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Introduction

One of the most surprising and significant developments in theoretical physics over
the last two decades has been the gauge/gravity duality, often also referred to as the
holographic duality or, in a more restrictive sense, as the anti-de Sitter/conformal field
theory (AdS/CFT) duality.

Although some of the foundational ideas of holography had been originally proposed
by G. 't Hooft [44] and L. Susskind [41], the first actual realisation of the principle
was given by J. Maldacena in 1997 [27]. Maldacena proposed a duality between a
gravitational theory that lives on a five-dimensional anti-de Sitter space, type I1B
string theory on AdSs x S°, and a conformal gauge theory, a AN/ = 4 supersymmetric
Yang—Mills theory. Then the proposal was further developed and explicitly linked to
the idea holography by E. Witten the next year. [27] and [49] are now the two most
cited papers on the hep-th arXiv.

The duality is a strong/weak coupling duality: when the gauge theory is strongly
coupled and we cannot use perturbation theory, it allows us to study the weakly
coupled gravitational theory instead. Although at least initially most of the research
has been done in that direction, the opposite direction also holds, and we can study
properties of the gravitational theory by studying the gauge theory of the boundary.
Although it was originally formulated in string theoretical terms, [30] showed that the
gauge/gravity duality can equivalently be formulated independently of string theory.
Furthermore, many of the duality’s implications for other areas of physics that have
been discovered over the last two decades hold independently of AdS/CFT.

The implications for quantum gravity have been surprising: physicists have for dec-
ades endeavoured to reconcile particle physics, which is described by quantum gauge
theories, and gravity, described by general relativity. The gauge/gravity duality tells

us that these two apparently irreconcilable physical frameworks are in a certain sense
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effectively the same. In the words of [21]: “Hidden within every non-Abelian gauge
theory, even within the weak and strong nuclear interactions, is a theory of quantum
gravity”.

However, the gauge/gravity duality has also been at the forefront of more immediate
applications than the search for a theory of everything: an example is AdS/QCD, the
study the strongly couple dynamics of quark-gluon plasma, where the duality allows
one to study the strong coupled dynamics of decoupled quarks by studying the black
holes in the corresponding AdS theory. Another example is AdS/CMT, where the
duality has been used to describe phase transitions in condensed matter.

The duality has given us a series of unexpected correspondences between concepts
in the (d + 1)-dimensional gravitational theory that lives in the ‘bulk’ and the d-
dimensional gauge theory that lives on its boundary: perhaps the most central of these
has been the Ryu-Takayanagi proposal of the entanglement entropy, which identifies
the geometrical properties of surfaces on the gravitational theory with the amount
of entropy contained in regions of the gauge theory. The newly restored centre-stage
position taken by informational concepts, and the influence of holography on the way
physicists now view their subject has been such that many including J. Bekenstein
and L. Susskind have argued that we should see the universe not as made of energy
and matter as its fundamental building blocks, but out of information.

In this review the focus will be on a conceptual introduction to the key concepts as
well as to some of the most recent developments in the areas at the intersection of
quantum information and the gauge/gravity duality. Most of the arguments given fol-
low the treatment in the original literature, however they have been at times simplified
or expanded for clarity. An effort has been made to keep the presentation as accessible
and simple as possible, with the goal of being suitable to both theoretical physicists
and those with an quantum information or other related background.

In §2.1 (p. 10) we will see some features of the geometry of general AdS and Schwarzschild-
AdS spacetime, including an explicit derivation of the oscillatory trajectories of photons
and massive particles. In §2.2 (p. 16) we will define the notion of a conformal field
theory and show that the algebra corresponding to the symmetry group of a conformal
field theory is in a one-to-one relationship to the that of the anti-de Sitter theory one
dimension higher, a first clue of the AdS/CFT duality. Section §2.3 (p. 18) will present
some of the main entries in the AdS/CFT dictionary that links the two theories to-
gether, as well as an outline of Maldacena’s original derivation.

In §3.1 (p. 22) we introduce the notions of von Neumann entropy and entropy of
entanglement, setting the stage for the rest of the exposition.

Historically, the first hint for the gauge/gravity duality came from the study of black

holes, a story we briefly summarise in §3.2 (p. 25). Black holes are found to have



a finite temperature, the Hawking temperature, and a corresponding entropy, the
Bekenstein-Hawking entropy. We see that this entropy does not increase with the
black hole’s volume, as one would first expect, but with its area.

In §4.1 (p. 30) we introduce the generalisation of the Bekenstein-Hawking entropy
called the holographic entanglement entropy and first proposed by Ryu and Takay-
anagi. In §4.2 (p. 33) we show that this formula obeys the property of subadditivty
that we expect for an entropy and in §4.3 (p. 34) we show that it also obey the prop-
erty of monogamy. In §4.4 (p. 35) we give an outline of how one might go about to
give a partial derivation of the Ryu-Takayanagi holographic entropy formula from the
AdS/CFT duality.

In §5.1 (p. 38) we give an account of the black hole information problem, with a focus
on the current reincarnation of the problem, and in §5.2 (p. 40) we give a review
of the proposed solutions, focusing in particular on the FR = EPR proposal by J.
Maldacena and L. Susskind and highlighting the importance of the Ryu-Takayanagi
formula in their claim.

In §6.1 (p. 44) we give the basics of quantum erasure correction, with the example
of a code that uses three qutrits to encode the state of one qutrit, and allows us to
reconstruct the original state when one of the three qutrits is lost. In §6.2 (p. 45)
we review a proposal that uses the Ryu-Takayanagi formula to claim that fields on
the bulk can be reconstructed from local operators defined only on regions of the con-
formal boundary (and not the whole boundary) in a way that is analogous to how the
quantum erasure correction code protects against the erasure of one qutrit. In §6.3 (p.
47) we will see how this proposal has led to research into modelling the gauge/gravity
duality in terms of discrete tensor networks that live on the bulk space.

Finally, in §7.1 (p. 51) we define the notion of the quantum complexity of an operator
and identify it with the entropy of the time evolution of a corresponding classical sys-
tem, leading to a second law of quantum complexity. In §7.2 (p. 56) we examine the

consequences this has for the physics of black holes.



Fundamentals of AdS/CFT

2.1. AdS spacetime

Given a flat spacetime with two timelike directions R?*:
ds® = —dZ*® — dX* + dY? (2.1)

The metric tensor gives us a notion of a (non positive-definite) distance between two
points. The group of transformations that preserve the distance of any point from the
origin is the indefinite orthogonal group O(2,1).

The set of points at a given distance —L? from the origin (the orbit of a point under

the group action) is given by the surface
— 77— X?4Y?=—I? (2.2)

Which is the equation of a hyperboloid.
One can define two-dimensional anti-de Sitter spacetime AdS, as the surface in Eq.
(2.2) with the metric given in Eq. (2.1).
This is analgous to how one can define the sphere S? as a surface in the usual Euclidean
space R? with metric:

ds* = dX? 4 dY? + dZ? (2.3)

Defined by:
X2 +Y? 4+ 722 =R? (2.4)
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In general, one can define the p + 2-dimensional anti-de Sitter spacetime AdS, s as

the embedded hypersurface in R*?~! satifying:

ds® = —dX§ —dX2,, +dX7 +dX3+ ... +dX],,

And:
X - XL+ Xi+ X+ + X, =17

p

This provides a solution of the Einstein field equations:

G +Ag, =0
Where: X
A= —p(p 2— )
2L

And corresponds to a Lagrangain density:

1

One can then use the coordinate system:

Xy = Lcoshpcost,
X,i2 = Lcoshpsint,
X; = Lsinh pw;

With:
2 2 _
wit. o Fwy =1
So that the metric can be written in global coordinates as:

ds?

_ 2 2 | k2 2
Tz = — cosh” pdt” + dp” + sinh” pdS);

Where d€2 is the metric on the p-sphere S?.

(2.5)

(2.10)

(2.11)

From the definition of global coordinates we have that the timelike dimension ¢ is

periodic with period 27, and this is problematic as one can then have closed timelike

curves.

One can instead then take AdS,.s to be the covering space with —co < f < o0, 50

that what was visible from the initial choice of coordinates is only a region of the full

spacetime (hence the name global coordinates).
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By making the coordinate change:
7 =sinhp (2.12)

The metric can also be rewritten in static coordinates:

ds® -2 72 dr? 2 1092
F:—(r +1)dt+f2+1—l—rde (2.13)
From Eq. (2.11) by letting instead:
tan @ = sinh p (2.14)

One can rewrite the metric in conformal coordinates:

ds? 1 )
7 = 7 (—df? 4 db” + sin® 0d2)) (2.15)
That is: e )
S ) 2
ﬁ - COS29 (—dt —I— de-i-l) (216)

From the conformal coordinates one can see that the metric of AdS, s is conformally
equivalent to the Einstein static universe R x SP™! a spacetime where the spatial
dimensions form a (p + 1)-sphere.

We can also see that there is a spatial boundary at ¢ = 7, corresponding to p = oo.
We can also see that a photon (ds? = 0) starting from the centre § = 0 will be able to

travel to the boundary at ¢ = 7 in a finite coordinate time:

2

2 _ a2 2\ _
ds _c0326< dt +d9) 0
4 _ 2.17

We then need to impose a boundary condition on the boundary. For instance, assume
that the photon will be reflected back to the origin, the photon oscillates with a period
of 2m.

We can also see that a massive inertial particle starting its motion at the origin will
never reach the boundary and return to the origin in a finite proper time (performing
an oscillatory motion).

In static coordinates (Eq. (2.13)) there is a conserved quantity E (corresponding to
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the energy per mass, as it is given by the #-independence of the metric):

dt
FE = —ggga (2.18)

We find that:

T (2.19)
E? L (i _ |
L2 +1) 7241 \dr

If the particle starts from the origin at ¢ = 0, then we need to choose the positive sign
as 7 > 0. At 7, = /(E/L)?> — 1 we have 2 = 0 and so the velocity 2 must change
sign. Thus a massive particle does not reach the boundary, but only as far as 7 = 7,
in a proper time:

T L
AT g dT
|, Ve
:L/Zm (2.20)

(where 7 = \/(E/L)? — 1sinu)

Before falling back towards the origin, oscillating with a period of 27w L, where L is the
AdS radius of curvature.

Using Eq. (2.18) to find that j—f = % we conclude that the observer at the origin
sees the same journey to r, happen in a coordinate time given by:

/’r‘* E

o L+ 1)\/((E/L)?—1)—72
_E /’5 du

L)y (BE/L)?—1)sin®u+1

B[ dv (2.21)
N L/O (E/L)? + v2

_/°° ds
B 1+ s?

Al =

=]

Il
| N
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(using the same substitution as before for u, and letting v = cotu, v = £s)

Comparing Eq. (2.21) with Eq. (2.20) we see that this is the same amount of coordin-
ate time it takes for a photon to reach the boundary. From the point of view of the
observer at ¥ = 0 both massless and massive particles oscillate with period 27.

Finally one can use so-called Poincaré coordinates defined in terms of the original

embedding:
Lr [, 9 9 1
Xp+2 - L?“t (2 22)

X;=Lrz; (1=1,...,p)
Lr 1
Xp+1:7(x§+...+x§—t2+r—2—1>

One can rewrite the metric as:

ds® 2 2 2 2y, dr?
Tz =7 (—at +dx1—|—...+dmp)+? (2.23)
Alternatively letting:
u=1/r (2.24)
We can rewrite this as:
ds® 1 2 2 2 2
Tz = g (A dat 4+ dap o+ du?) (2.25)

Showing that the metric is also conformally equivalent to flat Minkowski spacetime.
In Poincaré coordinates it can be seen that the metric enjoys a Poincaré group IS0O(1, p)
invariance on the ¢t and z; coordinates, as well as a scale invariance given by the dila-
tion:

t—at, x —ar;, u-—au (2.26)

These are actually part of the larger SO(2,p + 1) invariance that was our starting
point for the definition of Eq. (2.6). Although the symmetries of the space are easier
to see in Poincaré coordinates, these only describe a region of the full AdS, 2 space
described by the global coordinates (see Fig. (2.1)).

More generally, an asymptotically AdS spacetime is one that has a conformal
boundary and near that has the same geometry as AdS spacetime.
An example is the SAdSs (Schwarzschild anti-de Sitter) black hole, given by the met-

| ds? = — (%)2 h(r)dt? + #T;T) + (%)2 (da? + dy? + d2?) (2.27)
=1 ()
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(a) A plot of AdSs spacetime, showing
the Poincaré patch with the two horizons.
Using global coordinates in Eq (2.13) the
vertical component is # (7 in the figure)
and the space is compactified so that the
radial component is arctan7 (arctanp in
the figure). The Poincaré horizons are
given by the two null surfaces in red and
the curves given are: blue, null geodesics:
green, spacelike geodesics: red, a curve
with v = L and z = 0 (given by the or-
bit of the Killing field d;); orange, a curve
with v = L and t = 0 (given by the or-
bit of the Killing field 0,); grey, timelike
geodesic (given by the orbit of 9;): purple,
which illustrates that a massive particle
oscillates without reaching the boundary.

(b) A spatial slice (constant # slice) of
AdSs with spacelike geodesics in green
and projections of null geodesics in blue.

Figure 2.1: Figure reproduced from [23].
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This spacetime is dual to a gauge theory at finite temperature.

2.2. Conformal field theories

A conformal transformation is a coordinate transformation that preserves the angle
between curves. More formally, a conformal transformation is a coordinate transform-
ation between two metrics g and ¢’ that can be written in terms of a positive scaling

function Q?(z) as:
g'(2') = Q*(x)g(x) (2.28)

Two metrics g and ¢’ for which such a transformation exists are said to be conformally
equivalent.

The infinitesimal generators of the conformal group can be found to satisfy the condi-
tion:

0,0y + 0y, = w(T)nu (2.29)

One finds that (for a space of dimension greater than 2) the generators are:

M, =i(z,0, — 2,0,)
P, = —i0,
D = —iz,0"
K,=1i (x28u - 2xux,,8”)

(2.30)

Where P, are the generators of the group of translations which together with the
generators of angular momentum M, form the generators of the Lorentz group. The
generator D corresponds to uniform scaling (z* = Ax*), and together they give the
Poincaré group. This is expected because for the Poincaré group we have Q%(z) = 1.
The generator D corresponds to a uniform scaling (2/# = Ax#* and thus Q?(x) = \).
The generators K, are less obvious, and correspond to special conformal transforma-

tions: )
t + atx

Iy —
1+ 2z,a" + a?x?

(2.31)

An inversion is a transformation where each point outside the unit ball is mapped
to a point outside the unit ball, and point close to the unit sphere are mapped to
themselves:
't = o (2.32)
22
A special conformal transformations is the composition of an inversion, a translation

by the vector a* (2 = x* — a*) and then another inversion.
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The commutation relations are given by:

B,]
Ky
[KH B)]= (WWD — M) (2.33)
(K, My = i (IS — mpu K)
(B, M) = i (1 Py = 110 Fy)
(M, Mpo] = (77Vp o+ Mo Mup = MupMye — o M,,)

The conformal group of R"™ is isomorphic to SO(m + 1,n + 1), which gives the basis

for the duality between conformal field theories and anti de Sitter spaces.

[’

To see this, recast the generators as [38]:

Jup =My,
1
o = 2 (B — Ky)
1 (2.34)
Jou = 2 (P + K,)
J_l,() =D
So that the commutation relations in Eq. (2.33) simplifies to:
[Jmns Jpa) = @ (MmgInp + MnpImg — NmpJng — NngImp) (2.35)

The same as the commutation relations of the Lie algebra of SO(m+1,n+1). This is
the first clue for a correspondence between an AdS theory and a CFT that lives that
lives on a space of lower dimensionality.
As a simple example, a massless scalar field theory for a field ¢(x,t) with equation of
motion given by:
1% V2 (2.36)
c? ot?
Is invariant under a rescaling  — Ax and t — At and is thus a conformal field theory.
Another simple example is a ¢* theory in Minkowski R'? space with equation of
motion given by:

162
?a_tf — Vi + gt =0 (2.37)

Where g is a dimensionless constant, which is invariant under a rescaling where * —
Az, t— At and o — %
In any conformal field theory, there are operators called primary operators, which

transform simply under conformal transformations. In particular under a scaling they

17



transform as:

O (') = \20(x) (2.38)

Where the number A is called the conformal dimension of O.

For a primary scalar operator O one has A > % where d is the dimension of the
space (in the example of the ¢* theory we had d =4 and A = 1).

Primary operators have simple correlation functions, for example a scalar primary

operator O of dimension A has two-point function:

1
(|22 — 2 + ie

(QITO(z,1)0(0,0)|Q) = (2.39)

A
)
More specifically, primary operators are those operators that are annihilated by the
action of the generator K,

Furthermore, given a CFT on a cylinder R x S9! with metric:
ds® = —dr* + dQ3_, (2.40)
By means of the transformation p = €7 one can get a conformally flat metric on R%:
2 1 2 | 2102
ds” = E(—dp + p2dQ_ ) (2.41)

There is a bijection between eigenstates |¢)) of the Hamiltonian H that generates t
translations (on R x S971) and field configurations which correspond to local operators

0,(0) at the origin (on R?). This is called the state-operator correspondence.

2.3. The AdS/CFT dictionary and Maldacena’s derivation

The gauge/gravity duality or AdS/CFT duality is then the statement that every re-
lativistic conformal field theory on the cylinder R x S9! (that is, with the metric
given in Eq. (2.40)) is equivalent to a theory of quantum gravity in an asymptotically
AdSgy1 X M spacetime (where M is a compact manifold).

One refers to the conformal field theory/gauge theory as the boundary and the (asymp-
totically) AdS/gravitational spacetime as the bulk.

The duality is often phrased as an equivalence between the field theory partition func-
tion Zcpr (which is a generating function for the the correlation functions of the op-
erators (O(x) --- O(y)), found by taking functional derivatives with respect to source

terms) and the gravitational theory correlation function Zaqs:

Zopr = Zaas (2.42)
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This equivalence is referred to as the GKPW relation.
A more detailed map between the two theories is provided by a dictionary, which

relates quantities on the two sides of the correspondence:

e By definition the Hilbert space of physical states is the same for the CFT and
the AdS side;

e The generators of the symmetry group SO(2,d) in the CFT are identified with
the corresponding generators on the AdS side (as seen before, this was a first

clue for the existence of the correspondence);
e The Hamiltonian is the same on both sides;

e Quantities that only depend on the space of states and the Hamiltonian (such

as the thermal partition function) are then the same on both sides;

e Scalar primary operators O(t,2) on the CFT side are associated to scalar fields
o(t,r, ) on the AdS side by taking:

lim r®p(t,r, Q) = O(t, Q) (2.43)

r—00

One can use this to find the expectation value of products of operators in the
CFT from that of the scalar fields in AdS space; for a massive field, the mass of

the field gives the conformal dimension fo the operator.

e In the same vein, fermionic operators on the CFT are associated to Dirac fields

on the AdS side;
e The CFT stress tensor 7, is associated to the AdS metric tensor g,,:

e The conserved currents J, in the CF'T that are given by Noether’s theorem are

dual to the Maxwell fields A, in the AdS space;

e The the entanglement entropy of the CFT is dual to geometrical properties of the
AdS spacetime: this is the Ryu—Takayanagi conjecture that we will be turning

to in the next chapter.

Possibly the most well-known example of a gauge/gravity duality, and the first to be
proposed by Maldacena in 1997 [27] is the duality between N' = 4 supersymmetric
Yang—Mills theory (a theory with SU (V) gauge and and type IIB string theory on the
product space AdSs x S°.

The argument in Maldacena’s original derivation goes as follows. In string theory
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we have both open and closed strings: open strings have their endpoints constrained.
We start from a number N D3-branes in type IIB string theory, a maximally super-
symmetric theory where we have open strings living on the branes as well as closed
string that live on a flat 10-dimensional spacetime. and look at the low energy limit:
at a weak coupling gsN < 1 (where g, is the string coupling) we end up with a
4-dimensional SU(N) super Yang-Mills gauge theory describing the dynamics of the
D3-branes, which are now decoupled from the open strings away. At strong coupling
gsIN > 1 the branes curve the spacetime giving a metric that can be derived from

symmetry to be:
ds® = f(r)" P datde” + f(r)'? (dr® + r2d3) (2.44)

Where x# are the 4 coordinates along the D3-brane worldvolume and:

4 gy N2
flr)=14 T2 (2.45)
T
Near the branes at the horizon (r — 0) the metric tends to:
r? 2
ds® = E—andx“dzx” + ﬁdrz + (2dQ)2 (2.46)

Where ¢ = (4mgsN)"* ¢,, which is just the metric for AdS; x S°.

For an observer far away from the branes (r — oo) even an arbitrary large amount of
energy emitted near the horizon is finite because of the gravitational redshift, hence
also in this case the open strings are decoupled from the branes.

We then have that for g;N > 1 the branes only are described by the N' = 4 SYM
gauge theory, and for gsN < 1 by the AdS theory.

An alternative derivation is given in [21], starting from the guess that the spin-two
graviton might arise as two spin-one gauge bosons, something that would be normally
ruled out by the Weinberg-Witten theorem [48]. An unstated assumption of the the-
orem is that the graviton would need to live in the same space as the gauge bosons of
which it is made. The holographic principle is the loophole that allows us to evade the
no-go theorem. We are then led to make the educated guess that the gauge bosons
should live in a conformal space where the energy scale corresponds to the extral spa-
tial direction of the graviton. The spacetime that is consistent with the symmetries of
this conformal field theory is an anti-de Sitter spacetime.

An introduction to the duality by Maldacena himself is given in [28]. A very readable
introduction is given in [23]. A review of aspects of the correspondence and applications

to quantum chromodynamics see [32]. A more advanced review is given by Polchinski
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in [9]. For a review to AdS/CFT within a quantum informational background see [13].
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Black holes and entropy

3.1. The von Neumann entropy and the entropy of entanglement

In quantum mechanics, given a pure state |¢)) the corresponding density matrix is

defined as the operator:

p=[P)W| (3.1)

A mixed state is a probabilistic mixture of pure states. Given a mixed state made
up of pure states |1;) with probabilities p;, the density matrix is then defined as a

generalisation of the previous formula:
p=> pilthi) (il (3.2)

Which makes the density matrix formulation convenient for describing mixtures of
pure states.

Crucially, a probabilistic mixture where ) . p; = 1 is different to a superposition of
pure states [¢;) = > ¢;|¢;) where Y, |¢;|* = 1, which is still a pure state.

The expectation value of a measurement is then given by:
(4) = ZPi<¢i’AWi>

= tr(pA)

(3.3)

A generic quantum state will be a mixed state. For instance if a quantum system is put

1

in contact with a reservoir at temperature 7' = 3

and is governed by a Hamiltonian H
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it will be eventually found in a mixed state described by the Gibbs canonical ensemble:

e PH e PH
pum— pu— 3-4
P~ % (e=BH) Z (34)
Where the partition function Z = tr (6*51{ ) arises from the requirement that:
tr(p) =1 (3.5)

Which is given by conservation of probability.
We can determine if a given state is a pure our mixed state by using the fact that the
density matrix is idempotent (p? = p) if and only if the corresponding state is pure.

Alternatively, we can define the von Neumann entropy S(p) of a state as:

S(p) = —tr(plnp) (3.6)

Which is equal to zero if and ony if p is a pure state. Written in terms of the eigenvalues

A; of the density matrix this formula reduces to:
S(p) ==Y Nl (3.7)
J
Which has the same form as the formula for the Gibbs entropy in thermodynamics:
S =—kp Zpi In p; (3.8)
Or the Shannon entropy H(X) of a random variable X from information theory:

H(X)=— ZP(%) In p(x;) (3.9)

As said before, the von Neumann entropy is equal to zero if and only if p is a pure
state (just as the Shannon entropy of X is zero if and only if X is a constant random
variable).

Furthermore, the von Neumann entropy is maximal if and only if p is a maximally
mixed state and equal to In NV where N is the number of states (just as the Shannon
entropy of X is maximal if and only if X is a uniformly distributed random variable).
A bipartite system is one for which the Hilbert space H can be written as the product

of two subspaces H4 and Hp:

Hap = Ha®Hp (3.10)
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One can then take the partial trace of the density matrix with respect to one of the

subsystems to obtain the reduced density matrix of the other subsystem:

pa =trep (3.11)

The von Neumann entropy of the reduced density matrix is called the entropy of

entanglement:
S(pa) = —trapalnpa (3.12)

The entropy of entanglement for the two subsystems H 4 and H g satisfies the triangle
inequality:
1S(pa) = S(ps)l < S(pas) < S(pa) + S(ps) (3.13)

Where the first inequality is called the Araki-Lieb inequality and the second inequality
is the property of subadditivity.

The entropy of entanglement for the subsystems H, , Hp and He further satisfy
strong subadditivity:

S(pasc) + S(pp) < S(pas) + S(psc) (3.14)
From which subadditivity follows by letting B = 0.

For example, given a system in the state:

1

V2

One has reduced density matrices of the form:

[¥) (100) + [11)) (3.15)

1
pa=pp = 5(10){0] +[1)(1]) (3.16)
And entropies of entanglement:
S(pa) = S(pp) =1n2 (3.17)

Whilst because the original state |¢)) was a pure state one can see immediately that

the von Neumann entropy for the whole system is:

S(pap) =0 (3.18)

Satisfying the triangle inequality. Given a random variable X, one can also define
a more general notion of entropy, dependent on a parameter «, the Rényi entropy
H,(X) (which reduces to the Shannon entropy H,(X) in the limit when a@ — 1, as
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can be checked in terms of ):

1 (6%
Ho(X) = +——1n (Zp(a:i) ) (3.19)
Which for a quantum density matrix p becomes a generalisation of the von Neumann

entropy of the form:
1
Salp) = In (tr (%)) (3.20)

11—«

3.2. The Bekenstein-Hawking entropy and the Hawking temperature

Until around fifty years ago, black holes were assumed to have no (or otherwise infin-
ite) entropy.

In 1971 S. W. Hawking proved [16] under quite general assumptions that the area of
a black hole horizon never decreases in time (the area theorem).

Hawking also noticed what he thought was only an accidental similarity with the laws
of thermodynamics.

One has for instance a first law of black hole mechanics which for a rotating, charged
black hole takes the form:

K
AM = ——dA + QdJ + &d 3.21
oAt + @dQ (3.21)

Where k is the surface gravity of the horizon, A is the area of the horizon, M is the
mass of the black hole, (2 is the angular velocity, J is the angular momentum, & is the
electrostatic potential and @) is the electric charge.

The surface gravity corresponds (for a static black hole) to the gravitational acceler-
ation at the event horizon in the reference frame of a distant observer and is defined
in terms of a Killing horizon given by a normalised Killing vector k* as the constant

k satisfying the equation at the horizon:
KV kb = kk? (3.22)
The second law is the aforementioned area theorem:

dA >0 (3.23)
dt — '

In both of these equations, the area of the black hole seemed to have the same role as

the entropy in classical thermodynamics.

J. A. Wheeler first gave an argument in conversation with his student J. Bekenstein

that if one were to throw a cup of hot tea into a black hole, the entropy of the uni-
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verse would seem to decrease (violating the second law of thermodynamics). In 1972
Bekenstein went on to show that black holes must have a well-defined entropy, and
that this must be proportional (up to a constant) to the area of the black hole horizon
[4]: the similarity between black hole mechanics and thermodynamics was not just a
coincidence.

In 1974 Hawking, who had set out to prove Bekenstein was wrong, ended up confirm-

ing his result [17] and fixed the constant of proportionality to 1/4:

kA
e .24
In Planck units this can be written as:
A
Shp = —— 3.25
= o (3:25)

He also found in 1975 that black holes radiate energy in the form of thermal radiation,

the Hawking radiation [18], given by the temperature:

he?
Ty = ——7+— 3.26
f (G N M kB ( )
Or in natural units and in terms of the Schwarzschild radius 74 (see below):
Ty = — (3.27)
U Yo '

And they can thus decrease in size, violating his earlier area theorem.
The expression for the Hawking radiation can be derived as the thermal radiation
measured by an observer faraway given by the Unruh effect: for a uniformly acceler-
ating observer, the ground state of an inertial observer is seen as a thermally excited
mixed state.
The simplest black hole solution to the Einstein field equation (and the one Hawking
considered) is the Schwarzschild black hole, which Birkhoff showed is the spherically
symmetric solution of the vacuum field equations (that is with R, = 0), and is given
by the metric:

ds? = — (1 - %) dt? + (1 . %>_1 dr? + r2d0? (3.28)
Where 7, is the Schwarzschild radius of the black hole r, = sz,M )

Famously this was the first exact solution to the Einstein field equations which Karl

Schwarzschild first found in 1915 (the same year Einstein first introduced general
relativity) in two papers written while serving on the Russian front in the German

army during World War I, a few months before his death.
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At a position near the horizon r = ry + % with p < 1 the Schwarzschild metric

becomes to first order:

2
ds2:—(2i) dt* + dp® + . ..
TS

~ —p*dr? +dp* + . ..

(3.29)

Which is the same as the Rindler metric for an accelerating observer in Minkowski
space with 7 = % and acceleration given by a = /l).
By analytic continuation with the Euclidean signature (imaginary time) 6 = it the

metric near the horizon becomes:
ds* ~ p*df* +dp* + ... (3.30)

As long as the coordinate 6 is periodic 8 ~ 0 + 27 that is it ~ it + 4nr,, this is the
same as a flat metric. Otherwise, the metric has a conical singularity at the horizon
p=0.

In quantum statistical mechanics, the periodicity £ of imaginary (Wick-rotated) time
corresponds to a temperature of 5 = % This can heuristically be justified as follows:

the partition function Z of the canonical ensemble is:

7 =tre P
= n(0)]e™ 4, (0
S (00 440) a1
For some complete set of states {|¢,)}.
Their time evolution is given by (in the Schrodinger picture):
[(t)n) = €™ |10 (0)) (3.32)

So that we can be tempted [50] to rewrite:
Z = (tn(0)[¢on(—iB)) (3.33)

Which looks like a vacuum amplitude as long as it ~ it + i5. We then make the

identification that the inverse temperature [ is the periodicity of imaginary time.
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We then have that a faraway observer sees the temperature to be:

1

Ty = 3.34
t Adrrg ( )
The same expression as in Eq. ((3.27)).
The near-horizon observer sees a temperature redshifted as:
T =Ty goo(o0) i
goo(rs + 1)
2Ty
o (3.35)
1
C 27
_a
27
That is, the Unruh temperature.
In more general cases a black hole metric can still be written in the form:
ds* = —f(r)dt* + ! dr* + ... (3.36)
f(r)

for some function of the radial coordinate f(r).
The horizon is given by r = ry where f(ro) = 0, as for a null ray we have that its

trajectory freezes in coordinate time upon approaching the horizon:

. 1
0=—f(r)t*+—r?
, f(r) (3.37)
IR0
t o dt
By analytic continuation with the Euclidean signature (imaginary time) tg = it the

metric becomes:

dr?
f(r)
Near the horizon r ~ ry one can approximate the function f(r) as (as long as f’(rq) #
0):

dsp = +f(r)dty + + - (3.38)

f(r) = f"(ro) (r = r0) (3.39)
So that the metric near the horizon is approximatively:
2 dr® / 2
dsp, ~ + ' (ro) (r — ro) dig (3.40)

[ (ro) (r — o)
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Rewriting the radial coordinate as:

pi=2+/(r —10) /f (r0) (3.41)

And the Euclidean time as: )
g ()
2

The metric near the horizon can be written as:

te (3.42)

ds? ~ dp* + p*df? (3.43)

Just like before, in order to avoid a singularity at the horizon p = 0 we require

tE Y tE —‘I— f/4(:()).

The periodicity 5 of tg gives us a generalisation of the Hawking temperature:

L f(ro)
T =_ = 44
T (3.44)
We can as a sanity check see that for the Schwarzschild radius we have:
Ts
fry=1-2
/ o (3.45)
f(r) 2
And thus: .
T = 3.46
477y ( )

Which is again the result from Eq. (3.27).
We can also go back to the Rindler time experienced by an observer near the horizon
i0 = 7 and rewrite it using Eq. (3.42) and Eq. (3.44) as:

= ),
2 (3.47)
=2nTt

Something that we are going to use later on, in §7.2.
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The Ryu—Takayanagi conjecture

4.1. The holographic entanglement entropy

In 2006 S. Ryu and T. Takayanagi first proposed [39] a holographic generalisation of
the Bekenstein-Hawking entropy, which has since been known as the Ryu-Takayanagi
conjecture.

The conjecture is that the entropy of a d-dimensional region A on the C'FT,,, gauge
theory is equal (up to a constant) to the area of the d-dimensional minimal surface 4
on the asymptotic AdSy o gravitational theory whose boundary is a (d—1)-dimensional

manifold 0v,4 that coincides with the boundary 0A of the region A:

~ Area(y,)

= 4.1
4 4G g0 (4.1)

In [25] Hubeny, Rangamani, and Takayanagi generalised the conjecture to an explicitly
covariant form, so that the conjecture is now often referred to as the HRT conjecture.
This holographic entanglement entropy S4 measures the amount of information hidden
inside the region B, when the full space is divided into two complementary regions A
and B such that an observer in the region A cannot receive any signal.

This is a generalisation of the situation one has with an event horizon, where the
horizon 4 partitions the space into two regions. Furthermore, one can claim that it is
a generalisation of the Bekenstein-Hawking entropy because in the presence of a black
hole the minimal surface will often be the same as the event horizon or wrap around
it (such as in the case of a SAdS horizon).

For free theories at least, one can show that for quantum field theories on d dimensions
(d > 3) the entanglement entropy S4 is divergent, but that the leading term is inversely

proportional to the ultraviolet cutoff a (which is proportional to the lattice spacing)
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to the power of d — 1 and directly proportional to the area of the boundary of the
region 0A:
A A
Sa=7" Area(04) +0 (a®) (4.2)

qd—1
This makes sense because the entanglement between two regions A and B occurs most
strongly at the boundary 0A = 9B between the two.
One exception to the area law Eq (4.2) is given by a conformal field theory of dimension
d = 2 where for a system of total infinite length I — oo one has the law for a subsystem
A of length [: l
c
Sa= 3 log o
In this case the C'F'T, central charge ¢ can be written in terms of the radius of the
AdS3 theory as:

(4.3)

_ 3R
- 2GN

A relatively simple example is then given by the AdS;/CFT, duality.

(4.4)

Cc

Given the metric in Eq. (2.25) for the case of AdS; (two space-like dimensions):

ds?

One finds that the one-dimensional surface 4 on a slice of constant time (dt = 0) that

minimises the distance will satisfy the geodesic equations (for an affine parameter):

i+ > (—4*+4*) =0
w (4.6)

T——ur =0
u

L.
E

e (é)Q e (4.7)

The induced metric on the geodesic is given by:

This is given by a semi-circumference of radius

d82 _ L2l2

- 4u2(%2 —u?)

du? (4.8)
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And the Ryu-Takayanagi formula gives us the holographic entanglement entropy as:

l

Su= = ("4

ST
! /é L (4.9)

26N Ja 4/ %2 — u?
Which in the limit of small a gives:
L [

=——1In— 4.10
SA 2GN t a ( )

Which using Eq. (4.4) is the same as the standard result stated in Eq. (4.3).

The last result assumed zero temperature or at a ground state. A finite temperature
in the CFT is dual to a black hole in the AdS space. In this respect the gauge/gravity
duality gives a deeper insight for what was originally regarded as a mysterious coin-
cidence, that black holes follow laws similar to the ones of thermodynamics (see Eq.
(3.21) and (3.23).

At a finite temperature T = S~! the gravity dual of the conformal field theory becomes
the Banados-Teitelboim-Zanelli (BTZ) black hole [3]:

R2

ds* = — (r* —r3) dt® + ﬁdTQ + r2dp? (4.11)
By letting »r — oo and rescaling the coordinates one sees that the BTZ black hole
metric is asymptotically the same as AdSs (in the form of Eq. (2.23) with ¢ = =
and r = 1/u). Making the usual Euclidean time substitution g = it and requiring
periodicity we find:

B R

- =— 4.12

L~ (4.12)

Where L is the total circumference of the CFT circle.

If we now look at the region on the boundary A defined as 0 < p < 2%[, one can find
that the geodesic distance satisfies [33]:
b Length (v4) L+ 2r¢ . L2 wl (4.13)
osh | ———————= | = —- sin — :
R r_% 15}

The relation between the CE'T cut off @ and the AdS one rg is given by:—i = g, so that

the entanglement entropy is given by the Ryu-Takayanagi formula as:

z
Sa= glog (% sinh (%)) (4.14)
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A A A A A
C N e c c c

(a) S(paB) + S(ppc) = S(papc) +
S(pB)

Figure 4.1: A geometrical proof of strong subadditivity of the holographic entangle-
ment entropy for C'FTy/AdSs, which shows clearly the idea of the proof in higher
dimensions

(b) S(paB) + S(psc) > S(pa) + S(pc)

A result that agrees with direct calculations on the CFT (see below).
In plain AdS we have for two complementary regions A and B that 74 = 75 so that

the entanglement entropies always match:

S(pa) = S(pp) (4.15)

Which is not extensive: if A is a small region on the boundary, B is a large region on
the boundary.

However, the minimal surfaces v4 and vg will not be equal in the presence of a black
hole (and hence in the thermal CFT we won’t have that S4 = Sg). In this case, the
topology is not trivial and we make the requirement that the minimal surface in the
holographic entanglement entropy 74 is homologous to the region A.

As long as the region A is small, the minimal curve v4 for the BTZ black hole looks
similar to the corresponding minimal surface in plain AdS space (as the BTZ black hole
is asymptotically AdS). As A gets larger the surfaces y4 and vy wrap around different
parts of the black hole, until the minimal surface 74 is given by a disconnected surface:
one component coincides with the black hole horizon, whilst the other is a small curve
near the boundary which coincides with vg. This gives that in general we have that

Eq. (4.15) generalises to:
S(pa) = S(ps) + S (4.16)

Where Sy is the Bekenstein-Hawking entropy for the black hole.
This saturates the Araki-Lieb inequality in Eq. (3.13) as the total entropy equals the
Bekenstein-Hawking entropy Spy.

4.2. Subadditivity in the Ryu—Takayanagi formula

A check for the Ryu—Takayanagi formula is that satisfies the properties of the entan-

glement entropy stated previously. In particular strong subadditivity can be proven
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with a straightforward geometrical argument shown in Fig. (4.1a) and (4.1b) for the
case of CF'Ty/AdSs: if they intersect (in the case of C'F'Ty/AdSs if they intersect they
intersect at a point), we can break apart the minimal surfaces y45 and ¢ into two

surfaces each, and regroup them into two surfaces v/, and 75 (Fig. (4.1a), so that:
Area (yap) + Area (ypc) = Area (7)) + Area (v3) (4.17)

Now, the new surfaces 7/, and v are not necessarily minimal, so in terms of the

minimal surfaces v4¢ and yg we have:

Area (Yyc) = Area(yac)

(4.18)
Area (v) > Area (vg)
Which implies:
Area (7)) + Area (vg) > Area (yac) + Area (vp) (4.19)
And hence:
Area (yap) + Area (ypo) > Area(yac) + Area(yp) (4.20)
Which by dividing both sides by a factor of 4G4, 5 gives:
S(pas) + S(psc) = S(pasc) + S(ps) (4.21)
Similarly one can prove the property (Fig. (4.1b):
S(pas) + S(psc) = S(pa) + S(pe) (4.22)

Which shows that the strong subadditivity of entanglement entropy in a boundary
theory is connected to the geometrical properties of minimal surfaces in the corres-

ponding bulk theory.

4.3. Monogamy from geometry

Subadditivity also allows us to define another quantity of interest from information
theory, the mutual information, which for disjoint separated regions A and B is given
by:

I(A:B)=Ss+Sp— Sain (4.23)
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A A A
B~ = B > B
C C C

Figure 4.2: A geometrical proof of monogamy I(A : B : C) < 0 for AdS; showing
that:
S(pas) + S(psc) + S(pac) = S(pa) + S(ps) + S(pc) + S(pasc)

Which is zero for unentangled regions A and B. We have that in general:
I(A:B)>0 (4.24)

Mutual information gives a measure of the total amount of correlation (both classical
and quantum) between the regions A and B as shown in [11].

One can also define the more general tripartite information, defined as:

I(A:B:C)=8Sa+Sp+Sc —Sap — Spc — Sac + Sasc

(4.25)
=I(A:B)+1(A:C)—1I1(A: BC)
One can then show that the tripartite information also obeys:
I(A:B:C)<0 (4.26)

Called the monogamy of entanglement.
Similarly to the proof of subadditivity in the previous section (see Fig. (4.2)), the area
of the surfaces 745, 7o and ya¢ can be broken up into twelve pieces, which can then

be rearranged to show that:

YaB + YBC + YACc = YA+ VB + Yo + VaBce (4.27)

Which gives the stated result (see [19] for the full derivation).

4.4. Sketch of a derivation of the holographic entropy formula

In quantum field theories the entanglement entropy is usually calculated using the

so-called replica trick [7]:

Sa=— ——trap}

on

n=l (4.28)
=— —Intryp}

on

n=1
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We can see that this formula when applied to the example of a canonical ensemble
e PH
Z

entropy Sthermal 88 We have:

given by Eq. (3.4) p = with Z = tr (e_ﬁH ) gives the classical thermodynamic

S(p) = = o-In(tr (p"))

n=1

= 2 (1 (i (¢5")) — - Log 2) (4.29)
= ((H) +log Z

= ﬂ(E — F) = Sthermal

By the definition of the Helmholtz free energy F' = E —T'S.
In order to use the formula in the general case we need to evaluate tra p’}.
In the simpler example of a (1+ 1)-dimensional QFT the ground state wave functional

U (¢o(z)) is found by doing the Euclidean path integral in the interval —oco < tg < 0

#(te=0,2)=¢o ()

W (go(x)) = / Dge5® (4.30)

tp=—0o0

The corresponding density matrix p is given by

[Plsos, = ¥ (d0) ¥ () (4.31)

Where the complex conjugate of the ground state W (¢(x)) is obtained by performing
the integral in the interval 0 < tg < oo.

The reduced density matrix is then obtained from an expression of the form:

i = [ Do
(e m)ERn (4.32)

Where R,, is an n-sheeted Riemann surface obtained by 'gluing together’ copies of pa

in the form [pal,, 4 [paly,, s, =" [pals, 4, - Where each term is evaluated as:

aloes =5 [ Do [T 8(0(+0,2) = 6.(0) 3 (6(0.2) ~ 6-(a)) (433

E=—00 €A

This is the way Eq. (4.3) can be derived without using holography, but directly from
the field theory. This approach can be generalised to an arbitrary number of dimensions
using twisted vector operators (although such calculations are in the general case not

well understood).

36



Now, the n-sheeted Riemann surface R,, is characterised by a deficit angle 6 = 2w(1—n)
on the surface 0A. This eventually leads one to assume that the Ricci scalar R can be

written in terms of a codimension two surface v4 as a delta function:
R =4n(1—=n)d (y4) + RV (4.34)

Where 6 (74) is a delta function localised on 4.
Plugging this into the Hilbert-Einstein action for the AdS theory:

1

- - d+2 A) +---
SAdS 167TGd+2/de \/E(R—F )+

1
__ / 42 /55 () + - - (4.35)
4Gata Jur

(1 —n)Area(ya)

B 4G g0

Where the other terms cancel out in the following computation.
Using the AdS/CFT correspondence we can equate the partition functions (the GKPW

relation of Eq. (2.42)) we can calculate this as:

8 n
Sa=— %lntrpA

=— —InZopr

on

= — 3 In e~S4ds

n

_ OSaus
on |, _,

0 [(n—1)Area(ya)
~on [ 4G 42 :|n1
_ Area(va)
4G

n=1 (4.36)

Which is the result given by the Ryu-Takayanagi conjecture (Eq. 4.1). This however
is not a full derivation: the conjecture still does not have the status of an established
theorem, although derivations in specific settings have been given for instance in [10]
and [14].
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The black hole information problem

5.1. The black hole information problem

The radiation emitted by a black hole according to Hawking’s calculation in [18] is,
like black body radiation, random. However in quantum mechanics unitary evolution
means that information is conserved. This problem is widely known as the black hole
information paradox or black hole information problem.

A more detailed argument for this goes as follows [37] : consider starting with a large
number of EPR pairs (maximally entangled pairs of particles) which together are in a
pure state |1), so that by definition the von Neumann entropy is S = 0; throw one of
each pair inside the black hole, ending up with an entropy for the region outside the
black hole of Syutsiqe = 71n2 (and inside the black hole also Siygiqe = 710 2).

At a later time, after the black hole has completely evaporated, we are left with half

of each pair with a von Neumann entropy given by:
S = Soutside =nln?2 (51)

Which is the entropy characterising a highly mixed state for the remaining n particles.
As the entropy for the region outside the black hole (which is now the whole space)
cannot have decreased because the two regions are causally separated.

However, the time-evolution given by a Schrodinger-like evolution is unitary:

W) = Hlw) (5.2)

(in terms of quantum field theory this translates to the requirement of unitarity of the

S-matrix [47]: SST =1)
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Figure 5.1: Qualitative diagram for the time evolution of the von Neumann entropy
of the Hawking radiation: time ¢ shown on the horizontal axis, on the vertical axis
the von Neumann entropy of the emitted radiation Sx(t) (red curve), the Bekenstein-
Hawking entropy Spu(t) proportional to the area of the black hole (blue curve), and
Page’s proposal for the shape of the true entropy Sp(t) (dotted black curve).

And unitary evolution preserves the purity of the state |¢) of the system.
Following [34] we consider three different measures of entropy outside the black hole

in the hope of reinstating unitarity once the black hole has evaporated:

1. The von Neumann entropy Sy of the Hawking radiation, which by the argument

before must be increasing in time;

2. The Bekenstein-Hawking entropy Sgy which is proportional to the event horizon
area (Eq. (3.24)) and can be understood as a coarse-graining of the von Neumann

entropy: as the black hole evaporates, this decreases in time;

3. Page’s proposal for the time-evolution of the entropy Sp of the outside region,
which to a good approximation should follow the smaller of the other two quant-
ities (which meet at around the midpoint of the evaporation process, the Page

time).

If the entropy follows Page’s proposal, once the black hole has fully evaporated To see
why Page’s proposal brings about further trouble, let us consider an observer crossing
the event horizon at time ¢t = ' and let ps be the density matrix of the Hawking
radiation emitted before ¢ = ', B be the next outgoing mode leaving the black hole
horizon, and C' be the in-falling partner mode trapped inside the horizon.

We have a set of five conditions that taken together are contradictory:

1. The next outgoing mode and its partner pgc are entangled with each other, but
if they are not be entangled with the radiation emitted before we have that pgco

is a pure state and thus:
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. Like [18], we assume that the emitted radiation pp is thermal, and hence itself
in a mixed state:

S(ps) >0 (5.4)

. Radiation that has been previously emitted can interact with the outside world,
so will in general also not be a pure state. However if py and ppc are not
entangled, and taking into account Eq. (5.3), the entropy of the system papc
will be simply the entropy of pa:

S(pasc) = S(pa) (5.5)

. If ¢ is after the Page time, the emission of the new mode will decrease the

entropy:
S(pa) > S(pap) (5.6)

. The entropy of a tripartite system satisfies a condition called the strong subad-

ditivity (or monogamy) (see Eq. 3.14) given by:

S(pasc) + S(ps) < S(pas) + S(psc) (5.7)

To see the contradiction, start from 5. and 1. to get:

S(papc) + S(ps) < S(pan) (5.8)
From 3. we get:
S(pa) + S(ps) < S(pas) (5.9)
4. gives:
S(pa) + S(pp) < S(pa) (5.10)
And finally we get:
S(ps) <0 (5.11)

Contradicting 2.

5.2. ER = EPR?

Black Hole Complementarity (so called in analogy to Heisenberg Complementarity

in quantum mechanics) is the view that the apparent inconsistencies we have shown

would never manifest themselves in real experiments, and thus do not actually violate
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the laws of physics. The argument given above seems to make at least naive form of
Black Hole Complementarity

The gauge/gravity duality brought a partial resolution to the problem: if bulk grav-
itational theories with black holes can fully be described by some thermally excited
quantum field theory without gravity on the boundary, then at least there does not
seem to be room for any special gravitational mechanism to violate unitarity. Al-
though the duality was originally formulated in string theoretical terms, [30] showed
that it can equivalently be formulated independently of string theory, giving further
strength to the argument.

It looks then like we have to give something up: if we give up 4 then we are back at
the start and might have to abandon the unitarity of quantum mechanics altogether
and modify quantum mechanics at its core: some work has been done in this direction,
with proposals to introduce final state boundary condition at black hole singularities
[22] to alter the way in which probabilities are calculated from the density matrix,
or even non-linear dynamics [35] (Hawking himself famously originally proposed that
black holes might violate unitarity, whilst others including Susskind and Preskill dis-
agreed: however, in view of arguments based on the gauge/gravity duality, Hawking
eventually had to concede).

But if we give up 1, then there is still something crucial missing in Hawking’s original
semiclassical calculation: one proposal is that [2] after Page time, the quantum fields
near the horizon of a black hole are not well described by a vacuum, instead being
highly excited. This is the AMPS firewall hypothesis.

However the firewall hypothesis is prima facie in conflict with another basic tenet of
physics, the equivalence principle (in the information problem literature often amus-
ingly referred to as the no-drama postulate): the observer crossing at time ¢ = ¢’
should not see anything special as she crosses the horizon. This is because the horizon
for, for instance, a Schwarzschild black hole is a coordinate singularity in Schwarz-
schild coordinates, but not a true singularity, as one can see by changing coordinates
to Kruskal-Szekeres coordinates.

In the maximal analytical extension of the Schwarzschild geometry or the AdS-Schwarzschild
geometry Eq. (2.27)), there are two regions outside the black hole (commonly referred
to as region I and region III).

In [45] showed that a maximally extended AdS-Schwarzschild black hole is dual to a
pair of maximally entangled thermal conformal field theories on the CFT boundary.
Starting from two identical non-interacting copies of the CF'T A and B, we can define
a state [1):

W) =3 e T |E), @B, (5.12)

i
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Where the state |E;) , is the ith eigenstate for the CFT A and similarly for B.
Taking the trace with respect to B we see that p4 is:

pa = trp(|Y)(Y])

= 3B (Bl 519)

Which is a thermal density matrix, which the gauge/gravity dictionary tells us corres-
ponds to a black hole in the bulk theory. It is tempting to interpret this as the two
outside regions in the eternal AdS-Schwarzschild black hole.

If this interpretation is correct, it implies that a quantum superposition of disconnec-
ted spacetimes can be identified with a connected spacetime.

As we have seen, given two complementary regions A and B on a CFT (say the two
hemispheres on a d-sphere S¢), the Ryu-Takayanagi formula of Eq. (4.1) says that as
the entanglement entropy S4 = Sp decreases the area of the region corresponding to
the boundary on the bulk: we can interpret this as saying that as the entanglement
increases, the two regions pinch off from each other.

For any two CFT operators O¢ and Op acting on the regions C' C A and D C B, the
mutual information I(C, D) defined in Eq. (4.23) obeys:

((OcOp) ~ (Oc) (Op))”
2|0 |Opf’

I(C,D) > (5.14)
Furthermore, certain two-point correlators of local operators give a measure of the

distance between the spacetime points on which they act:
(O¢ (x¢) Op (xp)) ~ e ™ (5.15)

(where m is the mass and L is the length of the shortest geodesic between xc and xp)
We see that as the entanglement decreases, the bulk regions corresponding to C' and
D become more physically separated: the two regions of spacetime pull apart and
pinch off from each other. This idea can be summarised as: entanglement generates
geometry.

Taking this idea seriously, [29] postulate that we should interpret the two spacetime
regions I and III not as distinct universes, but as spatially separated parts of the same
spacetime. In this view the Einstein-Rosen bridge between two black holes is caused
by the entanglement between the microstates of two spatially separated black holes.
They take the claim even further by stating that every entangled system is connected
by some quantum version of an Einstein-Rosen bridge.

According to [29], an observer in region III can, by performing computations on her
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black hole using a quantum supercomputer, send messages inside the horizon, when
they are inaccessible to the observer in region I, but only as long as he does not fall
into the horizon. These messages can include a high energy wave which, if sent at
the right time, would create an AMPS firewall. However, [15] gives possibly the first
instance of an argument from quantum computation complexity theory in a black hole
paper, showing that whether an observer is able to determine if an outgoing radiation
mode is entangled to the previously emitted radiation depends on an unsolved problem
in quantum computer science, whether SZK C B@QP. They use this to claim that

firewalls might not be necessary after all.
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Holographic quantum erasure correction

6.1. Quantum erasure correction

A simple example of a quantum correction code that uses three-state qutrits (although
in quantum information we usually work with binary state qubits, the two formulations

are equivalent) is given by encoding the state (which requires one qutrit):

0= ail) (61)

9 =Y ailf) (62

Where
1

0) = —=(]000) + [111) + [222))

Sl

3
1

3
1

V3

This is referred to in the literature as a (2, 3) threshold scheme, because knowing any

)

2)

(1012) + [120) + |201)) (6.3)

QI

(1021) 4 102) + [210))

two of the three qutrits (say the first and the second) allows us to reconstruct the full
state |1) and hence the original state |1). It can equivalently be seen as an erasure
correction code, as if we know that one of the qutrits has been erased (say the third),
we are still able to reconstruct the original state.

Formally the reconstruction can be taken as acting on the by a unitary transformation
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Uz ® I3 (where Ujp acts on the first two qutrits and I3 on the last one) such that:

(Ur2 ® I3) i) = [i) © —=(]00) + [11) + |22)) (6.4)

1
V3
Where the operator U, is explicitly written down as a permutation that sends |00) —
|00), [11) — |01),]22) — ]02),...

If O is an operator that acts on the one-qutrit space as:

Oliy = (0);l) (6.5)

J

We can always find a non-unique operator O on the three-qutrit space that implements
the same transformation:
Ol = 3(0);13) (6.6
J

In general O will act on all three qutrits. But in the example before one can take:
015 = Ul,OUy» (6.7)

So that the support of 512 is on the first two qutrits only. Similarly one can define
operators 513 and 523. This gives an example of three distinct operators with support

on different qutrits that have the same action on the code subspace (the space spanned
by |0), [1) and |2)).

6.2. Bulk reconstruction

Given a gravitational theory on a asymptotically AdS space M we can reconstruct the
operators O on the CFT boundary OM from fields ¢ defined on the AdS theory so
that they satisfy Eq. (2.43). This can be done in perturbation theory by requiring
that:

p(r) = - K(z;y)O0(y)dy (6.8)

Where the kernel K(z;y) is a suitably defined smearing function, which obeys the
bulk equations of motion in the = index and obeys Eq. (2.43) when z is taken to the
boundary.

The operators O only satisfy the expected commutation relationship for the AdS
theory to low order in the perturbation theory.

The smearing function K (x;y) can be taken to have support only for x and y spacelike

separated (that is, y can be taken to be from the set of points on the boundary that
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are outside the future or past light cone of z).
The casual wedge Wc[A] of a region A of a Cauchy surface ¥ (for instance the surface

given by t = 0) in the boundary is a region defined in [24] as:
WelA] = JH[D[A]| N J~[D[A]] (6.9)

Where D[A] is the boundary domain of dependence of A defined as the set of points
on the boundary such that every inextendible causal curve that touches any of them
must also touch A.

The causal surface x 4 is the null surface that bounds the causal wedge within the bulk
(that is not on OM).

The notion of the casual wedge is motivated by the fact that classical bulk field equa-
tions are causal in the AdS radial direction [12], and data on the boundary is enough
to determine a bulk operator ¢(x) at point x if = lies within the past light cone of x.
An example is the AdS-Rindler wedge given by the simple case where the geometry
is that of pure AdS,,s, the Cauchy surface ¥ corresponds to t = 0, and A is a p-
dimensional hemisphere on the boundary. The metric on the AdS-Rindler wedge can

be written as:

dp?

d32:—(p2—1)d72+p2_1

+ p° (dz* + sinh® deZ_l) (6.10)

With coordinate ranges p > 1,2 > 0, —o0 < 7 < 0.

By acting on the AdS-Rindler wedge with the isometries of the AdS theory one can
obtain the causal wedge for any disc in 3: in the example of AdSs any interval can be
obtained from a causal wedge.

The support of the function K (z;y) in Eq. (6.8) can be taken to a more restrictive set
than stated before: for # € W¢[A] one can take y to be in the domain of dependence
DJ[A]. This means that for a point = close to the boundary, only a small region A is
needed to be able to reconstruct the field ¢ in terms of operators acting on A.
Alternatively, it was shown in [20] that one can define a entanglement wedge of A,
defined in terms of the minimal Hubeny-Rangamani-Takayanagi surface in Eq. (4.1),
and we can take the support for K (z;y) to be on the boundary of this wedge instead.
The entanglement is equal or larger than the the causal wedge, in particular it can be
much larger in the case where A is a disconnected region, meaning that bulk operators
far outside the causal wedge can still be reconstructed in this case.

In [1] the authors consider what happens when we try reconstructing some bulk field
operator p(x) which lies on the causal wedges of distinct regions in the boundary, say
A, B and C.

This seems to be problematic as we can take a local operator O(y) defined at a point
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(a) The red area gives the intersec-
tion of entanglement wedge €4 of re-
gion A and a t = 0 slice in AdSs.
Point z lies in €4, so ¢(x) can be re-
constructed on A, point y lies in £,
so ¢(y) can be reconstructed on A.

(b) The bulk field p(x) cannot be re-
constructed on A, B, or C, however
it can be reconstructed on AB, AC,
or BC.

Figure 6.1: Figure reproduced from [14]

y on the complement of the region A on the boundary, and locality would imply
that the field ¢(z) reconstructed on the wedge given by A commutes with O(y). By
choosing different regions, we could make our reconstructed ¢(x) commute with all
local operators on the slice . But it is a consequence of Schur’s lemma applied to the
algebra of operators of the CF'T that no nontrivial operator in the CFT can commute
with all local operators, hence we must have that the reconstructed operators @4 ()

and @g(x) on two different regions A and B are not necessarily the same operator.

6.3. Hyperbolic tilings of tensor networks

The situation described at the end of §6.2 displays an apparent similarity with the
quantum correction code described in Fig. 6.1b: knowledge of one of the three qutrits
does not allow us to reconstruct the original system, but knowledge of two of them
does; this mirrors how the bulk field ¢(x) in Fig. 6.1b cannot be reconstructed on
any of the regions A, B, or C', but it can be reconstructed on the union of any two of
them.

In [1] a code subspace H¢ of the Hamiltonian for the bulk theory # is proposed, given
by the span of a finite set of bulk field operators ¢;(x) acting on the vacuum on a

finite number of points x in the bulk:

92), ¢i(7)[€2), i ($1)¢j (z2) 182), ... (6.11)
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Figure 6.2: Diagram for the holographic pentagon-tiling code, with white dots repres-
enting physical indices on the boundary and red dots representing the logical indices
in the bulk. The gauge/gravity duality gives an isometric map from white dots to red
dots. Figure reproduced from [36].

And it is claimed that this subspace corresponds in a perturbation theory sense to the
code subspace of a quantum correcting code. In [31] a different approach is taken, and
it is claimed that quantum error correction appears automatically as a consequence of
the O(N) gauge invariance on the boundary CFT theory, without the need to intro-
duce a distinct code subspace as in [1].

Building up on a model originally proposed in the multi-scale entanglement renormal-
ization ansatz proposal in [46], a holographic code is realised in [36] by a discretisation
of the bulk space at a time slice into a tiling, from which they construct a tensor
networks made up of perfect tensors.

In information theory, the probability amplitudes a pure quantum state of m particles
with v-dimensional spins (in the usual case of qubits v = 2) can be represented as a

tensor with m indices, each ranging over v values:

|1/}> = Z Talaz...am |a1a2 ce am> (612)

a1,a2;,...,am

A perfect tensor T is such a 2n-index tensor such that for any bipartition of its indices
into A and A (where |A| < |A]) it is proportional to an isometry (a transformation
preserving the inner product) from the Hilbert spaces of A into A (that is, T is max-
imally entangled for any cut).

Perfect tensors can be taken to represent a quantum error correcting code that encodes
one logical spin into 2n — 1 physical spins and protects against the erasure of n—1 (less
than half) of the physical spins. For instance the tensor Zal,._.aﬁ Tay..a6 |azagasag) (a1az|
is an isometry from a 2-dimensional to a 4-dimension space and corrects at most one

erasure.
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In the examples given in [36], the bulk space is taken to be AdSs; and the hyperbolic
geometry of time slices t = 0 is discretised into a uniform hyperbolic tiling (for in-
stance hexagonal or pentagonal tiling). Physical spins are associated to the boundary
(corresponding to the CFT theory).

The number of logical v-dimensional spins is given by the number of tilings considered
Npuxk, and the number of physical spins is given by the number of uncontracted bound-
ary indices at the boundary Npoundary. The tiling can be read as a circuit, with input
coming qubits coming from the outer layers into the central layers. In the example of
a pentagonal tiling given in Fig. (6.2), each tile has at most two input legs, corres-
ponding to a perfect tensor with three inputs (where the bulk logical index gives the
third leg). The whole circuit, the holographic code, gives an isometry from the logical
indices in the bulk to the physical indices in the boundary. For large Ny with a
pentagonal tiling one has that the ratio #::;w approaches (the rate of the code).

This minimal curve 74 of the Ryu-Takayanagi conjecture (Eq. (4.1)) is represented by
a cut through the tensor networks which partitions it in two, and the notion of length
to be minimised is given by the number of legs v4 cuts through.

A holographic state |¢) corresponds to a holographic code with no bulk indices. Given
a cut 4 which partitions the boundary into regions A and A the holographic state
can be written in terms of the tensors |P;) which represents the state on A and |Q;)

which represents the state on A (up to normalisation) defined so that:

= Z ’ab>Pa,in,i
b (6.13)

—ZIP ® Qi)

Where a runs over the basis for the region A and b over the basis for region A (with
dimensions v¥4 and vV4, where N, is the number of physical spins on A and N; =
Npuk — N4 is the number of physical bits on fl) and ¢ runs through the values of the
indices contracted along 4 (where 0 < i < Neys and Neys i the number of legs 4
cuts through).

The reduced density matrix for A is found by tracing out A:

pa= > (Qu|Qi)|P) (Pl (6.14)

i

One finds that the entropy is bounded from above by the length of ~4:

Sa < |yal-Inv (6.15)
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And for a holographic state on a tiling with nonpositive curvature the tensors P and

@ are isometries and the sets {|P;)} and {|Q;)} are isometries and we have:
Sa=|val-Inv (6.16)

In agreement with (the lattice version of) Eq. (4.1).

In [36] a simple greedy algorithm is also proposed to find an estimate % for the lattice
version of the Ryu-Takayanagi curve 74. In information science, greedy algorithms
are iterative optimisation algorithms which make the locally optimal choice at each
stage in the optimisation (in the example from [36], this means adding an extra tile to
the region P). Such algorithms often result in a globally sub-optimal solution. Indeed
there are circumstances (for instance cases when A is a disconnected region) under
which using the greedy algorithm described we have 7% # 4.

In spite of these limitations, it does not seem to be the case that alternatives to
the greedy algorithm have been put forward in recent literature, with much of the
literature building up on the greedy algorithm proposal. Investigations of alternat-
ive optimisations methods for tensor network cuts might be a fruitful future area of

research.
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Circuit complexity and black holes

7.1. Auxiliary entropy and the second law of quantum complexity

When considering measures of the size of the space of a quantum system of K qubits
in order to have a notion of how distant two states are we can define two different
metrics. One is the traditional inner product metric given by the Fubini-Study metric

given for two vectors |A) and |B) by their inner product:
drs(A, B) = arccos |(A | B)| (7.1)

Which takes values from 0 (when |A) = |B)) to § (when |A) and |B) are orthogonal).
For the unitary operators that give the time evolution of states in the Schrodinger
picture, the inner product can be equivalently defined as (for a Hilbert space operators

that can be represented as 2% x 25 matrices):
— 1 T
dps(U, V') = arccos \2K tr UV (7.2)

Where 2% is a normalisation factor so that the distance between U and V is well-
defined and dps(U,U) = 0.

The shortcoming of the Furbini-Study metric [42] is that given two systems with states
|A) and |B) which are identical in every respect except for one electron having spin
up in system |A) and down in system |B), the Furbini-Study metric gives a distance
of 0, the same as the distance between |A) and a completely different system |C').
The second metric, which better captures the notion of what it means for two states
to be different, is called the relative complexity C(U, V') which we introduce below.

In order to do so, we will need to define some notions from the theory of quantum
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Figure 7.1: Figures reproduced from [42].

computer circuits: local k-gate is qubit unitary operator from the space of k-qubits
(the incoming qubits) to itself (the outcoming qubits), where £ < K and K is again
the total number of qubits in our system), to gives some allowed universal gate set. If
g is in the set, we want its inverse ¢g' to also be in the set.
In an actual quantum computer circuit, we expect the qubits to be arranged on a
2D lattice, and gate to be allowed to act only on neighbouring qubits, giving spatial
locality as well as k-locality. Lattices of higher dimensions might be useful in modelling
condensed matter systems.

However, to define relative complexity we do not need this constraint and we can
define k-local all-to-all circuits, where a k-gate can act on any two input qubits.

The relative complexity C(U, V') of operators U and V is then defined as the minimum

number n of gates g; from the allowed set of gates g; € G satisfying:

U=g.gn-1...91V (7.3)

Where we identify operators that are within a radius of € (the tolerance) from each
other as measured by the inner product (we are coarse-graining the space SU(2K)).
We can now define the complexity C(U) of the operator U as the operator relative
complexity with the identity:

C(U)=C(U,I) (7.4)

So that it is simply the minimum number of gates such that we can write U as:

U=gun-1---0 (7.5)

Equivalently for two states |A) and |B) we can define their relative complexity as the

minimum number of gates such that:

|A) = gngn-1--.q1|B) (7.6)
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The relative complexity satisfies the axioms of a metric: the identity of indiscernibles
(C(U,V) > 0 if and only if U = V), symmetry (C(U,V) = C(V,U)) and the triangle
inequality (C(U,V) < C(U, W)+ C(W,V)). Furthermore it is right-invariant:

Gives:

UW = g,gn_1...1 VW (7.8)
So that:

C(U,V)=C(UW, VW) (7.9)

However it is not necessarily true that C(U,V) = C(WU,WV') (we don’t have left-
invariance).

Another property is that for many choices of G, the maximum value of the complexity
grows as e whilst the number of operators which differ from each other by more than
€ grows as e* so that the volume of the space grows exponentially in the diameter K.
This gives a clue that the geometry should be negatively curved: in positively curved
geometries the volume grows polynomially, and even more slowly in positively curved
spaces.

The idea of complexity geometry is then to find a smooth metric on SU(2%) that
satisfies these properties. For instance, the property of right invariance means that

there is a symmetric matrix Z;; such that the metric is given by:
d82 = dQ]Ij]dQJ (710)

Where:
dQ = itrdUTo U (7.11)

And where o; denote the Pauli operator on the space of K qubits (so with the index
I running over 4% — 1 values).

The choice of the matrix Z;; is equivalent to the choice of the set of allowed gates G.
Preparing a unitary operator U by applying n gates to the identity can be seen as a
discrete curve in the auxiliary classical space A where operators U are seen as classical
particles with 4% —1 degrees of freedom. We endow 4 with a metric which corresponds

to the distance in Eq. (7.2), and up to a constant is given by:
di* = trdU'dU (7.12)

Geometrically, the evolution in time of the operator U(t) can be seen as tracing out a

geodesic in this space.
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We can see this starting from the Schrodinger equation for the time evolution operator
(a first order equation):

iU = HU
. (7.13)
H=iUU"

And differentiating with respect to time to obtain a second-order equation geodesic

equation that does not depend on H:
U-UU'U=0 (7.14)
Which is of the familiar form:
XM= M xAXE (7.15)

Where '} are the Christoffel symbols for the standard metric on SU(2F).
Geodesics are curves that minimise the distance between points only locally: in curved
geometries a geodesic might well not be the same as the shortest curve between two
far away points. A cut locus is defined as a point p’ where the geodesic is no longer the
(only) shortest curve: travelling along a geodesic, a non-geodesic curve appears at p’
that is shorter or equally long as the geodesic one. An simple example is a closed path
on great circle on the sphere S?: starting at p and following a great circle, we find
ourselves at the antipodal point p’, and changing direction and following any other
great circle now will take us back to p as quickly as the geodesic path would (in this
simple example the length of the non-geodesic curves that appear at p’ is the same as
that of the geodesic, but changing slightly the example to that of a torus S x S* the
non geodesic paths are of shorter length).

Now, as its time evolution goes on, the length of geodesic traced out by the unitary

operator U(t) initially grows as:
C(t) =Kt (7.16)

But as time grows to the order of e it is increasingly likely to hit a cut locus. As the
length of the shortest path in the metric of Eq. 7.10 corresponds to the complexity of
C(U), this means that there is a maximum in the complexity C, at a time t = t, ~ .

As a consequence of the linear evolution up to ¢, in Eq. (7.16) its value also goes as:
C. ~ e (7.17)

We can say that the system has reached complexity equilibrium.
An accessible argument justifying this behaviour that does not use differential geo-

metry, but is instead based on a discretisation of the auxiliary system and on graph
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Figure 7.2: Time evolution of the complexity C of the operator U(t) for an ensemble

of K qubits. The growth is linear in time up to a time of the order ¢, = % ~el A

decrease in complexity occurs only after a time t ~ e Figure reproduced from [6].

theory, is given in [42].
The original treatment of the properties of complexity geometry as a Riemannian
manifold is found in [8].
Quantum complexity can be seen as an entropy: not the entropy of the original sys-
tem of K bits (which can be at most equal to K In2 and unlike quantum complexity
increases linearly with the number of qubits), but the entropy in the auxiliary system
where operators U are seen as classical particles evolving in Brownian motion from
the origin (corresponding to the identity operator).
We have:

Spr~Clog K (7.18)

To see that this is the case consider again the discrete model [42]. At each iteration a

particle U in the auxilary space can propagate in d directions of the order:

d~ (KL/;), N (%) ’ (7.19)

Then the entropy S4 of goes as the volume as the particles expand:

K
Sa~nlogd ~ ”7 (7.20)

At each iteration the maximum number of 2-local gates that can be applied to the
operator is also C' = % We can then identify quantum complexity with the entropy
of the auxiliary system.

Eq. (7.16) and Eq. Eq. (7.17) are then the quantum complexity equivalent of the

second law of thermodynamics, the second law of quantum complexity.
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As expected for the behaviour of a statistical ensemble, the unitary operator U only
returns in the neighbourhood of the identity (causing the complexity to return close
to 0) only in a prohibitively long time, of the order of a double exponential with the
number of qubits ¢t ~ ¢ (see Fig. (7.2)).
If the Hamiltonian is time-independent, the evolution of the particle is costrained to
live on a submanifold of the original space SU(2K) given by the 251 energy levels
|E,):

U(t) = !

= S (Bl 2

n=1
Geometrically the trajectory is given by 2% phases 6,(t) = E,t, that is the motion
is restricted to a torus defined by 2%-dimensional torus embedded in the (4% — 1)-
dimensional space SU(25).

If the system is chaotic the energy levels are incommensurate, and we have ergodicity
(U visits every region of the torus in the long run). In this case [42] hypotheses an
even more direct relationship between the auxiliary entropy and the complexity of the

form:

Following Schrodinger’s notion of less-than-maximal entropy (negentropy) as a physical
resource [40], we can then argue that having less-than-maximal complexity (uncom-
plexity) is a physical resource [6] that can be expended to perform directed quantum
computation.

However complexity, corresponding to the entropy of the larger auxiliary system
SU(2%) behaves in some respects dramatically differently to classical entropy. In par-
ticular adding one single qubit to the system doubles the maximal complexity of the
system. This puzzling behaviour has again an unexpected connection with the theory
of quantum computation, where in the presence of a highly mixed state of K qubits,
adding a single clean qubit of known state [26] can allow one to make computations

which have no known efficient classical algorithms.

7.2. The Black Hole/Quantum Circuit Correspondence

The Penrose diagram for the Schwarzschild-AdS black hole with the metric given in
Eq. (2.27) is shown in Fig. 7.3). Following the ER = EPR proposal outlined in §5.2
we can identify this as two spacetime regions (regions I and III) connected by two
entangled black holes/white holes (regions I1/IV).

We see that the Rosen-Einstein bridge (wormhole) volume, the volume of the inside
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Figure 7.3: In both diagrams, blue lines represent a foliation in maximal slices. Figures
reproduced from [42].

region of the black hole given by the maximal foliation for the eternal Schwarzschild-
AdS black hole in Fig. (7.3a,) decreases for the white hole and then increases again
for the black hole.

We expect white holes to be unphysical: in the more physical scenario of a black
hole created by gravitational collapse shown in Fig. (7.3b) the corresponding Rosen-
Einstein bridge volume (where in this case the bridge does not go anywhere [43])
increases over time. In both cases it reaches a maximum limit.

One would be tempted to say that there is an increasing quantity like entropy that
increases over the anchoring time ¢ and favours a scenario like Fig. (7.3b) over the one
in Fig. (7.3a). However the classical entropy is fixed in both cases as the black hole is
in thermodynamic equilibrium with its surroundings throughout its evolution.

The growth of the Rosen-Einstein bridge volume Vig(t) satisfies:

dVrp
dt

~ ALT (7.23)

Where L is the anti-de Sitter radius in §2.1, A is the black hole area, and T is its
temperature, so that in terms of the Bekenstein-Hawking entropy (Eq. (3.24) we can

also write:

dt

The near horizon geometry is given by the Rindler metric of Eq. (3.29) and the

~ SguLT (7.24)

relationship between Rindler time for a near-horizon observer 7 and the coordinate

57



time of a faraway observer ¢ was given back in Eq. (3.47) as:
T=2rTt (7.25)

Consider a quantum circuit covering the horizon of the black hole. For subexponential
time the number of gates in the circuit corresponds to the complexity of the unitary
operator prepared by the circuit (we have seen that for exponential time the complexity
plateaus), and if at every time-step we have the maximum number K /2 of 2-local gates,
then © K

— == 7.26

or 2 ( )
Assuming that the number of qubits is proportional to the size of the circuit (the area
of the black hole) we have K ~ A:

dc

So that an observer at infinity sees by Eq. (7.25):

dc
— ~ AT 7.28
Y (7.28)
Hence finally: c dv
RB
=~ 2
ot ot (7.29)

And the two quantities are the same up to constants.

We are then tempted to say the black hole behaves like a quantum circuit that encloses
its horizon, with circuit time identified with Rindler time and complexity identified
with the volume of the Einstein-Rosen bridge. This is the black hole/quantum circuit
correspondence.

This relationship is further explored and refined in [5].
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Epilogue

We have seen that the gauge/gravity duality has led us to uncover a series of unex-
pected connections between quantum gravity and the theory of quantum information
and of quantum computation. We have given a hopefully clear and accessible present-
ation of some of the most central concepts (for example, the holographic entanglement
entropy of the Ryu-Takayanagi conjecture introduced in §4.1 has had a pivotal role
in everything that has followed in our discussion) as well as an introduction to some
of the most recent developments in the literature. The deep connections between in-
formation and geometry unveiled by the duality have been a recurring theme in our
journey, following M. Van Raamsdonk’s proposal [45] that the intrinsically quantum
phenomenon of entanglement leads to the emergence of classical spacetime geometry.
As we remarked briefly in the introduction, and in spite of its string theoretical origins,
the duality is not a purely theoretical tool. It also has a wealth of applications to other
areas of physics such as AdS/QCD and AdS/CMT, as well as, importantly, proposed
experimental tests. One of the unexpected paths the duality has led us on has been
the growing importance of the relativistic physics of black holes: originally considered
an aberration and later a curiosity in the history of the subject, and later on of interest
mainly to string theorists and other theoreticians, has in light of the correspondence
now become more central to the study of some areas of applied physics.

At the same time, the current research programmes in the more theoretical direction
have shown the promise to give us completely new perspectives and understanding of
the fundamental aspects of physics.

We note in passing that the cross-contamination of theoretical physics and information
theory might have also contributed to change how physics present their subject, with
current literature in high-energy physics turning again to the Gedankenexperimente
and a renewed focus on conceptual aspects.

One of the most exciting aspect of AdS/CFT is in our view precisely that it intercon-
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nects so many previously disconnected ideas.
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