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Abstract

This paper presents a history of wormholes from the beginning of the field to the
most recent developments. The conditions necessary for a traversable wormhole’s
existence are introduced, with a particular focus on ways in which violations of the
averaged null energy condition (ANEC) can be achieved. A traversable wormhole
construction is presented in detail including geometric assembly, ANEC violation
through Casimir-like negative energy due to fermionic fields, and wormhole stabi-
lization through mouths’ rotation around each other. Other recent constructions are
then briefly discussed and compared to the first one.
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Section 1

Introduction

Both the scientific community and the wide public have been fascinated by worm-

holes for decades. This concept appears in numerous scientific papers and in count-

less science-fiction artistic creations: movies (“Interstellar”), books (a notable exam-

ple is the novel “Contact” by Carl Sagan, whose questions were the source of the

theories developed later on by Kip Thorne), TV series (“Dark”, “Stargate”), paintings

and songs. There is not a single person whose imagination, creativity and curiosity

are not incited by the term “wormhole”. One of the trademarks of humankind is its

desire to explore its surrounding environment, so it is only natural that the possi-

bility of faster-than-light travel offered by wormholes - at least in popular belief - is

seen as an invaluable resource. Achieving this would bring about a new era of space

exploration: discoveries of habitable worlds located in our own galaxy or even in

other galaxies, possible contact with alien life forms and the possibility to test our

theorized laws of physics in the furthest corners of the Universe.

Besides travel through space over great distances in the blink of an eye, the idea of

a wormhole is connected to the possibility of travel back through time. This concept

has been the basis for multiple paradoxes, perhaps the most familiar one being the

so called “grandfather paradox”. It can be summarized in the following way: if a

person goes back in time and kills their own grandparents before the conception of
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Section 1. Introduction

their parents, would the killer instantaneously stop existing? And if that happens,

would the grandparents remain alive, since there is no one to travel back in time

and end their lives now?

From a scientific point of view, the possible existence of wormholes draws attention

to questions related to causality, the geometric structure and topology of spacetime,

quantum gravity, and energy constraints. All these topics will be discussed in the

chapters below.

This paper aims to provide some clarity about the concept of wormholes. We start

by defining wormholes and various associated terminology in the second section.

The third section is dedicated to the history of wormholes as seen through scientific

publications and the many ways in which they have been theorized in the past.

We make a clear distinction between non-traversable and traversable wormholes.

The fourth section summarizes the necessary conditions to create and stabilize a

traversable wormhole, and the difficulties encountered in fulfilling them. In the fifth

section, we address the most recent papers which provide a recipe to produce stable,

traversable wormholes. The last section is reserved for open questions and closing

remarks.
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Section 2

Terminology

A wormhole can be roughly defined as a tunnel connecting two different regions of

spacetime. More specifically, Visser defines a wormhole in his 1995 reference book

“Lorentzian Wormholes from Einstein to Hawking” to be “any compact region of

spacetime with a topologically simple boundary, but a topologically nontrivial inte-

rior” [1]. Given the location of the two regions, we can characterize wormholes as

being either intra-universe wormholes (they connect two regions which belong to the

same universe) or inter-universe wormholes (they connect two regions which belong

to two different universes). Given the manifold in which they reside, we can further

split them into Lorentzian (pseudo-Riemannian) or Euclidean (true Riemannian)

wormholes. Experimentally, real physics seems to take place in Lorentzian signa-

ture. Furthermore, based on the amount of time the wormhole remains opened, we

can distinguish between permanent (more realistically quasipermanent), long-lived

wormholes or transient, short-lived types, which pop in and out of existence[1].

An important characteristic of a wormhole is its traversability; if a particle can enter

through one side of the wormhole and it can exit through the other, the wormhole

is traversable. If this cannot happen, but two particles entering from opposite sides

of the wormhole meet somewhere in the tunnel, the wormhole is non-traversable.

Based on the amount of time it takes to go from point A to point B through the
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Section 2. Terminology

wormhole, compared to the amount of time it takes to reach point B from point A

in the regular spacetime, wormholes are characterized as either short - going from

A to B through the ambient space takes longer than going through the wormhole –

or long, if the inverse is true (Figure 2.1).

Figure 2.1: Two examples of long wormholes (top) and two examples of short worm-
holes (bottom) with different throat circumferences. Figure taken from reference [2].

Since this definition only makes sense for traversable wormholes, traversability is

implied when talking about short or long wormholes. Inter-universe wormholes

are by default short, since going from one universe to another without the aid of

the wormhole is impossible – it would take infinite time. If a wormhole exists on

every constant-time hypersurface in a spacetime which admits a time function, the

wormhole is called “eternal”. It is important to note that an eternal wormhole might

only be traversable for a certain amount of time, and a change of traversability does

not require a change of topology. If an eternal wormhole is traversable for all time,

then the wormhole is “eternally traversable”.

Based on the circumference of the “mouth” relative to the Planck length, wormholes

can be further characterized as macroscopic or microscopic [1].
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An important term which appears in all conversations about wormholes is the worm-

hole’s throat. In a paper published in 1998 by D. Hochberg and M. Visser, the throat

is defined as “a two–dimensional hypersurface of minimal area” [3], or the point

where the radius is minimal, for a static wormhole. However, for a dynamical worm-

hole, this definition cannot be restricted to only one slice of time. Hochberg’s and

Visser’s definition in this case is “a closed two–dimensional spatial hypersurface such

that one of the two future-directed null geodesic congruences orthogonal to it is just

beginning to diverge”, which they call a marginally anti–trapped surface [3]. This is

closely related to Raychaudhuri equation [4], which will be stated and explained in

detail in section 4.2.
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Section 3

History of wormholes

3.1 Non-traversable wormholes

The first theoretical example of a non-traversable wormhole comes from the Schwarzschild

solution to the equations of Einstein’s general theory of relativity. In 1916 Ludwig

Flamm realized that, besides the already known Schwarzschild black hole solution,

there exists a second, simple solution, which is now known as a white hole. The two

solutions, describing two different regions of (flat) spacetime are connected (math-

ematically) by a spacetime conduit [5]. This idea was further explored in 1935 by

Albert Einstein and Nathan Rosen in a paper whose primary focus was actually the

development of “an atomistic theory of matter and electricity which, while excluding

singularities of the field, makes use of no other variables than the gµν of the general

relativity theory and the φµ of the Maxwell theory” [6], giving rise to the Einstein-

Rosen bridge (Figure 3.1). In order to understand this structure mathematically and

topologically, we need to first consider the metric of the solution to the Einstein’s

field equations and the corresponding coordinate systems.
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Figure 3.1: An Einstein-Rosen bridge with one dimension suppressed. Each circle in
the two-dimensional space represents a two-sphere in the three-dimensional analogue.
Figure taken from reference [7].

The corresponding metric in the simplest case (spherical symmetry, no electric and

no magnetic charge) is the Schwarzschild solution to Einstein’s field equations:

ds2 = −
(

1− 2M

r

)
dt2 +

1

1− 2M
r

dr2 + r2(dθ2 + sin2θdφ2),

where r > 2M , θ goes from 0 to π, and φ varies from 0 to 2π. There appears to be a

singularity at r = 2M , but this is only a coordinate artifact arising from choosing an

unfortunate coordinate system. This apparent singularity can be removed by switch-

ing to a more appropriate coordinate system, such as the Eddington–Finkelstein (EF)

coordinates: ingoing EF coordinates for black holes, outgoing EF coordinates for

white holes [8]. The ingoing coordinates are obtained by replacing t by t = v − r∗,

where r∗ is defined such that:

dr∗

dr
=

(
1− 2GM

r

)−1

The coordinate transformation (t, r, θ, φ)→ (v, r, θ, φ) allows us to rewrite the metric

7
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as:

ds2 = −
(

1− 2M

r

)
dv2 + 2dvdr + r2(dθ2 + sin2θdφ2)

For the outgoing EF coordinates, the change in coordinates (t, r, θ, φ)→ (u, r, θ, φ) is

given by t = u+ r∗ and the obtained metric is:

ds2 = −
(

1− 2M

r

)
du2 − 2dudr + r2(dθ2 + sin2θdφ2)

However, both white holes and black holes can be covered by the same set of coordi-

nates called the Kruskal–Szekeres (KS) coordinates - they cover the whole manifold

without running into any singularity artifacts. The KS coordinates are usually de-

noted by (U, V, θ, φ) and are defined as:

U = −e−u/4M V = ev/4M

Initially the metric is defined only for U < 0 and V > 0, but we can analytically

extend it to obtain what is called the maximally extended Schwarzschild solution:

ds2 = −32M3

r
e−r/2MdUdV + r2(dθ2 + sin2θdφ2),

where −∞ < U, V <∞ and r = r(V, U) is given implicitly by:

UV = −
(
r − 2M

2M

)
er/2M

This gives rise to the Kruskal diagram (Figure 3.2). The whole manifold is split into

4 regions depending on the sign of U and V . The regions are usually numbered

using Roman numerals. Region I is the original r > 2M section in Schwarzschild

coordinates. Regions I and II are also covered by the ingoing EF coordinates and

they are relevant to black hole geometry, while regions I and III are covered by the

outgoing EF coordinates and are relevant to white holes. Region IV is a new region,
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isometric to region I under the (U, V ) → (−U,−V ) transformation. The singularity

at r = 0 corresponds to UV = 1, while the r = 2M lines correspond to UV = 0 -

either U = 0 or V = 0. Each point of the diagram can be viewed as representing

a 2-sphere of radius r. Alternatively, the diagram can be interpreted as the causal

structure of radial motion for fixed θ, φ polar angles.

Figure 3.2: A Kruskal diagram with its 4 separate regions. Figure taken from [9].

In region I we have U
V

= e−t/2M , so constant Schwarzschild time slices of spacetime

are represented in the Kruskal diagram through straight lines passing through the

origin. These hypersurfaces have a part in region I and a part in region IV. It is easier

to look at this geometry in a different coordinate system, the so called isotropic

coordinates (t, ρ, θ, φ), where ρ is the new radial coordinate:

r =

(
1 +

M

2ρ

)2

ρ = ρ+M +
M2

4ρ2

9
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The metric in this case is:

ds2 = −

(
1− M

2ρ

1 + M
2ρ

)2

dt2 +

(
1 +

M

2ρ

)4

(dρ2 + ρ2dΩ2)

Given r, there are two solutions for ρ. The two values of ρ are exchanged by the

isometry ρ → M2

4ρ
which has ρ = M

2
as its fixed ‘point’. This is actually a fixed 2-

sphere of radius 2M . This isometry interchanges regions I and IV and it is equivalent

to the (U, V ) → (−U,−V ) transformation. We consider ρ > M
2

for region I, and

M
2
> ρ > 0 for region IV. The isotropic coordinates cover only regions I and IV since

ρ is complex for r < 2M (Figure 3.3).

Figure 3.3: Isotropic coordinates on a Kruskal diagram. Figure taken from [9].

For the t = constant geometry, as we approach ρ = M
2

from either side, the radius

of the 2-sphere representing each point decreases to minimum of r = 2M at ρ = M
2

- this is the minimal 2-sphere. There are two asimptotically flat regions at ρ → ∞

and ρ→ 0, which are connected by a throat with the corresponding minimum radius

equal to that of the minimal 2-sphere: 2M . This throat is mathematically what we

call the Einstein-Rosen bridge (Figure 3.1).
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It is tempting to say that this is a traversable wormhole which connects regions I

and IV. However, this is a snapshot at a constant time t, so it is not possible to travel

through it - thus it is a non-traversable wormhole.

The field of study remained mostly dormant for twenty years after this discovery. The

interest was rekindled by the physicist John Wheeler in 1955. His paper coined the

term “wormholes” and it discussed them in terms of topological entities called geons

(unstable but long lived solutions to the combined Einstein-Maxwell equations). It

also provided the first (now familiar) diagram of a wormhole as a tunnel connecting

two openings in different regions of spacetime [10] (Figure 3.4).

Figure 3.4: Wheeler’s schematic drawing of a wormhole - “Schematic representation of
lines of force in a doubly-connected space”. Drawing taken from reference [10].

Wheeler wormholes are microscopic in nature, since their occurrence is allegedly

due to vacuum fluctuations in the spacetime foam. They are typically transient,

though there might exist situations when their topology is suitable to be considered

quasipermanent [1].
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3.2 Traversable wormholes

1973 was an important year for traversable wormholes. Independently, both Homer

G. Ellis [11] and Kirill A. Bronnikov [12] published papers demonstrating the pos-

sibility of traversable wormholes in general relativity. The Ellis drainhole has been

regarded to be the earliest complete model of such a wormhole. It is a static, spher-

ically symmetric solution of the Einstein vacuum field equations, combined with a

scalar field φ minimally coupled to the geometry of space-time with opposite cou-

pling polarity (negative instead of positive) [11]:

Rµν −
1

2
Rgµν = 2

(
φ,µφ,ν +

1

2
φ,σφ,σgµν

)

The metric in this case is:

ds2 = −dt2 + (dρ− f(ρ)dt)2 + r2(ρ)(dθ2 + sin2θdφ2)

ds2 = −[1− f 2(ρ)]dT 2 +
1

1− f 2(ρ)
dρ2 + r2(ρ)(dθ2 + sin2θdφ2)

where

T = t+

∫
f(ρ)

1− f 2(ρ)
dρ,

the functions f(ρ) and r(ρ) are to be determined by the field equations, and the

coordinate ranges are given by:

−∞ < t <∞;−∞ < ρ <∞; 0 < θ < π;−π < φ < π.

The solutions depend on two parameters, usually denoted by m and n, which have

to satisfy the inequalities 0 ≤ m < n, but are otherwise unconstrained. In terms of

these parameters, the functions are:

f(ρ) = −
√

1− e−(2m/n)Φ;

12
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r(ρ) =
√

(ρ−m)2 + a2e(m/n)Φ,

in which Φ = n
a

[
π
2
− tan−1

(
ρ−m
a

)]
and a =

√
n2 −m2 [11].

The movement of particles through this wormhole is similar to the movement of

liquid on turbulent draining curves (Figure 3.5). Depending on the direction of the

initial velocity of each particle, we can obtain different trajectories. For example,

particle 4 goes straight toward the wormhole on the left side, then right through the

wormhole and exits on the left side, while particle 2 enters the wormhole on the

right side and spirals around the center of the wormhole at least once before exiting

the wormhole on the left side.

Figure 3.5: Example of an Ellis wormhole and 4 different particle trajectories going
through it. Image taken from [11].

The development of this field continued with the publication of two papers authored

by Kip Thorne, Michael Morris, and Uri Yertsever in 1988 [13], [14], which ex-

plained the so called Morris-Thorne (MT) wormhole. They present nine desirable

properties for a long-lived traversable wormhole, some mandatory for its existence,

some chosen only to simplify calculations [14]:

1. The metric should be spherically symmetric and time-independent (static).

This condition was selected to keep calculations simple. The general form
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of such a metric is:

ds2 = −e2Φ(r)dt2 + e2λ(r)dr2 + r2dΩ2,

where dΩ2 = sin2θdφ2 + dθ2 and Φ(r) and λ(r) are unknown functions of r.

The expression of the MT wormhole metric is:

ds2 = −e2Φ(r)dt2 +
dr2

1− b(r)
r

+ r2dΩ2,

where Φ(r) and b(r) are functions of r which will be constrained by the prop-

erties bellow. The function b(r) determines the spatial shape of the wormhole,

and thus it is called the “shape function”, while Φ(r) determines the gravita-

tional redshift and it is called the “redshift function”.

2. The solution must obey the Einstein field equations everywhere:

Rµν −
1

2
gµνR = 8πGTµν

3. “The solution must have a throat that connects two asymptotically flat regions

of space–time” [14].

4. No horizon can exist - the presence of one would prevent two-way travel

through the wormhole. This restriction corresponds to Φ(r) finite everywhere.

5. The tidal gravitational forces experienced by a traveler must be bearably small.

6. The traveler must be able to cross through the wormhole in a finite and rea-

sonably small proper time.

7. The matter and fields which create the wormhole’s spacetime curvature must

have a physically reasonable stress-energy tensor.

14
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8. The solution should be stable under small perturbations.

9. It should be possible to assemble the wormhole. For example, the mass needed

to create the wormhole should be much smaller than the total mass of the

universe, and the time it takes to occur should be much smaller than the age

of the universe.

This paper calls the first four properties “basic wormhole criteria” [14], while proper-

ties five and six - which change the wormhole’s parameters for human physiological

comfort - are called “usability criteria” [14].

Before calculating any components of the Einstein tensor, we switch to a different

coordinate system which will greatly simplify our calculations. We choose a basis of

orthonormal vectors - the “proper reference frame of a set of observers who remain

always at rest in the coordinate system (r, θ, φ = constant)” [14]:

et = e−Φet0 er =

(
1− b

r

) 1
2

er0

eθ = r−1eθ0 eφ = (r sin θ)−1eφ0 ,

where et0 , er0 , eθ0 , eφ0 are the initial orthonormal basis vectors:

et0 =
∂

∂t
er0 =

∂

∂r

eθ0 =
∂

∂θ
eφ0 =

∂

∂φ

In the new basis, the metric coefficients take on their standard, special relativity

form:

gαβ = eαeβ = ηαβ =



−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


15



3.2. TRAVERSABLE WORMHOLES Section 3. History of wormholes

All the calculations following this point will be done in the new coordinate basis.

By calculating the Riemann tensor Rµ
νρσ, the Ricci tensor Rµν , the Ricci scalar R and

by solving the Einstein field equations, we obtain the following equalities:

Gtt =
b,r
r2

Grr = − b

r3
+ 2

(
1− b

r

)
Φ,r

r

Gθθ =

(
1− b

r

)(
Φ,rr −

b,rr − b
2r(r − b)

Φ,r + (Φ,r)
2 +

Φ,r

r
− b,r − b

2r2(r − b)

)
= Gφφ

Furthermore, we can denote the stress-energy tensor components in the following

way:

Ttt = ρ(r)

Trr = −τ(r)

Tθθ = Tφφ = p(r),

where ρ(r) is the total mass-energy density, τ(r) is the radial tension per unit area,

and p(r) is the pressure in the lateral direction. Using the equality Gαβ = 8πGTαβ,

we obtain:

ρ(r) =
b,r

8πGr2

τ(r) =
b
r
− 2(r − b)Φ,r

8πGr2

p(r) =
r

2
[(ρ(r)− τ(r))Φ,r − τ,r]− τ(r)

In this form, by choosing a suitable b(r) and Φ(r) (according to the constraints

above), we will be able to solve for ρ(r) and τ(r). The strongest constraints occur at

the throat of the wormhole. There, the tension must be larger than the total density

of mass-energy τ0 > ρ0 [14]. Materials which have this specific property are called
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3.2. TRAVERSABLE WORMHOLES Section 3. History of wormholes

“exotic”. This relation is problematic because of its implications for measurements

made by an observer falling through the wormhole with a radial velocity close to the

speed of light. If such an observer moves sufficiently fast, they will see a negative

matter-energy density [14]. The case where a static observer sees a negative matter-

energy density ρ0 < 0 comes as a natural extension of the situation presented above.

In the following section, specific circumstances in which this condition is satisfied

will be explored.

17



Section 4

Constraints

4.1 Energy conditions

There are seven energy conditions which are useful when talking about matter and

energy in general relativity. They are [1]:

1. The null energy condition (NEC) - given the stress-energy tensor Tµν , for any

null vector kµ, when NEC is satisfied the following relation holds:

Tµνk
µkν ≥ 0

2. The weak energy condition (WEC) - for any timelike vector V µ, the following

relation is true:

TµνV
µV ν ≥ 0

If this is true for any timelike vector, it will imply the null energy condition. The

physical importance of this condition is that it forces the local energy density

as measured by any timelike observer to be positive.

WEC⇒ ρ ≥ 0

18
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3. The strong energy condition (SEC) - any timelike vector V µ must satisfy the

relation: (
Tµν −

T

2
gµν

)
V µV ν ≥ 0,

where T is the trace of the stress-energy tensor T = Tµνg
µν . The strong energy

condition implies the null energy condition, but it does not, in general, imply

the weak energy condition.

4. The dominant energy condition (DEC) - for any timelike vector V µ, the follow-

ing relations are true:

TµνV
µV ν ≥ 0

and TµνV
ν is not spacelike. The dominant energy condition implies the weak

energy condition, and thus it implies the null energy condition. For our pur-

pose, the important condition is:

DEC⇒ ρ ≥ 0

5. The averaged null energy condition (ANEC) - this condition holds if on all null

curves Γ we have: ∫
Γ

Tµνk
µkνdλ ≥ 0,

where λ is an affine parametrization and kµ is the corresponding tangent vec-

tor.

6. The averaged weak energy condition (AWEC) - this condition is said to hold

on a timelike curve Γ if: ∫
Γ

TµνV
µV νds ≥ 0,

where s is the proper time parametrization of the timelike curve Γ and V µ is

the corresponding tangent vector.

19
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7. The averaged strong energy condition (ASEC) - this condition is true for a

timelike curve Γ if: ∫
Γ

(
TµνV

µV ν +
1

2
T

)
ds ≥ 0

At the end of section 3 we stated Morris’s and Thorne’s condition that in a traversable

wormhole’s throat the tension must be larger than the total density of mass-energy

τ0 > ρ0 - the so-called exotic material property. The implication for this was that an

observer falling through the wormhole with a radial velocity close to the speed of

light will measure a negative mass-energy density - with the natural logical extension

for a static observer measuring a negative mass-energy density. This contradicts

multiple energy conditions mentioned above in which the mass-energy density was

strictly non-negative, such as the weak energy condition and the dominant energy

condition.

4.2 Raychaudhuri-Landau equation

A fundamental result for the motion of adjacent particles was discovered indepen-

dently by the Indian physicist Amal Kumar Raychaudhuri [4] and by the Soviet physi-

cist Lev Landau [15]. This result is referred to as the Raychaudhuri-Landau equation,

or sometimes only as Raychaudhuri’s equation. Loosely speaking, this equation de-

scribes the congruence or divergence of a family of world lines at specific spacetime

locations. More precisely, it characterizes the rate of change of expansion of a family

of timelike or null curves, which could represent flow lines or histories of photons

[16].

The shape of this equation is:

θ̇ = −θ
2

3
− 2σ2 + 2ω2 − E[X]aa + Ẋa

;a,
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where X is a timelike unit vector field and E[X]aa = RmnX
mXn (sometimes called

the Raychaudhuri scalar) is the trace of the tidal tensor E[X]ab = RambnX
mXn.

2σ2 = σmnσ
mn and 2ω2 = ωmnω

mn are non-negative quadratic invariants of the shear

tensor σab = θab − 1
3
θhab and the vorticity tensor ωab = hma h

n
bX[m;n], respectively. In

these expressions, θab = hma h
n
bX(m;n) is the expansion tensor, θ is its trace, called the

expansion scalar, and hab = gab +XaXb is the projection tensor onto the hyperplanes

orthogonal to X.

There are two different types of terms present in this equation:

1. Terms which encourage collapse:

• initial nonzero trace of the expansion tensor θab (nonzero expansion scalar

θ);

• nonzero shearing σ2;

• positive trace of the tidal tensor (Raychaudhuri scalar)E[X]aa = RmnX
mXn

- the strong energy condition implies exactly this.

2. Terms which oppose collapse:

• nonzero vorticity ω2, corresponding to Newtonian centrifugal forces;

• positive divergence of the acceleration vector Ẋa
;a.

For the purpose of our paper, we will analyze the situation when X is a timelike

geodesic unit vector field with vanishing vorticity or which is hypersurface orthogo-

nal - the mathematics are the same. This could be the case for a dust particle trav-

elling along a timelike geodesic which solves Einstein’s field equations - assuming

that the world lines do not twist around each other. More than that, we assume the

validity of the strong energy condition (which is expected to be true for reasonable

classical matter). In this case, Raychaudhuri’s equation becomes:

θ̇ = −θ
2

3
− 2σ2 − E[X]aa
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The right hand side of the equation will always be negative or zero, which means

that the expansion scalar θ does not increase with time. The second and third term

are always negative, thus

θ̇ ≤ −θ
2

3

We can integrate this inequality with respect to the proper time τ :

∫ θfinal

θ0

dθ

θ2
≤
∫ τfinal

0

−1

3
dτ

−θ−1
final − (−θ−1

0 ) ≤ −1

3
τfinal

1

θ0

− 1

θfinal
≤ −1

3
τfinal

1

θfinal
≥ 1

3
τfinal +

1

θ0

If the initial value θ0 is negative, the value for θfinal can reach minus infinity in a

finite proper time, with a value at most equal to 3
θ0

. This is something known as the

focusing theorem: If the strong energy condition (SEC) holds and the geodesic con-

gruence is timelike (a family of free-falling particles), all geodesics leaving a point

will eventually reconverge after a finite time. The equivalent is true for the null en-

ergy condition (NEC) with null geodesic congruence (a family of freely propagating

light rays) [17]. This result has been often used by Hawking and Penrose in their

various formulations of the Penrose–Hawking singularity theorem [16], [17].

The existence of a traversable wormhole is possible only if the geodesics entering the

wormhole on one side (and thus converging as they approach the throat) will emerge

on the other side diverging away from each other. By Raychaudhuri’s equation, this

can only happen if certain energy conditions are violated - the null energy condition

(NEC) and the averaged null energy conditions (ANEC) are of particular interest.

The discussion above serves as an intuitive way to explain why this is the case, and
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why exotic matter or configurations which violate energy conditions are needed for

a traversable wormhole to exist.

A more rigorous discussion about the necessity of NEC violations was published in

1995 by Friedman, Schleich and Witt, under the name of “Topological censorship”.

They summarized this constraint as follows ”General relativity does not allow an

observer to probe the topology of spacetime: any topological structure collapses

too quickly to allow light to traverse it” [18]. This condition was extended to anti-

de Sitter spacetime in 1999 by Galloway, Schleich, Witt, and Woolgar [19]. Thus,

traversable wormholes would not exist under these circumstances.

4.3 ANEC arguments

The weakest energy condition of those presented above is the averaged null energy

condition (equation 5 in section 4.1). The whole discussion up until this point fo-

cused on the necessity to violate at least this condition, if not a stronger one, to

obtain traversable wormholes, and on the assumption that this condition is true for

regular matter-energy. However, even if this assumption is believed to be true, it

has not been proven for all topologies and metrics. In this section we will look at

some particular cases in which this constraint is satisfied and the logical extensions

to other cases.

In Minkowski space, the averaged null energy condition has been proven for free

scalar fields in any dimension [20], free electromagnetic fields in four dimensions

[21], and for any QFT with a mass gap in two-dimensions [22]. More recently, the

ANEC has also been proven in the Minkowski spacetime by using the monotonicity

of relative entropy and modular Hamiltonians in relativistic quantum field theories

on R1,d−1 [23] and by using unitary, Lorentz-invariant quantum field theories in flat

spacetime whose commutators vanish at spacelike separation - microcausality. This
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characteristic implies ANEC for interacting theories in more than two dimensions

[24].

A more general approach provides a proof of ANEC based on the Generalized Second

Law (GSL), an extension of the ordinary second law of thermodynamics (OSL). OSL

states that the total thermodynamic entropy of the Universe is always increasing

with time. GSL states that the total generalized entropy is never decreasing with

time, where the expression for generalized entropy is given by:

kA

4G~
+ Sout,

where k is the Boltzmann constant, G is the gravitational constant, ~ is Planck’s

constant divided by 2π, the speed of light c is considered to be 1, A is the sum of

the areas of all black holes in the Universe, and Sout is the ordinary thermodynamic

entropy of the system outside all event horizons. This relation was theorized by

Bekenstein and it is based on the similar behaviour of blackhole areas and of entropy

[25]. This law has so far not been proved, but many attempts are constantly being

made towards achieving this goal [26]. It is widely believed that GSL is true and

that it will be eventually proven. In a 2010 paper by Wall, ANEC is proved to be true

starting from the assumption that GSL is true [27].

Given the constantly increasing number of proofs of ANEC in specific environments,

and its general proof starting from GSL, the averaged null energy condition is ex-

pected to hold for reasonable classical matter or quantum fields on asymptotically

flat or flat spacetimes.
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4.4 Classical case

Wormholes do exist in the classical case - for example, the Einstein-Rosen bridge. By

“the classical case” we understand the laws of physics as described by general rela-

tivity and electromagnetism, without considering any quantum effects. So far three

different arguments have been presented to support that a traversable wormhole is

impossible without ANEC violation: the need for exotic matter with τ0 > ρ0 [14],

the Raychaudhuri-Landau equation [4], and the topological censorship [18]. It is

expected that the null energy condition (and thus ANEC) holds for classical matter

- as discussed in the section above, so flat or asymptotically flat spacetimes coupled

only with classical matter are not environments where traversable wormholes could

occur.

4.5 Quantum case

The averaged null energy condition is violated by quantum fields on curved space-

times, giving rise to negative energy densities. As opposed to the classical case, this

brings about the possibility of traversable wormholes. Such violations can appear in

various ways:

• Negative mass matter - a purely theoretical model.

• String theory comes as a solution to the ANEC violation problem. For exam-

ple, negative tension branes violate all the standard energy conditions of the

higher-dimensional spacetime they are embedded in [28].

• The topological Casimir effect, which occurs, for example, in a universe with a

periodicity condition in one of the directons [1].

• Casimir-like systems in Minkowski space in which one spatial dimension has

been compactified [29]. In this case, both the energy density and the pressure
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in the compactified direction are negative everywhere. ANEC is violated along

geodesics going in the compact direction. This will be the method used in the

main paper detailed in this work.

• Boulware vacuum - Matt Visser published a paper which shows that the aver-

aged energy conditions are violated throughout the whole exterior of a black

hole - from spatial infinity to the event horizon - in this environment [30].

• Hartle-Hawking vacuum - the ANEC is violated for circular curves existing be-

tween the event horizon of the Schwarzschild black hole and the r = 3M

unstable circular photon orbit [1], [31].

• Urban and Olum found a violation of ANEC through a conformal transforma-

tion of a spacetime (in the paper the Minkowski spacetime was considered)

which obeys ANEC but violates NEC. This violation can happen both anoma-

lously and in a nonanomalous way [29].

• The interaction between two conformal filed theories on the boundaries of an

eternal BTZ black hole spacetime induces a negative energy density, and thus

a violation of ANEC [32].

• Unruh vacuum and evaporating black holes - Ford and Roman described sit-

uations in which ANEC is violated in this context: in 4D, it is violated for

outgoing null geodesics and orbiting null geodesics, while in 2D it is violated

for half-complete outgoing radial null geodesics and orbiting null geodesics on

the horizon. More than that, they bound the magnitude of the negative energy

density through “quantum inequalities” [33].

These are only a few examples where the averaged null energy density condition is

violated. In the quantum case, ANEC violation is a phenomenon which is achiev-

able through multiple means. The idea of a traversable wormhole is no longer pure
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fiction, and in section 5 of this paper we will actually explore some specific con-

structions of such wormholes, using one of the examples above to create a negative

energy density.

4.6 Time travel

The concept of wormholes is inevitably linked to the idea of travel backwards or

forwards through time. Time travel is described in a mathematical way through

the existence of closed timelike curves (CTCs) - these are worldlines which material

particles can use to move through spacetime and to arrive back at the same point.

They were first theorized by Willem Jacob van Stockum in 1937 [34], and later on

they were confirmed by Kurt Gödel in 1949 [35]. Gödel discovered a new solution

to Einstein’s field equations where the stress-energy tensor has two components:

a matter-density component of a homogeneous distribution of dust particles and a

nonzero cosmological constant one. The metric is of the form:

ds2 = a2

(
dx2

0 − dx2
1 +

e2x1

2
dx2

2 − dx2
3 + 2ex1dx0dx2

)

Solving Einstein’s field equations with this metric, we obtain some values for the

cosmological constant and the dust density [35]:

Λ = − 1

2a2
ρ =

1

8πa2

As we see, both of them depend on the value of the constant a and are thus not

independent of each other. There is no physical reason for the Universe to evolve

in a way which would relate the cosmological constant to the quantity of existing

matter. This is why this solution is sometimes called “artificial”. This metric has

a few other surprising characteristics, besides the existence of CTCs. It is a rare

example of a singularity-free solution of the Einstein field equations. Furthermore,
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it is a cosmological model of a rotating universe (angular velocity for all matter

1√
2a

) with no Hubble expansion (and thus no cosmological redshift) - a steady state

universe [35].

Since Gödel’s discovery, scientists have tried to prove or disprove the existence of

such curves given our current understanding of physics, and to understand whether

they could be somehow created in our universe. One of the first papers which comes

to mind was published by Tipler in 1976. He concludes that it is impossible to cre-

ate CTCs using only reasonable classical matter in a singularity free asymptotically

flat spacetime [36]. Hawking was another scientist deeply preoccupied by causality

questions. In 1992 he published a paper in which he theorized and provided support-

ing arguments to what he called the “ chronology protection conjecture: The laws of

physics do not allow the appearance of closed timelike curves” [37]. In the classical

case, CTCs are precluded by the need to violate the averaged weak energy condi-

tion (AWEC). In the quantum case (where such a violation is no longer an issue),

Hawking states that the expectation value of the stress-energy tensor would become

infinitely large when timelike curves become almost closed, which would prevent

closed timelike curves from appearing [37]. Thus, time travel through traversable

wormholes is not possible.

More than that, this helps explain why short traversable wormholes are forbidden.

Let’s analyze the case where a short wormhole has a zero length throat and a small

enough radius to consider two different worldlines completely identified with one

another. If one end of the wormhole was boosted with a relativistic velocity, and

then boosted back to its initial position, a time delay would occur between the two

clocks associated to the two different mouths - similar to what happens in the twin

paradox. If the time delay is sufficiently large compared to the distance between the

two ends of the wormhole through the regular spacetime, a time machine is created

- an observer could now travel along closed timelike curves [13] - figure 4.1. In the
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paragraph above, this possibility was excluded; thus short traversable wormholes

cannot exist.

Figure 4.1: Creating a time machine by boosting one of the mouths of the traversable
wormhole. Figure taken from [13].

Another way to go about proving the impossibility of short traversable wormholes is

the self-consistent achronal averaged null energy condition (SCAANEC). This condi-

tion states that “There is no self-consistent solution in semiclassical gravity in which

ANEC is violated on a complete, achronal null geodesic.” [38]. An achronal geodesic

is one which doesn’t contain any points connected by a timelike path. This is a

weaker energy condition than ANEC. It is strong enough to rule out exotic phenom-

ena as effectively as ordinary ANEC, but weak enough to avoid known violations of

ANEC. Graham and Olum provide arguments in their 2007 paper about the validity

of this new energy condition, concluding the paper by stating that this condition is

sufficient to rule out CTCs (thus ruling out short traversable wormholes) and worm-

holes connecting different asymptotically flat regions [38]. Note: in a 2010 paper

by Urban and Olum, two violations of the achronal averaged null energy condition

(AANEC) have been described. The first was obtained by a transformation which
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amplifies the NEC-violating portions of a sequence of excited states. The second

violation was constructed purely from the geometric anomalous terms in the stress

tensor. Both of these violations can become arbitrarily large [29]. However, the

addition of the self-consistency criteria could be one possibility to exclude exotic

phenomena from general relativity.
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Section 5

Constructions

5.1 Traversable wormhole with fermions

This section of the dissertation will focus on the paper published in 2018 by Malda-

cena, Milekhin and Popov, in which they explicitly describe a plausible traversable

wormhole solution in four dimensions [39]. The theory considered is a solution

of the Einstein-Maxwell equations with the addition of a U(1) gauge field coupled

to a set of massless Weyl fermions. Violation of the averaged null energy condi-

tion (ANEC) - a mandatory setting for the existence of traversable wormholes (as

discussed in section 4) - is achieved here through a negative Casimir-like energy

produced by the charged fermions. The solution can also be regarded as “a pair

of entangled near extremal black holes with an interaction term generated by the

exchange of fermion fields” [39]. For this reason, we will start the analysis by look-

ing at magnetically charged black holes, their interactions with charged fermions,

and the negative Casimir-like energy resulting from these interactions, while the

actual construction of the wormhole, its metric and its characteristics will follow

afterwards.
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5.1.1 Single magnetic black hole geometry

For a magnetically charged black hole, the metric will be:

ds2 = −
(

1− 2MG

r
+
r2
e

r2

)
dt2 +

(
1− 2MG

r
+
r2
e

r2

)−1

dr2 + r2(dθ2 + sin2θdφ2),

where r2
e = πq2G

g2
, M is the mass of the black hole, q is an integer representing the

charge of the black hole, and g is the coupling constant of the U(1) gauge field. The

horizon is localized at r = r+, where

r± = MG±
√
M2G2 − r2

e

The relations for temperature and entropy are:

T =
r+ − r−

4πr2
+

S =
πr2

+

G

The extreme points are reached when T → 0 and r+ = r− = re. There, M and S can

be expanded around a small T to obtain:

M =
re
G

+
2π2r3

eT
2

G
+ . . .

S =
πr2

e

G2
+

4π2r3
eT

G2
+ . . .

The AdS2 × S2 geometry approximates really well the geometry near the horizon:

ds2 = r2
e

[
−dτ 2

r (ρ2
r − 1) +

dρ2
r

ρ2
r − 1

+ (dθ2 + sin2θdφ2)

]
,

where τr = 2πTt, ρr = r−re
2πTr2e

for r − re << re. This metric is a good approximation

when r − re << re and Tre << 1. This geometry connects with the flat spacetime

through a transition region located around r ≈ re (Figure 5.1).
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Figure 5.1: A drawing representing a near extremal black hole geometry. The throat
has an AdS2 × S2 geometry. Image taken from [39].

5.1.2 Fermion dynamics

Now let us take a look at the behavior of a single charged Dirac fermion with charge

Q = 1. The action in this case is:

I =

∫
d4x
√
g

[
R

16πG
− 1

4g2
F 2 + iχ̄(��∇− i��A)χ

]
,

where the vector potential A is given by the magnetically charged black hole:

A =
q

2
cosθdφ

In the presence of this magnetic field, the massless charged fermion gives rise to a

series of Landau levels. The energy of a Landau level has an orbital contribution and

a magnetic dipole contribution. For the lowest Landau level in the fermion’s case,

these two contributions cancel exactly, giving rise to a zero-energy state [40]. This

state has a degeneracy q, which is related to the corresponding angular momentum

j through the following relation: 2j+1 = q. Thus, a four dimensional chiral fermion
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gives rise to q massless two dimensional chiral fermions - a crucial idea for this

construction [39].

We can factorize the four dimensional spinor as:

χ = ψ ⊗ η,

where η is a spinor on the S2 sphere and ψ is a spinor in the other two directions.

The lowest Landau level corresponds to a negative chirality spinor η− that obeys the

two dimensional massless Dirac equation on the two sphere with a magnetic field

γα(∇α − iAαη) = 0

The solutions to these equations have the form:

η− ∝ eimφ
(
sin

θ

2

)j−m(
cos

θ

2

)j+m
,

where j = q−1
2

and −j ≤ m ≤ j. For q >> 1, these solutions are well localized

around θm = m
j

. Each of these modes on the sphere gives rise to a two dimensional

massless mode Ψm on the r and t directions. These equivalent fermions propagate

through space with the metric:

ds2
2 = |gtt|(−dt2 + dx2),

where dx =
√

grr
−gttdr. They are the creators of a negative Casimir-like energy. If

a scalar field were to be considered instead of a fermionic field, all Landau levels

energies would be positive. These fields decay rapidly in the throat region and no

significant Casimir energy can be obtained this way.
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5.1.3 Two interacting magnetic black holes

When seen from a large distance d, where d >> re, two oppositely charged black

holes will behave as a magnetic dipole. The vector potential created by this configu-

ration will then be:

A =
q

2
(cosθ1 − cosθ2)dφ,

where θ1 and θ2 are the angles represented in figure 5.2.

Figure 5.2: Magnetic sources at distance d from each other and their field lines. Figure
taken from [39].

The configuration is rotational invariant around the axis connecting the two sources.

We consider this to be the z axis, and we define the angle around it to be φ. Using

cylindrical coordinates, the spatial metric will be:

ds2 = dρ2 + dz2 + ρ2dφ2
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In these coordinates, the components of the magnetic field are:

Bρ =
∂zAφ
ρ

Bz = −∂ρAφ
ρ

Bφ = 0

The tangent vector along the field lines has to be along B. If the solution Aφ =

constant is considered, then its gradient will be normal to B and the condition

above will be fulfilled. The equations of the field lines will then be:

cosθ1 − cosθ2 = ν 0 ≤ ν ≤ 2 ν =
j +m

j
,

where we connected the geometry of the magnetic field lines to the fermion dynam-

ics described in the previous section.

The length of the trajectory traveled by a fermion along a field line will be dependent

on ν and the distance d between the two mouths:

Lfieldline = df(ν),

where the shape of the function f(ν) can be determined through a coordinate trans-

formation from z and ρ to θ1 and θ2 [39].

5.1.4 Wormhole assembly

Now we can put all these elements together to describe the resulting traversable

wormhole created by connecting the throats of the two magnetically charged black

holes. The paper splits the geometric configuration into three different regions:

the actual wormhole (red), the two mouths (blue), and the flat space around them

(green) (figure 5.3).
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Figure 5.3: The three regions in which the wormhole solution is split. The individual
metrics coincide in the overlapping transition regions. Image taken from [39].

The actual wormhole (red part) will be characterized by a metric similar to that of

the throat of a near extremal black hole - after all, the wormhole was obtained by

connecting two such throats. As we saw in part 5.1.1, this metric is well approxi-

mated (at a first level) by the AdS2 × S2 geometry:

ds2 = r2
e

[
−dτ 2(ρ2 + 1) +

dρ2

ρ2 + 1
+ (dθ2 + sin2θdφ2)

]

Note: these coordinates are different than the ones used in section 5.1.1. - this is

the “global” coordinate system which covers the whole Penrose diagram of AdS2.

The asymptotic regions of this metric (ρ >> 1) will be matched to the metric of the

magnetically charged extremal black hole (r − re << re) - this overlap corresponds

to the red-blue transition zone on the diagram in figure 5.3. The match will happen

via the following equalities:

τ =
t

l
ρ =

l(r − re)
r2
e

,

where l is a length-like free parameter which provides a rescaling between the AdS2
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time and the asymptotic time (similar to the inverse temperature 1
T

in section 5.1.1.).

Its value will be fixed later on. Given the two conditions for the overlapping section:

1) ρ >> 1 from the wormhole metric and 2) r − re << re from the mouth metric,

we can find an inequality which involves l:

ρ =
l(r − re)

r2
e

>> 1 &
r − re
re

<< 1 ⇒ l

re
>> 1

Considering that the two metrics are different and only approximately equivalent in

a specific area, there will exist a cutoff point past which the overlap will not make

sense anymore. The throat opens up around r − re ≈ re, so it is natural to consider

the cutoff radius will be proportional to l
re
>> 1.

We can calculate the rescaled length of the wormhole in the coordinates introduced

at the end of section 5.1.2., in the limit ρcutoff →∞:

Lthroat =

∫ ρcutoff

−ρcutoff
dρ

l

ρ2 + 1

Lthroat = l [arctan(ρcutoff )− arctan(−ρcutoff )]

Lthroat = l
(π

2
+
π

2

)
= lπ

Next, in order to be able to calculate the negative energy density, we need to cal-

culate the length of a fermion’s trajectory. These two-dimensional fermions exist

on circular curves: they exit through one mouth of the wormhole, travel along a

magnetic field line until they reach the other mouth, they enter the second mouth

and then they travel through the wormhole until they once again reach the original

mouth. We can write the whole length of the curve as the sum between the length of

the wormhole, the length of the field line and two small transition segments around

the mouths (these small lengths will be considered negligible). More than that, we

will choose to analyze the system using the approximation d << l - the length of the
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throat is much larger than the distance between the mouths of the wormhole. In this

case, the length of the trajectory is simply the length of the throat Lthroat = lπ.

The Casimir-like energy is composed of two terms: the ground state contribution

of the fermions moving on the circle of length L and a contribution due to the two

dimensional conformal anomaly - in the wormhole region the spacetime in which

the fermions live is not flat, it is only conformally flat:

Ewormhole = Eground state + Econformal anomaly

For q fermions moving along a circle of length L this energy will be:

Ewormhole = − q

12

2π

L
+

q

24

π

L

Ewormhole = − q

24

3π

L
= −q

8

π

πl
= − q

8l

The semiclassical Einstein equations can be solved directly now. We need to consider

two different regions: one corresponding to the asymptotically flat spacetime outside

the wormhole, and one corresponding to the throat region. The two solutions have

to overlap at the mouth region. A spherically symmetric ansatz is used for the metric

in the asimptotic case:

ds2 = −A(r)dt2 +B(r)dr2 + r2dΩ2

The most general solution has only one integration parameter - the mass M - which

will be set later on by the overlap condition. We obtain the result:

A =
1

B
=

(
1− r

re

)2

− 2ε

re
,

where ε = GM − re.
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In the wormhole region, we expand the metric perturbatively away from AdS2 × S2

metric:

ds2 = r2
e

(
−(1 + ρ2 + γ)dτ 2 +

dρ2

1 + ρ2 + γ
+ (1 + φ)(dθ2 + sin2θdφ2

)
,

where γ and φ are small.

The electromagnetic tensor in this situation is:

F = dA = −q
2
sinθdθdφ

The quantum contributions to the stress-energy tensor can be written as:

T̂tt = T̂xx = − q

8πl2
1

4πr2
e

T̂αβ = Tαβ −
1

2
gαβT

ε
ε , where α, β = t, x.

The four dimensional stress tensor also contains a classical contribution from the

magnetic field. The ρρ component of Einstein’s field equation gives us:

Rρρ −
1

2
gρρR− 8πG

(
Tmagρρ + T̂ρρ

)
= 0

We can calculate T̂ρρ from:

T̂ρρ =
T̂ττ

(1 + ρ2)2
=

l2T̂tt
(1 + ρ2)2

T̂ρρ = − l2q

8πl2
1

4πr2
e

1

(1 + ρ2)2
= − q

8π

1

4πr2
e(1 + ρ2)2

Then from Einstein’s equation mentioned above we obtain:

ρφ′ − φ = (8πG)(1 + ρ2)T̂ρρ
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ρφ′ − φ = −(8πG)(1 + ρ2)
q

8π

1

4πr2
e(1 + ρ2)2

ρφ′ − φ = −G q

4πr2
e(1 + ρ2)

For simplicity, the following notation will be used:

ρφ′ − φ = − α

(1 + ρ2)
, α =

qG

4πr2
e

Integrating the ecuation we get:

φ = α(1 + ρ arctan(ρ))

In doing so, the additional term linear in ρ resulting from the integral was set to 0,

since our system is symmetric around ρ = 0.

We move on to overlapping the two metrics and identifying the corresponding co-

efficients. Notice that we are working in the ρ >> 1 limit, which is equivalent to

considering r−re
re

<< 1. By matching the sphere part of the two metrics we obtain:

r2 = r2
e(1 + φ)⇒ 1 + φ =

r2

r2
e

φ =
r2

r2
e

− 1 =
r2 − r2

e

r2
e

=
(r − re)(re + r)

r2
e

The difference between r and re is very small in this limit, so we can approximate

their sum to be r + re ≈ 2re. Then φ becomes:

φ ≈ 2(r − re)
re

We can also calculate φ by approximating the solution obtained through integration
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in the large ρ limit:

φ = α(1 + ρ arctan(ρ)) ≈ αρ arctan(ρ) ≈ αρ
π

2

From these two equalities we can find an expression for ρ:

ρ =
4(r − re)
reα π

We can now compare the leading order time component to find a value for l:

(
1− r

re

)
dt = reρdτ ⇒

⇒
(

1− r

re

)
dt = re

4(r − re)
reα π

dt

l

⇒ 1

re
=

4

α π

1

l
⇒

⇒ l =
4re
α π

=
4re
π

4πr2
e

qG
⇒

⇒ l =
16r3

e

qG

The energy of the configuration is (energy of two near extremal black holes + the

Casimir-like contribution):

E =
re

3

l2G
+ Ewormhole =

re
3

l2G
− q

8l

By using the expression for l obtained above, we can calculate this energy as:

E =
re

3

G

q2G2

256r6
e

− q

8

qG

16r3
e

E =
q2G

r3
e

(
1

256
− 1

128

)
= − q2G

256r3
e
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Another way to express this energy is by using the mass correction ε:

E =
2ε

G
,

where the factor of 2 comes form the mass correction to each of the two black holes.

Matching the exact time component of the two metrics, we can determine the value

of the ε mass correction:

((
1− r

re

)2

− 2ε

re

)
dt2 = r2

e(1 + ρ2)dτ 2 ⇒

⇒ −2ε

re
dt2 = r2

edτ
2

−2ε

re
dt2 = r2

e

dt2

l2
⇒

⇒ ε = −r
3
e

2

q2G2

256r6
e

= −1

2

q2G2

256r3
e

The energy will then be:

E =
2ε

G
= − 2

G

1

2

q2G2

256r3
e

= − q2G

256r3
e

,

which is exactly what was obtained using the first method.

Throughout the whole calculation we considered that d << l - the length of the

throat is much larger than the distance between the two mouths of the wormhole.

This means that the calculation above is valid only when d << 16r3e
qG

. But what if this

is not the case? Then the total length L of the fermion’s trajectory will be:

L = πl + df(ν)

and the energy has a more complicated expression depending on the particular an-
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gular momentum of the charged fermion wavefunction:

E =
re

3

l2G
+

q

24l
− qπ

6

∫ 2

0

dν

2

1

(lπ + df(ν))

The first term is the classical energy (same value as before), the second term comes

from the conformal anomaly in the throat region (same expression as before), and

the last term is the integral over all the magnetic field lines of the Casimir energy

(different expression). In order to be able to draw some physical conclusions, we

will approximate the integral by 1/(πl + d) - a constant given by its largest term.

Physically, this corresponds to all fermions traveling from one mouth to the other

following the shortest path. The energy has the value:

E =
re

3

l2G
+

q

24l
− qπ

6

1

(πl + d)

We can find l by minimizing this energy:

∂E

∂l
= 0⇒ − 2r3

e

l3G
− q

24l2
+
qπ

6

1

(πl + d)2
π = 0

2r3
e

l3G
= −q

6

(
1

4l2
− 1(

l + d
π

)2

)

Another approximation can be used now, where we ignore the left hand side of the

equation. In this case, the results for the length l and the minimal energy E will be:

4l2 =

(
l +

d

π

)2

⇒

⇒ l =
d

π

E =
qπ

24d
− q

6

1

( d
π

+ d
π
)

=
qπ

6d

(
1

4
− 1

2

)
E = − qπ

24d
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This is an inferior limit of l given these approximations. Even if we use this value

for l, when we calculate the length of the throat we obtain Lthroat min = d. Thus,

the minimum length of the throat will be equal to the distance between the mouths,

confirming our assumption that this has to be a long wormhole.

We see that all the models we used give rise to negative energy densities. These

negative energies densities are the key to creating the traversable wormhole.

5.1.5 Stabilizing the two wormhole mouths

From a large distance r >> re, the two mouths of the wormhole are seen as two

extremal black holes with opposite magnetic charges. These would attract each other

and eventually collide if no other mechanism prevents it. One way to stabilize the

system is to consider the two black holes to be rotating around the common center of

mass in a flat spacetime. The angular velocity of this rotation can be calculated from

Kepler’s third law, while taking into consideration that the attractive centripetal force

is composed of a gravitational component and a magnetic component. Its expression

is:

Ω = 2

√
re
d3

A small orbital eccentricity would result in small perturbations of the throat with a

frequency which is small enough to not destroy the wormhole.

There are a few concerns which occur when the mouths rotate:

• The fermions are affected by the rotation and they feel additional forces (such

as the Coriolis force), which disturb their calculated trajectories;

• Radiation needs to be emitted since charged particles are accelerating;

• An Unruh-like temperature (and thus an emission of energy) will occur and it

will make the energy inside the throat less negative.
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Approximate values for these effects are calculated in Maldacena’s, Milekhin’s and

Popov’s paper and neither one seems to be powerful enough to collapse the worm-

hole [39].

Another way to stabilize the system is to utilize AdS4 spacetimes. Here, the sep-

arating mechanism can be either the rotation of the two black holes around each

other in the same AdS4 spacetime, a specific configuration of the two black holes

relative to a magnetic field, or the coupling of two AdS4 spaces (each containing one

of the mouths) through boundary conditions which allow the fermions to go from

one space to another. The details of these phenomena are beyond the scope of this

thesis.

5.1.6 Discussion

The construction presented above can actually be fitted into the Standard Model of

particle physics with Einstein gravity, if the distance d between the two black holes

is smaller than the electroweak scale. This is the condition for the fermions to be

approximated as being massless. Since there exist an ordering relation between

d and re (d >> re) the size of the black holes would be much smaller than the

electroweak scale too (microscopic wormholes) - no significant object could pass

through the wormhole.

This configuration requires no ‘exotic’ matter to violate the averaged null energy con-

dition (ANEC). The near extremal magnetic black holes could have a large charge

q >> 1. The action of the magnetic field turns any one charge 4-dimensional

fermion into q 2-dimensional fermions which move on circular trajectories (charged

4-dimensional fermions moving in a magnetic field have a zero energy Landau level

on the sphere with large degeneracy proportional to q [39]). The charged fermions

moving along circular orbits generate negative Casimir-like energy through quantum
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effects. Due to the possible large charge of the black holes, a very big number of 2-

dimensional equivalent fermions could be obtained, which in turn would produce a

large amount of negative energy. This creates the traversable wormhole. In order to

maintain it stable for long periods of time, multiple methods are examined, includ-

ing rotation of the wormhole’s mouths around each other and placing the mouths in

AdS4 spacetimes.

5.2 Other recent papers

In the previous section, a possible wormhole solution was presented in detail, start-

ing with its geometric construction, the mechanism employed to violate the averaged

null energy condition and possible methods used to stabilize the wormhole. In the

following pages, other recent wormhole constructions will be briefly discussed in a

chronological order, with the focus on the way ANEC violation is achieved in each

case and on the novel ideas each article brought to this field.

5.2.1 Traversable wormholes via a double trace deformation

In 2017 Gao, Jefferis and Wall published a paper discussing a novel construction of

a traversable black hole [32]. They begin the set-up with an eternal BTZ black hole

(Bañados, Teitelboim and Zanelli) - a black hole solution for (2 + 1)-dimensional

topological gravity with a negative cosmological constant [41], which contains a

non-traversable Einstein-Rosen bridge. Next, a double trace deformation is turned

on between the two Conformal Field Theories (CFTs) living on the boundaries with

the same time orientation. The interaction is kept active only for a short period

of time. This connection creates a quantum matter stress tensor with a negative

average null energy - ANEC violation. A gap opens up between the energy levels

in the bulk of the wormhole (E1 and E2 in figure 5.4). The future event horizon is
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modified and shifted upwards (orange curve in figure 5.4). Due to this shift, a throat

of size ∆V opens up and allows particles from one side of the black hole to reach the

other side in a finite amount of time (pink trajectory in figure 5.4). However, due to

the short duration of the phenomenon, only a limited number of particles with the

right characteristics will be able to pass through the wormhole. Thus, this particular

Einstein-Rosen bridge becomes briefly traversable (it is an eternal wormhole, but not

an eternally traversable one).

Figure 5.4: The Gao-Jefferis-Wall traversable wormhole construction by direct boundary
coupling. The interaction between boundaries begins at t0 and ends at tf - the red
segment in the figure. The orange curve is the new future event horizon. The grey line
is the past event horizon - unmodified by this interaction. The pink trajectory is a null
ray which passes through the wormhole. Figure taken from reference [32].

Note that the way the two boundaries are connected together fixes the relative time

coordinate between them, excluding the possibility of having closed time-like curves

- no time travel is possible in this configuration.
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5.2.2 Eternal traversable wormhole

A similar method was used by Maldacena and Qi to construct an eternal traversable

wormhole in 2018 [42]. The negative null energy is generated by quantum fields

under the influence of an external coupling between the two boundaries. The dif-

ference here consist in a time-independent coupling of the boundaries, the time

independence being the reason for the eternal characteristic of the wormhole. The

construction uses Nearly-AdS2 gravity, where all gravitational degrees of freedom

live on the boundary. For more details, see reference [42].

5.2.3 Creating a traversable wormhole by a non-perturbative pro-

cess in quantum gravity

In 2019 Horowitz, Marolf, Santos and Wang published a paper in which they de-

scribed a traversable wormhole produced through a mechanism not mentioned in

this thesis until now. They considered spacetimes with instantons which give a finite

probability for a test cosmic string to break and produce two particles on its ends

[43]. Instantons are solutions to the equations of motion of the classical field theory

on a Euclidean spacetime [44]. If the two particles created by the string are replaced

by small black holes, only minimal changes to the spacetime are necessary. These

changes will be considered to be negligible.

While in the traditional approach the two particles created this way (and thus the

two black holes) accelerate away from each other, in this paper a particular case

is considered where they only have a small acceleration, giving them a small oscil-

latory motion around an equilibrium position (nearly-static particles). Conditions

on the spacetime are determined in order to obtain this kind of motion. This is

important since wormholes become harder and harder to make traversable as their

mouths become more widely separated [43]. The black holes have their horizons
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identified at the moment of creation, and thus a wormhole is produced. With ap-

propriate boundary conditions, the backreaction (mass and charge corrections to the

approximate solution) of quantum fields will render the wormhole traversable in the

semiclassical approximation. This is how ANEC violation is obtained in this case.

5.2.4 A perturbative perspective on self-supporting wormholes

In the same year, a similar method based on gravitational backreaction from lin-

ear quantum fields was used by Fu, Grado-White and Marolf to turn non-traversable

wormholes into traversable ones. The difference here comes from choosing appropri-

ate (periodic or anti-periodic) boundary conditions around a non-contractible cycle,

but having natural boundary conditions at infinity (no boundary interactions like

the ones in sections 5.2.1 and 5.2.2) [45]. Constructions can be found in asymp-

totically flat, asymptotically AdS, asymptotically de Sitter spaces or in other closed

cosmologies.

Explicit calculations were used in the paper to show that ANEC is violated this way.

Perturbative calculations show (in one of the explicit examples) that the worm-

hole remains traversable for longer and longer as the zero-temperature limit is

approached, suggesting that a non-perturbative treatment would give an eternally

traversable wormhole [45]. We direct the reader to reference [45] for more details.

5.2.5 Humanly traversable wormholes

The most recent paper on this topic, presenting perhaps the most surprising result

until now, was published in August 2020 by Maldacena and Milekhin [46]. They

managed to find a wormhole construction which is, in theory, not only traversable

for particles and photons, but also for human beings. The base of this assembly is

a previously considered theory for physics beyond the Standard Model: the Randall

Sundrum II model. This is a model which describes the universe as a 5-dimensional
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anti-de Sitter (AdS5) space where the elementary particles (except the graviton)

are localized on a (3 + 1)-dimensional brane [47]. This can also be viewed as a

4-dimensional CFT coupled to gravity [46]. The same way 4-dimensional fermions

were equivalent to 2-dimensional fermions under the action of the magnetic field

of the near extremal black holes in the paper discussed in section 5.1, in this paper

a 2-dimensional CFT will emerge from the 4-dimensional CFT in the presence of a

magnetic field. The ANEC violation occurs due to a Casimir-like negative energy

density. However, what looks like a quantum Casimir energy in four dimensions is

actually a classical effect in five dimensions.

As opposed to the main paper discussed in this dissertation, some additional con-

straints need to be fulfilled in this case to allow the wormhole to be humanly traversa-

ble. The tidal acceleration felt by the infalling observer have to be smaller than the

maximum sustainable accelerations for the human body, which are around 20g for

brief periods of time. This gives a lower limit for the radius of the throat re and with

it we can calculate an estimate of the lower limit of length of the wormhole l:

re > 1.5× 107m

l > 3× 103ly

It is noticeable that the wormhole’s circumference needs to be very large to not crush

the observer, but this case is not excluded by the theoretical model considered.
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Conclusion

This dissertation is a review of the most important concepts in wormhole physics

and of the most recent recipes to construct these extreme objects. Briefly stated,

traversable wormhole creation is dependent on violations of the averaged null en-

ergy condition (ANEC). The negative energy densities obtained as a result of these

violations are the key to traversable wormholes. In the examples discussed above,

ANEC violation was obtained either through a Casimir-like negative energy produced

by fermions moving along magnetic field lines (sections 5.1 and 5.2.5), through an

interaction between CFTs living on the boundaries of an eternal BTZ black hole (sec-

tions 5.2.1 and 5.2.2) or through backreaction of quantum fields (sections 5.2.3 and

5.2.4). If we desire a wormhole which is safe for human travel, additional restric-

tions related to the maximum tidal forces sustainable by the human body must be

taken into consideration.

The duration for which the wormhole is traversable depends on the mechanisms em-

ployed to create it. There could exist eternally traversable wormholes (as discussed

in section 5.2.2) or long-lived wormholes which are only traversable for a brief pe-

riod of their existence (like the example provided in section 5.2.1). More than that,

even the lifetime of a wormhole can be limited if the system is not stable (for exam-

ple, if it loses energy through electromagnetic radiation or gravitational waves, or if
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small perturbations destabilize the entire structure and lead to collapse).

It is fascinating to observe how our knowledge of wormholes changed through time.

It started with a simple solution to Einstein’s field equations and it progressed to

complex energy and topology conditions, quantum effects, questions about causality

and time travel and detailed geometrical descriptions of plausible constructions. At

first it took decades for any significant progress to be made, but nowadays a new

revolutionary construction gets published every few months. While there is so much

information available about wormholes, there is still so much we do not know about

them.

First of all, even with the many existing descriptions of constructions of traversable

wormholes, we are nowhere close to actually creating one, or at least to imagining

an experiment which would, once put into practice, bring into existence such an

object. Moreover, no wormholes have been observed so far in the Universe. All the

detailed descriptions we discussed in this paper are purely theoretical models. We

can only hope that our technology will advance fast enough for such experiments or

observations to be possible in the future (after all, LIGO was something inconceiv-

able 60 years ago).

Secondly, while quite a few ways of violating the averaged energy condition were

mentioned in this paper, there might exist other, more elegant methods which are

yet to be discovered and which would greatly simplify the creation of a traversable

wormhole. There might also exist means other than the ones discussed in the ex-

amples above to stabilize the resulting wormhole, which could lead to longer-lived

traversable wormholes.

Thirdly, the extent of the implications of traversable wormholes on quantum infor-

mation theories and information transport is still unknown. We are familiar with the

well known example of spooky action at a distance (entangled qubits), but adding
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patches of spacetime connected by wormholes, or coupled black hole boundaries

(like the example in section 5.2.1) brings about new situations to be analyzed.

Lastly, since traversable wormholes are thought to appear as a result of both gen-

eral relativity and quantum effects, advances in this domain could also represent

advances towards a unified theory of quantum gravity. Thus, even if these construc-

tions will not end up being useful from the practical perspective of long-distance

travel, they might be the solution to one of the biggest unsolved problems in mod-

ern physics.

Construction of traversable wormholes is a field of physics in which, despite the

recent progress and development occurring constantly, there are still many questions

left unanswered. It is an exciting time for physicists working in this domain and one

can only hope that the coming decades will bring even more wonderful revelations.
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