| ↑〉〈↑ |+ | ↓〉〈↓ |). This
yields SA = ln 2, thus, the mutual information is IAB = 2 ln 2. Note that this reduced
density matrix is simply the identity matrix divided by the number of elements.
More generally, we can make a new definition: A pure system ρ divided into two
subsystems is called maximally entangled if one of the reduced density matrices is
the identity matrix divided by the number of elements, ρA = I

|A| . Thus, the spin-
singlet state is maximally entangled. Note that in such a state, after taking the
partial trace over B, we no longer have any information about what state A is in,
unlike the previous example.
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2.2. EUCLIDEAN TIME THERMODYNAMICS Chapter 2. Preliminaries

2.2 Euclidean Time Thermodynamics

In a quantum theory, all thermodynamic properties of a canonical ensemble can be
found by calculating the partition function

Z[β] = Tr
[
e−βH

]
. (2.14)

There is a resemblance between this and the time evolution operator of quantum
mechanics, U = e−iHt. This connection is deeper than one might think, and we
can cast thermodynamics in the language of regular quantum mechanics techniques
such as path integrals.

An expectation value of an operator O in a thermal system is given as 〈O〉 =
Tr[Oe−βH]

Z
, and so we can find correlation functions

〈Tφ(t1, x1)φ(t2, x2)〉 = Tr
[
φ(t1, x1)φ(t2, x2)e−βH

]
, (2.15)

where T is the time-ordering operator. From the Heisenberg equation for field op-
erators, φ(t, x) = eiHtφ(0, x)e−iHt, it isn’t hard to show that the correlation function
above is periodic under t → t + iβ. By Wick rotating time, t = itE, the Euclidean
time coordinate tE becomes a compact coordinate with period β, tE ∈ [0, β).

As an example, let’s use this to find the temperature of a Schwarzschild-generalized
black hole. We can do this without doing it the conventional way of first finding the
surface gravity κ, and then use the formula T = κ/2π. We start with a generalized
Schwarzschild metric and introduce the Euclidean time coordinate,

ds2 = f(r)dt2E +
dr2

f(r)
+ r2dΩ2, (2.16)

where f(r) is a function such that there is a horizon at rs, namely f(rs) = 0. Then,
we look at the metric close to the horizon by introducing the exterior coordinates
R2 = r − rs and set R2/rs � 1. The metric to first order in R2 becomes

ds2 = f(rs +R2)dt2E +
4R2

f(rs +R2)
dR2 + (R2 + rs)

2dΩ2 (2.17)

≈ R2f ′(rs)dt
2
E +

4

f ′(rs)
dR2 + r2

sdΩ2, (2.18)

where in the last line we series expanded, f(rs + R2) ≈ f(rs) + R2f ′(rs) = R2f ′(rs).
We are interested in how the metric behaves close to the horizon, R2 → 0, and we
note the resemblance between the two first terms above and the metric of a 2d plane
in polar coordinates, ds2 = dr2 +r2dθ2. The metric can be put in the more suggestive
form

ds2 =
4

f ′(rs)

(
dR2 +

f ′(rs)
2

4
R2dt2E

)
+ r2

sdΩ2. (2.19)

We will now require the Euclidean time to be periodic and lie in the interval f
′(rs)tE

2
∈

[0, 2π), otherwise, we will end up with a conical singularity. A conical singularity in
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Chapter 2. Preliminaries 2.3. HAWKING RADIATION

itself is not a problem, but it would yield a divergent contribution to the gravita-
tional path integral, which we will discuss below. Thus, we will stay clear of such
singularities. As mentioned, the period of tE is also the inverse temperature β, thus,
to avoid a conical singularity at the horizon, we get the relation

β =
4π

f ′(rs)
. (2.20)

For a Schwarzschild black hole in 4 dimensions, we simply have f(r) = 1 − rs/r,
which gives the temperature

T =
1

8πMGN

, (2.21)

where we used that rs = 2MGN , M being the mass of the black hole. Thus, by this
very simple argument, we have shown that black holes exhibit a non-zero tempera-
ture.

We can also take advantage of path integrals technology to find the partition
function. When we calculate transition amplitudes in quantum mechanics, going
from an initial state x(ti) to a final state x(tf ), we have [30, 35]

〈x(tf )|e−iH(tf−ti)|x(ti)〉 =

∫ x(tf )

x(ti)

Dx eiS[x], (2.22)

where S is the action. By Wick rotating and applying the path integral approach to
the partition function, we can specialize this to the case x(tf ) = x(ti) = x and get

Z[β] =
∑
x

〈x|e−βH |x〉 =

∫
x(tE+β)=x(tE)

Dx e−SE [x]. (2.23)

Here, SE is the Euclidean action, and x is all periodic paths x(tE + β) = x(tE).
Due to the periodicity of tE, this Euclidean geometry is equivalent to a cylinder
where the Euclidean time is the periodic coordinate. Note that this approach is only
valid in time-independent systems since we have replaced time with temperature.
In quantum field theories, we are often more interested in fields and the equivalent
partition function in Euclidean time becomes [35]

Z[β] =

∫
φ(tE+β,x)=φ(tE ,x)

Dφ e−SE [φ]. (2.24)

2.3 Hawking Radiation

We just saw that a black hole should have a temperature due to a simple argument
stating that the Euclidean time shouldn’t have a conical singularity at the horizon.
This might not be convincing enough for most people, but Hawking showed more
rigorously that black holes do in fact evaporate into seemingly thermal radiation as
if it had a black body temperature of T that we found above.

We won’t go into the details of Hawking’s calculation, but we will look at how
a massive scalar field is affected by the Schwarzschild metric. We assume that the

9



2.3. HAWKING RADIATION Chapter 2. Preliminaries

coupling between the QFT and general relativity is a one-way street: The field is told
by the metric how to behave, but the metric is not curved by the matter field. We,
therefore, neglect any backreaction, which is equivalent to taking the limit where the
mass of the black hole goes to infinity, M →∞, and Newton’s constant goes to zero,
GN → 0 so that the Schwarzschild radius rs = 2GNM stays constant. Following Ref.
[26], we can solve the Klein-Gordon equation in the Schwarzschild metric. Using
the identity ∇2φ = ∂µ(

√
−ggµν∂νφ)/

√
−g where g is the determinant of the metric,

we get
1√
−g

∂µ(
√
−ggµν∂νφ) = m2φ. (2.25)

The black hole has a spherical symmetry so we can look for solutions of the form

φωlm(t, r,Ω) = Ylm(Ω)e−iωt
ψωl(r)

r
, (2.26)

where (l,m) are a set of eigenvalues that describe the angular momentum of the par-
ticle, ω is an eigenvalue that gives the energy, and Ω is the set of angular coordinates.
It is convenient to switch over to tortoise coordinates,

r∗ = r + rs ln

(
r

rs
− 1

)
, (2.27)

since now we can write the solution as a particle moving in one spatial dimension in
non-relativistic quantum mechanics,

∂2ψωl
∂(r∗)2

+ V (r)ψωl = ω2ψωl, (2.28)

where the effective potential is

V (r) =
r − rs
r3

(rs
r

+ l(l + 1) +m2r2
)
. (2.29)

Here, r is implicitly a function of r∗. The Hawking radiation originates from a region
very close to the event horizon at the Planck scale. And the potential gives a peak
well outside the event horizon at rs < r = O(rs) which the Hawking radiation has
to climb out of, or tunnel through. A substantial amount of scattering is therefore
happening due to this potential. Not only for outgoing Hawking modes but also
incoming particles. As one also expects, the peak becomes harder to overcome for
massive particles or particles with non-zero angular momentum l > 0. A massive
particle needs to overcome its rest-mass to escape the black hole, V (r → ∞) = m2.
Since we have shown that a black hole has a temperature of order T ∝ 1/rs, this
is also the energy scale we should look at ω ≈ 1/rs. A black hole with the same
mass as our sun has a temperature of T ≈ 10−7 K which gives an energy 15 orders of
magnitude less than the rest mass of an electron. Hence, a particle with an energy
of order T will not have enough energy to attain its rest-mass energy, and thus be
able to escape the effective potential of the black hole. It is, therefore, safe to only
focus on massless particles.
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For massless particles with no angular momentum, the peak of the effective
potential sits at r = 4rs/3. Even for these particles, there is a large amount of back-
scattering which causes the black hole to favor high energy Hawking modes thus
making the black hole not a perfect example of black body radiation. This is called
a grey-body factor since the black hole absorbs most of its radiation, and it often
complicates calculations.

2.4 Black Hole Information Problem

As we just saw, a black hole has a temperature, so one might hope to find other
thermodynamic quantities. A very interesting one is the thermodynamic entropy
which is proportional to the area of its event horizon A

S =
A

4GN

, (2.30)

A very simple derivation of this entropy can be made by using the thermodynamic
identity dE = TdS and the area,

A = 4πr2
s = 4π(2MGN)2. (2.31)

The temperature T is found above and the energy is the same as the mass E = M ,
then a small change in entropy becomes

dS = 8πGNMdM = 4πGNdM
2 =

dA

4GN

, (2.32)

which gives the entropy in (2.30). A much harder derivation, but also a more con-
vincing one, is to use gravitational path integral using Euclidean time as mentioned
earlier. The latter derivation is a more rigors way of showing that a black hole does
carry a thermodynamic entropy that is proportional to its area.

Since a black hole gives away radiation, its mass must decrease which also
shrinks the event horizon. This happens extremely slowly, and a black hole the
size of the sun will take around t = 1064 years to completely evaporate, and all black
holes formed right after the big bang with a mass less than m < 1012 kg will be gone
by now [8].

There is however a problem one faces with the black hole entropy. The black
hole entropy is a gigantic number compared to the entropy of other astrophysical
bodies. All these microstates are hidden behind the event horizon, but after the
black hole evaporates into thermal radiation, all the vast information about the mi-
crostates is seemingly destroyed. This was Hawking’s initial interpretation of black
hole evaporation: Black holes destroy information. This is a huge problem since it
violates the inherent determinism of both quantum mechanics and general relativity.
In both theories, if you know the state of the universe exactly, then you should be
able to predict not only the future but also the past. If you are born in a universe
without any black holes, there is nothing you can do to figure out if a black hole ever
existed. This problem is called the black hole information paradox, and it is arguably

11
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one of the biggest unsolved problems in physics. Since it combines the extremes of
both quantum mechanics and general relativity one expects that the solution will
give us profound insight into what properties a theory of quantum gravity would
have.

Let’s explain more in detail how the black hole paradox violates both quantum
mechanics and general relativity. Quantum mechanics is notorious for being random.
By measuring a system, the universe has to collapse the wavefunction, which before
the measurement was a linear combination of states, to a seemingly randomly cho-
sen single state. But this measurement hinges on the fact that we couple the system
to an external environment, namely our measurement apparatus. The entire sys-
tem, on the other hand, is still deterministic, and its time evolution is governed by
a unitary transformation acting on the Hilbert space of states. Such transformations
conserve information, and thus by accepting that black holes destroy information,
one also has to throw away the unitary condition of time evolution. This is a hard pill
to swallow since it is one of the axioms of quantum mechanics, and thus physicists
have looked for other solutions.

General relativity is a classical theory, and its determinism should coincide more
closely with our intuition. If you throw a tennis ball here on earth, and you know
precisely its position and velocity, you can calculate its entire path before hitting the
ground. The same goes for general relativity. If you know the position and velocity
of all mass and energy at one point in time, then you should be able to not only
determine the future but also the past of your universe. More accurately, if we know
the state of the universe on a Cauchy surface, we can determine the entire future
and past of the spacetime. The problem arises when we look at an evaporating black
hole [18]. In Fig. 2.1 we have drawn then Penrose diagram of an evaporating black
hole with two spacetime slices Σ1 and Σ2. They both originate at r = 0 and end
at spatial infinity i0, but Σ1 starts at r = 0 before the black hole and its singularity
have formed, while Σ2 originates at r = 0 after the black hole has evaporated. Σ1

is a proper Cauchy slice, if you know the state of the universe on this slice, you can
determine the entire fate and past of the universe, including the black hole. In other
words, the domain of dependence covers the entire spacetime. Σ2, on the other hand
is not a Cauchy slice. Its future domain of dependence is correct, but the inside of
the black hole is not in its past domain of dependence. Thus, information about the
spacetime has been lost going from Σ1 to Σ2.

We are going to look at an infalling shell of photons to better understand the
information paradox, but firstly, we will learn a lesson about how a black hole is
formed from such a shell and differences between horizons of black holes as dis-
cussed in Ref. [52]. The definition of a black hole is a region of space where you can
not send a signal to null infinity, and the event horizon is the border of this region.
Birkhoff’s theorem gives us two solutions of the spacetime; the region outside the
shell has the Schwarzschild solution, while the interior is the Minkowski vacuum. If
you are positioned at the center of the collapsing shell, there are no experiments you
can perform to foresee your unfortunate fate. If the radius of the shell at one point
in time is slightly larger than its corresponding Schwarzschild radius, and you send
out a signal with a flashlight, those photons will never reach null infinity since they
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Figure 2.1: Penrose diagram of an evaporating black hole created from gravitational
collapse. The green arrow shows the Hawking radiation which slowly evaporates the
black hole. Knowing the state of the universe on the two Cauchy slices Σ1 Σ2 will give
you two very different results. Σ2 doesn’t know that a black hole ever existed since the
Hawking radiation is assumed to be purely thermal.

will be within the Schwarzschild radius by the time the shell has shrunk to be within
its Schwarzschild radius. This is the grey area in Fig. 2.2. Therefore, you were
already inside the black hole when you turned on the flashlight, and there was noth-
ing you could do to know! This highlights the fact that event horizons (and black
hole regions) are not possible to measure locally. Mathematically, you need to know
the entire future of the universe to determine if you are right now inside a black
hole or not. On the other hand, you have the apparent horizon which is defined
as the surface where a null geodesic stays stationary. This horizon and the event
horizon coincides in eternal, static black holes like the Schwarzschild solution, but
in this example, the (outgoing) apparent horizon is formed once the shell reaches
the Schwarzschild radius, and then it forever stays at this radius (assuming no evap-
oration). This horizon can also be determined by doing local experiments without
knowing the future of the spacetime solution. Thus, these two types of horizons are
fundamentally different.

2.5 The Page Curve

Assume the infalling shell of photons is in a pure state. Then, once the event horizon
is formed, the fine-grained entropy of the black hole will initially be zero. But on the
other hand, its coarse-grained entropy, proportional to its event horizon area, will
increase until it reaches the Schwarzschild radius. Thus, it has a temperature, so
one might ask where this thermal component comes from when starting with a pure
state. The answer is that the vacuum in a quantum field theory is highly entangled
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Figure 2.2: The infalling shell of photons (green) creates an event horizon (red) in an
empty Minkowski space before an observer at the center knows it is inside it (grey area).
An outgoing apparent horizon (blue) is created at the Schwarzschild radius once the
shell has reached that radius. The figure is adapted from Ref. [52].

[8]. When a black hole is formed, we are creating a region of space that can never
send a signal out to null infinity; this is the definition of a black hole. And thus,
by separating the space into two regions, the interior and the exterior of the black
hole, we naturally end up with an event horizon with a temperature, as seen from
an observer in the exterior.

When one first learns about Hawking radiation, one is often told the story of the
spontaneous creation and annihilation of matter and antimatter in the vacuum of a
quantum field theory. These two particles are maximally entangled and normally
destroyed after a very short time, but if this happens close to the event horizon, one
of the particles can fall into the black hole while its partner, being outside the event
horizon, can escape towards infinity. Since the outgoing particle has a positive en-
ergy to an outside observer, energy conservation tells us that the black hole must lose
energy, and hence mass, in this process to the outside observer. Even though this ex-
planation is popular, one needs to be wary of taking it literally. One of the problems
is that the wavelength of the escaping particles is of the order of the size of the black
hole [26], and scalar particles don’t have such partners. In addition, there is a high
effective potential barrier close to but outside of the event horizon which makes
it easier for massless particles with zero angular momentum, both zero spin, and
global angular momentum, to escape. Thus, as mentioned, the Hawking radiation
consists of mostly photons. Even though we shouldn’t take the above explanation
literally, we will still think of outgoing particles as having an ingoing partner. This
makes it clear that there is a finite part of the wave function propagating like a null
geodesic (assuming its Hawking partner is massless) inside the black hole which is
entangled to its outgoing partner.

When the black hole starts emitting Hawking radiation, the fine-grained en-
tropy of the radiation will start increasing over time as more and more radiation is
created. Most of the outgoing Hawking modes will fail to tunnel or climb their way
out of the black hole potential and give rise to so-called grey body factors. If we
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want to quantitatively understand black hole evaporation, we can’t discard them,
but by neglect them, Hawking’s calculation showed that the black hole radiation is
purely thermal, and so the fine-grained entropy of the radiation seems to be strictly
increasing until the black hole has completely evaporated. We started with a pure
entropy, and seemingly we have created a highly mixed state of thermal radiation.
Somehow, the unitarity of quantum mechanics has been violated, since one would
expect the entire state to stay pure during the process.

If we assume that Hawking made an error somewhere, there are two options
[26]. One is the remnant theory, which says that Hawking was correct up until
the point where the black hole has evaporated to the size of the Planck length.
Assuming unitarity can’t be violated, the remnant needs an incredibly large entropy
which surmounts the Bekenstein entropy. This theory is not taken seriously by most
physicists since it is hard to imagine how such a vast amount of entropy can be
captured by such a small object. Thus, we turn to the other option.

Assuming unitarity is preserved, many physicists are waging their careers on
the assumption that the Hawking radiation is not purely thermal. Somehow the
information about the black hole is encoded in radiation, and thus the entropy curve
of the radiation will look very different. Assuming we start with a pure state, and
if the evaporation process had respected unitarity, we would expect the fine-grained
entropy of the radiation to eventually reach zero again when the black hole has fully
evaporated. Secondly, the von Neumann entropy of the black hole and the radiation
must be the same as we argued in the last section. If we have a state in a pure state,
the von Neumann entropy of the subregion A (black hole) and the complement
region B (rest of the universe, in this case, the radiation) must be equal.

The curve of the von Neumann entropy of the Hawking radiation is called the
Page curve [37, 38]. And we can outline the rough shape of it without doing any
math, see Fig. 2.3. Right after the pure, infalling shell settles, it starts evaporating
Hawking radiation which increases its entropy linearly. Under the assumption of
black holes evolving unitarily, the radiation is entangled with the interior of the
black hole. As the fine-grained entropy of the radiation Srad starts reaching the
Bekenstein entropy SBH of the black hole, there are no more available microstates
in the black hole to be entangled with anymore. This happens when Srad = SBH

at the so-called Page time. After this point, the new Hawking radiation cannot be
entangled to the black hole anymore, and must instead be entangled with early
Hawking radiation sent out before the Page time. This makes the radiation state
becoming purer and purer. Thus, the radiation entropy starts decreasing. When
the black hole has completely evaporated, the system is entirely made out of a pure
Hawking radiation and so the entropy is back to zero.

Whatever a theory of quantum gravity looks like, we should expect our way of
understanding the universe to undergo several paradigm shifts, so why is it so hard
to accept that unitarity might be violated? We can get clues from other theories,
notably string theory. This theory is supposed to be the ultimate theory of everything,
and it is inherently unitary. String theory has not passed the test of time yet, but it
has yielded promising results. Strominger and Vafa were able to show in 1996 that
counting the microscopic states of a particular type of black holes gives the expected
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Figure 2.3: Qualitatively how we expect the Page curve (red) to look like. The fine-
grained entropy of the radiation starts at zero and increases until it reaches the coarse-
grained entropy of the black hole (blue), at the Page time. Then Srad falls to zero along
with the Bekenstein entropy, and we end up with a zero fine-grained entropy meaning
the radiation ends up in a pure state. The green curve shows Hawking’s original calcula-
tion where the entropy is expected to strictly increase until the black hole has completely
evaporated.

Bekenstein entropy [47]. Subsequent discoveries have solidified the understanding
of black holes in the context of string theory, but unfortunately, it doesn’t help us
understand how the information is stored in the Hawking radiation.

We can also look at less speculative theories, like the main ingredient of this dis-
sertation, namely the AdS/CFT conjecture. This conjecture tells us that the unitarity
of black holes in anti-de Sitter space is trivially satisfied since it has an equivalent
description of living in a unitary conformal field theory on the boundary of the AdS
spacetime. Since any quantum field theory adheres to unitarity, information must be
conserved.
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Chapter 3

AdS/CFT Correspondence

The idea of holography was created before Maldacena conjectured the AdS/CFT cor-
respondence. The holographic principle, first proposed by Gerard ’t Hooft [48] and
later promoted by Leonard Susskind, was a set of proposed properties of quantum
gravity where one would require one spatial dimension less to describe the same
amount of information. The idea got its inspiration from the Bekenstein entropy of
a black hole. The old thinking was that entropy in a spatial region was bounded
by its volume, but the holographic principle suggests that it is instead bounded by
the Bekenstein entropy with the area that encapsulates the region, an idea that is
now known as the Bousso bound [13]. So if you try to put a huge amount of ther-
modynamic entropy in a box, that box will become a black hole before it can break
the Bousso bound, effectively putting an upper bound on the allowed entropy in the
box. There are however examples in classical general relativity called ’Wheeler’s bag
of gold’ where there is a big region of space within an event horizon that can contain
a lot more entropy than its event horizon area (divided my 4GN). Thus, one has to
find a way to invalidate such solutions if holography is to hold true.

So if the holographic principle is true, it seems like gravity is a way for our
4-dimensional universe to put an upper bound on the entropy and the degrees of
freedom in a 3-dimensional spatial region so that one still has enough degrees of
freedom on a holographic 2d screen to describe the spatial region.

The vague ideas of holography were then in 1997 better realized by Maldacena
in his gravity/gauge conjecture, later known better as the AdS/CFT conjecture. This
conjecture states that an AdS asymptotic universe described by quantum gravity in
d-dimensions can be equivalently described as a conformal field theory in (d − 1)-
dimensions living on the conformal boundary of the bulk universe.

Before we jump into his conjecture, we need to go through the two main ingre-
dients: Anti-de Sitter (AdS) spacetime and conformal field theory (CFT).

3.1 Anti-de Sitter Spacetime

The anti-de Sitter spacetime is a vacuum solution of Einstein’s equation that is maxi-
mally symmetric. This means that neither direction in space nor time is favored, and
every single position at any given time gives the same metric. These two conditions
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are called isotropic and homogeneous, respectively. Due to these requirements, the
spacetime must have a constant scalar curvature, and AdS spacetimes have negative
curvature, while de Sitter spacetimes have positive curvature and Minkowski space-
times have zero curvature. It can be shown that the Riemann tensor for a maximally
symmetric (d+ 1)-dimensional spacetime to be [35]

Rµναβ =
R

d(d+ 1)
(gµαgνβ − gµβgνα) , (3.1)

where R is the Ricci scalar. Solving Einstein’s equation with a cosmological constant
Λ gives

R =
2(d+ 1)

d− 1
8πGNΛ, (3.2)

valid for d > 1. Therefore, an anti-de Sitter spacetime describes a universe with a
negative cosmological constant. This is the opposite of what we think of our uni-
verse, namely a positive cosmological constant which drives an acceleration of the
expansion of our universe. AdS spacetimes, instead, make space shrink and two
massive objects will always be pulled together no matter how fast they move apart.

To appreciate the symmetries of (d+1)-dimensional anti-de Sitter spacetime, we
embed it in R(2,d), namely a flat spacetime of d spatial dimensions and two timelike
dimensions. The AdS spacetime is then the hypersurface

− T 2
0 − T 2

1 +
d∑

n=1

X2
n = −R2. (3.3)

Here R is the characteristic length scale of the spacetime. The metric of AdS space-
time is thus the induced metric on the hypersurface. The de Sitter spacetime can be
defined similarly with the right-hand side being instead strictly positive. First notice
that the symmetry of this spacetime is SO(2, d), allowing us to, for example, rotate
the d spatial dimensions, and the two time dimensions separately. We are now going
to explore this hypersurface closer by only allowing one spatial dimension. Setting
all spatial dimensions except X1 to zero, after renaming X1 = X we get

T 2
0 + T 2

1 −X2 = R2, (3.4)

which can be reparameterized to Rindler-like coordinates, T0 = R cosh(ρ) cos(τ),
T1 = R cosh(ρ) sin(τ) and X = R sinh(ρ). This gives the metric

ds2 = −dT 2
0 − dT 2

1 + dX2 = R2
(
− cosh(ρ)2dτ 2 + dρ2

)
. (3.5)

Note that the two new coordinates τ and ρ are dimensionless. The representation in
Eq. (3.3) allows for closed timelike curves (Xn = 0) which generally is something
one tries to avoid in relativity since it can make causality break down. Many authors,
therefore, define the AdS spacetime as the universal cover of the above hypersurface,
namely unwrapping the circle S1 (Xn = 0) and allow τ to be in the interval [−∞,∞]
without identifying two different τ [35].

At ρ = 0 the metric looks locally flat (with a conformal factor R2), so to get a
feel of the metric, we imagine that an observer is centered at ρ = 0 throws a tennis
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ball in the positive x-direction. The metric above admits a timelike Killing vector
k = ∂τ which has a corresponding conserved quantity Q = dτ

dλ
cosh(ρ)2 where λ is an

affine parameter which we will use as the proper time for a massive particle. This
equation can be interpreted as a conservation of energy. The tennis ball is massive,
and so the geodesic will follow the path

1 = R2 cosh(ρ)2

(
dτ

dλ

)2

−R2

(
dρ

dλ

)2

, (3.6)

which with the conservation of energy yields

dρ(λ)

dλ
= ± 1

R

√
R2Q2

cosh(ρ)2
− 1. (3.7)

The tennis ball has a positive start velocity, ρ′(0) > 0, which determines the energy
Q. But we see that the observer positioned at ρ = 0 will observe the particle to stop
moving at R2Q2

cosh(ρ)2 = 1. At this point, the ball will start moving back to the observer.
When it eventually reaches the observer it will have the same initial speed except it is
moving in the opposite direction, which creates an oscillating motion. This supports
the fact that the cosmological constant is negative in anti-de Sitter. It can generally
be shown that the cosmological constant is

Λ = − (d+ 1)d

16πGNR2
. (3.8)

This example also shows an important symmetry of the anti-de Sitter space, not only
is it symmetric in the spatial dimension, but also in the time dimension.

As we saw, no matter how far you throw the ball, it will eventually come back.
Interestingly, this is not the case for massless objects. By shooting off a massless
photon from ρ = 0, we see that the object reaches infinity at a finite time for the
observer

τ =

∫ ∞
0

dτ

dρ
dρ =

∫ ∞
0

dρ

cosh(ρ)
= π/2. (3.9)

What happens at infinity? That is a good question, and mathematically, it depends
on what boundary condition we set here. An absorbing boundary condition would
mean energy can leave our system, so instead, we reflect the massless particles back
again. In the case of a black hole in an AdS asymptotic spacetime, we see that a
big enough evaporating black hole can be in thermal equilibrium, where a certain
amount of energy is Hawking radiation while the rest is the mass of the black hole.
We will look at this in more detail later.

We can generalize the metric (3.5) to d spatial dimensions as

ds2 = R2
(
− cosh(ρ)2dτ 2 + dρ2 + sinh(ρ)2dΩ2

d−1

)
, (3.10)

where dΩ2
d−1 is the solid angle of the unit (d − 1)-sphere. These coordinates are

called global coordinates, but another set of coordinates, that is especially useful
when studying black holes, can be obtained by setting r = R sinh(ρ) and t = Rτ ,

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2
d−1, (3.11)
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Figure 3.1: The AdS3 spacetime for an observer centered at r = 0. From the observers
perspective, the massless particle reaches infinity and bounces back, while a massive
particle will always return back to the observer and never reach infinity.

where f(r) = 1 + r2/R2. This metric is intuitively easier to understand since in the
limit R→∞ we simply have a Minkowski flat spacetime with spherical coordinates.
This metric also gives a relationship between the AdS radius R and the time for a
massless particle to reach r →∞. From (3.9) we get

t =
π

2
R. (3.12)

So for massless particles, the AdS spacetime is similar to a box with a length of order
R, while for massive particles, the universe is like an infinitely large box.

One of the coordinate systems that most physicists like to use is the Poincare
patch, defined by the not so pleasant transformation

T0 =
z

2

(
1 +

1

z2

(
R2 + (xi)2 − t2

))
T1 =

Rt

z

Xi =
R

z
xi

Xd =
z

2

(
1− 1

z2

(
R2 − (xi)2 + t2

))
,

(3.13)

where i ∈ {1, ..., d− 1}. Doing the algebra yields

ds2 =
R2

z2

(
−dt2 +

(
dxi
)2

+ dz2
)
. (3.14)

We now have the metric in a conformally invariant form. The transformation (t, xi, z)→
λ(t, xi, z) leaves the metric invariant. It is important to note that the Poincare patch
doesn’t cover the entire manifold, unlike the global coordinates. This metric has a
conformal boundary at infinity, z → 0, which means we can remove the prefactor of
the equation above, or more formally do a conformal transformation

gµν → g′µν = Ω2gµν . (3.15)
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Here, (µ, ν) runs in the orthogonal directions, leaving dz = 0 in the metric in Eq.
(3.14), and Ω = z/R, which shows that the conformal boundary has a flat Minkowski
metric. In the global coordinates, it is easy to check that the conformal boundary
of the global coordinates has the topology R × Sd−1. This shows why these coordi-
nates are helpful in the AdS/CFT framework; we can regularize the metric and get
well-defined quantities on the AdS boundary where the CFT lives, even though it is
infinitely far away.

3.2 CFT

A conformal field theory is a quantum field theory where scale doesn’t matter. These
are coordinate transformations xµ → x′µ(x) so that the new metric satisfies [51]

gµν(x)→ Ω2(x)gµν(x). (3.16)

In Minkowski space, we can easily classify the group of transformations that satisfy
the above requirement. The group of transformations that satisfy this requirement is
called the conformal group, and the Poincare group is a subgroup of these transfor-
mations. The Poincare group already includes translation, boost, and rotation. But
another type of transformation that obviously satisfies the requirement is scaling.
We can scale all coordinates by the same factor, xµ → λxµ. This transformation is
called dilation and doesn’t change the angles between the coordinates. One not so
obvious transformation is the special conformal transformation

xµ → xµ + aµx2

1 + 2xµaµ + a2x2
. (3.17)

These different transformations have different generators. The Poincare generators
are the usual generators for Lorentz transformations Mµν and translation Pα

[Mµν ,Mαβ] = i (ηναMµβ − ηµαMνβ − ηνβMµα + ηµβMνα) (3.18)
[Mµν , Pα] = −i (ηµαPν − ηναPµ) . (3.19)

The invariance under scaling xµ → λxµ generates the dilatation operator D which
acts on a function as,

Df(x) = ixµ∂µf, (3.20)

which gives the following algebra

[D,Pα] = −iPα (3.21)
[D,Mµν ] = 0. (3.22)

The last ingredient is the special conformal transformation which acts on a function
f as,

Kµf(x) = i
(
x2∂µ − 2xµx

ν∂ν − 2xµ∆
)
f(x). (3.23)

The commutator with other generators are

[Mµν , Kρ] = −i(ηµρKν − ηνρKµ) (3.24)
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[D,Kµ] = iKµ (3.25)
[Pµ, Kν ] = 2iMµν − 2iηµνD. (3.26)

We can combine the generators of translation, scaling, and special conformal transla-
tion with the Lorentz generators to explicitly show that the algebra of the conformal
group is isomorphic to SO(d, 2), which is as we saw the symmetry group of pure AdS
spacetime. We write put generators into a single matrix generator,

Jab =

 Mµν
1
2
(Kµ − Pµ) 1

2
(Kµ + Pµ)

−1
2
(Kν − Pν) 0 −D

−1
2
(Kν + Pν) D 0

 , (3.27)

where a, b ∈ [0, d + 1] and µ, ν ∈ [0, d − 1]. Which gives us the following algebra
analogous to the Lorentz symmetry group being isomorphic to SO(1, d− 1) [53],

[Jab, Jcd] = i(GbcJad −GacJbd −GbdJac +GadJbc), (3.28)

where Gab = diag(−,+, ...,+,−), which is exactly the same expression as we get for
the Lorentz generators.

The conformal algebra when d = 2 is a special case and its algebra is infinite-
dimensional, while the d > 2 case above is finite-dimensional. In other words, the
number of independent conformal transformations we can do in 2d is infinite. This
is because any 2d metric can, by a coordinate transformation, be written of the form
gµν = Ω2ηµν globally, namely it can always be put on a form where it is conformally
flat. In higher dimensions, it can only be written on this form locally. Historically, the
term conformal field theory used to be exclusively understood as 2d conformal field
theory, and it was mainly developed to better understand string theory in the 1980s.
Due to the advent of AdS/CFT, the interest and development of higher dimensional
CFT became more popular.

The way we describe CFTs is very different from the language of QFTs. In or-
dinary QFTs we are interested in S-matrices and scattering, but not in CFTs. The
theory must be scale-invariant which doesn’t allow massive excitations. In addition,
we can’t have length scales like Compton wavelength, and so scattering isn’t of in-
terest. Instead, we are mostly interested in mainly two aspects of a QFT: Correlation
functions and operators.

The commutators in Eqs. (3.21) and (3.25) resemble ladder operators where
Pµ is analogous to the creation operator and Kµ is the annihilation operator. We
can also think of D as analogous to the Hamilton operator. We can therefore create
a representation of the operators that are similar to something we already know
from QFTs. In this representation, the operators are eigenfunctions of the dilation
operator D, and it annihilates the vacuum state. If we choose the eigenvalue of D
to be −i∆, then we get under a scaling transformation xµ → λxµ that the fields
transform as

Φ(x)→ Φ′(x) = λ∆Φ(λx). (3.29)

∆ is called the scaling dimension, and in this representation Pµ raises ∆ while Kµ

lowers it. The ∆ must have a lower bound, and for unitary CFTs the bound is
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∆ ≥ (d−2)/2. There must be operators with a scaling dimension at this lower bound
which are annihilated by Kµ, analogous to the vacuum state being annihilated by the
lowering operator in an ordinary QFT. Such operators are called primary operators.
With this in mind, we build commutators relation for D and Kµ on top of an already
existing Poincare representation of a field or operator Φ(x). This representation
has the following commutator algebra for the conformal field group acting on an
operator Φ(x) [1]

[Kµ,Φ(x)] =
(
i
(
x2∂µ − 2xµx

ν∂ν − 2xµ∆
)
− 2xνΣµν

)
Φ(x), (3.30)

[D,Φ(x)] = i (−∆ + xµ∂µ) Φ(x), (3.31)
[Pµ,Φ(x)] = i∂µΦ(x), (3.32)

[Mµν ,Φ(x)] = (i(xµ∂ν − xν∂µ) + Σµν)Φ(x), (3.33)

where Σµν acts on the intrinsic degrees of freedom of the field which for example
gives rise to spin.

The conformal group severely restricts the correlation functions of an operator
and using the algebra above, one can show that the 2-point correlation function of
a scalar field φ(x) is [1]

〈φ(x)φ(y)〉 ∝ 1

|x− y|2∆
. (3.34)

On the other hand, the correlation function between two primary scalar fields with
different scaling dimension vanishes.

3.2.1 Properties of a CFT

Conformal field theory is a huge field in physics, and we don’t have time to go
through all details of it. Instead, we will in this section mention important properties
we will need later.

The stress-energy tensor is an important quantity in a CFT, and it can easily be
seen from the conformal invariance of the theory that the trace of this tensor must
vanish. Consider conformally scaling the metric gµν → e2ρgµν , then the infinitesimal
variation is δgµν = 2ρgµν , thus varying an arbitrary action with respect to the metric
yields

δS =

∫
d2x

δS

δgµν
δgµν =

∫
d2x2ρ

δS

δgµν
gµν = −

∫
d2x
√
−gρT µνgµν (3.35)

= −
∫
d2x
√
−gρT µµ, (3.36)

where we have defined the stress-energy tensor as

Tµν = − 2√
−g

δS

δgµν
. (3.37)

Since a conformal scaling shouldn’t affect the action, we require the trace of the
stress-energy tensor to be zero, T µµ = 0. Note that this result is purely classical, and
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it can be shown that in a quantum theory of two dimensions the expectation value
is [51]

〈T µµ〉 = − c

12
R, (3.38)

where c is the central charge which is roughly the number of degrees of freedom in
the theory. R is the Ricci tensor, and this is often called the Weyl anomaly and is
one of the reasons we need 26 dimensions for bosonic string theory to be a consis-
tent theory. Later on, we will consider the stress-energy tensor of a 2d CFT in the
semi-classical region. Namely apply standard quantum field theory techniques to a
background that is not necessarily flat. Thus, we will simply always assume that we
have quantum expectation value and don’t explicitly write the brackets.

Often we want to go from one topology to another, for example, map a flat 2d
plane to the surface of a cylinder as we will later in this chapter. First, it is often
more convenient to work on 2d CFT in lightcone coordinates written as complex
coordinates, z = x + t = x + itE and z̄ = x − t = x − itE. tE is the Euclidean time,
and this makes the non-diagonal elements of the stress-energy tensor zero (given
you have fixed the Weyl anomaly), while the two diagonal elements become only a
function of their respective coordinates, Tzz(z) and Tz̄z̄(z̄). This is simply because the
symmetric stress-energy tensor has three elements, and with energy conservation,
we only have two independent elements Tzz and Tz̄z̄. For a good introduction to
2d CFTs, see Ref. [51]. We will just skip ahead and give the results. Going from
a cylinder to a 2d plane is equivalent of the conformal transformation z = e−iw,
where w = x + itE and the spatial coordinate is the position on a unit circle x ∈
[0, 2π). Undergoing such conformal transformations may yield a different stress-
energy tensor and the transformation law is [51](

∂z

∂w

)2

Tzz(z) = Tww(w)− c

12
S(z, w), (3.39)

where

S(z, w) =

(
∂3z

∂w3

)(
∂z

∂w

)−1

− 3

2

(
∂2z

∂w2

)2(
∂z

∂w

)−2

(3.40)

is called the Schwarzian. For the mapping from cylinder to 2d plane, we have
S(z, w) = 1/2, so we get

Tww(cylinder)(w) = −z2Tzz(plane)(z) +
c

24
. (3.41)

The same result holds for the complex conjugate, Tz̄z̄(z̄). If the plane has a vanishing
energy in vacuum, Tplane(z) = 0, the cylinder will still have a non-zero vacuum
energy, given the central charge is non-zero. We can then find the energy density E

E =

∫
dxTtEtE

2π
= −

∫
dx(Tww + Tw̄w̄)

2π
= − c

12
, (3.42)

where we assumed that Tww and Tw̄w̄ have the same central charge c. We will use
this result when talking about black holes later in this chapter.
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Figure 3.2: How the replica trick works. In this case, we have drawn a 3-sheeted
Riemann surfaceR3. The blue line is the A-region we have to integrate over, and there is
a small gap interval [−ε,+ε] in Euclidean time that allows us to glue the sheets together.
Adapted from Ref. [17].

3.2.2 Calculating the Entanglement Entropy in a QFT

A conformal field theory is a special class of quantum field theories, and so we need
to use the tools from QFT to find the entanglement entropy of a CFT region. The
formula for the entanglement entropy was given earlier as SA = −TrĀ(ρA ln(ρA))
whereA is a given subsystem and Ā is its complement. Earlier we looked at examples
of two electron creating a singlet state, but now we have a field φ(x) that we trace
over, only allowing x to be in the region A, x ∈ A. It is proved fruitful to consider
the replica method [15, 35, 36], where we find TrA(ρnA) for a positive integer n and
analytically vary it and differentiate to find the entropy,

SA = − ∂

∂n
TrA(ρnA)|n=1 = −TrA(ρA ln(ρA)). (3.43)

This can be generalized to adopt the so-called Rényi entropy,

S
(n)
A =

1

1− n
ln TrA(ρnA), (3.44)

so that the entanglement entropy becomes SA = limn→1 S
(n)
A , easily seen to be true by

L’Hospital’s rule. The diagonal elements in the density matrix can thus be found by
using the path integral approach. For simplicity, we will consider a 1+1 dimensional
theory, but our formulas can easily be generalized to multiple spatial dimensions.
We choose a wavefunction in the ground state |Ψ〉

〈ψ0|Ψ〉 = Ψ[φ0(x)] =

∫ tE=0

tE=−∞
Dφ e−SE(φ)|φ(tE=0,x)=φ0(x). (3.45)
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Here SE =
∫∞

0
dtELE is the Euclidean action, and φ is a collection of all local fields.

An element of the density matrix in the ground state becomes

ρφ0φ′0
= 〈ψ0|Ψ〉〈Ψ|ψ′0〉 = Ψ[φ0(x)]Ψ∗[φ′0(x)]. (3.46)

Here Ψ∗ denotes the complex conjugate of Ψ. This can be achieved by replacing
the limits of the integral in (3.45) to go from tE = ∞ to tE = 0 (since tE = it
and everything else is real). To obtain the reduced density matrix ρA we take the
trace over the complement region B by setting φ0(x) = φ′0(x) and integrating over
all fields φ0(x) where x ∈ B. Putting this all together, the elements of the reduced
density matrix becomes [35]

(ρA)φ0φ′0
=

1

Z

∫ tE=∞

tE=−∞
Dφ e−SE(φ)

∏
x∈A

δ(φ(0+ε, x)−φ0(x))δ(φ(0−ε, x)−φ′0(x)), (3.47)

where Z is the partition function which ensures that TrA(ρA) = 1. There is a cut at
tE = 0 in the region x ∈ A with width 2ε for a small ε � 1. φ0(x) is attached at the
upper part of the cut, and φ′0(x) on the lower part. We now need to calculate the
matrix products of n reduced density matrices and taking the trace, namely

TrA(ρnA) = (ρA)φ0φ1
(ρA)φ1φ2

... (ρA)φn−1φ0
(3.48)

where the sum over the indices is interpreted as path integrals. One can think of
having a n number of independent fields φi(tE, x) where we have the n number of
boundary conditions

φi(ε, x) = φi+1(−ε, x), (3.49)

for i ∈ [1, n] where we identify i+ n ≡ i. Figuratively, we glue the two sides of a cut
to cuts of a new copy of the same reduced matrix. See Fig. 3.2. The topology we get
from this gluing along the branch cuts is a n-sheeted Riemann surface Rn. All these
n boundary conditions collectively create one single field φ(tE, x) living on Rn. The
trace then becomes

TrA(ρnA) =
1

Zn

∫
(tE ,x)∈Rn

Dφ0Dφ1...Dφn−1 e
−SE [φ0]−SE [φ1]−...−SE [φn−1] =

ZRn
Zn

. (3.50)

We are initially interested in a 2-dimensional CFT living on a plane, R1,1, but the
Wick rotation to Euclidean time maps to the complex plane C. The gluing is invariant
under the cyclic permutation of the fields ZN , namely i → i + 1 and n + 1 ≡ 1, and
so the topology of the Riemann sheet is the quotient space Cn

Zn . We are effectively
no longer working with the original CFT, but instead with a cyclic product orbifold
theory [43].

In an orbifold theory, one can introduce twist operators, satisfying the cyclic
permutation of the fields and the twisted boundary conditions. We will not jump
into twist field technology, but we will need some results from it: The partition
function is given by the two-point function of two twist operators τn on a Riemann
sheet and can be written as [43, 15]

ZRn ∝ 〈τn(0,−l/2)τ−n(0, l/2)〉nRn ∝
1

|l|2n∆n
(3.51)
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Where we have used the 2-point correlation function from Eq. (3.34) by treating
the fields as primary. Using the tools of 2d CFT, one can also show that the scaling
dimension is

∆n =
c

12

(
1− 1

n2

)
. (3.52)

Thus, we get from the formula for Renyi entropy

S
(n)
A =

1

1− n
ln

(
ZRn
Zn

)
(3.53)

=
1

1− n
ln

(
(l/a)2n∆n

(l/a)2n∆1

)
(3.54)

=
c

6

n+ 1

n
ln

(
l

a

)
(3.55)

where we introduced a UV cutoff a. Taking the limit n→ 1, we get

SA =
c

3
ln

(
l

a

)
. (3.56)

It is rather remarkable that this equation is only a function of the length l and the
central charge c. It seemingly doesn’t care about any other details of the CFT2, and
it doesn’t seem to tell us much about how the degrees of freedom are entangled. It
does, however, show us that it is linear in the central charge, and so one often uses
the equation to find the central charge of a CFT2.

Similarly, a CFT2 that lives on the boundary of a cylinder, R × S1, where the
spatial dimension is the circle S1, has the entanglement entropy [15, 35]

SA =
c

3
ln

(
L

πa
sin

(
πl

L

))
, (3.57)

where L is the circumference of the cylinder.
In a thermal system on a flat plane or a large cylinder, L→∞, we get

SA =
c

3
ln

(
β

πa
sinh

(
πl

β

))
, (3.58)

which in the large temperature limit, β � l, simply becomes extensive, thermody-
namic entropy as expected,

SA ≈
cπlT

3
, (3.59)

which signals that the entanglement is broken.

3.3 AdS/CFT Conjecture

In 1997 Maldacena found an intriguing relationship between asymptotic anti-de Sit-
ter spacetimes and conformal field theories [32]. He initially conjectured this rela-
tionship by looking at a 4 dimensional, N = 4 supersymmetric Yang-Mills model, a
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Figure 3.3: A spatial slice of AdS3 that is equivalent to the CFT2. More generally, an
asymptotic AdSd+1 description is equivalent to a CFTd description. The conformal field
theory is placed infinitely far away, r → ∞, which corresponds to z → 0 in Poincare
patch coordinates. The part of the bulk field φ that blows up or stays constant at the
horizon φ0 can be interpreted as the source J of the CFT.

supersymmetric generalization of the Yang-Mills theories that govern the weak and
strong nuclear forces. He showed that this theory is equivalent to IIB string theory
in an AdS5 background so that the supersymmetric Yang-Mills theory lives on its
conformal boundary.

Today we view the conjecture as being valid outside the realm of string theory.
It states that a gravitational universe described by quantum gravity in d-dimensions
which is AdS asymptotic can be equivalently described as a conformal field theory
in (d − 1)-dimensions living on the conformal boundary of the bulk universe. This
is a powerful statement given that gravity is not well understood at high energies.
One can describe gravity as an effective gravity theory at lower energies since the
infinite set of parameters needed in the non-renormalizable theory are suppressed by
very high energy scales. Thus, combining quantum mechanics and gravity at lower
energies is not a problem, but at higher energies, we don’t know what to do.

It might seem unclear how we apply it to our universe. Neither do we live
in an AdS asymptotic universe, nor is our universe conformal. Had our universe
been a quantum conformal field theory we wouldn’t have any notion of distances.
There would be no such thing as Compton wavelengths or black hole areas. Our
best theory to describe gauge theories such as the strong nuclear force SU(3) is
classically conformal, but, as David Tong puts it, ”the weight of the world relies on
the fact that Yang-Mills fails to be conformal on a quantum level” [51]. The hope is
nevertheless to have a solid understanding of how to relate the gauge theory with
the gravity theory before we try to apply it to our seemingly de Sitter asymptotic and
non-conformal quantum field theory universe.

3.3.1 Scalar Field

Let’s look at an example where a field in pure AdS corresponds to a boundary field
at the limit radial infinity, r → ∞, where the conformal boundary lies. We will do
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the calculations in the Poincare patch where this limit is equivalent to z → 0. The
equation of motion for a massive scalar field φ in a fixed gravity background is

gµν∇µ∇νφ = m2φ, (3.60)

which can be written as

1√
−g

∂µ
(√
−ggµν∂νφ

)
= m2φ. (3.61)

We use the Poincare patch metric from Eq. (3.14) and write the flat coordinates
as x = (t, xi) in d dimensions with the addition of z, which gives us the conformal
boundary at z → 0. Thus, the whole AdS spacetime is (d + 1)-dimensional. The
equation becomes

( z
R

)d
∂z

((
R

z

)d−2

∂zφ

)
+

(
R

z

)2

∂a∂aφ = m2φ, (3.62)

where a runs over the interval a ∈ [0, d − 1]. Assuming the coordinates orthogonal
to z behave like a free wave, the solution will be of the form φ(x, z) = eikax

a
fk(z),

giving us the equation

∂2
zfk −

d− 1

z
∂zfk =

(
m2R2

z2
+ k2

)
fk. (3.63)

We are only interested in how this equation evolves close to the boundary, so we
look for solutions of the form fk ∝ z∆ when z → 0. That gives us the second-order
equation

∆(∆− 1)− (d− 1)∆ = m2R2, (3.64)

which has two possible solutions

∆ =
d

2
±

√(
d

2

)2

+m2R2. (3.65)

As the notation suggests, ∆ is the scaling dimension of the dual field living on the
conformal boundary as we soon will see.

For simplicity, we assume we get two real solutions for ∆. Letting the largest
one be written as ∆, we get the combined solution

φ ≈ φ0(x)zd−∆ + φ1(x)z∆. (3.66)

Here, φ0,1 are functions given by two independent boundary conditions. One can
be found by looking at the past horizon z → ∞, while the other can be found by
looking at the conformal boundary z → 0. Close to the boundary, z = ε → 0, the
last term goes to zero, while the first term is either a constant (m = 0) or it blows up
(m > 0). We can now identify the CFT source field ϕ by removing the divergent part
of φ,

ϕ(x) = lim
z→0

z∆−dφ(x, z), (3.67)
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thus, we see that φ1(x) acts as a normalizable boundary function.
Eq. (3.63) can be solved using Bessel functions [41], and requiring that the

field doesn’t increase exponentially in the bulk center at large z, we get the solution
fk(z) = zd/2K∆− d

2
(kz). Putting this into our equation for the field

φ(x, z) =

∫
ddk

(2π)d
eikax

a

fk(z), (3.68)

where fk(z) = φ0(k)zd−∆ + φ1(k)z∆. Where φ0,1 has been Fourier transformed to
momentum space. To evaluate this wave function on the conformal boundary, we
rewrite the action by integration by parts,

S = −1

2

∫
dzddx

√
−g
[
gµν∂µφ∂νφ+m2φ2

]
(3.69)

= Sboundary +
1

2

∫
dzddxφ

√
−g
[

1√
−g

∂µ
(√
−ggµν∂νφ

)
−m2φ

]
(3.70)

The second term is zero by the equation of motion, and Sboundary is the action on the
conformal boundary z = ε→ 0, which becomes

Sboundary = −1

2

∫
dzddx∂µ

(√
−gφgµν∂νφ

)
|z=ε (3.71)

=
1

2

∫
boundary

ddx
√
−gφgzz∂zφ (3.72)

∝
∫
ddk

(
ε−2(2∆−d)(d−∆)φ0(−k)φ0(k) + dφ0(−k)φ1(k)

)
, (3.73)

where we have let ε → 0, only keeping the leading order terms. The first term
diverges, and so we need to renormalize it by adding counter terms, similarly to
how we renormalize in QFTs. But for simplicity, we will assume the mass is zero,
making ∆ = d. Now, this term vanishes, and we only need to worry about the second
term. Using the Bessel functions above, one can find the ratio [53, 41]

φ1(k)

φ0(k)
∝
(
k

2

)d
(3.74)

Now the action becomes

Sboundary ∝
∫
ddkφ0(−k)φ0(k)kd. (3.75)

Fourier transforming back to position space φ0(k) =
∫
dxe−ikax

a
φ0(x) and using the

formula [41] ∫
ddkeikax

a

kn ∝ 1

|x|d+n
, (3.76)

gives us

Sboundary ∝
∫
ddxddy

φ0(x)φ0(y)

|x− y|2d
. (3.77)
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Now, assuming the AdS/CFT correspondence, this should be the action for the con-
formal field theory living on the boundary. We can now find the generating func-
tional for the gravity

ZAdS[φ0] =

∫
φ(z→0)=zd−∆φ0

DgDφ eiS[g,φ] ≈ eiSboundary[φ0], (3.78)

where we used that in the semi-classical limit, we only need the classical solutions,
and in that case, only the boundary term in non-zero. Next step is to calculate the
correlation function for two operators using this generating functional,

〈O(x)O(y)〉 = − 1

ZAdS

1

∂φ0(x)∂φ0(y)
ZAdS ∝

1

|x− y|2d
. (3.79)

Thus we get exactly what we would expect from the correlators of a two-point func-
tion in a CFT, also confirming that ∆ = d is the scaling dimension. We also confirm
that φ0 can be interpreted as the source field on the boundary.

Now, we set m2 = 0 to make the math easier, and we didn’t run into many
problems. Had we, however, allowed the mass to be positive, we would immediately
run into infinities, but they could have been solved by adding counter terms to the
action at the boundary, effectively removing the infinities. This is analogous to what
we do in regular QFT when we run into infinities, we add counter terms infinite in
size which effectively gives us an effective action without infinities. In addition, we
would still get the same expression above, namely 〈O(x)O(y)〉 ∝ |x− y|−2∆.

Our example was pure AdS geometry. Had we instead looked at an AdS asymp-
totic universe where the bulk geometry was far more complicated, then much of the
math we already have done would still be true since one can think of the Poincare
patch coordinates as being a small region close to the boundary. The big exception
is the ratio in Eq. (3.74) since that ratio was determined by a boundary condition
deep inside the spacetime. Thus, the boundary action can be drastically different,
depending on what happens deep in the bulk. This again could give a very different
correlation function for two boundary operators.

This calculation shows what the essential part of the AdS/CFT conjecture is.
The conjecture can be precisely stated as [41]

ZAdSd+1
[φ→ φ0] = ZCFTd [φ0], (3.80)

where φ → φ0 means we are removing the divergent prefactor of φ and setting it to
be φ0 at the boundary, acting as a source. Thus if the conjecture holds true, we see
that quantum gravity with a negative cosmological constant is equal to something
well-defined like a CFT. We don’t really have an explicit equation of ZAdS, and in the
semi-classical limit the action in gravity with a scalar field would be

Ssemi-cl[g, φ] =

∫
dd+1x

√
−g
[
R− Λ

16πGN

+
1

2
(∇φ)2 +

1

2
m2φ2

]
. (3.81)

This action is not renormalizable so we shouldn’t take it literally in high energy limit.
Therefore, we are interested to know in what limit the CFT gives a semi-classical bulk
dual.
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When we talk about CFT, we often talk about the number of parameters N in
the theory. If the CFT is a Yang-Mills system, the natural parameter to talk about is
the size of the special unitary group SU(N) which is a gauge symmetry of the action.
’t Hooft was able to show that such systems simplified in the large N limit where the
effective coupling of the system becomes λ = g2

YMN , gYM being a normalization
constant of the action. Leaving g2

YM constant while taking the high N limit, the
Yang-Mills system becomes highly coupled, and it was shown explicitly in string
theory that this was equivalent to a bulk AdS where the AdS radius was much larger
than the Planck length. We therefore get the convenient result that semi-classical
gravity in AdSd+1 is dual to a strongly coupled CFTd.

Our universe is seemingly not AdS asymptotic, so it doesn’t seem like we can
directly apply the conjecture to our universe, and whether or not we ’live’ in a (2 +
1) dimensional conformal field theory is not clear. There are however theories in
cosmology, such as the Randall-Sundrum model [42] where we and all particles
of the standard model live on a 4-dimensional membrane in a 5-dimensional AdS
spacetime, and in that case, one can apply the conjecture to our entire universe. But
AdS/CFT is nevertheless a handy tool that has been regularly used in theories far
outside the realm of quantum gravity. The idea is that if you have a strongly coupled
quantum field theory, the math might be easier to do if you jump into the dual gravity
description where things aren’t strongly coupled anymore. This technique has been
implemented in vastly different branches of physics from condensed matter theory
to nuclear physics [41].

3.4 Application to Black Holes

Let’s look at an AdS universe with a black hole more in detail. The Schwarzschild-
AdS metric in d > 3 dimensions is simply [26],

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2dΩ2

d−2, (3.82)

f(r) = 1 +
r2

R2
−
(r0

r

)d−3

. (3.83)

Here r0 is the Schwarzschild radius if the universe was asymptotic flat. Now, the
event horizon has a non-trivial equation f(rs) = 0, but we can still find the temper-
ature from Eq. (2.20),

T =
d− 3

4πrs
+

(d− 1)rs
4πR2

. (3.84)

In the asymptotic flat case, R→∞, we get the Hawking radiation for a Schwarzschild
metric we found in the Preliminaries.

Since the metric is static, time is a Killing vector, preserving the overall energy
of the spacetime. It also allows us to take use of the Tolman relation to find the
temperature Tobs an observer at distance r feels [50],

Tobs(r)
√
−gtt(r) = constant (3.85)
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And so, in the large r limit, f(r →∞) = r2/R2,

Tobs(r) ∝
1

r
(3.86)

We see something interesting here. The temperature of any black body in an AdS
asymptotic spacetime has no well-defined meaning as it has in an asymptotic Minkowski
flat spacetime. In the latter case, the temperature is simply what an observer in-
finitely far away observes, but in AdS, the thermal radiation will be infinitely red-
shifted at spatial infinity. Thus the temperature will always be zero infinitely far
away. The reason AdS is different is that the more distance there is between an ob-
ject and an observer, the more the observer has to accelerate to keep the distance
constant.

In the context of the AdS/CFT conjecture, we have to think about the AdS bulk
in terms of quantum gravity, thus there will be Hawking radiation in the bulk, dom-
inated by massless particles with no angular momentum. As we have seen, massless
geodesics hit the boundary in finite time and are reflected back. Even though the
temperature of the radiation is zero at infinity, it will be blueshifted back to a finite
number again when it returns to the black hole, following Tolman’s relation.

Therefore, it makes sense that black holes can be stable in an AdS asymptotic
spacetime, unlike asymptotic flat spacetimes. This was shown more rigorously by
Hawking and Page in 1983 using the Euclidean path integral approach [27]. They
showed that there exists a minimal critical temperature Tc that gives a first-order
phase transition between the unstable state T < Tc, and higher energies where the
black hole can be in equilibrium with the Hawking radiation T > Tc. In this case, the
heat capacity of the black hole is positive, namely, it becomes more massive when
it gets warmer, unlike the negative heat capacity of Schwarzschild black holes in
asymptotic flat spacetimes. This phase transition is called the Hawking-Page transi-
tion and happens when the radius of the black hole is on the order of the AdS radius
[26].

As we earlier mentioned, black holes give an upper bound on entropy [13, 33].
The region contained by a shell of radius rs can not have a higher entropy than
the Bekenstein entropy of a black hole with Schwarzschild radius rs. So in the case
where you have a large number of fields in the bulk, it seems at first glance that the
degrees of freedom could be larger in the bulk since they have an additional spatial
dimension to propagate in, but fields carry energy which curves space into creating
black holes if the energy is large enough. And so black holes bound the entropy and
freedom of state so that we don’t run into a contradiction. Thus, black holes are
essential to understanding the AdS/CFT conjecture.

3.4.1 Example of AdS3/CFT2 Equivalence

In this section, we will look at an explicit example of AdS/CFT equivalence by look-
ing at a black hole in AdS3. Einstein’s equation in 3d doesn’t allow for black hole
solutions in flat space, but luckily for us, there is a solution for eternal black holes in
a universe with negative cosmological constant. This is called the BTZ black hole and
was discovered surprisingly recently in 1992 [11]. One didn’t expect to find a black
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hole solution in 3d gravity due to the limitations of three dimensions. In three di-
mensions, the Riemann tensor is fully determined by the Ricci tensor, which doesn’t
allow the Riemann tensor to enjoy any additional degrees of freedom causing physics
like gravitational waves. In other words, 3d gravity has no local degrees of freedom.
Therefore, we say that the spacetime must always be locally AdS even when a black
hole is present. Thus, effectively, we have a bunch of coordinate charts, all locally
AdS, being glued appropriately together so that a black hole emerges globally.

The black hole is rather remarkable since it doesn’t have a curvature singularity,
but it does have all other generic properties of Kerr and Schwarzschild black holes,
such as an event horizon and surface temperature. For a non-rotating BTZ black
hole, the metric is

ds2 = −(r2 − r2
s)dt

2 +
1

r2 − r2
s

dr2 + r2dθ2. (3.87)

Here, the Schwarzschild radius is rs = M , and we have set the AdS length scale to
one, R = 1. Using Eq. (2.20), we find that the temperature is T = rs/2π. As always
the entropy is S = A/4GN , but the area now is simply the circumference, thus

S =
2πrs
4GN

=
2π2c

3β
, (3.88)

where c is the central charge of gravity c = 3/2GN as found by Brown and Henneaux
in 1986 [14]. To find the entropy in the dual CFT2, we are going to use a handy trick
on can use in any conformal theory [51].

The partition function for any field theory is

Z[β] = Tre−βH . (3.89)

The CFT dual of the bulk lives on a cylinder, so we are interested in the vacuum
state on a cylinder, and as we saw in Eq. (3.42), this vacuum energy is non-zero,
H = −c/12. Thus, in the low-temperature limit the partition function favors the
vacuum state, so we approximately get

Z[β] = eβc/12. (3.90)

On the other hand, we know that large black holes in equilibrium dominate the
canonical ensemble so we are interested in a high-temperature at the boundary. The
trick is to use the conformal symmetry to our advantage, a trick first seen by Cardy.
The conformal symmetry allows us to change the 2d coordinates by a prefactor.
The conformal field theory is defined on a cylinder, but if we change our time to
Euclidean time t→ itE, the new topology of the CFT is a torus. The Euclidean time
coordinate is valid in the region tE ∈ [0, β). Letting x be the position coordinate
defined in the region x ∈ [0, 2π). We now perform a scaling transformation, as
allowed by the conformal symmetry,

tE →
2π

β
tE
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x→ 2π

β
x. (3.91)

Now, the spatial coordinate is defined on the interval x ∈ [0, 4π2/β), while the Eu-
clidean time coordinate is defined in the same region as the original spatial coordi-
nate, namely tE ∈ [0, 2π). Now, physics doesn’t care what we label our coordinates,
so we label x to be our new Euclidean time coordinate, and we suddenly get the very
nice expression

Z[β] = Z[4π2/β] = eπ
2c/3β, (3.92)

where the last equality is true for high temperatures, β → 0. Now that we have a
partition function valid in high temperatures, we can find the energy and entropy

E = −∂ lnZ

∂β
=
π2c

3β2
, (3.93)

S = βE + lnZ =
2π2c

3β
. (3.94)

The entropy in the CFT2 is therefore the same as in the dual AdS3 from Eq. (3.88).
Often we don’t have the luxury of being able to explicitly calculate whatever we
want in arbitrary dimensions, but the case AdS3/CFT2 is often very popular since the
math becomes much more tractable. One is often able to show a correspondence
directly just like we did. This case will also be useful for us later in the dissertation.
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Chapter 4

Entropy in Gravity Theories

We will in this chapter look at how one can find the entanglement entropy in a theory
with gravity. And with AdS/CFT in our toolset, we can see how the entanglement
entropy for a region in a pure CFT corresponds to the entanglement entropy for a
corresponding region in the AdS bulk.

This chapter follows the chronological order of the development of the field. It
was early on known that vacuum Minkowski space was highly entangled, and after
the advent of AdS/CFT, Ryu and Takayanagi surprised the world with a conjectured
relation between the entanglement in a CFT and the minimal surface in the dual
bulk. Surprisingly, the formula is exactly the same as Bekenstein’s entropy expression
except for the area we are interested in isn’t necessarily a black hole horizon.

Their conjecture was eventually proved and generalized, and after a decade,
one was to apply its generalized formula to black holes. And as we will see, one was
suddenly able to reproduce the Page curve of an evaporating black hole.

4.1 Area Law of Entanglement Entropy

A vacuum is not just empty space. The arrival of quantum field theories taught
us that spontaneous creation and annihilation of particles happen all the time, and
when one tries separate space into two halves, one separates the spontaneous pro-
cesses of quantum mechanics. This makes the Minkowski vacuum highly entangled.

The ground state for a massless free scalar field in (3+1)d has been shown to
have an entanglement entropy in a region to be proportional to its surface area and
not its volume by Srednicki [45]. He gave a simple, but powerful argument why we
should expect so. Let’s say we have a pure universe, and we look at the entanglement
entropy in a region A in a sphere with radius r, then the rest of the universe is its
complement Ā = B. When calculating the reduced density matrix of B we trace out
the degrees of freedom inside the sphere, A, namely we integrate over the volume
of A. So we expect the entanglement entropy of B, namely SB = −TrρB ln ρB,
to scale with the volume of A, which is O(r3). But by the same argument, the
entanglement entropy of A should scale with the volume of B which is not O(r3).
This is a contradiction since a pure system should have SA = SB. On the other hand,
the only thing the two regions share is the surface separating them. Therefore, it
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is natural that the entanglement entropy scales with the area of the entanglement
surface.

Srednicki’s calculated that the entanglement entropy becomes

S = κ
Area(∂A)

a2
(4.1)

where a is a UV cutoff, ∂A is the boundary of the region A and κ is a numerical
constant. As expected, it is proportional to the area of the surface separating the
regions. In addition, the entropy is infinite and is regulated by a cutoff. This can
be understood from equal time correlation functions between two fields that are
spacelike separated. Taking the distance between them to zero gives a power-law
behavior that diverges. Large correlation means large entanglement.

Note, however, that in a 2d CFT the area law fails. As we saw in Section 3.2.2
the entanglement entropy scales with the logarithm of the length of A and is not a
constant, O(r0), as the area law would suggest.

4.2 Ryu-Takayanagi Formula

We now introduce the Ryu-Takayanagi formula which was presented in their 5-page
long paper in 2006 [44]. They were able to relate the entanglement entropy of
a conformal field theory living on the asymptotic boundary of a static AdS with a
minimal surface in the AdS dual. The formula for the entanglement entropy of a
sub-region A of a CFT in d dimensions states

SA =
Area(γA)

4GN

. (4.2)

Here, GN is Newton’s constant in the AdSd+1 bulk, and γA is a (d − 1)-dimensional
spatial, static surface in the bulk. This surface must be extremal, and if there exist
several such surfaces, we pick the one with the least area. This surface is always two
dimensions smaller than the bulk, and its endpoints coincide with the endpoints of
A at bulk infinity, ∂γA = ∂A. We also require the surface γA to be homologous to
A, meaning we should be able to continuously deform the curve to coincide with A.
In the case of a spacetime with a black hole, we would then not be able to deform
the path through its curvature singularity. The Ryu and Takayanagi formulated also
requires the spacetime to be static, and so an extremal surface would always lie on
a constant time slice.

The first thing one might notice with this equation is that the equation is iden-
tical to the Bekenstein entropy of a black hole with the exception that we want the
area of a different surface. But this isn’t a coincidence, and it is what one would have
excepted in an AdS spacetime with a stable black hole. If A is the entire CFT2 region,
then one can show that the RT surface wraps around the black hole, giving the same
entropy as in the end of the last chapter in the case AdS3/CFT2. Therefore, the RT
surface prescription can also describe thermal entropy and not just entanglement
entropy.
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Figure 4.1: Constant time slice of a 3d AdS spacetime. The minimal surface γA con-
necting the boundary points of A is the same as the minimal surface γB for B. This is
as expected since the entanglement entropy of regions A and its complement B should
be the same when the total state is pure. We have also depicted the angle between the
boundary points of A, namely ∆θ = 2πl/L as used in our calculation.

To show the validity of this equation, we will look at an exactly solvable case
and explicitly show that the minimal surface (divided by 4GN) in AdS gives the
entanglement entropy of a region with the same boundary points. We will follow
the procedure in [12] to find the minimal surface in AdS3 and show that the RT
formula gives the correct entanglement entropy for the corresponding CFT2 region.
Any surface area bounded at infinity will have a diverging area, thus, in the same
way we need a UV cutoff a for the CFT2, we need at cutoff radius ρ0 in global
coordinates (t, ρ, θ). We only calculate the area up to this radius, and later we will
see that we can identify the length scale to the UV cutoff in the CFT as eρ0 ∝ L/a.

The calculation is easiest to do if we embed the three dimensional AdS in a flat
(2+2)-dimensional Minkowski-like spacetime R(2,2). This is exactly the hypersurface
defined in Eq. (3.3) with d = 2. In three dimensional AdS, the minimal surface
will be a spatial geodesic which we know well how to calculate from any undergrad-
uate class in General Relativity. But now, we constrain the geodesic to be on the
hypersurface, so we add a Lagrange multiplier term to the action,

S =
1

2

∫
dλ
[
gµν ẋ

µẋν + µ
(
gµνx

µxν +R2
)]
, (4.3)

where µ is the Lagrange multiplier, and ẋµ = dxµ

dλ
. Varying this function with respect

to xµ we get µxµ = ẍµ. Contracting with xµ yields −R2µ = ẍµxµ. Noting that
d2xµxµ
dλ2 =

d2(−R2)
dλ2 = 0 = ẍµxµ + ẋ2 gives µ = ẋ2/R2, and we get

xµẋ2 = ẍµ. (4.4)

We have the freedom to reparameterize λ so that ẋ2 = 1. This is because we
want the distance to simply be ∆λ =

∫
dλ = λ1 − λ0. Thus the general solution to

the equation of motion for a spacelike geodesic becomes

xµ = mµeλ/R + nµe−λ/R, (4.5)
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where both mµ and nµ are constants and obey m2 = n2 = 0 and 2mµnµ = −R2. The
length of the geodesic is ∆λ = λ1 − λ0, and we note

xµ(λ1)xµ(λ0) = mµnµ
(
e(λ1−λ0)/R + e−(λ1−λ0)/R

)
= 2mµnµ cosh(∆λ/R) (4.6)

= −R2 cosh(∆λ/R). (4.7)

We switch over to global coordinates as we previously discussed, namely

x0 = R cosh(ρ) cos(τ), (4.8)
x1 = R cosh(ρ) sin(τ), (4.9)
x2 = R sinh(ρ) cos(θ), (4.10)
x3 = R sinh(ρ) sin(θ). (4.11)

Here, θ is the polar coordinate of the two spatial dimensions as a function λ. So
the curve has endpoints at θ(λ0) = 0 and θ(λ1) = 2πl/L, where l is the length
of the subsystem A, and L is the circumference, both at the cutoff radius ρ = ρ0.
The radial coordinate ρ is also a function of λ, and the endpoints are the same
ρ(λ0) = ρ(λ1) = ρ0. We have chosen a spatial slice, so τ remains constant. Entering
the above coordinates into (4.6) finally gives us

cosh(∆λ/R) = 1 + 2 sinh2(ρ0) sin2

(
πl

L

)
. (4.12)

We now have everything we need, and by entering in ∆λ = Area(γA) in the RT
formula, we get by assuming ρ0 � 1

SA =
∆λ

4GN

' R

4GN

ln

(
e2ρ0 sin2

(
πl

L

))
=
c

3
ln

(
eρ0 sin

(
πl

L

))
, (4.13)

where the central charge is c = 3R/2GN as found by Brown and Henneaux in Ref.
[14]. Comparing this to Eq. (3.57), this describes the relationship between the two
cutoff lengths scales in the two theories, eρ0 ∝ L/a.

If we now add matter to our AdS universe but still require it to be static, we get
an eternal non-evaporating black hole in a AdS asymptotic universe. See Fig. 4.2.
As seen in the figure, now the two minimal surfaces γA and γB are different which is
because the black hole is in a thermal, mixed state. Thus, one should not expect the
two CFT boundary regions A and B to have the same fine-grained entropy anymore.
The two surfaces have to be different due to the requirement that the surfaces are
homologous to its corresponding CFT region. In a constant time slice, the minimal
surface can not cross the event horizon without blowing up, but by making A very
small, the surface suddenly becomes disconnected into two pieces; one wraps around
the event horizon and one is attached to the boundaries of A and is, therefore, closer
to the conformal boundary [36]. This shows how one should think of entanglement
entropy when the total state is mixed; a subregion gets a thermal contribution and
an entanglement contribution to its fine-grained entropy. Note however that in this
case, the connected surface that partially wraps around the black hole and ends on
the boundary of A is still extremal, it is just not minimal anymore, and therefore,
does not yield the correct fine-grained entropy.
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Figure 4.2: AdS asymptotic bulk with a non-evaporating black hole. The black hole is in
a thermal state, so the AdS universe is mixed and hence the entropy of the two different
regions of the boundary CFT is different (left picture), due to the homologous constraint
which doesn’t allow the path to enter the black hole in a constant time slice. In the right
picture, we see that when the boundary A becomes very small, the minimal surface γB
yields two contributions: the black hole event horizon area and the infinite radial part.

It might seem counter-intuitive that a part of the minimal extremal surface is the
event horizon, but in a time-symmetric spacetime, the apparent horizon (the surface
where an outgoing null geodesic doesn’t expand) is simply the minimal surface.
And for eternal non-evaporating black holes, the apparent horizon coincides with
the event horizon. Therefore, as argued in Ref. [22], we can view the Bekenstein
entropy of a black hole as an entanglement entropy as a result of dividing space into
two parts; the interior of the black hole and the exterior as mentioned in Chapter 2.

In this paper, we are interested in finding a fine-grained entropy formula we
can apply to a black hole to understand the entropy of its Hawking radiation. But
realistic black holes are not static. They are formed from gravitational collapse, and
they evaporate into radiation until they are gone. Therefore, we are not allowed to
apply the RT formula to our realistic black hole.

The original Ryu-Takayanagi paper presented the formula simply as a conjec-
ture. They noticed that for the calculations above and other examples, the formula
gave the correct entanglement entropy. But seven years later, in 2013, Maldacena
and Lewkowycz proved the conjecture by using gravitational path integrals [31], the
same approach one can take to derive the Bekenstein entropy of a black hole.

One can understand the RT surface from the gravitational perspective. As men-
tioned, by dividing a pure vacuum into two regions, we get two mixed regions that
have a fine-grained entropy proportional to the area of the dividing surface. And
so the entanglement entropy on the boundary region A is equivalent to the entan-
glement entropy of the bulk spatial slice encapsulated by the RT surface γA and the
boundary A. As we will later see, when we generalize the RT formula, everything on
this spatial slice, like bulk operators and states, has a reconstructed representation
on the CFT region A, which will be important later when asking where on the CFT
boundary the bulk Hawking radiation has an equivalent description. In the case of
a mixed bulk state (like a universe with a black hole), we get two different surfaces
γA and γB like on the left in Fig. 4.2. The bulk region inside γA or γB is described
in their respective boundary regions, while the bulk region outside both RT surfaces
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needs information about the entire boundary region in order to have a description.
We will talk about this more in detail later when discussing entanglement wedges.

4.3 Generalized Entropy

The RT formula was generalized by Hubeny, Rangamani, and Takayanagi (HRT)
[29] to include non-stationary spacetimes where the spacelike slice can now evolve
in time. Thus in AdS3, the extremal surface between two boundary points would
generally not be the shortest spatial distance between them at a given time, but
more generally, the shortest spacelike geodesic. For higher dimensions, the surface
would be the extremal surface γA with the same boundaries as the sub-region A,
∂γA = ∂A. If there exists more than one such surface, you pick the one with the
smallest surface area.

We are interested in finding the fine-grained entropy of the Hawking radiation
of an evaporating black hole, but even with this generalization, we are not able to
recover the Page curve. Let’s say we have an evaporating black hole formed from
gravitational collapse, then the only classical HRT surface that is homologous to the
entire boundary is no longer the event horizon area, but instead the empty surface
[39]. This is also an extremal surface, but then the entropy of the black hole will
always be zero. Thus, we are not closer to understanding the fine-grained entropy
of Hawking radiation using this framework.

The HRT surface gives the entanglement entropy up to order O(1/~), and thus
can not describe the real world with quantum effects. So in 2013, the quantum
correction was found by Faulkner, Lewkowycz, and Maldacena [25], and generalized
further by Engelhardt and Wall [23]. They noted that the first quantum correction
is, just like the RT surface, strikingly similar to the generalized, thermodynamic
entropy of a black hole where we now introduce the quantum fields outside of its
event horizon, namely

Sgen(X) =
Area(X)

4G
(d+1)
N

+ Ssemi-cl. (4.14)

Here, X is the event horizon, and Ssemi-cl is the fine-grained entropy of the quantum
fields outside the event horizon in a semi-classical geometry. If one only cares about
the interesting physics of black holes, one should add a cut-off surface so that one
does not include faraway galaxies. If one is interested in more realistic black holes,
namely adding effects like grey-body factors, one should put the cut-off surface well
outside of the peak of the effective potential barrier. Notice that this is simply the
first quantum correction to the Bekenstein entropy. Engelhardt and Wall also showed
that it obeys the second law of thermodynamics ∆Sgen ≥ 0 which supports the notion
that we are dealing with proper thermodynamic entropy.

Engelhardt and Wall showed that the first quantum correction to the fine-grained
entropy of the boundary region A is the surface that first extremalizes the general-
ized entropy and then picks out the minimal of these possible quantum extremal
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surfaces (QES) γ homologous to A,

SA = Min Extγ

[
Area(γ)

4GN

+ Ssemi-cl(Σγ)

]
(4.15)

Here, Σγ is a spatial slice that is bounded by the surface γ and its corresponding
region A. Notice that we have the generalized entropy inside the brackets, except
that the cut-off surface is the γ surface itself, namely the surface that extremalizes
the generalized entropy. We emphasize that this is in no way the exact fine-grained
entropy, and so we regard the system of being semi-classical, namely, we treat the
quantum fields in the standard way, except that they are moving in a curved space-
time.

Historically, the second term was considered a first-order correction to the RT
prescription, namely, it could never compete with the area term. But the past 1-2
years this notion has changed as we will see when we apply it to black holes. There
can be generalized entropies with vanishing area terms that has a huge contribution
from Ssemi-cl that competes with a different non-vanishing quantum extremal surface
that is dominated by an area term. Even more interestingly, Akers and Penington
very recently showed that one has to be careful at how one apply this description
to a system since one can run into paradoxes and contradictions [2]. They found a
more refined QES formula which isn’t as short and compact as the one above, but it
gives the correct result. We don’t have to worry about this, and the systems we will
look at in this dissertation perfectly suits the näıve equation.

An important concept we have to discuss is entanglement wedge reconstruc-
tion. The AdS/CFT dictionary tells us that everything that happens in the AdS bulk
can equivalently be described on the CFT boundary, but where on the boundary is
a given bulk region described? Entanglement wedge reconstruction answers this
question by allowing us to understand where on the boundary region a bulk oper-
ator is ’reconstructed’ [39]. We define the entanglement wedge of the boundary A
as a spacelike slice of the bulk that is encapsulated by the quantum extremal surface
and the boundary A. More precisely, the entanglement wedge is the domain of de-
pendence of this slice. So, if we have a boundary region A, we can reconstruct bulk
operators as long as they live in the entanglement wedge of A. Therefore, the term
Ssemi-cl(Σγ) is simply the semi-classical, fine-grained entropy of the quantum fields in
the entanglement wedge of A. Since we know every operator in the entanglement
wedge, it doesn’t matter what spatial slice Σγ we choose as long as it ends on the
QES and A. See Fig. 4.3 a).

When we later apply this formula to black holes, we are initially interested in
what is happening in the gravity description and not the CFT on the boundary. So
far, we have focused on the entropy on a boundary region in the CFT description, but
what bulk region has the equivalent fine-grained entropy? The answer is, of course,
the entanglement wedge. If we know the state on a spatial slice in the entanglement
wedge, we know the entropy on this slice. When later discussing the information
paradox, we are very interested in the entanglement wedge of the radiation, since
all information once held by a black hole should eventually somehow be encoded in
this wedge if unitarity is preserved.
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Figure 4.3: In a) we see the entanglement wedge of the boundary region A at a given
boundary time t with its corresponding QES. Both Σ1 and Σ2 are valid spacelike slices
that yield the same semi-classical bulk entropy since they both stretch from the QES to
the boundary A at t, and they are both inside the entanglement wedge of A, namely they
can not be influenced by anything outside this causal triangle. We also have b) which
shows a constant time slice of AdS3 with its conformal boundary. The red regions are
the entanglement wedges of their corresponding boundary regions. The yellow plus red
regions are the entanglement wedge of the union of the two boundary regions.

To understand entanglement wedges better, we take a look at Fig. 4.3 b). The
figure depicts an AdS universe at a constant time slice. The conformal field bound-
ary has been split into two sub-regions A and B with the corresponding quantum
HRT surface γA/B. Their respective entanglement wedges have been colored in red
showing where we would find the semi-classical fine-grained entropy given in the
last term of (4.15). More fundamentally, any bulk operators on these spatial slices
can be reconstructed as a boundary operator living on its corresponding CFT bound-
ary region. If we look at the union of both regions C = A ∪ B, we get that the
entanglement wedge is the region colored in yellow plus the region in red. So the
relevant fine-grained entropy would be Ssemi-cl(ΣA∪B). Interestingly, a bulk operator
living in the yellow region does not have a reconstructed boundary operator on ei-
ther A or B, but the union of both does since neither of the two boundary regions
have enough information about the operator [19].

From the classical HRT formula, it was known that if the bulk metric satisfied
the null energy condition, the classical extremal surface γA can not intersect the
causal wedge WA of the boundary region A. See Fig. 4.4. The causal wedge is
defined as WA = I−(DA) ∩ I+(DA), where DA is the domain of dependence of the
boundary region A. And I+(−)(DA) is the causal future (past) of DA. Another way
of saying this is that the classical extremal surface has to stay outside of the domain
of influence.

Engelhardt and Wall also showed in their paper that the same is true for quan-
tum extremal surfaces; it cannot intersect the causal wedge. In addition, the QES is
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Figure 4.4: In the left figure, the boundary region A of an asymptotic AdS spacetime
satisfying the null energy condition on a constant time slice. The domain of dependence
isDA, and the bulk causal wedge isWA. The causal surface CA is the spacelike boundary
of WA. γA can be either the classical or quantum extremal surface. Neither of them can
intersect the bulk causal wedge WA. In the right figure, the entanglement wedge of
the quantum HRT surface γA is the green bulk region and is defined as the domain of
dependence of the bulk spatial slice confined by γA andA. The figure is partially adapted
from [23].
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also spacelike or null separated from the causal surface CA, see Fig. 4.4. It also has
the strong subadditivity property that any fine-grained entropy needs.

We should also mention that there is an equivalent prescription to the minimal
extremal surface formalism generalized by Engelhardt and Wall, and that is the max-
imin formalism. This prescription was known to be equivalent to classical surfaces in
spacetime that don’t violate the null energy condition but was very recently proven
to hold true for quantum surfaces as well [3]. The equation becomes

SA = max
Cauchy

minγ

[
Area(γ)

4GN

+ Ssemi-cl(Σγ)

]
. (4.16)

You first find the surface that minimizes the generalized entropy within fixed Cauchy
slices, then you pick out the one Cauchy slice that maximizes the generalized en-
tropy. This will be your fine-grained entropy. These two prescriptions were shown
to give the exact same quantum surface γ, which gives the same entropy. We will in
the rest of this thesis only use the Engelhardt-Wall formalism.

4.4 Application to Black Holes

We are now interested in applying the quantum extremal surface formula to black
holes to better understand Hawking radiation entropy. Our discussion will follow
closely to Penington in Ref. [39] and Almheiri et al in Ref. [8].

We have a black hole formed from a collapsing shell of photons in an AdS asymp-
totic universe with an equivalent conformal field theory description on the boundary.
We want to consider the entanglement entropy of the black hole and the radiation
separately, but due to the spherical symmetry of the universe, we can’t simply divide
the boundary into a compact sub-region A and its complement B. Instead, we will
turn the boundary into two systems coupled to each other; one being a conformal
field theory with finite temperature T describing the dual, thermal black hole, and
the other an auxiliary reservoir describing the Hawking radiation. As in Ref. [39],
we assume we have an auxiliary Hilbert space reservoir Hrad where the Hawking ra-
diation is absorbed when it reaches the conformal boundary, while a black hole with
finite temperature T is described on the boundary as a CFT HCFT . In other words,
we are in a controlled manner, extracting the Hawking radiation out of the AdS
asymptotic universe. The CFT region is taken to be the entire conformal boundary
of the black hole spacetime.

Now, the quantum extremal surface prescription tells us that entanglement en-
tropy of the black hole is given as the minimal-extremal generalized entropy of the
entire boundary region. Since a boundary has no boundary, the extremal surface is
not anchored at infinity. Rather, due to spherical symmetry, the surface must be a
(d − 1)-sphere at a finite radius, where d is the number of bulk spatial dimensions.
This also includes the empty surface, namely no area term.

Note that since we are allowing Hawking radiation to be absorbed on the bound-
ary, the bulk entropy will depend on the boundary time. This is due to the spacelike
slice between the quantum extremal surface and the boundary being dependent on
what time the slice ends on the boundary. If we have two boundary times t2 > t1,
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then an outgoing Hawking mode can be on the spatial slice (or in the entanglement
wedge of the boundary) at t1, but before t2 it hits the boundary and is absorbed,
lowering the entropy of the bulk. Had we instead used reflecting boundary condi-
tion, the photon would still be on the spatial slice at t2 and thus the entropy would
have stayed the same.

To solve the information paradox, we can’t simply find the entropy and entan-
glement wedge of the black hole and simply assume the entropy of the radiation to
be equal (given the entire state is pure) and the entanglement wedge to be comple-
mentary to that of the black hole. We have to do the math for both, assuming none
of the traits of unitarity. The black hole has a clear boundary region, so finding the
quantum extremal surface and its corresponding entropy is standard procedure. On
the other hand, the radiation absorbed into the radiation Hilbert spaceHrad does not
have a boundary in the normal sense, so we need to be wary of how to define its
quantum extremal surface.

But the math checks out. Penington showed in Ref. [39] that the quantum
extremal surface of the black hole and the radiation perfectly coincide, and that the
two has entanglement wedges complementary to each other. Exactly as we expect
from unitarity when we divide a pure region into two regions, creating two mixed
states.

We will now explain the results of Penington’s paper, but we will note one thing.
In the review article Ref. [8], the authors didn’t assume holography. They assumed
that the universe was asymptotically flat thus having no conformal boundary. In-
stead, they introduced at cut-off shell surface at a couple of Schwarzschild radii
away from the center of the black hole. This surface replaces the CFT boundary, so
we define the black hole region as everything within the cut-off shell, while the radi-
ation region is everything outside. AdS asymptotic universes simply has a negative
cosmological constant. So, there is no reason to think that there are any fundamental
differences between the degrees of freedom contained on a spatial slice originating
from the quantum extremal surface extending to the CFT boundary, than the degrees
of freedom in a flat asymptotic universe from the quantum extremal surface to the
cut-off surface. The AdS slice is infinitely large since the CFT is infinitely far away
from the black hole, but this infinite, empty space contribution has to be regularized
to get a finite entropy. The Hawking radiation that escaped the cut-off shell is funda-
mentally the same as the Hawking modes we absorbed on the CFT boundary in the
AdS asymptotic bulk case. One can think of it in terms of the origin of the quantum
extremal surface formula. It was derived from the gravitational path integral which
treats AdS asymptotic spacetimes on the same footing as asymptotic flat once. Thus,
there are no reasons to think we need the AdS/CFT prescription for our results to
hold. We can therefore apply our formulas to universes that resemble our own more.

4.4.1 Entropy of the Black Hole

We are going to present the result assuming we have a black hole formed from
gravitational collapse of a pure state in an asymptotic flat spacetime. This spacetime
has a cut-off surface far enough from the black hole that we can assume the outside
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spacetime to be approximated as semi-classical. This surface will be placed a couple
of Schwarzschild radii outside of the black hole to make sure the peak of the effective
potential of the black hole, experienced by the Hawking radiation, is well inside the
shell. Previously, in the AdS/CFT prescription case, we saw that absorbing boundary
conditions meant that the fine-grained entropy had to depend on the time on the
CFT boundary. Now, we have the cut-off surface instead, and analogously, the time
we calculate the entropies will be the time measured by an observer on this surface.

Immediately after the black hole has formed, no radiation has escaped the cut-
off surface, and so no mass nor fields exist outside of the cut-off surface, and the
entire system of fields and mass is the black hole. Therefore its fine-grained entropy
is zero. We get the same result by applying the quantum extremal surface formula
to the region. The extremal surface is simply zero, and there are no quantum fields
that contribute. As the black hole starts radiating, it will still stay pure as the outgo-
ing Hawking radiation and its interior partner are both encapsulated by the cut-off
surface, making the entire state of the two entangled partners pure. But once the
outgoing partner escapes the cut-off region, the entropy starts increasing since we
only have information about one of the entangled particles within the cutoff region,
thus increasing the semi-classical bulk entropy Ssemi-cl. The area term, on the other
hand, stays zero since the extremal surface is not minimized by adding a non-zero
area term.

But there is also a different QES that initially is quite large, but eventually will be
the minimal extremal generalized entropy and therefore be the fine-grained entropy
of the black hole. As mentioned, the entanglement wedge should include the causal
wedge, and we immediately conclude that a non-vanishing extremal surface must lie
inside the black hole. Penington showed explicitly that there is, in fact, a QES lying
close to but inside the event horizon. In ingoing Eddington-Finkelstein coordinates,
its position at a given boundary time can be found by rewinding the surface time by
the scrambling time,

v = − β

2π
lnSBH (4.17)

and then shooting off an ingoing null geodesic from the surface. Here, SBH is the
Bekenstein entropy, and v is the infalling time coordinate in Eddington-Finkelstein
coordinates. The QES would lie on the infalling time of this geodesic.

One problem with the actual calculation is grey body factors, making it hard
to find the exact radial position of the QES. As mentioned previously, there is an
effective potential barrier right outside the event horizon, forcing most scalar field
particles to be scattered back to the black hole. Penington was able to show that
if you absorb the radiation into Hrad close to the horizon, well before the potential
peak, the position of the QES is rQES = 2rhor − rs where rs is the apparent horizon
and rhor is the event horizon.

For eternal black holes, these horizons coincide, but for evaporating black holes,
the apparent horizon will have a larger radius than the event horizon. The explana-
tion is simple; at a given time you create an outgoing null geodesic at the apparent
horizon. When created, this geodesic will not move due to the definition of an appar-
ent horizon, but a second after, the black hole has evaporated a bit, thus decreasing
the event horizon and the apparent horizon. Now the massless particle is outside the
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Figure 4.5: Penrose diagram of an evaporating black hole. Before the Page time, the
black hole’s entanglement wedge (red) is inside the cutoff surface (dashed) and the
entanglement wedge of the radiation (blue) is outside it. Each has a corresponding
spacelike slice where one can find the semi-classical bulk entropy. After the Page time,
an island is created right behind the event horizon. The entanglement wedge of this
island belongs to the entanglement wedge of the radiation and thus one has to consider
this region as well.

apparent horizon and can propagate to null infinity. Thus, the apparent horizon can
not be contained by the event horizon of an evaporating black hole. The position of
the QES, r = 2rhor − rs < rhor, is slightly inside the event horizon. See Fig. 4.5.

In addition, this non-vanishing QES generalized entropy gets an entropy contri-
bution from the Hawking radiation between itself and the cut-off surface, but overall,
the area term will dominate, causing the late-time entropy of the black hole to be
very close to the Bekenstein entropy of a black hole. This QES entropy is therefore
quite large, mostly due to its area term. Thus, the minimal QES will initially be the
first one with a vanishing surface term. Over time, the vanishing QES generalized
entropy will strictly increase, due to more and more outgoing Hawking radiation
leaving the cut-off surface, leaving the black hole region more and more entangled
with radiation outside of the cut-off surface. The second QES entropy, on the other
hand, will strictly decrease as the area term becomes smaller and smaller.

Eventually, these two generalized entropy curves intersect and the minimal QES
switches. See Fig. 4.6. This happens at the Page time, and this creates some-
thing that resembles a second-order phase transition due to the dent in the entropy
curve. Now, the full quantum mechanical fine-grained entropy, given by the minimal-
extremal generalized entropy, is strictly decreasing meaning it becomes less and less
entangled with the Hawking radiation. Eventually, the black hole has completely
evaporated, and no gravity or fields are contained within the cut-off surface, so the
entropy vanishes.

The cutoff surface has replaced the CFT boundary, but the interpretation of
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the entanglement wedge on the surface is the same. We are observing the black
hole and the radiation degrees of freedom from this surface, and the entanglement
wedge is the domain of dependence of a spacelike slice going from the cut-off surface
to the QES. Previously, the entanglement wedge was everything inside the cut-off
surface, meaning all information about the black hole was inside this region, which
intuitively makes perfect sense. But after the Page time, most of the degrees of
freedom describing the black hole on the cut-off surface is encoded in the radiation.
That means more rigorously that operators defined within the QES actually affect
the entropy and state of the Hawking radiation outside the cutoff surface.

4.4.2 Entropy of the Radiation

We will now look at the same process but from the point of view of the Hawking
radiation. This point of view perfectly complements the black hole both in terms
of equal fine-grained entropy and an entanglement wedge covering the rest of the
spatial slice of the universe, even the interior of the black hole after the Page time.

After the black hole has settled, it starts creating Hawking radiation that soon
enough escapes the cut-off surface region. Outside this sphere, the radiation is far
enough away from the black hole that we can assume the spacetime to be rigid
and the effect of gravity to be weak. So one might be tempted to calculate the
fine-grained entropy of this region by just using the second term in the generalized
entropy, Ssemi-cl(Σ), where Σ is the spatial slice of everything outside of the cut-off
shell. But this radiation originated from a black hole, and so we know it should
be highly entangled with its origin, or rather, its interior partners. Thus the semi-
classical entropy is not the total fine-grained entropy in the full quantum description.
The formula tells us that the QES γ should bound the spacelike region Σγ, but every-
thing outside of the cut-off surface is already bounded by itself and spatial infinity,
and there is no reason to think one would get an extremal surface by placing a QES
outside of the cut-off shell. The next question one might ask is, are we allowed to
put a QES outside the region we are considering? The answer is yes. There is one
possibility that we haven’t considered, but which is analogous to the classical RT
case mentioned earlier. We saw that in the case of a black hole in an AdS asymptotic
universe, if the boundary region A is large, then the classical RT surface γ becomes
disconnected, as in Fig. 4.2. Nothing is stopping us from doing something similar,
namely allowing the spacelike slice Σγ to be disconnected. We will show in the next
chapter that there might be a spatial connection between the two disconnected re-
gions where an additional spatial dimension is allowed to ’access’ the inside of the
black hole. Penington nevertheless showed that QES lies right behind the horizon,
and the region contained by the QES is often called an island. See Fig. 4.5. Now
the entanglement wedge of the radiation contains the island plus everything outside
the cut-off surface. Therefore, we need to add the bulk fields inside this region to
correctly describe the mixed Hawking radiation. This motivates a redefinition of the
entanglement entropy in Eq. (4.15) for the radiation [8],

Srad = Min Extγ

[
Area(γ)

4GN

+ Ssemi-cl(Σrad ∪ Σisland)

]
. (4.18)
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Figure 4.6: The generalized entropy of two extremal surfaces: One where the island
vanishes, and one where there is an island. The true fine-grained entropy of the radiation
is the minimal of these two curves, the red curve, which reproduces the Page curve.

In this new equation, we see explicitly that we need to add the island spatial region
to the radiation region when calculating the semi-classical bulk entropy Ssemi-cl.

It’s important to see why this surface is extremal. The interior Hawking partners
will propagate towards the singularity, and the modes closer to the singularity are
entangled to the earlier Hawking radiation. This early radiation has already left the
cut-off surface and by including its interior partner in the Ssemi-cl-term we get no
contribution to the fine-grained entropy since they combined are pure.

Imagine an ingoing Hawking mode that has an outgoing partner exactly at the
cut-off surface. The position of this ingoing mode is where the position of the QES
will be, and it is intuitive to see why. If you slightly move the QES further out, you
will include interior modes that has partners inside the cut-off surface. The ingoing
mode will be included in Ssemi-cl, but not the outgoing partner, thus increasing the
entropy.

Similarly, if you move the QES inwards, closer to the singularity, you will ex-
clude interior modes which have an exterior mode in the entanglement wedge of
the radiation. This also increases the entropy. Therefore, the QES is truly extremal.
After the Page time, it is also minimal, therefore it is the true fine-grained entropy of
the radiation.

Putting a piece of the entanglement wedge of the radiation inside the black
hole seems like a leap of faith, but it was proven to be true by applying the replica
method. The two papers [9, 40] showed that by using gravitational path integrals,
they found a class of saddle points connecting black holes in the n different replicas
through complex wormholes. Then, when taking the limit n → 1 to get the full
quantum mechanical fine-grained entropy, the presence of these wormholes leads to
the new island rule in Eq. (4.18).
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4.5 Wormholes and Firewalls

We will make a small digression and make a few comments about the infamous
AMPS paradox presented in a paper made by Almheiri, Marolf, Polchinski, and Sully
in 2012 [5]. The authors noted that after the Page time, the new, outgoing Hawk-
ing radiation seems to be strongly entangled to both the earlier radiation and the
interior partner. This violates the strong sub-additivity identity of entanglement en-
tropy [39], and thus we arrive at the paradox. To resolve it, the authors pointed out
that one of three well-tested theories had to be given up: The equivalence principle,
unitarity of quantum mechanics, or quantum field theory as we know it. The equiva-
lence principle tells us that an infalling observer would never know when she crossed
the event horizon of a black hole. Throwing out this principle, the authors imagined
the event horizon being surrounded by a wall of fire only by an infalling observer
when approaching the black hole. The energy of this firewall comes from the broken
entanglement between the interior and the exterior particles of the radiation, which
resolves the paradox.

The AMPS authors, however, made one extra assumption that we will not be
making in this dissertation. They assumed the black hole degrees of freedom only
describe the black hole interior [8]. In other words, they assumed that interior
operators only act on the Hilbert space of the interior, and not the Hilbert space of
radiation. Initially, this would seem like a valid assumption, but as we just saw, the
Hawking radiation is actually partially described by the interior of the black hole
after the Page time. And so there is no reason to think this additional hypothesis is
true anymore. Thus, most physicists today believe the AMPS paradox to not hold
true.

In 2013 Maldacena and Susskind wrote an article where they proposed a res-
olution to the AMPS firewall [34]. They conjectured a relation between quantum
entanglement and something seemingly unrelated, namely wormholes. The conjec-
ture was that an Einstein-Rosen (ER) bridge, a wormhole that connects the two sides
of an extended, eternal Schwarzschild black hole, is equivalent to quantum entan-
glement first proposed by Einstein, Podolsky, and Rosen (EPR), giving rise to the
amusing equation ER = EPR.

An eternal Schwarzschild black hole in an AdS background has two discon-
nected regions that have a CFT boundary. The only way the two disconnected bulk
universes can ’communicate’ is through a wormhole, while the dual CFTs can only
’communicate’ through quantum entanglement. This lead the authors to the conjec-
ture. They also noted more similarities between the two phenomenons, and they
applied it to black hole evaporation. Hawking radiation emitted from a one-sided
black hole must be entangled to each other, and by the conjecture, there must be a
wormhole-like connection between the two, where the radiation replaces the other,
disconnected black hole exterior.

This conjecture is not well-defined, but it does seem to hint that the universe
creates a spatial connection between two entangled particles that we simply can’t
see. The next chapter will look at one realization of the ER=EPR conjecture where
the spatial connection can be explained by a hidden spatial dimension.

51



Chapter 5

Double Holography

There are no seemingly good explanations for why the Hawking radiation seems
to ’access’ the interior of the black hole after Page time. If true, this interpretation
would, to put it lightly, come with a paradigm shift, and would change the way we
view quantum entanglement.

In this chapter, we will apply the principles of holography twice to show how
one can explain the Hawking radiation ’reaching’ into the interior of the black hole
by accessing an additional spatial dimension. By applying the generalized entropy
formula to such a system, we see how the late Hawking radiation and the black
hole interior after Page time is naturally entangled. Then one might speculate if
something similar, an additional spatial dimension, applies to our real world. This
entire chapter is based on two recent papers. One by Almheiri, Mahajan, Maldacena,
and Zhao [7], and a more recent paper by Chen, Fisher, Hernandez, Myers, and Ruan
[20]. We will also in this section set the AdS length scale R = 1 for simplicity.

5.1 Preliminaries

Before jumping into our double holography system, there are a couple of preliminar-
ies we will have to discuss.

5.1.1 2D Gravity

Einstein’s equation in 4 dimensions yields an incredible large family of solutions
containing rich physics, but the equation in 2 dimensions is nothing but dull [46].
One can show that the equation is satisfied trivially in vacuum, namely,

Gµν ≡ Rµν −
1

2
Rgµν , (5.1)

is zero in 2d for all metrics. This can be seen by looking at the Riemann curvature
tensor Rµναβ which has a set of symmetries which only allows one independent
element in 2d. Thus, one can easily show that Eq. (5.1) must vanish. One different
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way to show the triviality of Einstein’s gravity in 2d is to show that the Einstein-
Hilbert action

I0 =
φ0

16πGN

∫
d2x
√
−gR, (5.2)

is simply the integral of a total derivative, thus only depends on the topology of
spacetime. Here, φ0 is a constant, g is the determinant of the metric gµν and R is the
Ricci scalar. To spice things up one can look at so-called f(R)-theories where you
replace the scalar R in the Hilbert action with f(R), allowing arbitrary functions
f of the Ricci scalar. These theories were historically popular attempts at solving
the mysteries of dark matter and dark energy by slightly altering Einstein’s theory.
These theories can be described more generally by keeping the Ricci scalar R in the
Hilbert-Einstein action, but also adding an auxiliary field φ, which gives the same
equation of motion for gravity. As an example, let’s look at the case f(R) = R2,

1

16πGN

∫
d2x
√
−gR2 → 1

8πGN

∫
d2x
√
−g
(
Rφ− 1

2
φ2

)
. (5.3)

Varying the above functional with respect to φ gives the classical equation of motion
φ = R, and we end up with the functional on the left. One important example is JT
gravity with matter field [6],

I = I0(g, φ0) +
1

16πGN

∫ d2x
√
−gφ (R− Λ) + 2

∫
boundary

φbK

+ IM(g, χ), (5.4)

where Λ is the negative cosmological constant, and I0 is the topological Einstein-
Hilbert action in 2d from (5.2), and IM is a matter term with a matter field χ.
K is the extrinsic curvature at the boundary, while φb is the boundary value of φ.
The equation of motion for φ in the second term forces the Ricci curvature to be
equal to the cosmological constant, thus the metric is locally AdS. By varying the
metric, however, we get a more complex equation of motion that gives a differential
equation for the dilaton φ, which will describe the more complex geometry of the 2d
universe. More accurately, the dilaton describes the backreaction of matter on this
AdS2 background. Note again that the first term in the action is trivially satisfied for
all metrics, and so we have a AdS2 spacetime with matter fields.

JT gravity has been well studied the past decade [4, 24], and it is well known
that it exhibits black hole solutions. And since black holes in 2d gravity can’t have
surface terms, a co-dimension 2 surface is a point, the Bekenstein entropy is analo-
gously shown to be SBH = φ/4GN where φ is evaluated on the event horizon posi-
tion. This can be seen from the action itself since one simply replaces the prefactor,

1
4GN
→ φ(x)

4GN
.

5.1.2 JT Gravity

JT gravity forces the metric to be AdS2, and thus, in the 2d gravity coordinates, we
can write

ds2
AdS2

=
dt2 − dx2

x2
=
−4dx−dx+

(x+ − x−)2
, (5.5)
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where x± = t± x. By varying the JT action with respect to the metric, one can find
that the vacuum solution for dilaton that admits a stable black hole [6, 4],

φ = 2φ̄r
1− π2T 2

0 x
+x−

x+ − x−
, (5.6)

where φ̄r = εφ(x = ε) = εφb is the normalized boundary value of the dilaton, and T0

is the temperature of the stable black hole.
One might be worried about the Weyl anomaly making the stress-energy tensor

proportional to the Ricci curvature, thus non-zero, but it can simply be absorbed by
the dilaton φ0 in the Einstein-Hilbert action.

The dilaton above is obviously time-dependent and instead of a singularity posi-
tioned at a specific spatial coordinate (like r = 0 in Schwarzschild coordinates), the
singularity is positioned at

x =

(
t2 − π2T 2

0 − 1

π4T 4
0

)1/2

− 1

π2T 2
0

, (5.7)

which suggests that Poincare coordinates might not be our best choice of coordi-
nates. Instead, we can switch over to coordinates where the dilaton is static, valid
in the exterior region of the black hole, by setting x± = f(y±), where

f(u) =
1

πT0

tanh(πT0u). (5.8)

Now, the dilaton becomes

φ = 2φ̄rπT0 coth
(
πT0

[
y+ − y−

])
(5.9)

and the metric

ds2 =
−4 (πT0)2 dy+dy−

sinh2 (πT0 [y+ − y−])
. (5.10)

These coordinates don’t just leave our JT gravity description static, but it is also
the coordinates we get from considering the time coordinate t on the conformal
boundary time u perspective, namely u = f−1(t).

By setting our dilaton from Eq. (5.9) to be our new spatial coordinate φ(σ) = r,
and plugging it into Eq. (5.10), we get a Schwarzschild-like metric, making it clear
that we are dealing with a black hole [4],

ds2 = −4r2

(
1−

[
2φ̄rπT0

r

]2
)
du2 +

r2(
2φ̄rπT0

)4
(

1−
[

2φ̄rπT0

r

]2
)dr2. (5.11)

Our goal later will be to couple our 2d gravity to a CFT2 bath. And so we define the
bath coordinates y± = u ± σ, where σ is the position coordinate in the bath CFT2,
valid for σ > 0. And the coupling happens at time u = 0.

Our stable black hole will have the Penrose diagram of an AdS-Schwarzschild
black hole, as seen in Fig. 5.1, where we have two sides of the black hole. We are
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interested in the right side, and so we want to calculate the entanglement entropy
of the right exterior part from the point of view of the right conformal boundary.
Remember that both halves of this universe are causally disconnected, and we as-
sume the whole universe (both halves) is pure. Due to symmetry, we expect them to
have the same quantum extremal surface. The AdS boundary has reflective bound-
ary conditions, thus keeping the evaporating black hole stable. This also makes the
quantum fields in both halves pure.

The classical extremal surface can be found and becomes

Scl-gen =
A

4GN

=
φ(x+, x−)

4GN

, (5.12)

and using Eq. (5.6), the requirement for an extremal surface is that ∂Sgen

∂x±
= 0, which

gives us

x±CES = ± 1

πT0

. (5.13)

Now, this is just the bifurcation point. It is simply the point that divides the two
halves of the universe. But due to the black hole being in equilibrium with the
radiation, the bifurcation point will also be the quantum extremal surface of the
right conformal boundary, since a spatial slice from this point to the boundary must
have a pure semi-classical bulk entropy. This gives the following fine-grained entropy

S =
φ̄rπT0

2GN

(5.14)

which is constant in time and proportional to the initial temperature of the black
hole. Keep in mind that we are assuming φ0 � φ.

5.1.3 Branes

Branes are hypersurfaces which arose from string theory. They are arbitrary dimen-
sion surfaces that particles are confined on, living in a higher dimensional universe.

We will consider a Planck brane which was first introduced by Randall and
Sundrum [42]. They considered a 4 dimensional (3+1)-brane embedded in a 5-
dimensional AdS spacetime where all particles of the Standard Model were being
confined on the brane, while the mediator of gravity, the graviton, was able to prop-
agate in all the 4 spatial dimensions of the AdS. Their motivation was to explain the
hierarchy problem; why is gravity so much weaker than all other forces of nature?

Our purpose is to confine a black hole on a (1+1)d Planck brane embedded
in 3d Poincare patch coordinates. The gravity will be governed by the JT gravity
explained above, and it will be coupled to a CFT matter. Given that the matter is
CFT, we will take it to have an AdS asymptotic dual. But due do the dynamics of
JT gravity coupled to matter, the metric isn’t trivial, and the position of this brane
isn’t trivially the same as the conformal boundary of pure AdS3, namely z = ε→ 0 in
Poincare patch coordinates. If however the region was perfectly flat, and there was
a vanishing stress-energy tensor, the Planck brane would satisfy the requirements of
a flat, conformal boundary being dual to a pure AdS3. The position of the Planck
brane from the 3d perspective is therefore not trivial.
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5.1.4 Position of the Planck brane

Let’s not make any assumptions about the metric on the Planck brane, nor the stress-
energy tensor of the matter fields on the brane. This should not be confused with the
stress-energy tensor due to the tension of the embedding of the Planck brane in AdS3.
It is well known that any 2d metric can be put of the conformally flat form, which
in lightcone coordinates becomes ds2 = −Ω2(x)dx+dx−. In lightcone coordinate, the
non-diagonal elements of the stress-energy tensor vanish, so we need only to worry
about Tx+x+(x+) and Tx−x−(x−) which, as we earlier mentioned, are functions of
their respective coordinate. To determine the embedding of the Planck brane in the
AdS spacetime, we need to change coordinates to a frame where the metric is flat.
This will also make the stress-energy tensor vanish, with vanishing Weyl anomaly,
since there is no energy to curve space. If there is no gravity present, the embedding
is trivial since it is simply the conformal boundary positioned at z = ε→ 0 in Poincare
patch coordinates.

Following the procedure of [7], we switch over to new coordinates w± that we
ensure has vanishing stress-energy components. We then find the new stress-energy
tensor by using the transformation rule with the Schwarzian, as we previously dis-
cussed in Section 3.2.1. The transformation is

Tw+w+ =

(
∂w+

∂x+

)−2 (
Tx+x+ +

c

12
S(w+, x+)

)
, (5.15)

with an equivalent formula for Tw−w−. Note that we are not using complex coor-
dinates, therefore we get a plus sign on the second term. We require the above
stress-energy component (and Tw−w−) to be zero, thus we need w+ to satisfy Tx+x+ +
c

12
{w+, x+} = 0. By a Weyl transformation we can set the metric to be flat ds2 =
−dw+dw−, and thus we have avoided the Weyl anomaly, where the quantum ex-
pected value of the trace in a 2d CFT is proportional to the Ricci scalar [51]. Close to
the Planck brane, we can assume all the complexity of the AdS asymptotic spacetime
can be neglected, and we earlier mentioned, in 3d, any AdS asymptotic spacetime is
always locally pure AdS. So close to the brane, the metric is

ds2
3 =
−dw+dw− + dz2

Planck

z2
Planck

. (5.16)

We require the induced metric Planck brane in the vanishing-energy coordinates w±

to be the same as the gravity solution x±, namely

− dw+dw−

z2
Planck

= −Ω2(x)dx+dx−

ε2
, (5.17)

which can be solved to give an explicit equation for zPlanck. In our AdS case, we have

Ω2(x) =
4

(x+ − x−)2
(5.18)

and thus, we know the exact position of the Planck brane in the bulk.
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5.2 Setup

So far we have seen the advantage of applying the AdS/CFT conjecture once, but
we will see how we can use it twice to get a better understanding of how an ad-
ditional spatial dimension can ’access’ the inside of the black hole, in the spirit of
the ER=EPR conjecture. Since we will allow applying the conjecture twice, we have
three equivalent descriptions of our system, see Fig. 5.3.

2D JT Gravity with a black hole - The most important description is the one
with the 2d JT gravity. In this spacetime, there is a stable black hole of temperature
T0, which due to the topology of two dimensions, will have two disconnected, ex-
ternal regions. Both regions will have a conformal boundary point at infinity. The
JT gravity will also be coupled to matter that is described as a CFT2. At a certain
boundary time, u = 0, the right exterior region will be coupled to a CFT bath of
zero temperature. Deforming the operators to allow the two systems to be coupled
releases energy into the JT gravity universe as an energy pulse. Such an event is
called a quench, and the energy will eventually give energy to the stable black hole,
making it expand and warmer, settling at a new horizon, but now the Hawking radi-
ation of the right exterior is no longer confined to the AdS spacetime and will start
leaking into the CFT bath.

3D Gravity - Since the matter of the JT gravity is a CFT2, we take it to have an
AdS3 dual. In addition, the CFT bath will also have a dual which is pure AdS3 before
the quench. These two AdS3 duals will be disconnected before the quench, but as
will see, the brane that separated the systems will evolve and propagate deeper into
the AdS bulk.

We are only going to be interested in the physics close to the conformal bound-
ary where the geometry is close to purely AdS, and locally always AdS3, even though
it may not be globally AdS. Thus the exact geometry deep in this bulk description is
not of importance.

Quantum Mechanics - Since the 2d JT gravity is AdS, we take it to have a 1d
dual. A quantum field theory in zero spatial dimensions can be thought of as regular
quantum mechanics (QM) where we consider a free scalar field evolving in time.
Since the 2d universe has two conformal boundaries, we get two points of quantum
mechanical description. The left point is called QML, and is entangled with the right
point QMR. They have all the degrees of freedom necessary to have the JT gravity
dual between them. When the quench happens at boundary time u = 0, we couple
the right QM point to the CFT bath which effectively supplies QMR with energy.

Up until now, we have dealt with CFT theories with no boundaries, but not now.
As seen in the 2d gravity, before the quench, we have a conformal field theory that
stretches from QML to QMR. These two points, when the 2d JT gravity is embedded
in the 3d dual, give a conformal boundary with boundaries. After the quench, the
only boundary will be QML.

To treat the CFTs properly we have to consider boundary CFT (BCFT) proce-
dures, first studied by Cardy [16]. Later, Takayanagi showed how to treat the holo-
graphic dual of the BCFT [49]. He showed that if the CFT has a boundary, then we
must consider a surface in the AdS asymptotic description which shares the boundary
of the CFT. This is an idea similar to the branes considered in Randall and Sundrum’s
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models [42]. In our asymptotic AdS3, it tells us where the universe stops, so we will
call them end-of-the-world (ETW) brane.

In what follows, we will consider the fine-grained entropy of two regions QML+Bath
and QMR. The former is the left exterior of the black hole in union with the CFT
bath. This region will represent the Hawking radiation, while the right exterior of
the black hole represents the black hole region. Remember that the left and the right
side of the black hole are causally disconnected, and so their corresponding Hawk-
ing radiation will never leak into the other exterior, but the Hawking radiation of the
right exterior will leak into the CFT bath after the quench.

The equation for the fine-grained entropy of the right black hole region is simply

S = Min Extx

[
φ(x)

4G
(2)
N

+ Ssemi-cl(Σx)

]
, (5.19)

where we explicitly write the dimension of the Newton’s constant, and Σx is the
spatial slice from the position of the QES, x, and to the boundary QMR. The fine-
grained bulk entropy is caused by the matter field χ in the matter action. The QES
prescription then tells us to extremalize the entropy over x = (x+, x−) and pick out
the minimal entropy with a corresponding QES. This is what we just did above before
the coupling.

However, the brilliance of the double holography system is that it allows us to
find the von Neumann bulk entropy in the 2d gravity Ssemi-cl as a QES entropy in the
AdS3 bulk dual. So from a 3d perspective, by using Eq. (4.15), we get

S = Min Extx

[
φ(x)

4G
(2)
N

+ Ssemi-cl(Σx)

]
(5.20)

= Min Extx,γ

[
φ(x)

4G
(2)
N

+
Area(γ(x))

4G
(3)
N

+ Ssemi-cl(Σγ)

]
, (5.21)

where Σx is the one-dimensional, spatial region from the QES to the conformal
boundary QMR, γ is the dual QES in the AdS3 bulk, and Σγ is the spatial region
encapsulated by γ and Σx. See Fig. 5.2. Note that γ must end on x and QMR, so it
is a function of the position of the QES, but we still have the freedom to extremalize
the surface in the AdS3 bulk. To the leading order, we can neglect the third term
above, and then the matter entropy is simply the classical RT surface in the bulk. In
this case, the ’length’ of Σγ gives the biggest contribution to the matter bulk entropy.

Therefore, this system helps us understand how the entanglement wedge of
radiation after the Page time is partly inside the black hole. It’s due to the ’extra’
bulk dimension reaching into it.

5.3 Before the Page Time

We will now look at what happens when we couple the 2d gravity theory with the
CFT2 bath. The system will go into a quench phase where there is a flow of energy,

58



Chapter 5. Double Holography 5.3. BEFORE THE PAGE TIME

Figure 5.1: The two-dimensional spacetime at different time. The two entanglement
wedges are shaded for QML+Bath (cyan) and for QMR (red) which we will think of
as the black hole region. The right 2d gravity at constant time slice is the red curve,
while the dark cyan curve is the CFT2 bath. The energy pulse caused by the coupling of
the 2d gravity to the zero temperature bath is colored in blue. The minimal QES point
is colored in green and is positioned at the bifurcation point before the coupling and
immediately after in the quench phase. After the quench phase, it moves spacelike away
from the black hole, and after Page time it jumps into the causal future of the quench
but behind the final black hole horizon. Partially adapted from [20].
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Figure 5.2: The fine-grained entropy of the CFT matter in the spatial region Σx is given
by the minimal extremal surface prescription in the AdS3 bulk. To first order, γ is simply
the classical RT surface, and we can neglect the contribution from Σγ .

Figure 5.3: Black hole evaporation from the AdS3 point of view. The entanglement
wedge for the QML + Bath is colored in cyan and the entanglement wedge for the
Hawking radiation is in red. This figure should be compared to Fig. 5.1 where the
corresponding 2d entanglement wedges have the same colors.
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moving as a null geodesic x− = 0 into the 2d gravity theory. This gives a sharp
increase in the entanglement entropy of QMR which can be understood from the 3d
dual as coming from the area term connecting the QM point, σ = 0, to the ETW
brane which is now moving into the deeper parts of the bulk. From the 2d gravity
side, it is explained by now having a large positive energy propagating in the 2d
gravity, which changes the dilaton. Thus, from the point of view of the boundary
point σ = 0, which is analogous to the observer on the cut-off surface in the last
chapter, the increase in entropy can be viewed as a backreaction in the dilaton to the
infalling shockwave. In terms of entanglement, the sharp increase can be explained
in terms of the creation of short-range entanglement between the two energy pulses
originating from σ = 0 and propagating into the bath and the right side of the gravity
dual.

Immediately after the quench happens, a new extremal QES is created close to
the original black hole horizon but outside it. This extremal surface moves away
from the horizon in a spacelike way and does however not yield a minimal entropy
until the quench phase is over. What happens at the bifurcation point is obviously
causally disconnected from the boundary when the quench happens, so the dila-
ton shouldn’t immediately change, but the surface is still allowed to move after the
quench happens as Hawking modes, that are entangled to the initial black hole, are
allowed to escape into the bath. When this new QES becomes minimal, it describes
the fine-grained entropy and we call this the scrambling phase. And we see that the
entanglement wedge of the radiation (QML + bath) is slightly inside the initial black
hole, which comes from the Hawking radiation having escaped into the bath with
enough information to encode this part of the interior.

Now, this case is different from what we were looking at in the last chapter.
There, we had a vanishing minimal extremal surface before the Page time, but now
there is no vanishing extremal surface. But we have many key differences. First
of all, we are now starting with a stable black hole which has two causally discon-
nected regions that are entangled. In addition, we are not in Einstein gravity, we are
using JT gravity. So we shouldn’t be too surprised that we are getting these smaller
qualitative differences.

When the system goes into the scrambling phase, the entanglement wedge of
QML and the bath becomes connected. As the QES moves, the semi-classical bulk
entropy of the matter is simply the classical RT surface in the bulk. So from Fig. 5.3,
we see how the entanglement wedge of the radiation region σ > 0 ’stretches’ into
the black hole interior.

5.4 After the Page Time

After the Page time, a new quantum extremal surface has the lowest generalized
entropy. As before, this QES was extremal before the Page time, but at the Page time,
the QES close to the bifurcation point does no longer have a minimal generalized
entropy. The late-time QES is positioned at the future of the energy pulse after it has
created a new black hole horizon. The new surface lies just behind the event horizon
and is creating an island inside the interior.
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Figure 5.4: The reconstructed Page curve of the fine-grained entropy of the QMR and
QML+Bath over time. We assume the entropy before the quench from Eq. (5.14) can be
neglected. At u = 0, the bath is connected to the JT gravity, which initially causes a sharp
increase in entanglement entropy called the quench phase. Soon a new generalized
entropy is minimal which has a QES not at the bifurcation point but close to it in the
right exterior. This is the scrambling phase and lasts until the Page time. After the
Page time, a new QES with minimal generalized entropy creates an island inside the
interior of the new black hole. Eventually, the right black hole has evaporated and all its
radiation has leaked into the bath causing a zero fine-grained entropy.

The onset of the late-time phase means that a large amount of Hawking radia-
tion has escaped into the bath with enough information about the bulk to reconstruct
most of the interior of the black hole, both the new and the original one. This was
partially the case before the Page time as well during the scrambling phase, but then
only a small part of the initial horizon was encoded in the Hawking radiation.

A creature on the 2d spacetime will be puzzled by why the entanglement wedge
of the radiation has split into two disconnected parts after the Page time, but from
the AdS3 point of view, it is obvious why. The entanglement wedge of the black hole
is simply the region encapsulated by the classical RT surface, to leading order, which
stays close to the conformal boundary, but on the other hand, the entanglement
wedge of QML + Bath must obviously fill the rest of the AdS3 void, and so the dis-
connected entanglement wedges is in this theory simply explained by an additional
spatial dimension which can ’stretch’ the entanglement wedge into the interior of
the black hole.

5.5 What Did We Learn?

As noted in Ref. [20], there are configurations where the scrambling phase never has
the minimal generalized entropy, thus the quench phase will last until the late time
phase. This is the result that more closely follows Ref. [6]. In that paper, the authors
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only considered an initial one-sided black hole that jumped from the quench phase to
the late time phase after the Page time. But this approach misses a potential phase,
the scrambling phase, which tells us that the bath plus QMR contains information
about a small region inside the initial black hole before the energy pulse.

We also considered dividing the system into QMR and QML+Bath, but we could
instead consider the entire 2d gravity region and compare it to the bath. In that case,
the entanglement wedge of the bath would also ’reach’ into the interior of the right
side of the final black hole, but it would have no access to the left side of the black
hole since no Hawking radiation from the left side would ever reach the bath. Thus,
at late times, the entanglement wedge of the bath would reach into the interior of
the right black hole, but would not be present in the left, disconnected side of the
black hole.

Our system has a 2d black hole on a CFT boundary of a 3d AdS. Knowing that
2d CFTs are in many ways different from d > 2 CFTs and that JT gravity might not
be representative of Einstein gravity, one might be skeptical if one can generalize
our results to higher dimensions. This has already been done in Ref. [10] where
the authors showed numerically that it does generalize to higher dimensions. They
considered Einstein gravity and a two-sided black hole in 4 dimensions, where the
matter was a CFT4 which had a 5d AdS dual. They showed that there are two com-
peting QES where the late-time entropy has a QES inside the event horizon, making
the entanglement wedge of the radiation disconnected from the 4d perspective, but
connected in the 5d dual.
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Discussion

Over a hundred years have passed since Karl Schwarzschild found the metric of eter-
nal black holes in the trenches of the eastern front during the first world war. After
that, it took roughly 60 years before Hawking was able to show apply both general
relativity and quantum mechanics to show that black holes emit seemingly thermal
radiation. Since then, progress on the matter has been exponential, especially after
the tools of AdS/CFT conjecture were brought to light. A lot of progress has been
made the past two decades, and it has been hard to condense everything down to a
single dissertation.

Given the recent development the past year, we have in this dissertation argued
that, no, black holes do not destroy information. This is mostly due to the strong
evidence given by the AdS/CFT conjecture which trivially gives us the ’no’ answer,
but at the same time, it hides the answer to ’why?’ too well. The development took
off after Ryu and Takayanagi were able to find the first-order equation for bound-
ary entanglement entropy, which is astonishingly similar to Bekenstein’s black hole
entropy. This was later generalized to include quantum effects, which made one
able to apply it successfully to evaporating black holes. It was then shown to satisfy
the unitarity required by quantum mechanics, and one was able to recover the Page
curve. This is the fine-grained entropy curve of Hawking radiation where unitarity
tells us that given the entire system being pure, the entropy should reach zero once
the black hole has evaporated. The secret is that, in order to get this result after the
radiation becomes maximally entangled with the black hole, the gravity is telling
us to look at the interior of the black hole. To successfully describe the radiation
region, we must include most of the interior in the entanglement wedge of the radi-
ation, which violates a great deal of intuition. We have arrived at this result using
nothing but the effective gravity theory. The fact that the gravitational path integral
can be used to arrive at these results without us knowing what the real theory of
quantum gravity is, means we don’t have a good enough understanding of the grav-
itational path integral. The next step for researchers is, therefore, to understand it
better and see what more the effective field theory knows.

If somehow the results we have presented here are proven wrong in the future,
it is hard to see where the researchers might have gone wrong. Assuming that they
haven’t, this gives us a great deal of insight into how to unify quantum mechanics
and general relativity. One of these insights could be something in the spirit of
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the ER=EPR conjecture, like the double-holography system considered, namely that
there is an invisible but spatial connection between entangled particles.

We have left plenty out of the discussion. We mostly talked about the fine-
grained entropy of a black hole and not how to retrieve information thrown into a
black hole. A large part of the information paradox is figuring out how the infor-
mation is encoded in the black hole, and the progress of this has been parallel to
the development of entanglement wedges and entropy of black holes. For exam-
ple, it was early known that unitary toy models of black holes yielded the so-called
Hayden-Preskill decoding criterion [28]. Namely that small diaries, that don’t con-
tribute significantly to either entropy or backreaction, thrown into a black hole be-
fore the Page time can in principle be reconstructed at the Page time. While if they
are thrown in after this time, you only need to wait a scrambling time before being
able to reconstruct it. But the last couple of years, this has been verified to hold true
for more realistic black holes [39, 6]. The development of information reconstruc-
tion is mostly due to the development of the fine-grained entropy of black holes and
radiation. How the information is encoded in the black hole is still a mystery, but
simpler examples such as 2d JT gravity, which are mathematically easier to solve,
can maybe give us a clue. After the double holography paper was released, the same
system has very recently been further studied to understand the reconstruction of
the black hole interior [20, 21].

Our understanding of the entanglement between black holes and its Hawking
radiation has expanded the past couple of years. It is a fast-moving field, and many
talented string theorists seem to be moving to this new field. With so many eyes
on the problem, and with the recent tools inspired by the AdS/CFT correspondence,
one can only hope that the black hole information paradox will be solved once and
for all in the not too distant future.
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