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Abstract

In this paper, we review the issue of consistency in the context of dimensional Kaluza-

Klein reductions with a focus towards supergravity truncations. Thus we present the

progress made from a group theoretical point of view by looking at the formalism of

manifold group reduction as conceived by Scherk and Schwarz as well as discussing

the issues arising in coset spaces reductions. We then provide an example of consis-

tent sphere reduction by reviewing the N = 8 gauged SO(6) truncation of type IIB

supergravity on the five sphere S5. We conclude with a discussion of G-structure and

their role in truncations and finally look at the formalism of generic supersymmet-

ric consistent truncation from generalised G-structures with singlet intrinsic torsion

which was recently found.
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Chapter 1

Introduction

The topic of unification has played a very central role in theoretical physics research

over the last century and it certainly does now more than ever before. Of all the

models attempting to reconcile the geometrical picture of spacetime with the quan-

tum mechanical nature of the microscopic world, in our opinion string theory seems

at present to be the most promising option, containing the key ingredients of the

Standard model such as gauge interactions and parity violation but also beyond it,

such as unification of the gauge interactions, supersymmetry and extra dimensions,

although more work is required in order to formulate a string model from which the

physics of the Universe we live can be extrapolated as a limiting case. At present we

know of five distinct superstring theories [1] which are defined in a 10 dimensional

spacetime, conjectured to further unify in a non perturbative formulation called M -

theory [2] whose low energy limit gives 11-dimensional supergravity.

Ultimately one is interested in extracting 4-dimensional information out of those

models and one way to do so is to introduce a mechanism of compactification of

some of the spatial dimensions so that the low dimensional physics emerges as an

effective theory in the low-energy limits of string theory which are supergravities,

hence one wishes to find out exactly how the Standard Model and gravity embed

into those models. For the heterotic string, compactification was mainly achieved on

1



Calabi Yau manifolds or backgrounds with exact (2, 0) supersymmetry, while type II

theories have made use of D-branes and orientifolds.

As a result of compactification, the 10-dimensional spacetime ground state is

locally described by a product space of a lower dimensional spacetime and a compact

internal manifold. One of the main issues with compactification is the emergence

of unobserved massless scalar fields with no potential term called moduli, and flux

compactification attempts to address the issue via introducing v.e.v. for the field

strength fields of supergravity which render the moduli very massive, i.e. it stabilises

them [3]. A side effect of the introduction of flux is that they produce a back-

reaction on the geometry itself, thus restricting the class of manifolds onto which

the compactification can be achieved.

This is then followed by a procedure known as Kaluza-Klein reduction [4, 5],

in which the field content of the theory is expanded in terms of eigenfunctions of

the compact space in a way that its dimensions appear in the lower dimensional

theory as an infinite tower of modes. Usually, a truncation of the field content to a

finite subset of the modes is subsequently performed producing a lower-dimensional

effective action describing gauge interactions among the fields. It then becomes a

question of finding an appropriate truncation such that the solutions of the truncated

theory’s equations of motion are also solutions of the original equation of motion,

that is finding a consistent truncation for the reduction.

Kaluza-Klein reductions made their appearance long before string theory was

conceived, although interest in them was revived in the 70’s with the advent of

supergravity. The idea was first conceived by Kaluza [4] in 1919 where he attempted

to unify Einstein’s gravity with electromagnetism by reducing a 5-dimensional pure

gravity theory on a circle U(1), at the expense of introducing a massless scalar field,

which was subsequently set to be constant in the work of Klein [5] and others, until

Jordan and Thiry showed that such condition on the scalar would be inconsistent

with the 5-dimensional equations of motions as it would require the Maxwell field
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to vanish as well [6].

The first attempt at obtaining non-Abelian Yang Mills equation from a reduction

scheme was by DeWitt [7] and was further elaborated by Kerner [8] using the lan-

guage of fibre bundle theory. To achieve it, the reduction would be carried on a

group manifold, thus generalising the case of Kaluza to a more complex scenario.

The theory of consistent group manifold reductions was finally developed by Cho

and Freund [9] in the 70’s and the consistency condition emphasised by Scherk and

Schwarz [10], that is the group manifold must have structure constants that satisfy

the unimodularity condition, namely Cα
βγ = 0, condition always satisfied by compact

Lie groups.

On the other hand, dimensional reduction can also be performed in the case

where the compact manifold is a coset space G/H of which spheres Sn are an ex-

ample of interest. However, the coset space reductions are more involved and prior

to generalised geometry, no algorithmic prescription for coset reductions was known

although a few cases were found to be consistent, notably the S5 reduction of type

IIB supergravity [11] which was at the centre of the first example of AdS/CFT corre-

spondence proposed by Maldacena in [12].

The situation has changed over the last decade with the introduction of gener-

alised geometry by Hitchin [13] and Gualtieri [14], which is framework that incorpo-

rates both complex and symplectic geometry by introducing a new bundle structure

on a manifold. More importantly, the reformulation of supergravity using gener-

alised geometry has allowed for consistent truncations to maximally supersymmet-

ric theories on both group-manifold and spheres [15], based on the realisation that

spheres are generalised parallelisable spaces and thus the known consistent trunca-

tions simply reduce to generalised Scherk-Schwarz reductions.

Furthermore, a generic procedure was developed in [16] where the above was

generalised to truncations with any amount of supersymmetry, including non-supersymmetric

truncations. The truncation is then achieved via the choice of a generalised G-

CHAPTER 1. INTRODUCTION 3



structures on the manifold M characterised by a set of G−invariant generalised

tensor fields in terms of which the bosonic degrees of freedom of the theory are

expanded and by keeping all possible singlets in truncating the fields, with the re-

quirement that the intrinsic torsion of the G-structure contains only singlets.

The structure of this review is as follows. In Chapter 2 we briefly introduce the

mathematical tools required for the discussion of local group manifold reductions,

that is the concepts of manifolds, Lie groups and their action on manifold. We also

provide a brief discussion on fibre bundle theory and conclude the chapter with a

brief account of the tetrad formalism. In Chapter 3 we start by treating the U(1)

reduction of 5-dimensional Einstein gravity and discuss the definition of a consis-

tent truncation. We then move onto describing the local group manifold reduction

formalism and the unimodularity condition. We also give a discussion of the geo-

metrical aspect of coset spaces and look at the maximally supersymmetric reduction

of type IIB supergravity on S5.

Finally, in Chapter 4 we begin by introducing some key concepts of complex

geometry such as G-structures and torsion classes before introducing generalised

geometry. We first give an overview of the key elements of the framework in the

original formulation and then look at how the geometries can be extended for appli-

cation to supergravity. We then look at how reductions work in the case of ordinary

G-structures before concluding with the formalism for generic supersymmetric re-

ductions of supergravity from generalised G-structures with singlet intrinsic torsion.
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Chapter 2

Mathematical Preliminaries

In this chapter we shall introduce the basic mathematical tools of which extensive

use will be made throughout the paper, although we shall leave the treatment of

generalised geometry to the final chapter of this paper where the topic is treated.

2.1 Differentiable manifolds and Lie Groups

Given a m-dimensional differentiable manifoldM, the tangent space TqM is defined

as the set of all tangent vectors at the point q ∈M and structurally it is a real vector

space. The union of the tangent space of every point q in the manifold forms the

tangent bundle TM, namely TM :=
⋃
q∈M TqM , which itself has the structure of a

2m-dimensional manifold. Similarly, the tangent vector at a point q on the manifold

M is a linear map b : TqM 7→ R and the sent of all such co-vectors at any point on the

manifold forms the dual of TqM, the cotangent space T ∗qM. The cotangent bundle is

naturally defined as T ∗M :=
⋃
q∈M T ∗qM and has the structure of a 2m-dimensional

manifold [17].

Starting from two manifoldsM and N and a map between them h : N 7→ M, a

natural linear map between the tangent spaces arises called the push-forward of h,
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2.1. DIFFERENTIABLE MANIFOLDS AND LIE GROUPS

denoted by

h∗ : TpM 7→ Th(p)N . (2.1)

Furthermore, given a product manifoldM×N , a natural isomorphism is the follow-

ing

T(p,q)(M×N ) ' TpM⊕ TqN

v 7→ (pr1∗(v), pr2∗(v)) (2.2)

where

pr1 :M×N 7→M

(p, q) 7→ p

pr2 :M×N 7→ N

(p, q) 7→ q

(2.3)

are projection maps from the product manifold into the respective component. As-

signing a tangent vector Yp ∈ TpM to every point p ∈ M results in the vector field

Y. The set that all such vector fields on a manifold form is a real vector space and is

denoted by V F ld(M). Given two vector fields X and Y , a third vector field can be

defined via their commutator as

[X, Y ] = X ◦ Y − Y ◦X (2.4)

where [X, Y ] is antisymmetric and satisfies the Jacobi identity [17].

Analogously to vector fields, assigning to every point on M a cotangent vector

ωq results in the one-form ω. Taking the dual of Eq. (2.1) gives the pull-back map

h∗ : T ∗h(p)N 7→ T ∗pM (2.5)

defined by

〈h∗g, r〉p := 〈g, h∗r〉h(p) (2.6)

where g ∈ T ∗h(p) and r ∈ TpM and the definition is extendable to one-forms. More
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2.1. DIFFERENTIABLE MANIFOLDS AND LIE GROUPS

generally, using the tensor product operation, one can construct tensors of type (s, t)

which are elements of the tensor product space T s,tp M given by [⊗sTpM]⊗ [⊗tT ∗pM],

where we have taken the tensor product of the tangent and cotangent space s and t

times respectively. The idea of a tensor field of type (s,t) then follows. A special case

of tensors are n-forms, defined as totally anti-symmetric (0, n) tensor fields, where

the symmetry property is with respect to the order of n the vector fields on which it

naturally acts [17].

Another key concept is that of a Lie group, namely a set that is both a topological

group and a differentiable manifold, with additional structure so that taking the

inverse and the group product between two elements are both smooth operations.

For an element g in the Lie group G, one can construct two diffeomorphisms called

the right or left translations of G with the respective actions [18]

rg : G 7→ G, g′ 7→ g′g (2.7)

lg : G 7→ G, g′ 7→ gg′ (2.8)

where g, g′ ∈ G, satisfying

lg1 ◦ lg2 = lg1g2 (2.9)

and

rg1 ◦ rg2 = rg2g1 . (2.10)

The existence of those translations is crucial as they allow for local structures such

as the tangent space to be mapped around the whole group manifold. To appreciate

this, we begin by labelling a vector field X on G as left-invariant if lg∗X = X for all

g ∈ G with set of all such vector fields on G forming the vector space L(G), which

is closed under the commutator operation of any two elements and forms the Lie

algebra of G. Furthermore there exists a theorem that states that the Lie algebra
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2.1. DIFFERENTIABLE MANIFOLDS AND LIE GROUPS

is isomorphic to the tangent space at the identity e of G, namely TeM and as such

they have the same dimensionality as vector spaces. Provided the set {T1, T2, ..., Tn}

forms a basis for L(G) with n being the dimension of L(G), then we have

[Ta, Tb] =
n∑
d=1

Cab
dTd (2.11)

where Cabd are the structure constants of L(G) [18].

In theoretical physics, transformations of the space representing a system are best

analysed in terms of groups, hence it is natural to study how a group acts on a given

space (G-action). Hence, the left action of a Lie group G onM is a homomorphism

g 7→ γg defined by the smooth map

Γ : G×M 7→M

(g, p) 7→ γg(p) ≡ gp. (2.12)

A similar argument would lead to the definition of a right action. The set of points

inM that can be reached from p via a G-action is called the orbit Op and given by

Op := {q ∈M | ∃ g ∈ G with q = gp}. (2.13)

The orbit space, denoted byM/G, is then the set of equivalence classes defined

by the equivalence relation for which two points onM are equivalent if they lie on

the same orbit. In the case of the right action of H ⊂ G on G itself, the orbit space

is the space of (left) cosets G/H [18].

Within this context, for any point p one can also define little group Gp as the

closed subgroup of G

Gp := {g ∈ G | gp = p} (2.14)

and also the kernel of a G-action as the normal subgroup of G

K := {g ∈ G | gp = p ∀ p ∈M}. (2.15)
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2.2. FIBRE BUNDLES

G is then said to act freely on the manifold in the instance where every element of

the manifold is moved away from itself by the group action except for the identity

element e action [17, 18].

2.2 Fibre bundles

A very important role in the context of dimensional reduction is played by bundles

which provide a framework used to describe fields carrying more than one index,

whether the index structure refers to the tensorial properties of the field with respect

to the underlying spacetime or to the its symmetry transformation properties with

respect to the symmetry group. While a vector-valued field maps each point x ∈

M to an element v living in a vector space V , more generally one can consider a

manifold-valued field where the target spaces varies at every point inM, resulting

in a bundle of spaces Nx each one labelled by the manifold point x [17].

Given two topological spaces E and M and a continuous map π : E 7→ M, a

bundle is defined as the triple (E, π,M), with E andM becoming the bundle space

and base space respectively and the inverse image of the projection π being the

fibre π−1(x) over x ∈ M. In the case where the fibres π−1(x) are diffeomorphic to a

common space F , then the bundle is referred to as a fibre bundle and F as the fibre.

If the fibre is a vector space, the bundle is called a vector bundle. Furthermore, given

a bundle (E, π,M) a cross-section (or simple a section) is a map s :M 7→ E whose

image s(x) ∈ E is contained in π−1({x}), the fibre. The space of al sections on E is

denoted by Γ(E). In the case of the tangent and cotangent bundle, the sections are

the vector fields and one-forms respectively.

Finally, a fibre bundle (E, π,M) is said to be trivial is there exist aM-isomorphism

to the product bundle (M× F, pr1,M) where F is a general space, with the bundle

being locally trivial when the bundle map is a local isomorphism [17, 18]. Of di-

rect relevance to our discussion are principal bundles, a special class of fibre bundles
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2.3. TETRAD FORMALISM

where the fibre is a Lie group. Firstly the notion of a G-bundle is needed, which is a

bundle (E, π,M) isomorphic to (E, ρ, E/G)with E being a right G-space and ρ the

usual projection map in to the base manifold, E/G in this case. Then, a principal G-

bundle is a G-bundle (E, π,M) on which G acts freely, with G becoming the bundle’s

structure group. As an example, given a Lie group G and a closed subgroup H, we

get a principal H-bundle (G, π,G/H) via the right action of H on G, where H is the

fibre [18].

2.3 Tetrad formalism

Gravitational theories are characterised by the dynamics of metric tensor gµν . It gives

a notion of distance on the manifold of interest and it is used to define the Christoffel

symbols and the Riemann curvature tensor. Although pure gravitational theories

of interest to us will be generally covariant, i.e. invariant under a general local

differentiable transformation, the gauge theory aspect of the theories is hardly made

manifest in the usual metric formalism and hence a different approach is needed in

order to make this feature manifest. The tedrad formalism, or vielbein formalism,

provides such a framework.

A manifold is locally at very small scales, thus we have a local Lorentz invariance.

To make it manifest, we can choose a non coordinate basis in which the mnetric takes

the form

gµν(x) = eaµ(x)ebν(x)ηab (2.16)

with ηab being the Minkowski metric. The tetrad eaµ(x) is a object which transforms

the fundamental representation of the Lorentz gauge group as well as a form under

spacetime transformation

δξe
a
µ(x) = (ξρ∂ρ) e

a
µ + (∂µξ

ρ) eaρ. (2.17)

The tetrad almost look like a gauge field connection, except that the latter would
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2.3. TETRAD FORMALISM

transform under the adjoint representation of the gauge group [19].

We can define the spin connection ωabµ , which defines the action of the covariant

derivative on spinors ψ

Dµψ = ∂µψ +
1

4
ωabµ Γabψ (2.18)

with 1/4Γab = 1/2[Γa,Γb] the generator of the action of the group on spinors and Γa

being the gamma matrices. The torsion is then defined in terms of the tetrad as

T a[µν] ≡ 2D[µe
a
ν] = 2∂[µe

a
ν] + 2ωab[µe

b
ν] (2.19)

In the absence of fermions, this can be made to vanish as it is the case in general

relativity. The field strength Rab
µν(ω) is then given by

Rab
µν(ω) = ∂µω

ab
ν − ∂νωabµ + ωabµ ω

bc
ν − ωacν ωωbµ (2.20)

which is connected to the usual Riemann Rµ
νρσ(Γ(e)) tensor by [19]

Rab
ρσ(ω(e)) = eaµ(e−1)νbRµ

νρσ(Γ(e)). (2.21)

CHAPTER 2. MATHEMATICAL PRELIMINARIES 11
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Chapter 3

Consistent truncations

3.1 The Kaluza-Klein S1 reduction and the consistency

issue

We begin the chapter by studying the original Kaluza-Klein (KK) reduction on a circle

S1 [4, 5], hence we consider the dimensional reduction of a pure gravity Einstein

theory in (D + 1) dimensions, whose dynamics is contained in the Lagrangian L =
√
−ĝR̂ which enters the Einstein-Hilbert action as

S = − 1

2πκ2

∫
dxD+1

√
−ĝR̂, (3.1)

where hatted quantities and indices refer to the higher dimensional space and we

are using a mostly . The reduction is a consequence of the compactification of one

of the spatial coordinates, denoted by y, into a circle S1 of radius L. The higher-

dimensional theory describes the evolution of a symmetric spin 2 tensor, i.e. the

metric tensor gµ̂ν̂(x, y) and we assume the classical solution of the equation of motion

resulting from varying Eq. (3.1) in the case of D = 4 to be the product space M4×S1

parameterised by coordinates xµ̂ = (xµ, y) with 0 ≤ µ̂ ≤ 4 and 0 ≤ µ ≤ 3, where M4

is the 4 dimensional Minkowski spacetime and 0 ≤ y ≤ 2πL [4].

Due to the periodicity of the compact dimension, the metric can be expanded

13



3.1. THE KALUZA-KLEIN S1 REDUCTION AND THE CONSISTENCY ISSUE

following Fourier’s theorem as

ĝµ̂ν̂(x, y) =
∑
n

g
(n)
µ̂ν̂ (x)einy/L (3.2)

obtaining the so called Kaluza-Klein tower of modes each labelled by n. It turns out

[20] that all modes with n 6= 0 correspond to massive fields in the reduced theory

with the mass being inversely proportional to the size of the compact dimension L.

Since this is usually assumed to be of the order of Plank length in this context, it

results in fields with masses of the order of the Plank mass, hence a truncation to

the massless sector is usually taken, corresponding to the higher dimensional metric

being independent of the compact dimension y, namely we take ĝµ̂ν̂(x, y) = g
(0)
µ̂ν̂ (x),

with components [21]

ĝµ̂ν̂(x) =

ĝµν(x) ĝµz(x)

ĝµz(x) ĝzz(x)

 . (3.3)

Although one could take these components to be the D-dimensional fields of the

reduced theory and carry on with the computation of the action Eq. (3.1), there is

a parameterization [22] that makes the resulting equation of motions much neater

and the content of the lower dimensional theory more explicit, namely the non-linear

reduction ansatz

ĝµ̂ν̂(x) = φ−1/3(x)

gµν(x) + κ2φ(x)Aµ(x)Aν(x) κφ(x)Aµ(x)

κφ(x)Aν(x) φ(x)

 , (3.4)

where the fields gµν(x), Aµ(x) and φ(x) are the zero modes of their Fourier expansion

in the sense of Eq. (3.2). It is a well known-result in the literature [22] that when

computing the Ricci curvature R̂ resulting from the 5-dimensional metric given in

Eq. (3.4) and its determinant ĝ, one can integrate out the y coordinate as no quantity

depends on it in the action, thus obtaining a 4-dimensional effective action of the

form

14 CHAPTER 3. CONSISTENT TRUNCATIONS



3.1. THE KALUZA-KLEIN S1 REDUCTION AND THE CONSISTENCY ISSUE

S =

∫
d4x
√
−g
[
− 1

κ2
R(g)− 1

4
φFµνF

µν +
1

6κ2φ2
∂µφ∂µφ

]
, (3.5)

where g = det(gµν) and Fµν = ∂µAν − ∂νAµ, with the indices raised and lowered

by gµν .

The 5-dimensional theory was originally invariant under a general coordinate

transformation xµ̂ 7→ xµ̂ − σµ̂(xν̂). If we also expand the transformation parameter

around the compact dimension y and retain only the n = 0 mode, i.e. σµ̂(xν̂) =

σµ̂(xµ), the remnants of the higher dimensional symmetry in the effective action of

Eq. (3.5) appear as invariance under the field transformations with parameter σµ(x)

δgµν =∂µσ
ρgρν + ∂νσ

ρgρµ + σρ∂ρgµν (3.6)

δAµ =∂µσ
ρAρ + σρ∂ρAµ (3.7)

δφ =σρ∂ρφ (3.8)

and under a local gauge transformation

δAµ = κ−1∂µσ
4 (3.9)

with parameter κ−1σ4(x) [23]. Hence we note that the reduced action describes the

dynamics of a spin 2 field, gµν , a spin 1 gauge field, Aµ, and a scalar field φ, thus

providing a mechanism in which gravity and electromagnetism can be embedded in

a purely geometrical theory in higher dimensions, at the expense of introducing a

scalar field. This was Klein’s revolutionary idea [5].

Although one could be tempted to set the scalar field to a constant value (φ = 1

with the parameterization used above) and recover the Einstein-Maxwell action from

pure gravity in 5 dimensions, there would be an issue of consistency arising from

doing so. In other words, if we compute the equation of motion (e.o.m.) obtained

CHAPTER 3. CONSISTENT TRUNCATIONS 15



3.1. THE KALUZA-KLEIN S1 REDUCTION AND THE CONSISTENCY ISSUE

from varying Eq. (3.1), one obtains the 5-dimensional Einstein’s field equations

R̂µ̂ν̂ −
1

2
ĝµ̂ν̂R̂ = 0. (3.10)

Focusing on the yy or 44 component, this would reduce to an equation of motion

for the scalar φ [24]

2(lnφ) =
3

4
κ2φFµνF

µν , (3.11)

hence setting φ = constant would ultimately result in the vanishing of the Yang-Mills

term FµνF
µν , thus a truncation of the scalar is prevented by the details of the interac-

tions between the lower dimensional fields [21]. In this case consistency is restored

by retaining the scalar field as a dynamical degree of freedom and recognising that

an S1 reduction of 5-dimensional pure gravity and the subsequent truncation to the

massless sector yields an Einstein-Maxwell-scalar system [23].

Nevertheless one may ask whether the truncation to the massless sector is consis-

tent or not: as it turns out, such truncation is consistent so long as one truncates out

all the non-zero modes. The reason is that the Fourier coefficients in Eq. (3.2) are

U(1) representations, with the n = 0 mode being the singlet representation. Hence

by keeping only the singlets, the truncation is guaranteed to be consistent [21].

Although the following sections will explore generalisations of Kaluza’s key idea

to theories with more than 5-dimension and beyond Einstein’s gravity, the key com-

mon features among them will be to consider a Lagrangian L in a given number

of spacetime dimensions which are then reduced via a dimensional reduction while

keeping the number of degrees of freedom unvaried by truncating the field content

to a subset, usually the massless sector. This differs from a pure compactification

where the extra dimensions are traded for an infinite number of degrees of freedom.

There are other instances in which the truncation is achieved via the introduction of

constraints [see 25], however in this paper we will only deal with truncations of the

KK type.
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As was the case for the reduction discussed above, there is an issue of consistency

of the truncation that arises from such procedure. In a stronger sense than that

explored in the S1 case, in order for a truncation to be consistent, one has to ensure

that the implementation of the truncation at the level of the variational principle is

in agreement with that at the level of the e.o.m.. In other words, finding the e.o.m.

from L and truncating them must yield the same result as when we first truncate L

and find the e.o.m. from LR [26] (δL
δΦ

)
R

=
δLR
δΦ

(3.12)

where Φ indicates any type of field content of the theory. It is this latter criterion

that is used in the majority of the literature on the topic [23, 24] and as such it will

be adopted in the rest of the paper.

3.2 Local Group Manifold Reductions

Dimensional KK reduction of pure gravity on S1 is the simplest among its kind. In

fact it belongs to a broader category of consistent truncations, named local group

manifold reductions, in which one starts with a theory in a curved (D + E) dimen-

sional space that is invariant under the action of an arbitrary E-dimensional Lie

group G, subject to some conditions. Then, assuming a phenomenon of compactifi-

cation of the E dimensions is achieved in some way, a richer D-dimensional theory

emerges in which the extra E dimensions appear as massive multiplets of the Lie

group G coupled to non-Abelian Yang-Mills fields [27].

From a geometric point view, the starting point is a D-dimensional Riemannian

spacetime manifold over which a principal fibre bundle is constructed. Then a finite-

dimensional E-dimensional Lie group is the structure group of the bundle and the

existence of a Lie algebra valued connection 1-form Ω̂ on the bundle is assumed, the

covariant derivative of which gives the curvature 2-form and is viewed as a gener-

alised Y-M field tensor [8].
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3.2.1 The formalism

In the tetrad formalism, where the Greek indices refer to the curved space and Latin

ones to the flat tangent space, the Einstein-Hilbert action is given by

S = − 1

4κ2

∫
dDx

∫
dEy

ρ(E)
V̂ R̂(Ω̂) (3.13)

where κ is such that κ2/4π is the D-dimensional Newton’s constant, V̂ is he determi-

nant of the vielbein which in this formalism represent the degrees of freedom in the

theory and is defined by ĝµ̂ν̂ = V̂ m̂
µ̂ V̂

n̂
ν̂ η̂m̂n̂, with ρ(E) being the internal space’s in-

variant volume that can be written in terms of a measure T (y) as ρ(E) =
∫
dEyT (y)

and R̂(Ω̂) is the Ricci scalar built out of the connection 1-form Ω̂r̂
µ̂ŝ [10]. This action

is invariant under general coordinate transformation xµ̂ 7→ xµ̂ − σµ̂(xρ̂) with the Lie

algebra given by [δσ1 , δσ2 ] = δσ3 and

σµ̂3 (x, y) = σρ̂2(x, y)∂ρ̂σ
µ̂
1 (x, y)− σρ̂1(x, y)∂ρ̂σ

µ̂
2 (x, y). (3.14)

This transformation acts on the vielbein as

δV̂ r̂
µ̂ = σρ̂∂ρ̂V̂

r̂
µ̂ + ∂µ̂σ

ρ̂V̂ r̂
ρ̂ (3.15)

and due to local Lorentz invariance in the (D + E)-dimensional space [9] one can

choose a triangular parameterization for the vielbein as

V̂ r̂
µ̂ =

θγV r
µ 2κAαµΦa

α

0 Φa
α

 , (3.16)

where θ = det(Φa
α), γ is a free-parameter to be chosen representing Weyl invariance

of V̂ r̂
µ̂ and all the field components depend on the full set of coordinates (xµ, yα).

At this point, one could produce a normal mode expansion 1 of the vielbein

components [20] in terms of the compact space coordinates and then truncate the

field content and the parameter to the massless sector by retaining only the xα-

1The mode expansion will be explained in more details in Section 3.3.1.
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dependence as it was done for the S1 reduction, thus we have V̂ r̂
µ̂ (xµ, yα) = V̂ r̂

µ̂ (xµ)

and σµ̂(xµ, yα) = σµ̂(xµ). In this case, from Eq. (3.15) one would find that the trans-

formation properties of the components are respectively that of a D-dimensional

vielbein V r
µ , E(E + 1)/2 scalars Φa

α and finally E vector fields Aµα corresponding to

gauge fields of U(1)E invariance of theory [10]. In fact, proceeding through with the

computation and by choosing γ = −(D − 2)−1, the action in Eq. (3.13) reduces to

S =

∫
dDxV

[
− 1

4κ2
R− 1

4
θ2/(D−2)F µναF β

µνhαβ −
1

16κ2
gρλ∂ρhαβ∂λh

αβ

+
1

4κ2(D − 2)θ2
gρλ∂ρθ∂λθ

]
(3.17)

where hαβ = Φa
αδabΦ

b
β is the curved metric in the compact space2 and Fα

µν = ∂µA
α
ν −

∂νA
α
µ [10].

A more interesting scenario is that in which the fields are given a yα-dependence

of a simple enough form such that to allow the y dependence to ultimately cancel

in the action Eq. (3.13). It turns out that for a pure gravity theory it is sufficient to

specify the y-dependence of the transformation parameter σµ̂(x, y) in order to fully

specify the type of reduction, which we take as

σµ(x, y) = σµ(x) (3.18)

σα(x, y) =
[
T−1(y)

]α
β
σβ(x). (3.19)

The Lie Algebra [δσ1 , δσ2 ] = δσ3 now has

σµ3 (x) = σρ2(x)∂ρσ
µ
1 (x)− σρ1(x)∂ρσ

µ
2 (x) (3.20)

for two D-spacetime general coordinate transformations,

σα3 (x) = −σρ1(x)∂ρσ
α
2 (x) (3.21)

2Here δab is the Euclidean flat metric, hence Φaα is the vielbein for the compact E-dimensional
space.
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for σ1 a spacetime transformation and σ2(x) an internal transformation and finally

σγ3 (x) = Cαβ
γσα1 (x)σβ2 (x) (3.22)

for two internal space transformations, with U matrices chosen such that

Cαβ
γ ≡

(
T−1

)δ
α

(
T−1

)ε
β

(∂εT
γ
δ − ∂δT

γ
ε ) (3.23)

are constant coefficients [10, 28].

By choosing the y coordinates to parameterise the manifold of an E-dimensional

Lie group G, the above is satisfied and a representation of the group generators is

given by

eα(y) = (T−1(y))βα∂β (3.24)

so that [eα, eβ] = Cαβ
γeγ. This choice would correspond to selecting a subalgebra

of the set of isometries of the higher dimensional theory comes equipped with. We

are left to specify how the fields themselves depend on the y coordinates which

according to [10] should be chosen as

V r
µ (x, y) = V r

µ (x) (3.25)

Aαµ(x, y) =
[
T−1(y)

]α
β
Aβµ(x) (3.26)

Φa
α(x, y) = T βα (y)Φa

β(x). (3.27)

Then under the symmetries Eqs. (3.20) to (3.22), factoring out the y-dependence

they transform as

δΦa
α(x) =Cαβ

γσβ(x)Φa
γ(x) (3.28)

δΦα
a (x) =Cβγ

ασβ(x)Φγ
a(x) (3.29)

δAαµ(x) =
1

2k
∂µσ

α(x) + Cβγ
ασβ(x)Aγµ(x) (3.30)

δV r
µ (x) =0, (3.31)
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hence from Eq. (3.30) we recognise the the transformation of E gauge fields Aαµ(x)

of the non-Abelian Lie group G with structure constants Cβγα [10].

One would then proceed with the computation of the quantities that enter the

action. It turns out [10] that R̂ is y-independent and that V̂ = T (y)θγD+1V , with

T (y) = det(Tαβ (y)) and V = detV r
µ , where the T (y) gives the integration measure for

the compact space and cancels in the action, which then becomes [9]

S =

∫
dDxV

{
− 1

4κ2
R− 1

4
θ2/(D−2)F µναF β

µνhαβ −
1

16κ2
gρλDρhαβDλhαβ

+
1

4κ2(D − 2)θ2
gρλ∂ρθ∂λθ −

1

16κ2
θ−2/(D−2)Cβγ

α
[
2Cαι

βhγι + Cει
δhαδh

βεhγι
]}

,

(3.32)

where Fα
µν = ∂µA

α
ν − ∂νAαµ − 2κCβγ

αAβµA
γ
ν is the non Abelian strength field for G and

DµΦa
α = ∂µΦa

α−2κCαβ
γAβµΦγ

a is the covariant derivative with respect of the Lie group

[9].

In the effective action resulting from the truncation in Eq. (3.32) we can distin-

guish four different terms: the first describes a (D × D) symmetric massless tensor

field gµν(x), the second is a Yang-Mills term for the gauge field Aαµ coupled to gravity

and the last three terms describe E(E+ 1)/2 scalar fields hαβ together with their self

interactions and their interactions with gravity and the Yang-Mills fields, which are

governed by the choice of the Lie group G [9].

One would need to show that the higher dimensional action is invariant under

transformations in Eq. (3.19) and this restricts the type of gauge group one can

choose for the reduction to Lie groups which satisfy the condition Cαβ
α = 0. A

proof will be presented in Section 3.2.2 by using the metric formalism. Furthermore

the potential term in Eq. (3.32) needs to be unbounded from below which imposes

further conditions in the choice of the gauge group, rendering ”flat groups” the only

viable choice in order to obtain a consistent truncation [10].

Finally one could examine how the procedure just described changes if the pure
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gravity action in Eq. (3.13) is enriched by introducing matter multiplets of the Lie

group G.3 This becomes of interest in 11− or 10−dimensional supersymmetric theo-

ries of gravity where the presence of matter multiplets is required by the symmetries

of the theory themselves [27]. Furthermore such theories seems to provide a mecha-

nism under which a spontaneous compactification is admitted by the field equations

[24].

3.2.2 Consistency of group reductions: unimodularity condition

Here we present the proof for the unimodularity condition for the group G as given

by Pons and Talavera in [25], expressed in a more geometrical language which

will also be used in Chapter 4. We begin with the same setup as the previous

section, namely a (D + E)-dimensional Lorentzian spacetime invariant under a E-

dimensional group of isometries generated by the set4 of Killing vector fields Ka′

satisfying the Lie algebra [Ka′ ,Kb′ ] = Ca′b′
c′K′c, which in components are K′a =

Kα
a′(x, y)∂α. We choose a set of E independent vector fields La′ = Lαa′(x, y)∂α which

are left-invariant under the Lie algebra and satisfy [La′ , Lb′ ] = Ca′b′
c′Lc′ and the corre-

sponding dual 1-form ωa
′
= ωa

′
α (x, y)dxα, so that ωb′ · La′ = δb

′

a′ [29].

In this section the metric components ĝµ̂ν̂ are parameterised using the mixed base

{dxµ, ωa′} as

ĝ = gµνdx
µdxv + ga′b′

(
Aa
′

µ dxµ + ωa
′
)(

Ab
′

ν dxν + ωb
′
)
. (3.33)

where in principle the fields all have both and x and y dependence, with det(g) =

det(gµν)det(ga′b′)det(ω
a′
α )2. However, requiring the metric be invariant under the set

of isometries, condition expressed via the vanishing of the Lie derivative with respect

to Ka′ of g

LKa′
(g) = 0 (3.34)

3The details have being worked out by Scherk and Schwarz in [10].
4Primed Latin indices refer to the basis chosen for the Lie algebra and not to the vielbein.
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results in ga′b′ and gµν being y-independent, while the of Aa′µ is dictated by

(∂µK
α
a′) ∂α = −Ka′

(
Ab
′

µ

)
Yb′ (3.35)

coming from LKa

(
Abvdx

v + ωb
)

= 0. This will also be taken to be y-independent

in the truncation which follows, hence it is appropriate to take Ka′, Ya′ and ωa
′

also y-independent. Than any p-forms expressed in terms of the mixed basis with

y-independent components will be automatically invariant under the group of isome-

tries [25].

If we denote the field content of Eq. (3.33) with Φ and the first a second deriva-

tive by Φµ and Φµν , the action is written as

S =

∫
dDxdEyL(Φ,Φµ,Φµν) ≡

∫
dDxdEy|ω|L̃(Φ,Φµ,Φµν) (3.36)

where ωa′ and Yb′ are not considered fields variables and |ω| = det(ωa
′
α ). Ultimately

we define the truncated theory by the reduced Lagrangian

LR(Φ,Φµ,Φµν) = L̃(Φ,Φµ,Φµν ;Ya′Φ = 0,Ya′Yb′Φ = 0). (3.37)

The reduced Euler-Lagrange equations obtained from the variation of Eq. (3.36) by

setting the y-derivatives of the field to zero in the higher dimensional equations are

finally given by [26](
δL̃
δΦ

)
R

=

{
δLR
δΦ
− Ca′c′c

′

(
∂L̃

∂Ya′Φ

)
R

+
1

2
Ca′c′

c′Cb′d′ []
d′

(
∂L̃

∂Ya′Yb′Φ

)
R

}
. (3.38)

Recalling from Eq. (3.12) the statement of consistency for the truncation is the fol-

lowing (
δL̃
δΦ

)
R

=
δLR
δΦ

(3.39)

which is satisfied where the structure constants obey the condition Ca′c′
c′ = 0. Lie

algebras which belong to this category are the Abelian Lie algebras, semi-simple Lie

algebras and compact Lie algebras, and as such they provide the starting point in
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obtaining consistent truncations via local group reductions [25].

The analysis extends to the case where fermion are considered in the starting La-

grangian: one would define the vielbein basis êm̂µ̂ and choose the components so that

the Killing condition is satisfied, namely LKa′
êm̂µ̂ = 0, and y-independent spinors.

Then the procedure discussed above would be implemented with the Killing condi-

tions on spinor fields and the consistency requirement results in the same condition

on the structure constants [26].

For the type of truncations seen in this section, it was essential that the genera-

tors of the Lie group under which the theory was reduced were independent Killing

vector fields. Group theoretical arguments cannot be used in cases where the Killing

vectors are linearly dependent, as it is the case for spheres reduction [29] and there

are only a limited set of such truncations which are known to be consistent. However,

as we will see in Chapter 4, generalised geometry can be used to define consistent

generalised Scherk-Schwartz reductions on spaces such as spheres.

3.3 Coset space dimensional reductions

As anticipated, group manifold reductions are not the only possibility when it comes

to dimensional reductions. There are many other internal manifold that could be

used as the compact space and would deliver different fields content in the truncated

theory. One such case are coset spaces G/H, of which unit spheres Sn are the most

common examples: they are coset spaces SO(n + 1)/SO(n). One reason one would

perform a dimensional reduction of a theory on the coset space G/H rather then

on the group manifold G is that to obtain the same lower dimensional gauge field

content, a coset space reduction would require less extra dimensions. More precisely

if a G reduction requires dimG extra dimensions, a G/H reduction would require

dimG− dimH extra dimensions [21].

As explained below, the reduction procedure follows a similar path of that taken
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in group manifold reductions, involving a Fourier mode expansion of the metric

(and any possible higher dimensional matter fields) around the compact space coor-

dinates using a complete set of eigenfunctions followed by a truncation to a subset

of such fields, usually the massless sector. This is where the consistency issue comes

in: it is generally not possible to achieve consistency for coset space reductions due

to the nature of the interactions between modes resulting from the reduction. More

explicitly, products of zero modes eigenfunctions will generally generate non-zero

modes so that setting the latter to zero produces inconsistency [21].

On the other hand there have been cases in the literature where consistent re-

duction ansatz for supergravity theories have been found. Some examples include

S5 reduction of type IIB supergravity [11], S3 reduction for the NS-NS sector of type

IIA and type IIB supergravity [30], the S4 reduction of 11D supergravity [31] and of

type IIA supergravity [32], to list a few.

3.3.1 G/H coset space geometry and dimensional reduction

A metric space that admits the transitive action of a group G as its isometry is called

homogeneous. Furthermore, an homogeneous space is a coset space G/H. For G a

Lie group, coset manifolds with a Riemannian structure are obtained. One can split

g as g = h
⊕

K where K is the coset generator subalgebra. As Lie coordinates we can

choose ya′ , xi′, with y parameterising the coset manifold with respect to H. We label

the coset representative by Ly = exp[yaKa] and the whole geometry on G/H can be

built out of coset representative via left multiplication by g ∈ G [33].

For K compact or semi-simple, the coset space is reductive [34] and the structure

constants Ca′b′c
′
can always be made antisymmetric. The there are two left invariant

metric that can be chosen on the coset space

gαβ =δabV
a
α V

b
β (3.40)

gαβ =γabV
a
α V

b
β (3.41)
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where V a = Vα
a(y)dyα is the Vielbein 1-form, γab is the Killing metric obtained from

the structure constants and restricted to G/H.

Consider a (D +E)-dimensional spacetime which undergoes compactification of

E dimensions to a ground state spacetime which can locally be written as a prod-

uct space M × G/H which is invariant under the action of a Lie group G which

is an internal symmetry of the theory. The space is parameterised locally by a set

of coordinates (xµ, yα). Then the lower D-dimensional theory can be obtained by

expanding higher dimensional fields, the metric components and any matter fields,

in terms of a complete set of harmonics on G/H, with the coefficients transforming

under the action of G in different representations [27].

The expansion is slightly more involved than the case where the internal space is

the entire group manifold G. When expanding over the whole group G in terms of

coefficients, a sum over all the irreducible n-dimensional representations of G, Dn
pq,

and over all the dn-dimensional matrix components indices is carried out, hence a

function is expanded as

φ(g) =
∑
n

∑
p,q

√
dnD

n
pq(g)φnqp (3.42)

where the coefficients are obtained by projecting

φnpq =

√
dn
VG

∫
G

dµDn
pq

(
g−1
)
φ(g). (3.43)

Looking now at the coset space expansion, for a set of fields ψi(x, y) which trans-

form under a combined left translations y 7→ y′ a tangent space rotation h as

ψi(x, y) = Dij(x, y
′)ψj(x, y) (3.44)

with Dij being a dD-dimensional representation of H, the set of unitary representation

is restricted to those that satisfy [27]

Dn(hg) = D(h)Dn(g). (3.45)
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Then taking D irreducible and taking into account that the D(h) may be contained

more than once in Dn(g) by introducing an extra labelζ [27], the expansion is given

by

ψi(x, y) =
∑
n

∑
ζ,q

√
dn
dD
Dn
iζ,q

(
L−1
y

)
ψnqζ(x), (3.46)

where n labels the excitations. Finally expansion coefficients are obtained via inte-

gration over G/H

ψnqζ =
1

VK

√
dn
dD

∫
G/H

dµDn
q,iζ (Ly)ψi

(
L−1
y

)
(3.47)

and transform as

ψ′npζ(x) = Dn
pq(g)ψnqζ(x). (3.48)

One would then proceed by expanding all the fields in the higher dimensional

Lagrangian in a similar fashion thus obtain a lower dimensional formulation which

is so far consistent with he higher dimensional theory. However, a truncation on

the expansions is usually carried out and only a subset of the field excitations is

kept. There is not a systematic approach [6] that can be taken that is guaranteed

to produce a consistent truncation in this case and one is left to guess what possible

truncation ansatz could produce a truncation. We next look at one such example

which has been of major interest due to its application in the field of the AdS-CFT

correspondence [12].

3.3.2 SO(6) reduction of type IIB supergravity on S5

Superstring theories of type IIB require a spacetime with 10 dimensions and have

2 supersymmetrisies in the 10-dimensional sense of opposite chirality. In the low

energy limit, these are known to reduce to the chiral N = (2, 0) supergravity in 10D

[1]. When looking at compactifications, one usually sets the fermionic fields to zero
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[35]. Thus looking at the bosonic sector alone, the Lagrangian [36] becomes

LIIB
10 =R̂∗̂1− 1

2
∗̂dφ̂ ∧ dφ̂− 1

2
e2φ̂∗̂dχ̂ ∧ dχ̂− 1

4
∗̂Ĥ(5) ∧ Ĥ(5)

− 1

2
e−φ̂∗̂F̂ 2

(3) ∧ F̂ 2
(3) −

1

2
eφ̂∗̂F̂ 1

(3) ∧ F̂ 1
(3) −

1

2
B̂(4) ∧ dÂ1

(2) ∧ dÂ2
(2)

(3.49)

where ∗̂ denotes the 10-dimensional Hodge dual, ∧ denotes the wedge product,

Ĥ(5) = dB̂(4)− 1
2
Â1

(2)∧dÂ2
(2) + 1

2
Â2

(2)∧dÂ1
(2) is the self dual 5-form5 field strength while

F̂ 2
(3) = dÂ2

(2) and F̂ 1
(3) = dÂ1

(2) − χ̂dÂ2
(2) the Ramond-Ramond 3-form and the Neveu-

Schwarz-Neveu-Schwarz 3-form field strenghts. The Lagrangian also describes a

dilaton field φ̂ and a scalar χ̂ [36]. The equations of motion arising form the varia-

tional principle were found in [35]

R̂µ̂ν̂ =
1

2
∂µ̂φ̂∂ν̂φ̂+

1

2
e2φ̂∂µ̂χ̂∂ν̂χ̂+

1

96
Ĥ2
µ̂ν̂ +

1

4
eφ̂
((

F̂ 1
(3)

)2

µ̂ν̂
− 1

12

(
F̂ 1

(3)

)2

ĝµ̂ν̂

)
+

1

4
e−φ̂

((
F̂ 2

(3)

)2

µ̂ν̂
− 1

12

(
F̂ 2

(3)

)2

ĝµ̂ν̂

)
(3.50)

d∗̂dφ̂ = −e2φ̂∗̂dχ̂ ∧ dχ̂− 1

2
eφ̂∗̂F̂ 1

(3) ∧ F̂ 1
(3) +

1

2
e−φ̂∗̂F̂ 2

(3) ∧ F̂ 2
(3) (3.51)

d
(

e2φ̂∗̂dχ̂
)

= eφ̂∗̂F̂ 1
(3) ∧ F̂ 2

(3) (3.52)

d
(

eφ̂∗̂F̂ 1
(3)

)
= Ĥ(5) ∧ F̂ 2

(3) (3.53)

d
(

e−φ̂∗̂F̂ 2
(3) − χ̂eφ̂∗̂F̂ 1

(3)

)
= −Ĥ(5) ∧

(
F̂ 1

(3) + χ̂F̂ 2
(3)

)
(3.54)

d
(
∗̂Ĥ(5)

)
= −F̂ 1

(3) ∧ F̂ 2
(3) (3.55)

Ĥ(5) = ∗̂Ĥ(5) (3.56)

where the last equation is inserted by hand and expresses the self duality of the

5-form, required here by the form of the Lagrangian.

A first consistent truncation in 10D can be made to the IIB theory itself by only

keeping gravity and the 5-form and setting to zero the rest of the fields with the

5The numeric index in parenthesis indicates label the order of the form with respect of the 10-
dimensional spacetime.
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equations of motions reducing to

R̂µ̂ν̂ =
1

96
Ĥµ̂ρ̂σ̂τ̂ υ̂Ĥν̂

ρ̂σ̂τ̂ υ̂
(3.57)

dĤ(5) = 0. (3.58)

Then the dimensional reduction ansatz is made on this truncated theory and the

one we present is the first full non-linear ansatz that was first found by Cvetič et

al in [11] and no further truncation is performed on the field content but only a

parameterisation of the higher dimensional field in terms of lower dimensional ones

which are representation of the SO(6) gauge group. Hence, the 10-dimensional

metric is parameterised in terms of 5 dimensional fields as

dŝ2
10 = ∆1/2ds2

5 + g−2∆−1/2T−1
αβDµ

αDµβ (3.59)

where ∆ ≡ Tαβµ
αµβ, U ≡ 2TαβTβγµ

αµγ−∆Tββ and ds2
10 represent the 5-dimensional

metric of the reduced theory. Tαβ is taken to be a unimodular symmetric tensor and

Dµα ≡ dµα + gAαβ(1)µ
β is the covariant derivative acting on the local coordinates µα

spanning the internal 5-sphere6 and thus are subject to the condition µαµα = 1.

Similarly, the self-dual 5 form is parameterised as

Ĥ(5) =Ĝ(5) + ∗̂Ĝ(5) (3.60)

with Ĝ(5) =− gUε(5) + g−1
(
T−1
αβ ∗DTβγ

)
∧ (µγDµα) (3.61)

− 1

2
g−2T−1

αγ T
−1
βδ ∗ F

αβ
(2) ∧Dµ

γ ∧Dµδ (3.62)

and ∗̂Ĝ(5) =
1

5!
εα1···α6

[
g−4U∆−2Dµα1 ∧ · · · ∧Dµα5µα6 (3.63)

− 5g−4∆−2Dµα1 ∧ · · · ∧Dµα4 ∧DTα5βTα6γµ
βµγ (3.64)

−10g−3∆−1Fα1α2

(2) ∧Dµα3 ∧Dµα4 ∧Dµα5Tα6βµ
β
]

(3.65)

where Fαβ
(2) = dAαβ(1) + gAαγ(1) ∧ A

γβ
(1) and DTαβ ≡ dTαβ + gAαγ(1)Tγβ + gAβγ(1)Tαγ [36].

6As per convention, early Greek alphabet indices refer to the compact space, in this case they are
in the 6 representation of SO(6), the symmetry group of S5.
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Plugging the ansatz above into Eq. (3.57) results into equations of motions the

5-dimensional fields need to satisfy in order to have consistency [11]

D
(
T−1
αγ T

−1
βλ ∗ F

γλ
(2)

)
=− 2gT−1

γα ∗DTβ]γ −
1

8
εαβγ1···γ4F

γ1γ2
(2) ∧ F

γ3γ4
(2)

D
(
T−1
αγ ∗DTγβ

)
=− 2g2 (2TαγTβγ − TαβTγγ) ε(5) + T−1

αγ T
−1
λm ∗ F

λγ
(2) ∧ F

mβ
(2)

− 1

6
δαβ

[
−2g2

(
2TγλTγλ − (Tγγ)

2) ε(5) + T−1
ζγ T

−1
λδ ∗ F

λγ
(2) ∧ F

δζ
(2)

]
(3.66)

as well the corresponding Einstein field equations. It turns out [11] that these equa-

tion of motions can be derived from the 5-dimensional Lagrangian

L5 = R ∗ 1− 1

2
g2
(
2TαβTαβ − (Tαα)2) ∗ 1

− 1

4
T−1
αβ ∗DTβγ ∧ T

−1
γγ DTγα −

1

4
T−1
αγ T

−1
βγ ∗ F

αβ
(2) ∧ F

γγ
(2)

− 1

48
εα1···α6

(
Fα1α2

(2) ∧ Fα3α4

(2) ∧ Aα5α6

(1) − gF
α1α2

(2) ∧ Aα3α4

(1) Aα5β
(1) ∧ A

βα6

(1)

+
2

5
g2Aα1α2

(1) ∧ A
α3β
(1) ∧ A

βα4

(1) ∧ A
α5γ
(1) ∧ A

γα6

(1)

)
(3.67)

which is a truncated version of the full N = 8 gauged SO(6) supergravity in

5 dimensions [37]. It was noted in [11] in order for the ansatz to be consistent,

the 5-form Ĥ(5) has to be self-dual and thus the term ∗̂Ĝ(5) had to be included in

Eq. (3.60). If that were not the case, Eq. (3.58) would give, among other acceptable

equations, the constraint εαβγ1···γ4F
γ1γ2
(2) ∧ F

γ3γ4
(2) = 0 which cannot be satisfied.

Looking a the transformation properties, one can deduce [11] that the truncated

theory obtained describes a graviton field given by the 5-dimensional metric, 20

scalar fields in the form of the unimodular symmetric tensor Tαβ and the 15 SO(6)

Yang-Mills gauge fields 1-forms Aαβ, obtained from the truncation of IIB supegravity

in the 10D starting with gravity and a self-dual 5-form only.
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Chapter 4

Consistent truncations from

generalised geometry

4.1 Ordinary complex geometry

4.1.1 G-structures

In Section 2.2 we defined the notion of a fibre bundle, that is roughly speaking

a bundle (E, π,M) where the fibres π−1(x) are isomorphic to a common space F

which is then referred to as the fibre, for x ∈M. Now, given two patches Uα and Uβ

on the base manifoldM, the transformations of the fibres among patches is dictated

by transition functions so that globally the total space is not generally a product

space. Vector bundles are fibre bundles whose fibre is a vector space, example of

interest being the tangent and cotangent bundles TM and T ∗M. Furthermore, to

every vector bundle there is an associated principal fibre bundle F (E), called the

frame bundle, with the fibre over x being the set of all frames or ordered basis at x

[38].

Associated to tangent bundle TM is the tangent frame bundle FM, a principal

bundle where the fibre is the set of frames of the tangent space TpM. At a local level,

element on FM are labelled by the local trivialisation (p, ea) where p ∈ Uα and
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ea = eia∂i is a set of independent vectors providing a frame for TpM. Also there is a

natural action of GL(d,R on the a−index for a = 1, ..., d. Considering two patches on

the base manifold M , Uα and Uβ, and local trivialisations (p, ea) and (p′, e′a), then

on the overlap we have e′ia = eib(tβα)ba where (tβα)ba are transition functions which

takes one basis into the other and form a group, the structure group of the bundle,

GL(d,R) in the case of tangent frame bundle [38].

Given the structure group GL(d,R), one can choose a local frame in each of

the patches such that a reduced tangent frame bundle is defined that has as the

structure group the proper subgroup G ⊂ GL(d,R). Provided this can be done,

then a manifoldM is said to have a G-structure with G ⊂ GL(d,R) as the reduced

structure group. A manifold is said parallelizable if one can find a global section of

the whole tangent frame bundle such that by an appropriate local frame redefinition

the global section takes the same form sab ∈ GL(d,R) everywhere, which results in

the structure group being trivial, i.e. contains only the identity[18].

One way to characteriseG-structures is by using globally defined, non-degenerate

G-invariant tensors (or spinors). Since they are globally defined, one can choose the

ea so that the objects take the same form over the manifold. The transitions func-

tions that leave their form invariant then form the reduced structure group G or a

subgroup of G. Decomposing the representation of GL(d,R) into irreducible rep-

resentations of G one can then select those invariant under G, i.e. the G-singlets,

which will give the G-invariant tensors needed to classify the G-structures [18].

An almost complex structure is a tensor J ∈ Γ(TM⊗ T ∗M) satisfying J2 = 1

which reduces the structure group to GL(d/2,C). Considering the complexified tan-

gent bundle TM⊗ C, J acts on TpM with eigenvalues −i and +i, giving a decom-

position of the tangent bundle in the sub-bundles L and L̄, spanned by two separate

bases of vector fields, that have as fibres the (+i) and (−i) eigenspaces respectively.

Since the J is preserved under G, the decomposition in sub-bundles is conserved

and L and L̄ are so called distributions and have equal rank. If the distribution L is
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integrable, J is said to be a complex structure. Similarly the cotangent bundle T ∗M

splits into sub-bundles as

Λ1T ∗M ⊗ C = Λ1,0T ∗M ⊕ Λ0,1T ∗M, (4.1)

with the sections Γ(Λp,qT ∗M) labelled by Ωp,q(M) for convenience. A higher form

would then decompose as [39]

ΛlT ∗M =
⊕

0≤p≤l

(
ΛpT ∗(1,0)M ⊗ Λl−pT ∗(0,1)M

)
=
⊕

0≤p≤l

Λp,l−pT ∗M. (4.2)

Similarly, a globally defined symmetric two-tensor provides a metric g with re-

duced structure group O(d,R), which combined with the existence of a volume

form gives an orientable Riemannian manifold with structure group SO(d,R. A

pre−symplectic structure is given by non-degenerate two-form ω ∈ Γ(Λ2T ∗M) with

structure group Sp(d,R). This becomes a symplectic structure if ω is integrable,

namely if dω = 0. Finally an Hermitian metric is given by a metric g and an

almost complex structure J satisfying J ikgijJ j l = gkl and has U(d/2) as the structure

group. These two in turn imply the existence of a symplectic structure [39].

Given an almost complex structure, one can define a local frame span by d/2

independent (1,0) forms θa ∈ Λ1,0T ∗M and the corresponding local section Ω of the

canonical bundle Λd/2,0T ∗M as Ω = θ1 ∧ ... ∧ θd/2 associated to the almost complex

structure. If Ω is globally defined decomposible or simple form then structure group

further reduces down to SU(d/2) [39].

4.1.2 Forms, torsion classes and spinors

To begin with, we give a precise definition of the exterior derivative which is an

object that act on a (l)-form χ to produce an (l+1)-form dχ

dχ (V0, . . . , Vl) =
∑

0≤a≤l

(−1)aVa

(
χ
(
V0, . . . , V̂a, . . . , Vl

))
+

∑
0≤a<b≤l

(−1)a+bχ
(

[Va, Vb] , V0, . . . , V̂a, . . . , V̂b, . . . , Vl

) (4.3)
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Torsion classes Name
W1 =W2 = 0 Complex

W1 =W3 =W4 = 0 Symplectic
W2 =W3 =W4 =W5 = 0 Nearly Kähler
W1 =W2 =W3 =W4 = 0 Kähler

ImW1 = ImW2 =W4 =W5 = 0 Half-flat
W1 = ImW2 =W3 =W4 =W5 = 0 Nearly Calabi-Yau
W1 =W2 =W3 =W4 =W5 = 0 Calabi-Yau

W1 =W2 =W3 = 0, (1/2)W4 = (1/3)W5 = −dA Conformal Calabi-Yau

Table 4.1: Geometries classification by vanishing torsion classes of SU(3). Table taken
from [39].

where Vi ∈ Γ(TM) and V̂i indicates the absence of the vector field with the given

index and [·, ·] denotes the Lie bracket. In components this becomes

(dχ)i0i1...il = (l + 1)∂[i0χ i1...il]. (4.4)

Returning to the decomposition in Eq. (4.2), on a complex manifold the exterior

derivative of a (p, q)-form χ decomposes as

d (χp,q) ∈ Ωp+2,q−1(M) ∪ Ωp+1,q(M) ∪ Ωp,q+1(M) ∪ Ωp−1,q+2(M) (4.5)

and in the case of a complex manifold it becomes simply

d (χp,q) ∈ Ωp+1,q(M) ∪ Ωp,q+1(M). (4.6)

Let’s consider an SU(3)-structure provided by a globally defined complex (3, 0)

form Ω and a pre-symplectic real (1, 1)-form ω, then the exterior derivative decom-

poses as

dω = −3
2

Im
(
W1Ω

)
+W4 ∧ ω +W3

dΩ =W1ω
2 +W2 ∧ ω +W5 ∧ Ω

(4.7)

where Wi are the so called torsion classes [40], different type of forms[41] which

determine the type of manifold, as shown in Table 4.1. It turns out [42] that the tor-

sion classes are SU(3) representations1 in which the intrinsic torsion decomposes.

1In this case SU(4), but generally they are G representations.
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Given a set of O(d)-invariant non degenerate tensors Ξi which define a metric onM,

the covariant derivative with respect of the metric g acting on each invariant tensor

is given by [16]

∇mΞi
n1...nr

p1···ps =Km
m1

qΞi
q...nr

p1...ps + · · ·+Km
nr
qΞi

n1...q
p1...ps

−Km
q
p1Ξi

n1...nr
q...ps + · · · −Km

q
psΞi

n1...nr
p1...q (4.8)

and the intrinsic torsion is then defined as (Tint)mnp = Km
p
n −Kn

p
m. Geometrically,

given a choice of metric compatible with the G-structure whose connection acting

on the defining invariant tensors vanishes, the intrinsic torsion of the G-structure is

the component of the torsion which does not depend on the choice of compatible

metric [43].

Finally, an SU(d/2)-structure can alternatively be described by an invariant spinor

(and the associated conjugate spinor) by introducing a metric and orientation. This

reduces structure group to SO(d,R), subsequently lifted2 to its double cover Spin(d,R)

which has a spinor representation.

4.2 Generalised Complex Geometry

4.2.1 The original formulation

A first generalisation of the concepts explored thus far is to replace the tangent bun-

dle TM with the generalised tangent bundle TM⊕ T ∗M [13, 14] and then extend

the same concepts to this framework, the difference being that this bundle comes

with a canonical metric η and an associated volume-form volη ∈ Γ
(
Λ2d (TM ⊕ T ∗M)

)
,

thus reducing the structure group to SO(d, d). Given two generalised vector fields

X = X + ξ and Y = Y + χ ∈ Γ (TM ⊕ T ∗M), with X, Y vector fields and ξ, χ forms,

2This lift requires that the manifold be a spin manifold.
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the Courant bracket is a generalisation of the Lie bracket and is given by

[X + ξ, Y + χ]C = [X, Y ] + LXχ− LY ξ −
1

2
d (ιXχ− ιY ξ) . (4.9)

The structure group of the generalised tangent bundle is generated by elements

of the type  A 0

0
(
AT
)−1

 , eB =

 1 0

B 1

 , eβ =

 1 β

0 1

 (4.10)

where A ∈ GL(d,R), B is a two-form and β an anti-symmetric 2-vector, which act

on the generalised vector as

eB : X + ξ → X + (ξ − ιXB) (4.11)

eβ : X + ξ → (X − ιξβ) + ξ (4.12)

with iX denoting the interior product [39]. This bracket is invariant under general

diffeomorphism (generated by A) and B−transforms where dB = 0. For dB ≤ 0,

one introduces a closed three-form H and the H-twisted Courant bracket is then

defined by

[X,Y]H = [X,Y]C + ιXιYH, (4.13)

which under a general B transformation satisfies
[
eBX, eBY

]
H−dB = eB[X,Y]H . In the

case where H = dB, B is the curving of a connection on a gerbe [44]. Performing

a B-transform in every patch to eliminate the H field allows for the gerbe structure

to be carried over to the generalised bundle resulting in the twisted bundle E whose

structure group is the generalised diffeomorphism group

Ggendiff = GL(d,R) oGB, closed (4.14)

which is actually the set of transformations that leave the Courant bracket invariant.

Such twisted bundle has been called the generalised tangent bundle E [45].
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We can now define a generalised almost complex structure J as the map trans-

forming the generalised tangent bundle into itself that reduces the structure group

from SO(d, d) to U(d/2, d/2), whose action on the fibres decomposes the generalised

tangent bundle into two sub-bundles LJ , L̄J ⊂ (TM ⊕ T ∗M) ⊗ C with eigenvalues

(±i) under the action of J . The map has to satisfy J 2 = 1 and η(JX,J Y) = η(X,Y).

Then a generalised complex structure is obtained by making J H-integrable [39].

In a similar fashion, all ordinary G-structures can be constructed in the generalised

framework.

Consider the bundle of formal sums of differential forms (or bundle of forms)

denoted by Λ•T ∗M onM on which the Spin(d, d) naturally acts. Given an element

φ ∈ Λ•T ∗M and a generalised vector V = v + ξ, for any φ we have a map which

takes

ΓV : φ 7→ ιvφ+ ξ ∧ φ (4.15)

which satisfy the Clifford algebra, whose action on Λ•T ∗M gives a representation of

Spin(d, d) on it. Under the action of GL(d,R) ⊂ Spin(d, d) however, we have

φ 7→ | detM |1/2M∗φ (4.16)

where M denoted the standard GL(d,R) action on Λ•T ∗M, hence the spin bundle S

is S = Λ•T ∗⊗
(
ΛdT

)1/2. Finally, we have a split in the bundle of forms odd and even

forms corresponding to the spin bundle decomposition S± = Λ±T ∗ ⊗
(
ΛdT

)1/2 [46].

As first proposed by Gaultieri [14], we can introduce a generalised metric H on

TM⊕ T ∗M which is compatible with the canonical metric η seen earlier, namely

η−1Hη−1 = H−1. This condition means that H has d2 independent components and

can be parameterised as

H =

 G−BG−1B BG−1

−G−1B G−1

 (4.17)
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where G and B a symmetric and anti-symmetric matrices respectively with the norm

of a generalise d vector given by

H(V, V ) = G(v, v) +G∗ (ξ + ιvB, ξ + ιvB) (4.18)

where G∗ is the metric on T ∗M.

4.2.2 Extended geometries

We are now ready to consider more general bundles E overM with structure group

O(d, d) or SO(d, d), called type I extended geometries, which are generalised geome-

tries in the sense of Hitchin only when the structure groupG is in the Courant bracket

preserving geometric subgroup and reduce to TM⊕ T ∗M when G = GL(d,R. The

bundle E can be spilt into sub-bundles E = E+⊕E− where ± labels the sub-bundle

based on whether the canonical metric η is positive or negative definite on it. This

corresponds to a reduction of G to O(d) × O(d) or SO(d) × SO(d), with the reduc-

tion defining the generalised metric by the restrictions of the canonical metric on the

sub-bundles as follows [46]

H = η|E+ − η|E− . (4.19)

The choice of a generalised metric corresponds to the choice a a reduction, with

the space of such reductions at x ∈ M forming the space O(d,d)
O(d)×O(d)

or its special

orthogonal counterpart. Given projection maps V± : E → E±, then we can construct

an object which maps E → E+ ⊕ E−

V =

 V+

V−

 (4.20)

represented by two sets of d× 2d matrices as

VAI =

 VaI
Va′I

 (4.21)
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which is a vielbein acting on a general basis I to transform it into the basis for

E+⊕E− labelled by A = (a′, a), with the generalised metric taking the formH = V tV

or in components HIJ = δABVAIB. H will vary aroundM, hence we have map

H : M → O(d, d)/O(d)×O(d). (4.22)

defined by H(x) for x ∈M [46].

Furthermore there is a local symmetry under O(d) × O(d) which can be used to

parameterise the vielbein as

V =

 et 0

−e−1B e−1

 (4.23)

so that the generalise metric becomes

H = V tV =

 G−BG−1B BG−1

−G−1B G−1

 (4.24)

with G = ete or in components Gij = eai e
b
jδab, where eai are d-bein and Bij are anti-

symmetric matrices [46]. Finally, the discussion above generalises to vector bundles

E with structure groups G non-compact, which however has a maximal compact

subgroup Hd. Then E reduces to the bundle Ē and Hd becomes its structure group.

4.3 Consistent truncations formalism

4.3.1 Ordinary G-structures

Before looking at the generalised case, we shall briefly extend Scherk-Schwarz re-

ductions to the language of G−structures. Conventionally, as seen in Chapter 3,

the main procedure for group manifold G reductions involves an expansion of the

higher dimensional fields into representation of G and a subsequent truncation of

the field content to the singlet representations only. More generally, the argument

extends to the reduction of the structure group GS so that higher dimensional fields
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can be decomposed into GS irreducible representations. A truncation to the singlet

representations would then provide a consistent truncation [16].

Focusing on gravity and recalling that choosing a metric on M results in a pa-

rameterization of the coset space GL(d,R)/O(d), the number of scalars resulting

from the reduction of the structure group to GS is found via the centraliser CK(A),

which counts the number of elements in A which commutes with every element of

A. Hence the scalar metric space would be given by H ∈ CGL(d,R)(GS)

CO(d)(GS)
. Given that the

set of GS-invariant tensors {Ξi} defines the GS-structure and vice versa, by counting

the number of invariant one forms ηa ∈ {Ξi} we can obtain the number of gauge

fields Aa which result from the reduction. For singlet torsion, the gauge symmetry

algebra of the metric gauge fields is fully determined by the intrinsic torsion of the

GS-structure [16].

Using this language, Scherk-Schwarz reduction are simply cases in which the

structure group is trivial Gs = 1 due to the choice of a globally defined set of left-

invariant one-forms ea which provides a parallelisation of the manifold. Hence the

scalars belong to the coset space GL(d,R)/SO(d) while the one-forms provide d

gauge fields with a Lie algebra given by [ēa, ēb] = Cab
cēc, with ēa being the dual of ea

and Cabc being constants fixed by the intrinsic torsion from the Lie derivatives of the

invariant tensors

Lη̂aΞi = Cai
jΞj. (4.25)

4.3.2 Generalised GS-structures

In order to generalise the construction above, conventional GS-structures are re-

placed with generalised GS-structures on the generalised tangent space E on the

manifold M. If we restrict our focus on supergravity, whether it be 10- or 11-

dimensional, the focus shifts on generalised tangent spaces E on which we have

a natural action of the exceptional group Ed(d) with Hd as the compact subgroup
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encoding the R-symmetries of the theory, that is the set of transformations under

which supercharges transform into each other.

In a recent paper [16] it was shown that given a d- or (d− 1)-dimensional mani-

foldM on which a generalised structureGS ⊂ Hd with only constant singlet intrinsic

torsion defined by a set of invariant tensors Qi exists, then using the invariant ten-

sors to expand the bosonic fields in the 10D or type II supergravity respectively and

keeping all possible singlets produces a consistent truncation. Similarly given Hd

has double cover H̄d which acts on fermionic fields, then the structure group be-

comes ḠS ⊂ H̄d and the truncation can be applied to the fermionic sector as well by

expanding the fermionic field in terms of ḠS-singlets [16].

To see how the truncation works, let’s consider an 11D or type II supergrav-

ity theory reformulated on a product space X ×M where M is an internal d- or

(d − 1) dimensional manifold, whose generalised tangent bundle E has a structure

group extended to Ed(d) [46] so that the bosonic fields in the theory are organised

in GL(D,R) × Ed(d) representations [47], with D denoting the dimensions of the

spacetime X.

The scalar degrees of freedom under the structure group of X, namely GL(D,R,

are then captured by a generalised metric defined over E represented by a sym-

metric tensor GMN(x, y) ∈ Γ (S2E∗) which is invariant under the R-symmetry and

thus defines an Hd-structure over M, as first discovered in [48, 49]. Furthermore

the vector/one-form d.o.f. are captured by AMµ (x, y) ∈ Γ (T ∗X ⊗ E) which are

sections of E. Finally the two-forms under GL(D,R) are given by BMN
µν (x, y) ∈

Γ (Λ2T ∗X ⊗N), where N ⊂ S2E∗.

For the truncation, we considered the reduced structure group GS ⊂ Hd and the

corresponding GS-invariant tensors Qi. The generalised metric GMN defined an Hd

structure on E, hence it must be encoded in the reduced GS ⊂ Hd structure. The GS-

singlets we want to keep in the truncation are only those which deform the structure
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but not the metric. Thus one finds [16] that the scalars parameterise the coset space

hI(x) ∈Mscalar =
CEd(d)

(GS)

CHd
(GS)

:=
G
H

(4.26)

while vectors and two-forms are given by

AAµ (x)KA ∈ Γ (T ∗M)⊗ V (4.27)

and BΣ
µν(x)JΣ ∈ Γ

(
Λ2T ∗X

)
⊗ B (4.28)

respectively, with {KA} and {JΣ} being basis spanning the vector spaces V ⊂ Γ(E)

and B ⊂ Γ(N), which are representation spaces of the centraliser G.

In order to define the structure of the gauge symmetries in the reduced theory,

we make use of the singlet intrinsic torsion argument. In analogy with ordinary

structures, one can define [43] the intrinsic torsion of the generalised GS-structure

as follows. Consider a generalised connection D̃ which satisfies D̃Qi = 0 for all Qi

and define the generalised torsion T of the connection via the action on a generalised

tensor α as

(LD̃V − LV )α = T (V ) · α. (4.29)

with L denoting the generalised Lie derivative.

Here T is a map T : Γ(E) → Γ(ad F̃ ) which acts via the adjoint action and

whose D̃-independent component defines the generalised intrinsic torsion and can

be decomposed into irreducible representations of the reduced structure group GS.

For singlet intrinsic torsion, one can define the generalised Levi-Civita connection so

that the action on the invariant tensors, which is determined by the intrinsic torsion,

gives us DMQi = ΣM · Qi, with ΣM ∈ Γ(E∗ ⊗ adPHd
) and PHd

) is the bundle of

tensors transforming in the adjoint representation of Hd [16].

Now recall that KA is the basis spanning V, from Eq. (4.29) due to the compati-
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bility condition D̃KA = 0, one has

LKA
Qi = −Tint (KA) ·Qi (4.30)

and Tint(KA) is a singlet of adF̃ which are just the Lie algebra g of G. Hence −Tint

defines a map Θ : V 7→ g called the embedding tensor [50], which is a constant ten-

sor normally describing the explicit embedding of a gauge subgroup into its parent

group. Looking at the generalised Lie derivative acting on KA we then find

LKAKB = ΘA ·KB = ΘA
α̃ (tα̃)B

CKC (4.31)

and define XABC = ΘA
α̃ (tα̃)B

C where (tα̃)B
C represent the action of g on the vector

space V which is span by {KA}. Finally one has the quadratic condition on the

embedding tensor resulting from the properties of L [16]

[XA, XB] = −XCABXC (4.32)

which means that we can view KA as the generators of g and thus ggauge is given by

the set of elements in g which can be reached from V via the embedding tensor map,

hence Ggauge ⊆ G.

Finally, if kα̂ are Killing vectors generating the action of g onMscalar, then covari-

ant derivative acting on the scalars is given by [16]

D̂µh
I = ∂µh

I −AµAΘA
α̂kIα̂ (4.33)

and the gauge transformations are [16]

δAAµ = ∂µΛA +XBC
A (ABµΛC − ΞBCµ

)
δBΣ

µν = 2dAB
Σ
(
∂[µΞABν] + 2XCD

AAC[µΞDBν] − ΛAHBµν −AA[µδABν]

) (4.34)

where HA = dAA+XBC
A
(
AB ∧ AC + BΣd̃BCΣ

)
and ΞABµ = ΞΣ

µ d̃
AB
Σ , with the constants

dAB
Σ and d̃Σ

AB being defined by KA ×N KB = dAB
ΣJΣ and JΣ = d̃Σ

ABKA ⊗ KB

respectively. Then given Hd has a double cover H̃d, so that the structure group is
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lifted to G̃S ⊆ H̃d, then the number of G̃S-singlets in the generalised spinor bundle

S fully determines the number of supersymmetries which survive the truncation

[16].

Hence by specifying the reduced generalised structure both the field content of

the truncated theory and their transformations under the gauge group are fully de-

termined. The argument for consistency is then following: since the all the fields and

their derivative transform as singlets under GS, so long as the whole set of singlets is

kept one has a consistent truncation since the truncated non-singlet representations

cannot be sourced by products of singlets ones [16].
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Chapter 5

Conclusions

In this paper we looked at the concept of dimensional reduction and consistent trun-

cation. We first showed how Kaluza embedded Einstein’s gravity and electromag-

netism into a 5-dimensional pure gravity theory which reduces to the latter via a

compactification of one of the dimensions on a circle.

We looked at the more general group manifold dimensional reductions of pure

gravity and at the requirement of unimodularity for the structure constants in order

to deliver a consistent truncations as developed by Scherk and Schwarz. The key

idea there was to expand the degrees of freedom in the higher dimensional theory in

terms of eigenfunctions of the compact manifold and the truncate the modes to the

singlets under the group action or allow only for a very specific dependence on the

compact space coordinates that would factor out of the lower dimensional equation

of motion.

We gave an account of the geometry of coset spaces and at the failure to find

a purely group theoretical formalism for consistent truncations on them. We then

showed one coset space reduction which is known to be consistent, that is the SO(6)

gauged reduction of type IIB supergravity on S5 preserving maximal supersymmetry.

Finally we reviewed the framework of generalised geometry and how it was re-

cently used to construct a formalism for obtaining generic supersymmetric consistent
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reduction for supergravity. It was found that starting from a generalised tangent

space E that has a natural action of the group Ed(d) with maximal compact subgroup

Hd, a generalised Gs ⊆ Hd structure can be used to produce consistent truncations

via expanding the fields in the supergravity theory in term of the GS-invariant ten-

sors that define the structure.

So long us one restricts the attention to generalised structures whose intrinsic

torsion can be at best decomposed into singlet representations of the generalised

structure group, then the a truncation of the field content to all of the possible

singlets would then be consistent. Then given the double cover H̃d, an uplift of the

generalised structure group to G̃S ⊆ H̃d would allow for the same argument to be

applied to the fermionic degrees of freedom, with the number of G̃S-singlets given

the number of preserved supersymmetries under the truncation. Thus the geometry

of the generalised structure would completely determine the content and structure

of the truncated theory.

It would be interesting to see how the generalised geometries here reviewed will

be used in the future to construct new truncations of M-theory and perhaps provide

new results that can be used in the search of more dualities in the holographic front.

More interesting still would be to see this formalism being used to shed some new

light into the nature of M-theory itself.
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